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Abstract. The stress singularity is determined using matched asymptotics for complete flow of a White–Metzner (WM) fluid
around a re-entrant corner. The model is considered in the absence of a solvent viscosity, with power-law forms for the
relaxation time and polymer viscosity. In this form, the model shares the same stress singularity as the upper convected
Maxwell (UCM) model, but its wall boundary layers may be thinner or thicker than those for UCM depending upon the
relative difference in the power-law exponents. If the exponent for the relaxation time is greater than that for the polymer
viscosity, the boundary layer is narrower, whilst it is thicker if the polymer viscosity exponent exceeds that of the relaxation
time. When the exponents are the same, the WM boundary layer thickness is the same size as that for UCM. A self-similar
solution is derived for the stress and velocity fields and matched to both upstream and downstream boundary layers.
Restrictions on the sizes of the power-law exponents are also given for validity of this solution.
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1. Introduction

We consider the steady planar flow of a White–Metzner fluid around a sharp corner. For this type of
flow, the governing equations are given by

∇ · u = 0, (1)

ρ(u · ∇)u = −∇p + ∇ · T , (2)

T + λ(γ̇)
∇
T = 2μ(γ̇)D, (3)

where u is the velocity field, p is the pressure and T is the extra-stress tensor. Equations (1) and (2) are
conservation of mass and linear momentum, in which the viscoelastic liquid are taken as incompressible
and the density ρ is assumed constant. Equation (3) is the constitutive equation of the White–Metzner
fluid [1], where the upper convected derivative of extra-stress and rate-of-strain tensors are given by

∇
T := (u · ∇)T − (∇u)T − T (∇u)T

, D :=
1
2

(∇u + ∇uT
)
.

The relaxation time λ and viscosity μ are usually taken dependent on the second invariant of the rate-
of-strain tensor through the shear rate

γ̇ :=
√

2DijDij , (4)

with summation convention implied.
The functional forms adopted for the relaxation time and viscosity are usually of Carreau type [2] (more
generally Carreau-Yasuda). Parameters in these empirical relationships are determined by fitting the
model to experimental data in steady shear flow [3]. Simpler power-law forms have also been adopted,
particularly in earlier work [1]. These are particularly relevant here, since the shear rate is large due to
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the stress singularity. As such, the Carreau type relationships are well-approximated by power-law forms,
which we take as

λ (γ̇) = λ0γ̇
q−1, μ(γ̇) = K0γ̇

n−1, (5)

where q > 0, n > 0 are flow behaviour indices with the additional positive constants λ0 (units sq) and K0

(units Pa · sn). The upper convected Maxwell (UCM) model is obtained in the particular case q = n = 1,
where the relaxation and viscosity are then both constant.
In use of the White–Metzner model, it is common to take both the flow behaviour indices to be the
same, so that q = n. This is the case presented in [2], and referred to as the “Bird equality” by [4]. This
assumption was also made in [3] when modelling both polyacrylamide (PAA) and polyethylene oxide
(PEO) suspended in a solvent consisting of glycerol and water. For PAA, a range of n values between
0.30 and 0.73 inclusive were found; for the PEO solution, n was found to be between 0.48 and 1 (also
inclusive). Further studies on polymer melts and solutions have found that q and n do not have to be
equal. Examples include: a polyisobutylene and decalin solution [5] with flow behaviour indices of n = 0.33
and q = 0.56, and a polystyrene melt [6] with indices of n = 0.17 and q = 0.064.
As geometry for the problem, the above equations are taken to hold in the sector 0 < r < ∞, 0 ≤ θ ≤ π/α,
defined in polar coordinates centred at the corner apex. For sharp or re-entrant corners, we require the
corner angle parameter α ∈ [1/2, 1). The flow direction is such that θ = 0 is the upstream wall and
θ = π/α is the downstream wall.
The White–Metzner (WM) model [1] was originally introduced as a phenomenological generalisation
to the upper convected Maxwell (UCM) model [2]. The advantages of the UCM model for modelling
viscoelastic liquids are ability to capture fading memory, the relatively small number of adjustable pa-
rameters and its evolutionary stability. However, its disadvantages are that its predictions can be quali-
tatively different from experimental data, especially for concentrated solutions and polymer melts. The
WM model keeps the same mathematical structure of the UCM differential constitutive equation, but
aims to capture nonlinear viscoelastic behaviour by allowing the viscosity and relaxation time to depend
upon the deformation rate. Its advantages lie in its flexibility to predict accurately viscometric behaviour
(i.e. shear viscosity and first normal stress difference) of most polymeric fluids. Its disadvantages are that
it fails to capture polymeric behaviour in more general flows [7], the model can lose evolutionary stability
(in the Hadamard sense) due to the parameter dependency on the shear rate [8,9], and the equations
still retain a stress singularity at finite elongational rates similar to the UCM model [9]. Despite these
deficiencies, the WM model has still been used to model concentrated polymer solutions and melts in
abrupt contractions [10,11] and cross-slot flows [3]. The parameter flexibility in the model allows it to
model not just shear thinning behaviour of polymer melts [12], but also shear thickening behaviour of
suspensions [13–15].
The motivation for studying the re-entrant corner problem for viscoelastic fluids is threefold:

1. Numerical schemes encounter convergence difficulties at sharp corners due to the presence of the
stress singularity [16,17].

2. Asymptotics can be used to determine the limiting behaviour of the velocity and stress fields. This
adds to the catalogue of known analytical behaviours for viscoelastic fluids (which is still relatively
small compared to that for Newtonian fluids). The asymptotic behaviour can also be used to improve
numerical schemes near the stress singularity.

3. The stress singularity is a test of the well-posedness of the viscoelastic model. It is not at all clear
that a given viscoelastic model will have integrable stresses at such singular points.

Asymptotic results for the UCM model in this problem are discussed in [18–20]. As the radial distance
to the corner vanishes, a three region structure is obtained. This comprises an outer region in which the
upper convected derivative of stress dominates in the constitutive equation and then boundary layers
symmetrically placed at the upstream and downstream walls. The boundary layers arise due to the
viscometric stress behaviour that must be obtained at the walls from the no-slip condition. In the outer
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region away from the walls, the stress and velocity behave as

T = O(r−2(1−α)), v = O(rα(3−α)−1) as r → 0. (6)

The boundary layers are cusp like with their widths found to be

δ = O(x2−α) as x → 0, (7)

where x is distance to the corner along either wall.
Initial steps at extending the above UCM results to the WM model were made in [4]. The approach
followed identically that in [18], but is limited to the upstream and outer regions. The downstream region
is omitted entirely and as such the problem remains incomplete. Here we rectify this deficiency, by solving
the downstream boundary layer problem, which arguably is the most difficult part of the problem. The
downstream solution is important, as it will show that the flow remains attached at the downstream wall
and complete flow around the corner can theoretically exist.

2. Preliminary mathematical results

2.1. Hyperbolicity of the stress tensor

The evolutionary stability of the system of equations is a necessary physical requirement for all viscoelas-
tic models. Conditions for the White–Metzner model to maintain its evolutionary character have been
obtained by [8] and [9]. One of these is the positive definiteness of the conformation tensor

A = T +
μ

λ
I, (8)

in terms of which the constitutive Eq. (3) is

A + λ
∇
A = λ

[
D

Dt

(μ

λ

)
+

μ

λ2

]
I. (9)

Following arguments similar to those in [21], we now derive an integral expression for the conformation
tensor. Spatial Eulerian coordinates {x} may be related to the material Lagrangian coordinates {X}
through the deformation gradient (and its associated inverse)

F =
∂x
∂X

, g = F−1,

with Fij = ∂xi

∂Xj
. It follows that

∇u =
DF

Dt
g.

Furthermore, differentiating the equation Fg = I, we find that
Dg

Dt
= −g∇u.

These two results allow us to conclude that

g
∇
T gT =

D

Dt

(
gTgT

)
.

Consequently, the White–Metzner stress relation (3) may be written as
D

Dt

(
gTgT

)
+

1
λ
gTgT = −μ

λ

D

Dt

(
ggT

)
,

or equivalently as
D

Dt

[
g

(
T +

μ

λ
I
)
gT

]
+

1
λ
g

(
T +

μ

λ
I
)
gT =

[
D

Dt

(μ

λ

)
+

μ

λ2

]
ggT .



   82 Page 4 of 19 J. D. Evans and C. A. Jones ZAMP

Integrating then gives

g
(
T +

μ

λ
I
)
gT =

∫ t

s=−∞

[
D

Dt

(μ

λ

)
+

μ

λ2

]
e
∫ 1

λ ds′
ggT ds · e− ∫ 1

λ dt.

Since ggT is positive definite, the positive definiteness of the left-hand-side of the above expression and
hence the conformation tensor requires us to analyse the sign of

D

Dt

(μ

λ

)
+

μ

λ2
=

K0γ̇
n−2q−1

λ2
0

[
1 + λ0(n − q)γ̇q−2 Dγ̇

Dt

]
,

for nonzero shear rates. The only definitive parameter case, where positive definiteness is assured, is when
n = q. The case n �= q depends upon the behaviour of the material derivative of the shear rate and no
strong conclusions can be made.

2.2. Non-dimensionalisation

To non-dimensionalise the equations, we scale as follows:

x = Lx̄, u = U ū, p =
K0U

n

Ln
p̄, T =

K0U
n

Ln
T̄ ,

using representative length and velocity scales. The Reynolds and Weissenberg numbers are

Re =
ρLn

Un−2K0
=

ρLU
(

K0Un−1

Ln−1

) and Wi =
λ0U

q

Lq
.

Noting that the re-entrant corner problem has no natural length or velocity scales, we may set these
dimensionless constants to unity by choosing

U = Lλ
−1/q
0 , L =

(
K0λ

2−n
q

0 ρ−1

)1/2

.

Inserting these scalings into the governing equations and dropping the bars on the variables, we obtain
the resulting dimensionless equations:

∇ · u = 0, (10)

(u · ∇)u = −∇p + ∇ · T , (11)

T + γ̇q−1
∇
T = 2γ̇n−1D. (12)

2.3. Natural stress formulation

We first express Eqs. (10)–(12) in terms of the (dimensionless) conformation tensor A = T + γ̇n−qI,
leading to the equations

∇ · u = 0, (13)

(u · ∇)u = −∇p − ∇ (
γ̇n−q

)
+ ∇ · A, (14)

A + γ̇q−1
∇
A =

[
γ̇n−q + γ̇q−1 (u · ∇)

(
γ̇n−q

)]
I. (15)

For analysis of the downstream wall and to give a complete solution around the corner, it is convenient
to represent the conformation tensor with respect to a basis which is aligned with the flow [22,23]. This
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is referred to as the natural stress basis, which consists of the velocity vector and an orthogonal vector
given by

u = (u, v)T , w =
(

− v

u2 + v2
,

u

u2 + v2

)T

.

The conformation tensor may be expressed in terms of dyadic products of the vectors u and w, in the
form

A = TuuuuT + Tuw(uwT + wuT ) + TwwwwT , (16)

where Tuu(x, y), Tuw(x, y) and Tww(x, y) are variables aligned along streamlines, and the identity matrix
I takes the form

I =
1

‖u‖2uu
T + ‖u‖2wwT .

The component form of (15) is

Tuu + γ̇q−1 (u · ∇) Tuu + 2γ̇q−1Tuw (∇ · w) =
γ̇q−1

‖u‖2 (u · ∇)
(
γ̇n−q

)
+

γ̇n−q

‖u‖2 , (17)

Tuw + γ̇q−1 (u · ∇) Tuw + γ̇q−1Tww (∇ · w) = 0, (18)

Tww + γ̇q−1 (u · ∇) Tww = γ̇q−1‖u‖2 (u · ∇)
(
γ̇n−q

)
+ ‖u‖2γ̇n−q, (19)

where

∇ · w =
1

‖u‖4
(

(u2 − v2)
(

∂v

∂x
+

∂u

∂y

)
+ 4uv

∂u

∂x

)
.

Addressing the momentum Eq. (14),

∇ · A = u · ∇(Tuuu + Tuww) + w · ∇(Tuwu + Twww) + (Tuwu + Twww)∇ · w,

so in component form we have

(u · ∇)u = −∂p

∂x
− ∂

∂x

(
γ̇n−q

)
+ (u · ∇)

(
Tuuu − Tuwv

‖u‖2
)

+ (w · ∇)
(

Tuwu − Twwv

‖u‖2
)

+
(

Tuwu − Twwv

‖u‖2
)

∇ · w, (20)

(u · ∇)v = −∂p

∂y
− ∂

∂y

(
γ̇n−q

)
+ (u · ∇)

(
Tuuv +

Tuwu

‖u‖2
)

+ (w · ∇)
(

Tuwv +
Twwu

‖u‖2
)

+
(

Tuwv +
Twwu

‖u‖2
)

∇ · w. (21)

2.4. Viscometric behaviour

An important part of the flow that our analysis needs to capture occurs near to the walls. In simple shear
flow u = γ̇y with γ̇ > 0, (17)–(19) give the viscometric behaviour for the natural stresses as

Tuu = 2
γ̇n+q

u2
+

γ̇n−q

u2
, Tuw = γ̇n, Tww = γ̇n−qu2. (22)

For large shear rates, we note Tuu ∼ 2γ̇n+q/u2, which will be the form relevant in the boundary layers.
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3. Re-entrant corner problem

3.1. The outer or core flow solution

The outer region is taken to be close to the corner (r 
 1), but away from the wall boundaries. The
stress singularity ensures that the upper convected derivative of the stress dominates in the constitu-
tive equation. The behaviour is very similar to the UCM case, which is well understood [18–20,23–26].
Consequently, introducing a streamfunction ψ, we quote the solution as

ψ ∼ C0

αm
rmα sinm(αθ),

T ∼ Tuu(ψ)uuT + Tuw(ψ)
(
uwT + wuT

)
+ Tww(ψ)wwT − γ̇n−qI,

p ∼ 1
2
Tuu(ψ)‖u‖2 as r → 0. (23)

The streamfunction is a potential flow similarity solution, with amplitude C0 set by the global flow and
the index m is to be determined. The natural stress variables are constant along streamlines, and for
self-similar behaviour, we take in power-law forms

Tuu(ψ) = d1

(
ψ

C0

)m1

, Tuw(ψ) = d2

(
ψ

C0

)m2

, Tww(ψ) = d3

(
ψ

C0

)m3

, (24)

where the di are arbitrary constants. The momentum equation links the indices m and m1 through the
relationship

m1 =
2
m

− 2. (25)

Matching this solution to the wall boundary layers determines the exponents as

m =
2(n + q(3 − 2α) + α − 1)

2q + α(n − q)
, m1 =

2(1 − α) + q(3α − 4) + n(α − 2)
α − 1 + n + q(3 − 2α)

,

m2 =
n(α − 1)

α − 1 + n + q(3 − 2α)
, m3 =

2(α − 1) + q(4 − 3α) + nα

α − 1 + n + q(3 − 2α)
. (26)

The exponents m and m1 give the order of magnitude estimates in this region for the velocity, velocity
gradient and extra-stress as

u = O
(
rmα−1

)
, ∇u = O

(
rmα−2

)
, T = O(r−2(1−α)). (27)

In arriving at this solution, a priori assumptions are made in regards to the dominance of terms in
the governing Eqs. (11) and (12). The leading order stress behaviour in (23) is a stretching solution,
derived first for this problem in [24] and then more succinctly in [23]. The Cartesian stress analysis of
[4] identified this solution as relevant to the WM model and stated four conditions for its validity. We
summarise and modify them here as follows. The restriction m > 1 for subdominance of the inertia
terms in the momentum equation is erroneous. A more restrictive condition is for the velocity field to
remain finite and vanish at the corner, which from (27) requires mα > 1. The dominance of the upper
convected derivative over the relaxation and rate-of-strain terms in (12) gives further restrictions on m.
Taken together, these give

a) 1 < αm < 2 and b) αm(q − n) < 2(1 + α + q − n), (28)

to hold for all re-entrant corner angles 1/2 ≤ α < 1. The first inequality in a) gives

2α(1 − α) < αn + (7α − 4α2 − 2)q, (29)

this region being bounded by

1 = n + q, (30)



ZAMP Sharp corner singularity Page 7 of 19    82 

whilst the second inequality in a) gives −2q < α
1−α , which is automatically satisfied for non-negative q.

Finally, b) gives

n − q <
1

1 − α
. (31)

In the parameter case n = q, (30) suggests an α independent lower bound of n = 1/2 whilst (31) is not
restrictive. Consequently, we have n = q ≥ 1/2, with no upper bound.
More generally, when n �= q, it is convenient to discuss the shear thinning (0 < n < 1) and shear thickening
(n > 1) cases separately. In the shear thinning case, (30) provides the α independent bound and thus
q > 1 − n, since (31) is not restrictive in this case. For 1 ≤ n ≤ 2, (30) and (31) are not restrictive, so
q > 0. Finally, for n > 2, (30) is not restrictive but (31) suggests q > n − 2. A pictorial summary is given
later in the discussion section.
To determine the scalings for the upstream or downstream layers, we require the limiting behaviour of the
outer solution (23) as the walls are approached. Focusing on the upstream wall, we have that as y → 0+ :

ψ ∼ C0x
m(α−1)ym, u ∼ mC0x

m(α−1)ym−1, v ∼ −m(α − 1)C0x
m(α−1)−1ym,

Tuu ∼ d1

(
x(α−1)y

)mm1

, Tuw ∼ d2

(
x(α−1)y

)mm2

, Tww ∼ d3

(
x(α−1)y

)mm3

,

p ∼ 1
2
m2C2

0d1x
2(α−1), γ̇ ∼ m(m − 1)|C0|xm(α−1)ym−2. (32)

Stress boundary layers at the walls are required, since the outer solution does not give viscometric
behaviour appropriate to the WM model as recorded in Sect. 2.4. The stress relaxation and rate-of-strain
terms need to be recovered in the WM constitutive equation, the analysis of which we address next.

3.2. The upstream boundary layer

To derive the leading order boundary layer equations, we need to systematically compare terms in the
governing equations. This is best done through introducing an artificial small parameter, representing
the length scale from the corner on which we expect the structure to exist. We thus set

x = εX, (33)

where 0 < ε 
 1, and consider the region X = O(1). Since the parameter is introduced artificially, it
scales from the equations and its actual size can only be determined from numerical solution of a complete
flow problem that contains the re-entrant corner. In addition, we set

y = δY, ψ = θψ̄, u =
θ

δ
ū, v =

θ

ε
v̄, p = ε2(α−1)p̄,

Tuu = θm1 T̄uu, Tuw = θm2 T̄uw, Tww = θm3 T̄ww, (34)

where the gauge δ(ε) represents the boundary layer width to be determined and θ = εm(α−1)δm is
introduced for convenience. Under these scalings, at leading order in ε, the momentum equations become

0 = − ∂p̄

∂X
+

(
ū · ∇̄)

(T̄uuū) +
∂T̄uw

∂Y
, (35)

0 =
∂p̄

∂Y
, (36)

and the WM constitutive equations give

T̄uu +
∣
∣
∣
∣
∂ū

∂Y

∣
∣
∣
∣

q−1 (
ū · ∇̄)

T̄uu + 2
∣
∣
∣
∣
∂ū

∂Y

∣
∣
∣
∣

q−1

T̄uw
∂

∂Y

(
1
ū

)
= 0. (37)

T̄uw +
∣
∣
∣
∣
∂ū

∂Y

∣
∣
∣
∣

q−1 (
ū · ∇̄)

T̄uw +
∣
∣
∣
∣
∂ū

∂Y

∣
∣
∣
∣

q−1

T̄ww
∂

∂Y

(
1
ū

)
= 0, (38)
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T̄ww +
∣
∣
∣
∣
∂ū

∂Y

∣
∣
∣
∣

q−1 (
ū · ∇̄)

T̄ww = ū2

(∣
∣
∣
∣
∂ū

∂Y

∣
∣
∣
∣

q−1 (
ū · ∇̄)

∣
∣
∣
∣
∂ū

∂Y

∣
∣
∣
∣

n−q

+
∣
∣
∣
∣
∂ū

∂Y

∣
∣
∣
∣

n−q
)

. (39)

The dominant balance required to obtain these equations requires

δ = ε
1+(1−α)mq
1+(m−2)q = ε

n+(3−2α)q
n+q , (40)

with the m and the m1,m2,m3 as stated in (26). The system of PDEs (35)–(39) is completed with the
no-slip conditions

on Y = 0 : ψ̄ =
∂ψ̄

∂Y
= 0, (41)

and the outer solution matching conditions

as Y → ∞ : ψ̄ ∼ C0X
m(α−1)Y m, p̄ ∼ 1

2
m2C2

0d1X
2(α−1),

T̄uu ∼ d1

(
ψ̄

C0

)m1

, T̄uw ∼ d2

(
ψ̄

C0

)m2

, T̄ww ∼ d3

(
ψ̄

C0

)m3

. (42)

The pressure in this region is thus its limiting behaviour from the outer solution and may be written as

p̄ = p0X
2(α−1), p0 =

1
2
m2C2

0d1. (43)

3.2.1. Similarity solution. The system of Eqs. (35)–(39), together with the conditions (41) and (42) pos-
sess a similarity solution in the variable

χ = X−aY, (44)

with

ψ̄ = Xbf(χ), p̄ = X2α−2p0, T̄uu = Xbm1tuu(χ),

T̄uw = Xbm2tuw(χ), T̄ww = Xbm3tww(χ). (45)

where, for convenience, we have introduced

a =
n + (3 − 2α)q

n + q
, b = (α − 1 + a)m =

2(n + (3 − 2α)q + α − 1)
n + q

. (46)

The velocity components are

ū = Xb−af ′(χ), v̄ = Xb−1(aχf ′ − bf),

and our system of PDEs reduces to the four ODEs:

0 = 2(1 − α)p0 − bff ′t′uu + t′uw + [(bm1 + b − a) (f ′)2 − bff ′′]tuu, (47)

− bft′uu + (bm1f
′ + |f ′′|1−q)tuu − 2

f ′′

(f ′)2
tuw = 0, (48)

− bft′uw + (bm2f
′ + |f ′′|1−q)tuw − f ′′

(f ′)2
tww = 0, (49)

− bft′ww + (bm3f
′ + |f ′′|1−q)tww = (f ′)2|f ′′|n−q

[
|f ′′|1−q − (n − q)

[
(2a − b)f ′ + b

ff ′′

|f ′′|2 f ′′′
]]

, (50)

with boundary conditions

at χ = 0 : f = f ′ = 0, (51)

as χ → ∞ : f ∼ C0χ
m, tuu ∼ d1χ

mm1 , tuw ∼ d2χ
mm2 , tww ∼ d3χ

mm3 . (52)



ZAMP Sharp corner singularity Page 9 of 19    82 

3.2.2. Upstream numerical solution. Since χ = 0 is a singular point for the equations (47)–(50), it will
be convenient in their numerical solution to use the two-term asymptotic wall behaviours. As χ → 0, we
have

f ∼ 1
2
f2χ

2 +
1
6
f3χ

3, (53)

χ2tuu ∼ 2|f2|n+q−2 +
2|f2|n+q−2

f2

[
f3(n + q − 1) − (2a(n − q) + b(m1 + m2 + m3 − n + q))|f2|q+1

]
χ,

(54)

tuw ∼ f2|f2|n−1 +
[
(2a − 3b − 2bm1)|f2|n+q + 2(α − 1)p0

]
χ, (55)

χ−2tww ∼ |f2|n+2−q

+ f2|f2|n−q
[
f3(1 + n − q) + (2a(q − n) + b(1 + n − q − m3))|a|q+1

]
, (56)

where f2 = f ′′(0) is nonzero, f3 = f ′′′(0) and

p0 =
[2a(q − n − 1) + b(4 + 2m1 − m2 − m3 + n − q)] |f2|n+q + nf3|f2|n−1

2(α − 1)
. (57)

Eliminating t′uu and t′uw in (47) using (48) and (49) gives, for q �= 1, a nonlinear equation for f ′′ in the
form

Lf ′′ + K|f ′′|1−q + Q = 0, (58)

where

L = bftuu − 2tuw

f ′ +
tww

bf (f ′)2
, K = f ′tuu − tuw

bf
, Q = 2p0(α − 1) − (b − a) (f ′)2 tuu − m2f

′tuw

f
.

In the case n = q, Eq. (58) with (48)–(50) gives a fifth-order system for (f, f ′, tuu, tuw, tww). However, when
n �= q, a third-order derivative of f enters (50) and the overall system becomes sixth-order. Differentiating
Eq. (58) gives that

f ′′′ = − Q′ + K ′|f ′′|1−q + L′f ′′

L + (1 − q)K|f ′′|−(1+q)
. (59)

The system of equations to solve is now (59) with (48)–(50) for (f, f ′, f ′′, tuu, tuw, tww).
In both n = q and n �= q cases we solve the system of equations as an initial-value problem, imposing the
asymptotic wall behaviour (53)–(56) at sufficiently small positive values of χ.
The system of equations (47)–(50) with (53)–(56) contain two free parameters (f2, p0), since f3 is fixed
through (57). In this upstream region, the flow is towards the corner apex and thus f2 < 0, whilst the
pressure gradient is negative so that p0 > 0. Since our system of equations is invariant under the scaling

χ = Γχ̂, f = Γ
2q−1

q f̂ , p0 = Γ− n+q
q p̂0, tuu = Γ

2−3q−n
q t̂uu, tuw = Γ− n

q t̂uw, tww = Γ
3q−n−2

q t̂ww,

we can take Γ = p
− q

n+q

0 and so, without loss of generality, set p0 = 1. The upstream problem is thus
reduced to a single parameter family of solutions, parameterised by the wall shear rate constant f2, which
is set by the incoming external flow. Solving the IVP for fixed f2 will determine the far-field constants
(C0, d1, d2, d3), where d1 = 2/m2C2

0 from (43) with p0 = 1. We remark that the scaling in p0 formulates
the problem in terms of similarity parameters

f2Γ
1
q , C0Γm+ 1−2q

q , d1Γmm1+
n+3q−2

q , d2Γmm2+
n
q , d3Γmm3+

n+2−3q
q ,

which can be used to map the p0 = 1 solution to more general p0 values.
We now give the numerical solutions for the upstream layer, focusing on the case n = q. To distinguish
from the downstream layer, we add a subscript u to the wall and far-field constants so that

(f2, f3, p0, C0, d1, d2, d3) = (f2u, f3u, p0u, C0u, d1u, d2u, d3u). (60)
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As just discussed, we take p0u = 1 so that

f3u =
2n(α − 1) − (α − 1)(3n − 2)|f2u|2n

n2|f2u|n−1
.

For numerical implementation, it is preferable to use the scaled natural stress variables suggested in
(54)–(56), namely

χ2tuu, tuw and χ−2tww, (61)

which remain finite and nonzero at the wall. With these new natural stress variables, we solve Eqs. (48)–
(50) alongside Eq. (58) using MATLAB’s ode15s solver. In particular, roots of (58) are found via the
inbuilt fzero routine. Figure 1 plots the solution of the boundary layer equations for (f, χ2tuu, tuw, χ−2tww)
in the case n = q, where n = 0.5, 1 and 2. In all three cases, f2u = −1, p0u = 1, α = 2/3 and
[χ0, χ∞] = [10−6, 106]. Verification of the large χ asymptotic behaviour is observed in Fig. 2, where plots
of the variables (f, χ2tuu, tuw, χ−2tww) scaled by their far-field conditions are presented.

Figure 3 shows the variation of C0u with f2u when p0u = 1 and for selected n = q values. As observed
by [25] for Oldroyd-B, it illustrates that there is a lower value to the streamfunction coefficient at which
the wall shear stress will vanish. At this point, separation will occur at the upstream wall with reverse
flow near the boundary and an upstream dividing streamline emanating from the corner. Compared to
the UCM case n = q = 1, this minimum C0u value is greater (less negative) for shear thickening n = q > 1
and smaller (more negative) for shear thinning n = q < 1.

3.3. The downstream boundary layer

Remaining in the case n = q, we now turn our attention to the downstream part of the problem. Firstly,
we note that via the transformation

ψ → −ψ, y → −y, and tuw → −tuw, (62)

we can consider the downstream layer relative to the Cartesian axes of the upstream layer, so that the
same governing equations hold. Physically, this corresponds to a re-orientation of the axes and reversal
of the flow direction. Therefore, we may solve Eqs. (47)–(50) for the downstream layer. For clarity, we
attach a label d to the downstream wall and far-field constants, so that

(f2, f3, p0, C0, d1, d2, d3) = (f2d, f3d, p0d, C0d, d1d, d2d, d3d), (63)

where

f3d =
2n(α − 1)p0d − (α − 1)(3n − 2)|f2d|2n

n2|f2d|n−1
.

Since the downstream layer can be viewed relative to the upstream layer by our transformation (62), we
also know that the downstream pressure and far-field constants can be related to those of the upstream
via

p0d = p0u, C0d = −C0u, d1d = d1u, d2d = −d2u, d3d = d3u. (64)

Again, this means that without loss of generality, we may consider the case p0u = 1. To solve the similarity
equations in the downstream layer, we set up a boundary value problem on a truncated domain [χ0, χ∞]
using Eqs. (48)–(50) and (58), imposing the far-field behaviours (52) at χ∞ and the wall behaviours
(53)–(56) at χ0. Following the BVP formulation discussed in [19], we specify the values of the constants
(C0d, d2d, d3d), leaving the wall parameter f2d to be determined.
The solution to the downstream problem is computed using MATLAB’s bvp4c finite difference solver,
with scaled stress variables introduced in Eq. (61), and implemented boundary conditions

at χ = χ0 : tuw = 2nf |f |n−1χ−2n
0 , χ−2

0 tww = 4f2χ−4
0 (65)
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(a) (b)

(c) (d)

Fig. 1. The solution profiles found from solving the upstream problem for n = 0.5, (solid line), n = 1 (dashed line) and
n = 2 (dot-dashed line). Figure a shows the streamfunction f . Figures b–d show the scaled stress variables χ2tuu, tuw and
χ−2tww, respectively. In each case, f2u = −1, p0u = 1, α = 2/3 and the solution interval is [χ0, χ∞] = [10−6, 106]

at χ = χ∞ : f = C0dχ
2(2−α)n+α−1

n∞ , tuw = d2dχ
α−1
∞ , χ−2

∞ tww = d3dχ
2(1−α)(n−1)

n∞ . (66)

In using bvp4c, we set the relative and absolute error tolerances to be RelTol = 10−3 and AbsTol =
10−6, respectively, and supply an initial guess of the form

f =

{
1
2f2dχ

2 +
(
C0d − 1

2f2d

)
χ3, χ ≤ 1,

C0dχ
2(2−α)n+α−1

n , χ > 1,

f ′ =

{
f2dχ +

(
C0d

(
2(2−α)n+α−1

n

)
− f2d

)
χ2, χ ≤ 1,

C0d
2(2−α)n+α−1

n χ
2(2−α)n+α−1

n −1, χ > 1,
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(a) (b)

(c) (d)

Fig. 2. The solution profiles found from solving the upstream problem for n = 0.5, (solid line), n = 1 (dashed line) and
n = 2 (dot-dashed line), scaled by their expected far-field behaviour. Figure a shows the streamfunction f . Figures b–d
show the scaled stress variables χ2tuu, tuw and χ−2tww, respectively. In each case, f2u = −1, p0u = 1, α = 2/3 and the
solution interval is [χ0, χ∞] = [10−6, 106]

χ2tuu =

{
2|f2d|2n−2 +

(
d1d − 2|f2d|2n−2

)
χ, χ ≤ 1,

d1dχ
2[(2α−3)n+1−α]

n +2, χ > 1,

tuw =

{
f2d|f2d|n−1 +

(
d2d − f2d|f2d|n−1

)
χ, χ ≤ 1,

d2dχ
α−1, χ > 1,

χ−2tww =

{
f2
2d + (d3d − f2

2d)χ, χ ≤ 1,

d3dχ
2(α−1)(n−1)

n , χ > 1.
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Fig. 3. The variation of C0u with −f2u for n = 0.5, (solid line), n = 1 (dashed line) and n = 2 (dot-dashed line) when
p0u = 1. In all cases, we consider α = 2/3

This initial guess is based on the leading order asymptotic behaviours for small and large χ with enforced
continuity at χ = 1, and is posed on a smaller domain contained within the interval [χ0, χ∞] = [10−3, 104]
with 1000 equally spaced mesh points. Specifying the exact starting domain is dependent on the value of
the power-law exponent n, with the domain decreasing in size as we deviate from the UCM case (n = 1).
The solution is then continued onto the full interval via usage of MATLAB’s bvpinit procedure. We also
require an estimate of the parameter f2d to use our initial guess; this is again dependent on the value of
n. For n = 1, the estimate was taken as f2d = 1, increasing as the value of n decreased (and vice versa).
Plots of the downstream variables for n = 0.5, n = 1 and n = 1.4 are shown in Figs. 4, 5 and 6, together
with plots of four functions which can be used to estimate the downstream wall parameter f2d in the case
where f2u = −1, p0u = 1 and α = 2/3. In each case, the required values of (C0d, d2d, d3d) were set via the
solution of the upstream layer on the interval [10−6, 106].

4. Discussion

The White–Metzner model is a phenomenological generalisation of the UCM model, where the relaxation
time and polymer viscosity are functions of the second invariant of the rate-of-strain tensor. The model is
nonlinear (rather than quasilinear like UCM) and allows for more realistic behaviour exhibited by molten
polymers than the simple behaviours given by the UCM model.
A self-similar solution (23) has been constructed for the model for any re-entrant corner angle and matched
to both upstream and downstream wall boundary layers. Compared to the UCM model, the order of
magnitude estimates (27) show that the stress singularity is the same, but the velocity field vanishes
at a different rate depending upon the values of the power-law exponents q and n. The boundary layer
thickness in (40) may be written as

δ = ε2−α+ (q−n)(1−α)
n+q ,

illustrating that it is thicker if q < n and thinner if q > n than that for UCM (q = n = 1). In fact, the
boundary layer thickness is the same as UCM in the parameter regime q = n.



   82 Page 14 of 19 J. D. Evans and C. A. Jones ZAMP

(a) (b)

Fig. 4. The solution to the BVP (a) and functions that estimate the parameter f2d (b) in the case of n = 0.5, f2u = −1,
p0u = 1, α = 2/3 on the interval [10−3, 104]. Numerically, we find to four decimal places that at χ0 = 10−3, 2f/χ2 = 7.1478,

f ′/χ = 7.1414, t
1/n
uw = 7.1478,

√
tww/χ = 7.1478

(a) (b)

Fig. 5. The solution to the BVP (a) and functions that estimate the parameter f2d (b) for the UCM model (n = 1), with
f2u = −1, p0u = 1, α = 2/3 on the interval [10−3, 104]. Numerically, we find to four decimal places that at χ0 = 10−3,

2f/χ2 = 1.6817, f ′/χ = 1.6812, t
1/n
uw = 1.6817,

√
tww/χ = 1.6817

Conditions on the power-law exponents for the validity of this solution are given in (30) and (31). Figure 7
illustrates the inequalities and the parameter region of interest. In summary, for shear thinning fluids
0 < n < 1 we require 1 − n < q. For shear thickening fluids n > 1 we require q > max(n − 2, 0). Outside
of these regions, either the velocity field can develop a singularity at the corner or the upper convected
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(a) (b)

Fig. 6. The solution to the BVP (a) and functions that estimate the parameter f2d (b) in the case of n = 1.4, f2u = −1,
p0u = 1, α = 2/3 on the interval [10−3, 104]. Numerically, we find to four decimal places that at χ0 = 10−3, 2f/χ2 = 0.7126,

f ′/χ = 0.7125, t
1/n
uw = 0.7126,

√
tww/χ = 0.7126

Fig. 7. A schematic illustrating the region of allowed values of n and q in terms of the corner parameter α. The lines
n + q = 1 and n = q + 2 correspond to the case when the re-entrant corner angle is 2π (α = 1/2). The “Bird equality” case
n = q is also found along the dot-dashed line
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stress derivative no longer dominates the rate-of-strain terms in the constitutive equation. We note that
in the “Bird equality” case q = n, we require q = n > 1/2 for validity of the solution, which we can
extend to q = n = 1/2 if we exclude the full corner angle case α = 1/2. In the introduction, we recorded
some experimentally fitted values of n and q. We observe that some fall outside our required validity
range, particularly when q is small. In these cases, use of the WM model in this form is questionable.
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Appendix A. Cartesian formulation

As we intend to reconcile some of our results with those in [4], it is worth mentioning the formulation of
Eqs. (11) and (12) in Cartesian coordinates. For our problem, we make the choice of Cartesian axes with
the x-axis along the upstream wall (θ = 0), and the y-axis along the ray θ = π/2. Writing the velocity as
u = (u, v)T , we have that the momentum equations (11) are

(u · ∇) u = −∂p

∂x
+

∂T11

∂x
+

∂T12

∂y
, (67)

(u · ∇) v = −∂p

∂y
+

∂T12

∂x
+

∂T22

∂y
, (68)

alongside the constitutive equations (12), given by

T11 + γ̇q−1

(
u

∂T11

∂x
+ v

∂T11

∂y
− 2

∂u

∂y
T12 − 2

∂u

∂x
T11

)
= 2γ̇n−1 ∂u

∂x
, (69)

T12 + γ̇q−1

(
u

∂T12

∂x
+ v

∂T12

∂y
− ∂v

∂x
T11 − ∂u

∂y
T22

)
= γ̇n−1

(
∂u

∂y
+

∂v

∂x

)
, (70)

http://creativecommons.org/licenses/by/4.0/
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T22 + γ̇q−1

(
u

∂T22

∂x
+ v

∂T22

∂y
− 2

∂v

∂x
T12 − 2

∂v

∂y
T22

)
= 2γ̇n−1 ∂v

∂y
. (71)

The quantities Tij refer to the Cartesian components of the extra stress tensor, with the indices 1 and 2
identifying the x and y axes, respectively.
In the boundary layers, we introduce the scaled variables

T11 = ε2(α−1)T̄11, T12 = ε
2n(α−1)

n+q T̄12, T22 = ε
2(n−q)(α−1)

n+q T̄22, (72)

alongside those in (34), to obtain the Cartesian form of the boundary layer equations as found in [4]:

0 = − ∂p̄

∂X
+

∂T̄11

∂X
+

∂T̄12

∂Y
, (73)

0 =
∂p̄

∂Y
, (74)

with corresponding WM equations

T̄11 +
∣
∣
∣
∣
∂ū

∂Y

∣
∣
∣
∣

q−1 [
(
ū · ∇̄)

T̄11 − 2
∂ū

∂X
T̄11 − 2

∂ū

∂Y
T̄22

]
= 0, (75)

T̄12 +
∣
∣
∣
∣
∂ū

∂Y

∣
∣
∣
∣

q−1 [
(
ū · ∇̄)

T̄12 − ∂v̄

∂X
T̄11 − ∂ū

∂Y
T̄22

]
=

∣
∣
∣
∣
∂ū

∂Y

∣
∣
∣
∣

n−1
∂ū

∂Y
, (76)

T̄22 +
∣
∣
∣
∣
∂ū

∂Y

∣
∣
∣
∣

q−1 [
(
ū · ∇̄)

T̄22 − 2
∂v̄

∂X
T̄12 − 2

∂v̄

∂Y
T̄22

]
= 2

∣
∣
∣
∣
∂ū

∂Y

∣
∣
∣
∣

n−1
∂v̄

∂Y
. (77)

Applying these boundary layer scalings to the conformation tensor representation in (16), we find that
at leading order in ε, the Cartesian and natural stress components are related by

T̄11 = T̄uuū2 (78)

T̄12 = T̄uuūv̄ + T̄uw, (79)

T̄22 = −
∣
∣
∣
∣
∂ū

∂Y

∣
∣
∣
∣

n−q

+ T̄uuv̄2 +
2T̄uwv̄

ū
+

T̄ww

ū2
. (80)

Finally, it can be shown that the system of Eqs. (73)–(77) possesses a similarity solution in the variable

χ = X−aY,

with

ψ̄ = Xbf(χ), p̄ = X2α−2p0, T̄11 = X2(α−1)t11(χ),

T̄12 = X2(α−1)m12t12(χ), T̄22 = X2(α−1)(m12−m22)t22(χ).

Here, a and b are defined as in (46), and we have additionally introduced

m12 =
n

n + q
, m22 =

q

n + q
.

In this case, the system of PDEs reduces to the four ODEs:

0 = 2(1 − α)p0 − aχt′11 + t′12 + 2(α − 1)t11,

|f ′′|1−qt11 = bft′11 + [2(1 − α + b − a)f ′ − 2aχf ′′] t11 + 2f ′′t12,

|f ′′|1−qt12 = bft′12 + 2(1 − α)m12f
′t12 +

[
b(1 − b)f + a(2b − a − 1)χf ′ − a2χ2f ′′] t11

+
(
t22 + |f ′′|n−q

)
f ′′,

|f ′′|1−qt22 = bft′22 − [
2b(b − 1)f + 2a(a + 1 − 2b)χf ′ + 2a2χ2f ′′] t12

+ 2 [aχf ′′ + (a − b − (α − 1)(m12 − m22)) f ′] t22 + 2 (aχf ′′ + (a − b)f ′) |f ′′|n−q,
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subject to the boundary conditions

at χ = 0 : f = f ′ = 0,

as χ → ∞ : f ∼ C0χ
m, t11 ∼ 2p0, t12 ∼ 2(1 − α)p0χ, t22 ∼ 2(1 − α)2p0χ2.

We note that the far-field outer matching behaviour does not contain the constants d2, d3 and hence
the upstream solution in these variables can only supply the leading order behaviour of the stresses in
the outer region. Further terms in the outer expansion are required in order to obtain the necessary
information to supply to the downstream boundary layer.
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