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Abstract. We investigate the self-modulation of Love waves propagating in a nonlinear half-space covered by a nonlinear layer.
We assume that the constituent material of the layer is nonlinear, homogeneous, isotropic, compressible, and hyperelastic,
whereas for the half-space, it is nonlinear, heterogeneous, compressible and a different hyperelastic material. By employing
the nonlinear thin layer approximation, the problem of wave propagation in a layered half-space is reduced to the one
for a nonlinear heterogeneous half-space with a modified nonlinear homogeneous boundary condition on the top surface.
This new problem is analyzed by a relevant perturbation method, and a nonlinear Schrödinger (NLS) equation defining the
self-modulation of waves asymptotically is obtained. The dispersion relation is derived for different heterogeneous properties
of the half-space and the thin layer. Then the results of the thin layer approximation are compared with the ones for the
finite layer obtained in Teymur et al. (Int J Eng Sci 85:150–162, 2014). The solitary solutions of the derived NLS equation
are obtained for selected real material models. It has been discussed how these solutions are influenced by the heterogeneity
of the semi-infinite space.
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1. Introduction

Phase velocities of elastic waves propagating with waveguides, such as layered media, depend on the
wave number, indicating that these waves exhibit dispersive characteristics. These types of dispersive
elastic waves have been the subject of many studies due to their significant applications in various fields
such as geophysics, non-destructive testing of materials, and electronic signal processing devices. In [1–
14], the propagation of nonlinear shear waves has been studied in a layered medium made of different
homogeneous elastic materials, whereas the propagation of in-plane waves in a layered medium made
of similar materials has been discussed in [15,16]. In Teymur’s study [11], nonlinear Love waves have
been examined in the context of the propagation in a half-space covered with a uniform finite thickness
layer made of different isotropic and compressible materials. By employing asymptotic analysis to balance
the nonlinearity and dispersion, it has been shown that the nonlinear self-modulation of Love waves is
governed by an NLS equation. Subsequently, building upon this study as a reference, the propagation
of Love waves in a nonlinear half-space covered with a nonlinear thin layer has been examined by using
the same asymptotic expansion, as detailed in [10], and the NLS equation describing the self-modulation
of waves has been derived. The results of the nonlinear thin layer approach have been compared with
the results obtained in [14] for the linear thin layer approach and with the results obtained in [11] for
the finite layer. Even at small wave numbers, it has been observed that the propagation is significantly
influenced by nonlinear material parameters of the layer.

Numerous studies have also been conducted on investigating the effects of the constitutional linearity
and nonlinearity, as well as the inhomogeneity of materials in the layered medium on wave propagation
[17–34]. The initial works in this scope focused on linear wave propagation in an elastic medium where
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material heterogeneity (or inhomogeneity) depends on the depth variable. In [17], Hudson concentrated
on the existence of Love waves in a layer with finite depth characterized by a stress-free upper surface
and a rigidly fixed lower boundary with the assumption that the density and rigidity of the medium are
chosen as a random function of the depth variable. In [18], Avtar derived the dispersion relation governing
the propagation of Love waves in a semi-infinite, double-layered heterogeneous medium characterized by
variations in both the density and rigidity with depth. In [19], the author examined the linear SH wave
propagating in a vertically heterogeneous elastic isotropic medium, and derived solutions for the SH
wave equation for the rigidity and density. These solutions were expressed in terms of hypergeometric,
Whittaker, Bessel and exponential functions. Singh et al. performed an analysis on the dispersion relation
of Love waves in media with n layers, considering the rigidity and density to be functions of both the
propagation and depth directions [20]. Wuttke et al. have investigated the scattering and diffraction
phenomena of SH waves in a quadratically depth-dependent, inhomogeneous half-plane with canyon [22].
In the context of a periodically stratified elastic half-space with a coating layer, where the shear modulus
and mass density exhibit variations described by a power function with respect to distance, Kowalczyk et
al. have derived the frequency equation [23]. Subsequently, they provide a numerical analysis of how the
mechanical properties of the medium affect wave velocity. Kumari et al. explained the impact of both the
heterogeneity and thickness ratio of layers on the phase velocity of Love waves propagating in a half-space
coated by two distinct layers of varying thickness. In this scenario, the rigidity and density of the top
layer vary linearly, while only the rigidity of the intermediate layer experiences quadratic changes [24].

In the aforementioned studies, the constituent materials of the stratified medium are heterogeneous
with linear properties. However, the literature also includes researches that investigate the impact of
both the linear and nonlinear characteristics of heterogeneous materials that constitute stratified media
on the propagation of nonlinear Love waves. Demirkus examined the influence of both heterogeneity
and nonlinearity on the propagation of bright solitary Love waves in a nonhomogeneous layer where
the constituent materials change as a hyperbolic function of the depth variable [29]. Then, a similar
investigation is undertaken to analyze the propagation of nonlinear antisymmetric SH waves within a
nonlinear plate composed of heterogeneous materials of finite thickness [30]. Subsequent works by the
same researcher have systematically compared the effects of heterogeneity and nonlinearity in scenarios
involving layered media composed of both homogeneous and heterogeneous nonlinear materials [31–33].
The propagation of nonlinear SH waves in media composed of different elastic materials but with the
same type of heterogeneity has been investigated in [34]. In this work, the effect of both the layer’s
heterogeneity properties and nonlinear material properties on wave propagation has been observed.

In the models of semi-infinite spaces, the previously employed inhomogeneity functions, though mathe-
matically straightforward and widely recognized, pose the challenge of portraying a somewhat unrealistic
degree of heterogeneity. This stems from their tendency to either diverge or vanish as x2 approaches
infinity, or to exhibit same patterns periodically. These challenges can be addressed by taking into ac-
count that they emerge at a significant distance from the interface and by focusing on the wave localized
near the surface [26]. However, in this article, the inhomogeneities in rigidity and density are modeled
as exponential functions. Notably, these functions are bounded throughout the semi-infinite space and
bear physical significance (refer to Eq. (3.3)) [27,28]. The exact solution of the linear model describing
the wave motion for exponential-type heterogeneous function models given by (3.3) is provided in [28].

There are few works that examine the effect of weak inhomogeneity on the propagation of waves in a
layered medium composed of elastic materials [35–37]. In [35], the authors derived the first-order asymp-
totic solutions for the plane-wave response of a vertically heterogeneous elastic medium by using weak
plane inhomogeneities. Additionally, in [36], the interaction of two longitudinal waves in a weakly inho-
mogeneous nonlinear elastic material is studied. In another work [37], the authors investigated the shear
elastic wave propagation in a layer characterized by continuously changing periodical weak heterogeneity
along the layer.
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In our research, we will employ the heterogeneity model introduced in [27], with a specific emphasis on
considering the heterogeneity effect as weak. Under this assumption, we will investigate the modulation
of SH waves in a semi-infinite space composed of heterogeneous material covered by a thin elastic layer
made of homogeneous material. Initially, by employing the thin layer approximation method as presented
in [10], a reduced boundary value problem is derived from the problem of SH wave propagation in a
nonlinear semi-infinite space characterized by weak heterogeneity in the vertical direction covered by
distinct homogeneous isotropic nonlinear finite thickness layer. Subsequently, an NLS equation including
an external force term has been obtained for the propagation of nonlinear SH waves by employing an
asymptotic perturbation expansion. The weak inhomogeneity of the semi-infinite space is observed solely
in this external force term. Both the effect of the nonlinearity of the thin layer and the heterogeneity and
constitutional nonlinearity of the semi-infinite space on wave propagation have been examined numerically
for real material models.

2. Love waves in a heterogeneous half-space covered by a homogeneous finite layer

Let (x1, x2, x3) and (X1,X2,X3) refer to the spatial and material coordinates of a point, respectively
in three-dimensional space with respect to the same perpendicular Cartesian coordinate system. We
consider a continuous medium consisting of a heterogeneous half-space that is covered with a uniformly
finite-thickness layer made of homogeneous elastic material filling the following regions in the initial state

P1 = {(X1,X2,X3) | 0 ≤ X2 ≤ h,−∞ < (X1,X3) < ∞}, (2.1)
P2 = {(X1,X2,X3) | −∞ ≤ X2 ≤ 0,−∞ < (X1,X3) < ∞} (2.2)

where h represents the constant thicknesses of the layer. We assume that the displacements and stresses
are continuous in the interface X2 = 0, and the free surface X2 = h is free of traction. The anti-plane
deformations are described by

x1 = X1, x2 = X2, x3 = X3 + u(α)(X1,X2, t), α = 1, 2 (2.3)

which produce the shear wave propagation in the direction of X1. Here, t is the time, and u(α) denotes
the particle’s displacement in region Pα in the direction of X3 due to the polarization of waves [9]. The
constituent material of the layer is incompressible, homogeneous, isotropic and elastic while that of the
half-space is incompressible, heterogeneous, isotropic and elastic. In this study, the strain energy function
associated with the layer is in the form of Σ1 =Σ1(I1), while the strain energy function associated with
the half-space is in the form of Σ2 =Σ2(I1,X2). Here, I1 is the first invariant of the Green’s deformation
tensor CKL =xk,Kxk,L [9].

We define X1 = X, X2 = Y , and X3 = Z, and consider that an elastic half-space occupies the region
Y ≤ 0 and it is covered by a layer consisting of a different elastic material with a uniform thickness of
h. We assume that the free surface is free of traction, the stresses and displacements are continuous at
the interface Y = 0 and the displacement in the half-space approaches to zero as Y → −∞. In such
conditions, we suppose that a surface SH wave having displacement component in the direction of Z
propagates along the direction of X in the layered half-space. The displacement of a particle is denoted
by u = u(X,Y, t) in the layer and by v = v(X,Y, t) in the half-space. Then, the approximate governing
equations of motion and boundary conditions involving terms not higher than the third degree in the
deformation gradients are as follows:
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. Here, μα = 2dΣα

dI and nα are the second and third-order elastic constants
corresponding to the usual one of Lamé constants called as linear shear modulus and to the one of the
Murnaghan constants (see e.g., [38]), respectively. Densities of the layers, ρα, γ = μ2

μ1
, nα, θα = nα

c2α
are

functions of Y if α = 2, whereas they are constants if α = 1. cα is the linear shear velocity in the relevant
medium Pα such that c2

α = μα

ρα
. The nonlinear parameters n1 = 2d2Σ1(3)

ρ1dI2 and n2 = 2d2Σ1(3,Y )
ρ2dI2 exhibit the

nonlinear characteristics of the materials. When nα > 0, the relevant medium is hardening in shear, but
if nα < 0, then it is softening.

2.1. Nonlinear thin layer approximation

Equations from (2.4) to (2.8) describe Love waves propagating in a half-space that is covered by a finite
uniform layer. Constituent materials of the layer and the half-space are cubically nonlinear homogeneous
elastic material and cubically nonlinear heterogeneous elastic material, respectively. As previously men-
tioned, our aim is to observe the effect of the layer’s nonlinear parameter on the propagation of a weakly
nonlinear surface SH wave with slowly varying amplitude by employing the nonlinear thin layer assump-
tion. Consequently, we will derive an approximate equation representing the layer as h approaches zero.
With this aim, we initially integrate the equation of the motion of the layer (2.4) with respect to Y over
the interval [0, h], and next, use the boundary condition (2.6). Then, we obtain the following equation
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Using the condition of continuity of stresses at the interface Y = 0, (2.9) reduces to the following
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Subsequently, we will express the terms involving the displacement function u of the layer in equation
(2.1) in terms of the displacement function v of the half-space. At Y = 0, the following can be used

(
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This approximation is consistent with the one employed to express equations of motion and boundary
conditions from (2.4) to (2.7). Furthermore, considering small values of h, we can use the following
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approximation
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Utilizing the equations (2.11) and (2.12) in (2.7), we obtain the following modified boundary condition
for the thin layer on the half-space
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For small values of h, this equation replaces for the equation of motion (2.4) governing the finite layer,
as well as the free surface boundary condition (2.6) and the interface conditions (2.7). The term on the
right-hand side of (2.13) reflects the nonlinear behavior of the layer material. Due to the heterogeneous
nature of the half-space, we will express the new boundary value problem in the following form to simplify
further investigation
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If the half-space is homogeneous; that is, the material parameters of the half-space are constant, (2.14)
and (2.15) reduce to the problem studied in [10]. If the thin layer is linear; that is, the right-hand side of
(2.14) is neglected, then the boundary condition takes the form of the condition derived in [14].

3. The nonlinear modulation of surface SH waves in a heterogeneous half-space covered with
a thin layer.

The primary objective of the present study is to examine the self-modulation of the slowly varying
amplitude of weakly nonlinear surface SH waves in the half-space covered by a nonlinear thin layer. In
addition, we aim to observe the effects of the nonlinearity of the thin layer and heterogeneous material
properties of the nonlinear half space on this modulation. For this observation, we employ the method of
multiple scales [39], which involves introducing the following new independent variables that capture the
slow variation of wave amplitude

xi = εiX, ti = εit, y = Y, i = 0, 1, 2. (3.1)

Here, ε > 0 is a small parameter measuring the strength of nonlinearity. (x0, y, t0) represents rapid
changes in the propagation while (x1, x2, t1, t2) represents slow variations. Then, v as a function of these
new variables is expanded in the following asymptotic series in ε

v =
∞∑

n=1

εnvn(x0, x1, x2, y, t0, t1, t2). (3.2)
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If the effect of heterogeneity is weak, the material parameters associated with the half-space depend on
the variable y in the following form

μ2 = μ20 + ε2μ21(y), ρ2 = ρ20 + ε2ρ21(y) (3.3)

where μ21(y) = −μ20e
dy, ρ21 = ρ20e

dy and n2(y) = n20e
dy. In other words, we assume that the hetero-

geneity for the half-space is weak in the order of ε2. By substituting the expansion (3.2) into the equations
(2.14)–(2.15) and subsequently equating the coefficients of similar powers of ε, a series of problems is ob-
tained. Solving these problems successively allows us to determine the value of vn. As our objective is
to examine the nonlinear waves with small but finite amplitudes, it is adequate to precisely determine
the solution function v1, which corresponds to the first-order perturbation problem. Therefore, it is more
convenient to concentrate on the first three problems in the hierarchy, as follows
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v3 → 0 as y → −∞ (3.12)

The perturbation problems above exhibit linearity at each step in the hierarchy. The first-order problem,
in particular, addresses the propagation of surface SH waves in a layered half-space covered by a thin
linear layer. For the existence of surface SH waves, the phase velocity c of the wave must satisfy the
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inequality c1 < c < c2 where c1 and c2 are the linear shear velocity of the thin layer and half-space,
respectively (see e.g., [40]). Then, the solution of Eq. (3.4) satisfying the radiation condition (3.6) can be
expressed as

v1 =
∞∑

n=1

A
(n)
1 (x1, x2, t1, t2)enpyein(kx0−ωt0) + c.c. (3.13)

where
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√
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20

. (3.14)

Here, A
(n)
1 is the first-order amplitude function, k is the wave number and ω is the angular frequency.

Using this solution in the boundary condition (3.5), we obtain the following

Wn A
(n)
1 = 0 (3.15)

where Wn = −hn2ω2ρ1 + kn2pμ20 + hnk2μ1, γ = μ20
μ1

and c2
1 = μ1

ρ1
. We note that W1 = 0 gives the

following dispersion relation of the linear surface SH waves for the thin layer approximation

W1 : −hω2ρ1 + kpμ20 + hk2μ1 = 0. (3.16)

For small values of kh, it approximates closely to the classical linear dispersion relation of Love waves on its
first branch [10]. It is to be observed that the dispersion relation has no dependency on the heterogeneous
properties of the half-space, but rather it is subject to the linear material properties of both the thin layer
and half-space. We focus on the nonlinear self-modulation of a group of waves centered around a wave
number k and corresponding frequency ω, which satisfy the dispersion relation (3.15). To avoid harmonic
resonance, it is necessary to assume that Wn is not zero for n �= 1 (or equivalently, n ≥ 2). Consequently,
A

(1)
1 = A1 and A

(n)
1 ≡ 0 for n ≥ 2. Here, A1 is a complex function of slow variables, representing the

first-order slowly varying amplitude of the self-modulation. Therefore, the explicit expression for the
first-order solution v1 is written as follows

v1 = A1e
kpyei(kx0−ωt0) + c.c. (3.17)

To finalize the first-order solution, we will proceed by examining the higher-order perturbation problems.
Substitution of (3.17) into (3.7) yields
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Solution of the equation is categorized into two groups

v2 = v̄2 + ṽ2 (3.19)

such that v̄2 is the particular solution of (3.18) and ṽ2 is the solution of corresponding homogeneous
equation. The particular solution can be found by means of the method of undetermined coefficients as
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The solution of the corresponding homogeneous equation, ṽ2, can be expressed as in the first-order solution
by replacing A

(n)
1 in (3.13) with the second-order amplitude function A

(n)
2 which can be determined from

higher order perturbation problems when necessary. However, since this work is concentrated on the
propagation of weakly nonlinear waves, it is reasonable to obtain just the uniformly valid first-order
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solution. Therefore, using (3.19) together with v1 given by (3.17) in the boundary condition (3.11) of the
second order problem yields
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∂W1

∂ω

∂A1

∂t1
− ∂W1

∂k

∂A1

∂x1

)
, WnA

(n)
2 = 0, n > 1. (3.21)

Since W1 = 0, the following condition holds(
∂W1

∂ω

∂A1

∂t1
− ∂W1

∂k

∂A1

∂x1

)
= 0. (3.22)

Thus, the group velocity of the self-modulated waves, Vg, is

Vg =
∂ω

∂k
= −∂W

∂k
/
∂W

∂ω
=

k

ω

(2hkpμ10 + μ20)
(2hkpρ10 + ρ20)

(3.23)

and as a result, we obtain

∂A1

∂t1
+ Vg

∂A1

∂x1
= 0. (3.24)

The equation above indicates that the first order amplitude A1 remains constant in a frame of reference
moving with the group velocity Vg of waves i.e., A1 = A1(x1 − Vg t1, x2, t2). Then, the solution of (3.21)
is

A
(1)
2 = A2(x1, x2, t1, t2), A

(n)
2 = 0, n > 1 (3.25)

and hence

v2 =
[
A2 − i

kpμ20

(
ωρ20

∂A1

∂t1
+ kμ20

∂A1

∂x1

)
y

]
ekpyei(kx0−ωt0) + c.c. (3.26)

To fully determine the structure of A1, we extend the analysis by incorporating the third-order problem.
Substituting the solutions of the first and second-order solutions into the third-order equation (3.10), we
obtain

ρ20
∂2v3

∂t20
− μ20

∂2v3

∂y2
− μ20

∂2v3

∂x2
0

=
[
(D1 + D2y)ekpy + D3e

dy+kpyA1

+ D4e
3kpyA2

1A1e

]
ei(kx0−ωt0) + D5A3

1e
3i(kx0−ωt0) + c.c.

(3.27)

The explicit forms of Di for i = 1, 2, . . . , 5 are given in the “Appendix”. As in (3.19), v3 is decomposed
as v3 = v̄3+ṽ3 where the particular solution v̄3 corresponds to the non-homogeneous equation (3.27), while
ṽ3 represents the solution of the corresponding homogeneous equation, subject to the non-homogeneous
boundary condition derived from the boundary condition (3.11) of the third-order problem. The particular
solution v̄3 is expressed as

v̄3 = g(1)(x1, x2, y, t1, t2)eiφ + g(3)(x1, x2, y, t1, t2)e3iφ + c.c. (3.28)

While the term g(1) is associated with the self-interaction of waves, the term g(3) represents the third
harmonic interaction effects. Given our specific focus on self-interaction in this context, the explicit
form of the term g(3) is unnecessary for further analysis. Therefore, we solely focus on calculating g(1).
Consequently, the following solution is obtained by the method of undetermined coefficients

g(1) = [(C1 + yC2)yekpy + C3e
dy+kpy + C4e

kpy]ei(kx0−ωt0) + c.c. (3.29)
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where Ci is given in the “Appendix”. On the other hand, the solution of the corresponding homogeneous
equation obeying the radiation condition (3.12) can be expressed as follows

ṽ3 =
∞∑

n=1

A
(n)
3 (x1, x2, t1, t2)enpyein(kx0−ωt0) + c.c. (3.30)

where A
(n)
3 is the third order slowly varying amplitude function. Then, we use this solution, v1 and v2

together with v̄3 in the boundary condition (3.11) of the third-order problem to determine A
(n)
3 . Thus

W1A
(1)
3 = b1, W3A

(3)
3 = b3, WnA

(n)
3 = 0, n �= 1, 3 (3.31)

where

b1 = −i

(
∂W1

∂ω

∂A2

∂t1
− ∂W1

∂k

∂A2

∂x1

)
− i

(
∂W1

∂ω

∂A1

∂t2
− ∂W1

∂k

∂A1

∂x2

)

+
1
2

(
∂2W1

∂ω2

∂2A1

∂t1
2 − 2

∂2W1

∂ω∂k

∂2A1

∂x1∂t1
+

∂2W1

∂k2

∂2A1

∂x2
1

)
+ F |A1|2A1 + GA1.

(3.32)

Here F and G are given by

F = − k3

μ2
10(k2μ20(−1 + 9p2) + ω2ρ20)

[
n20pμ2

10ρ20(8k2μ20 + (1 + 3p2)ω2ρ20)

+hk(ω2((3n10+n20(−3+2p2+9p4))μ2
10+n10p

2μ2
20)

]
ρ10ρ20

+k2(n10μ20ρ10(−1+9p2)(3μ2
10+p2μ2

20)+n20μ
3
10ρ20(3 − 2p2 − 9p4))

]
,

G =
−h(k2μ10 − ω2ρ10)[k(dp + k(−1 + p2))μ20 − ω2ρ20] + μ20[k2dμ20 + (d + 2kp)ω2ρ20]

[d + k(−1 + p)](d + k + kp)μ20 + ω2ρ20
.

(3.33)

Upon closer examination, it is apparent that the wave number F depends on the angular frequency and
the nonlinear material parameters of both the thin layer and half-space, whereas the wave number G
depends on the angular frequency and the linear material parameters of both the thin layer and half-
space as well as the heterogeneity parameter of the material of the half-space. The explicit form of b3 is
not provided here, as it will not be required in subsequent calculations. The existence of a solution to
the equation W1A(1)

3 = b1, the condition b1 = 0 must hold, given that W1 = 0. Under this condition, the
value of A

(1)
3 remains arbitrary. If we assume that A2 also satisfies the condition given by (3.24), then

the condition b1 = 0 can be expressed as follows

b1 = −i

(
∂A1

∂t2
+ Vg

∂A1

∂x2

)
+ Γ̃

∂2A1

∂x2
1

+ Δ̃|A1|2A1 + Λ̃A1 = 0 (3.34)

where

Γ̃ =
(

V 2
g

∂2W1

∂ω2
+ 2Vg

∂2W1

∂ω∂k
+

∂2W1

∂k2

)
/

(
2
∂W1

∂ω

)
, Δ̃ = F/

∂W1

∂ω
, Λ̃ = G/

∂W1

∂ω
. (3.35)

Here, Γ̃ is the linear dispersion coefficient, Δ̃ is the nonlinear coefficient describing the self-modulation
and Λ̃ is the external potential. We now introduce the following non-dimensional variables

τ = ωt2, ξ = kε−1(x2 − Vgt2) = k(x1 − Vgt1), A = kA1. (3.36)

(3.34) yields the following nonlinear Shrödinger equation for A

i
∂A
∂τ

+ Γ
∂2A
∂ξ2

+ Δ|A|2A + ΛA = 0 (3.37)

where

Γ = −k2

ω
Γ̃, Δ = − 1

k2ω
Δ̃, Λ = − 1

ω
Λ̃. (3.38)
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Over the past few decades, there has been a growing interest in NLS equations with external potentials,
driven by their potential applications in soliton shaping and management. Cubic NLS equation with
external potential appears in the explanation of various physical phenomena such as Bose-Einstein Con-
densates (BEC), nonlinear optics, fiber optics, condensed matter physics, plasma physics, etc. [41–45].
Here, Bose-Einstein condensates in the study of ultra-cold atomic gases can be defined by a form of
cubic NLS equation with an external potential called the Gross-Pitaevskii equation. In nonlinear optics,
the cubic NLS equation can be used to model the propagation of intense laser beams through nonlinear
media. In the study of optical fiber communications, the cubic NLS equation describes the propagation
of optical pulses through fiber optic cables, whereas in plasma physics, it can be used for the propaga-
tion of intense Langmuir waves or envelope solitons in plasma under the influence of external fields. The
motivation for studying such equations stems from the desire to explain and understand the behavior of
wave-like phenomena in nonlinear systems under the influence of an external force or potential. For more
details, refer to [45]. We note that the external potential term can be eliminated under the substitution
of

A = BeiΛτ , (3.39)

and consequently, the equation (3.37) reduces to the following cubic NLS equation

i
∂B
∂τ

+ Γ
∂2B
∂ξ2

+ Δ|B|2B = 0. (3.40)

Here, the coefficients Γ and Δ are identical to the coefficients in (3.37). For an initial condition in the form
of B(ξ, 0) = B0(ξ), the first-order solution v1 by the solution of the equation (3.40) can be constructed
by (3.17). The NLS equation emerges in many areas as an equation defining the self-modulation of
monochromatic planar waves in dispersive media. Furthermore, the sign of ΓΔ plays a crucial role in
determining how specific initial conditions will evolve for the asymptotic wave field guided by an NLS
equation [46,47]. An initial disturbance vanishing as |ξ| → ∞ tends to become a series of envelope solitary
waves if ΓΔ > 0, while it evolves into decaying oscillations if ΓΔ < 0. On the other hand, for disturbances
that tend towards a uniform state at infinity, the envelope dark solitons exist for ΓΔ < 0.

4. The existence of bright and dark solitary waves

The sign of ΓΔ affects the nature of traveling wave solutions of an NLS equation which has the following
form [47]

B(ξ, τ) = φ(η)ei(Kξ−Ωτ), η = ξ − V0τ, V0 = constant. (4.1)

For instance, if φ → 0 and dφ/dη → 0 as η → ∞ for ΓΔ > 0, then the corresponding equation is in the
following form

B(ξ, τ) = φ0sech[(Δ/2Γ)1/2φ0η]ei(Kξ−Ωτ) (4.2)

where V0 = 2KΓ and Ω = ΓK2 − Δφ2
0/2. This solution is the envelope soliton or bright soliton in the

optical context. When ΓΔ < 0, a solution of the following form exists approaching to the uniform solution
φ0e

iΓ2Δφ2
0τ as |η| → ∞ [47]

B(ξ, τ) = φ(η)eiΓ2Δφ2
0τ−iH(η). (4.3)

Here, the solutions for φ and H are found as

φ2 = φ2
0(1 − sin2(B)sech2(ψ), H = arctan(tan A tanh ψ) (4.4)
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Fig. 1. For the dispersion relations (4.10) and (4.12), the variation of nondimensional a phase velocity C and b group
velocity VG versus nondimensional wave number K for three different material models: Copper (softening layer)-Armco
Iron (softening half-space); Glass (Pyrex) (hardening layer)-Acrylic Plastic (hardening half-space; Fused Quartz (softening
layer)-Acrylic Plastic (hardening half-space)

where A is a constant, and ψ and V0 are given as

ψ =
(

−ΓΔ
2

)1/2

φ0η sin B, V0 = ±2−3/2Γ(−ΓΔ)1/2φ0. (4.5)

This solution corresponding to the dark soliton possesses all the typical soliton features as shown by
Zakharov and Shabat [48]. For negative values of ΓΔ and for (ΓK2 − Ω)/Δφ2

0 = 1, if φ → φ0 as η
approaches negative infinity, then the solution for φ is

φ(η) = φ0 tanh((−Δ/2Γ)1/2φ0η), V0 = 2KΓ (4.6)

which corresponds to the propagation of a phase jump. Here, we define the dimensionless variables,
dimensionless linear and nonlinear material parameters and heterogeneity parameters as follows:

ω = c k, C =
c

c1
, K = k h, D = d h, (4.7)

c2
20 =

μ20

ρ20
, c2

1 =
μ1

ρ1
, γ0 =

μ20

μ1
, R =

ρ2

ρ1
, β1 =

n1

c2
1

, β2 =
n20

c2
20

, M =
c1

c20
. (4.8)

The inequality c1 < c < c2 can be expressed in terms of dimensionless variables as 1 < C < 1/M . For
numerical evaluations, we will use the real material parameters for the thin layer and half-space, and
their properties are provided in Table 1 [50]. We note that the nonlinear elastic material parameter n
is negative for both Copper and Armco Iron. Therefore, the medium with these type of materials is a
softening medium in shear. In contrast, the parameter n for Glass (Pylex), Acrylic Plastic and Fused
Quartz is positive, indicating that the medium with these type of materials is a hardening in shear. We
proceed by considering the following cases:

• Case 1: Copper (softening layer)-Armco Iron (softening half-space)
• Case 2: Glass (Pyrex) (hardening layer)-Acrylic Plastic (hardening half-space)
• Case 3: Fused Quartz (softening layer)-Acrylic Plastic (hardening half-space)
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Fig. 2. The variation of coefficients of the NLS equation (3.37), a Γ, b Δ and c ΓΔ versus nondimensional wave number
K for the models Copper-Armco Iron, Glass (Pyrex)-Acrylic Plastic and Fused Quartz-Acrylic Plastic

Initially, we will examine the dimensionless dispersion relation in (3.16) by expressing it in terms of
dimensionless quantities in (4.7) and (4.8) as follows

K(1 − C2) + pγ0 = 0, p =
√

1 − M2C2 (4.9)

or

K =
γ0

√
1 − M2C2

C2 − 1
. (4.10)

In a similar manner, we define the dimensionless group velocity as follows

VG =
Vg

c1
=

2Kp + γ0

C(2Kp + R)
. (4.11)
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Fig. 3. The deformations in the plane Z = 0 in the half-space covered by a thin layer for the envelope solitary wave solution
(4.2) when K = 0.0474, C = 1.14, ε = 0.1, t = 1 and φ0 = 1 for Glass–Acrylic Plastic without translation a The envelope
of the wave, b The wave packet

Fig. 4. The deformations in the plane Z = 0 in the half-space covered by a thin layer for the envelope solitary wave solution
(4.2) when K = 0.0921, C = 1.0626, ε = 0.1, t = 1 and φ0 = 1 for Quartz-Acrylic Plastic without translation a The envelope
of the wave, b The wave packet

On the other hand, the first branch of the dispersion relation corresponding to the finite layer can be
expressed in terms of the same dimensionless quantities as follows [11]

K =
1√

C2 − 1
arctan

(
γ0

√
1 − M2C2

C2 − 1

)
(4.12)

that has infinitely many branches. Graphs for the two dispersion relations and for the related group ve-
locities are shown respectively, in Fig. 1a, b, corresponding to the real material parameter cases presented
above. The dispersion relation given by (3.16) has a unique branch on the half-space covered by a thin
layer, and for smaller values of wave numbers, this branch corresponds to the first branch for the case
of a finite layer. As K tends to zero, the phase velocity C for the two dispersion relations approaches
to M = 0.511 for the first model, M = 0.769 for the second one and M = 0.88 for the third model.
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Fig. 5. The deformations in the plane Z = 0 in the half-space covered by a thin layer for the dark solitary wave solution
(4.3) for copper-armco iron without translation when K = 0.100157, C = 1.39665, ε = 0.1, t = 1 and φ0 = 1

Fig. 6. The deformations in the plane Z = 0 in the half-space covered by a thin layer for the envelope solitary wave solution
(4.2) when K = 0.0474, C = 1.14, ε = 0.1, D = 0.0001, t = 1 and φ0 = 1 for Glass-Acrylic Plastic. a Homogenous case
(top View), b heterogenous case (top view), c the difference between homogenous and heterogenous cases (top view), d
three-dimensional version of figure (c)

Therefore, we perform the numerical analysis for smaller values of K (0 ≤ K < 1), within the range
where the thin-layer approximation remains valid.

To examine the effects of material parameters on the existence of solitary waves, the graphs versus K
of the coefficients Γ, Δ and ΓΔ of the equation (3.40), corresponding to three different cases defined above
are given in Fig. 2a–c, respectively. In addition, curves in the same figures corresponding to the case where
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Table 1. Linear and nonlinear material parameters [50]

Material ρ (g/cm2) μ (dyne/cm2) n (dyne/cm2)

Copper 8.960 0.477 − 15.920
Armco Iron 7.874 0.820 − 11.200
Glass (Pyrex) 2.230 0.275 4.200
Acrylic Plastic 1.160 0.186 0.188
Fused Quartz 2.203 0.313 − 0.44

the thin layer is linear have been plotted in dashed format to observe the influence of nonlinearity of the
thin layer on wave propagation. Indeed, it is observed that the effect of the layer’s nonlinearity diminishes
significantly for very small values of K (0 < K << 1). As can be seen, all the Γ curves depending on the
linear material parameters are negative for all values of K, whereas the Δ curves depending on both the
linear and nonlinear material parameters are remarkably different for each model, being positive for case
1, negative for case 2 and changing its sign about the critical value Kc = 0.536567 for case 3. Since Γ < 0
and Δ > 0, and consequently ΓΔ < 0 in case 1, it can be observed in Fig. 3 that an envelope solitary
wave solution defined by (4.2) can not exist, but only the dark solitary waves (4.3) can be observed. For
case 2, since Δ < 0 and hence ΓΔ > 0, there will be only an envelope solitary wave solution for all values
of K. For case 3, there exist envelope solitary waves since Δ < 0 and ΓΔ > 0 for K < Kc. On the other
hand, they can not be observed for K > Kc yielding Δ > 0 and ΓΔ < 0. We note that the modulation
instability of the plane-wave solution of the NLS equation is determined by the sign of ΓΔ. The marginal
state of the modulation instability is determined by the condition that either of Δ or Γ vanishes [49]. In
case 3, the coefficient Δ of the nonlinear term of the NLS equation vanishes at a certain wave number of
the carrier wave, Kc. Since the nonlinear term of the NLS equation vanishes at this critical wave number,
and hence a marginal state occurs, a new ordering is necessary in order to balance the nonlinearity and
dispersion.

We now examine the deformations in the plane Z = 0 in the half-space covered by a thin layer for
each case. For case 2, the deformations in the plane Z = 0 for the envelope solitary wave solution (4.2)
are shown in Fig. 3 for K = 0.0474, C = 1.14, ε = 0.1, t = 1 and φ0 = 1. Wave envelope and wave packet
can be observed in Fig. 3a and Fig. 3b, respectively. Similarly, the deformations in the plane Z = 0 for the
envelope solitary wave solution (4.2) for case 3 is shown in Fig. 4 for the values K = 0.0921, C = 1.0626,
ε = 0.1, t = 1 and φ0 = 1. On the other hand, the deformations in the same plane for the dark soliton
solution (4.3) are shown in Fig. 5 for the values K = 0.0057, C = 1.3988, ε = 0.1, t = 1 and φ0 = 1 for
case 1.

As can be observed from these figures, there exists dense wave propagation at the surface for which the
displacements vanish as the depth increases. In fact, we observe that the nonlinear material parameter of
the thin layer at small wave numbers affects significantly the wave propagation. We now investigate the
effects of heterogeneity of the half-space on the wave propagation. The external potential term Λ of the
NLS equation (3.37) depends on the linear material parameters of both the thin layer and half-space as
well as the parameter d corresponding to the heterogeneity of the half-space. Considering the substitution
(3.39), the parameter d appears in the term eiΛτ . In the case of bright solitary waves, the term eiΛτ only
affects the term ei(Kξ−Ωτ) in (4.2). Thus, in the case of bright solitary waves, the heterogeneity of the
semi-infinite space only results in a temporal shift along the direction of wave propagation in the wave
packet, while the envelope of waves remains unchanged and unaffected by the material’s heterogeneity.
To observe this shift, the terms μ21(y) and ρ21(y) in the material model in (3.3) for the semi-infinite space
were set to zero (corresponding to a homogeneous material scenario). As a result, deformation in the plane
Z = 0 associated with the bright solitary wave was obtained (for the top view, see Fig. 6a). Furthermore,
by selecting an appropriate heterogeneity parameter in the material model in (3.3), the calculation was
repeated by adding the parameter value of D = 0.0001, and deformation associated with the effect of



68 Page 16 of 20 S. Ahmetolan et al. ZAMP

Fig. 7. The deformations in the plane Z = 0 in the half-space covered by a thin layer for the dark solitary wave solution
(4.3) when K = 0.100157, C = 1.39665, ε = 0.1, D = 0.0001, t = 1 and φ0 = 1 for copper-armco iron. a The difference
between the homogenous case and the heterogenous case for the cross section Y = 0. b Three-dimensional version of figure
(a)

heterogeneity was determined in the plane Z = 0 (for the top view, see Fig. 6b). The difference between
these two deformations was computed for the parameter values used for case 2 and the top view is shown
in Fig. 6c, whereas the three-dimensional version of Fig. 6c is given in Fig. 6d. We observe in this figure
that a significant difference exists between these two deformations, indicating that the heterogeneity of
the semi-infinite space has an effect on the propagation of waves in the stationary envelope of bright
solitary waves.

The effect of heterogeneity is different for the dark solitary wave. For the solution, the term, eiΛτ results
in a shift of the entire wave in the direction of propagation over time. To observe this effect, a similar
approach to that used for the bright solitary wave has been followed. For this purpose, deformations
in the plane Z = 0 for homogeneous and heterogeneous material models have been obtained by adding
D = 0.001 to the parameter values used for case 1. These two deformations and their difference have
been calculated and their difference is presented in Fig. 7a. In addition, the three-dimensional image of
this difference is provided in Fig. 7b, revealing a significant distinction between the two deformations.
It is observed from this difference that the heterogeneity of the semi-infinite space has an effect on the
propagation of dark solitary waves.

5. Conclusion

In this article, we investigate the propagation of nonlinear shear horizontal waves in a half-space covered
by a thin layer. We assume that the constituent material of the layer is homogeneous, isotropic, and
hyperelastic, and for the half-space, it is heterogeneous. For the existence of surface SH waves in such
a medium, the inequality c1 < c < c2 must hold for the phase velocity of waves, c. Here, c1 and c2

are the linear shear velocities of the thin layer and half-space, respectively. We also assume that the
linear and nonlinear elastic material parameters of the half-space depend on the depth variable in terms
of exponential functions. We perform the analysis by employing a perturbation method, and obtain
a nonlinear Schrödinger equation (NLS) with external potential, defining the self-modulation of waves
asymptotically. As a result of the asymptotic expansion with the assumption of weak heterogeneity of
the half-space, the parameter representing the heterogeneity exists only in the external potential term of
the NLS equation.
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For numerical evaluations of both the dispersion relation and the NLS equation, the following three
real material models are used

• Case 1: Copper (softening layer)- Armco Iron (softening half-space)
• Case 2: Glass (Pyrex) (hardening layer)- Acrylic Plastic (hardening half-space)
• Case 3: Fused Quartz (softening layer)-Acrylic Plastic (hardening half-space)

Since the heterogeneity of the half-space is assumed to be weak in the order of ε2, we do not observe
this term in the dispersion relation in the thin-layer approximation but rather observe in the external
potential term of the NLS equation.

The dispersion relation of the surface waves propagating in a half-space covered by a thin layer
possesses a single branch, and in the case of small wave numbers, this branch corresponds to the first
branch of the dispersion relation when the layer is finite. Therefore, the observations in this study are
only valid for small non-dimensional wave numbers (0 < K << 1).

We obtain the following by analyzing the solutions of the NLS equation for three real material models:

• For all values of real material models, the dispersion term Γ of the NLS equation takes negative
values.

• The effect of the layer’s nonlinear parameters on wave propagation has also been observed through
a comparison between the nonlinear thin layer case and the linear case. It has been observed that
this effect diminishes as the dimensionless wave number approaches zero.

• For case 1, since the coefficient of the nonlinear term, Δ in the NLS equation is positive, and hence
ΓΔ < 0, an envelope solitary wave solution defined by (4.2) can not exist, but only the dark solitary
waves can be observed for all non-dimensional wave numbers K.

• For case 2, since Δ < 0, and hence ΓΔ > 0, there will be an envelope solitary wave solution for all
values of K.

• For case 3, as K increases, Δ changes its sign from negative to positive, and Δ = 0 at the critical
value K = Kc = 0.536567. Since Δ < 0, and hence ΓΔ > 0 for K < Kc, there will be an envelope
solitary wave solution. Furthermore, since Δ > 0, and hence ΓΔ < 0 for K > Kc, the dark solitary
waves can be observed.

• For the bright solitary wave, the term eiΛτ representing the effect of heterogeneity in the solution
(4.2) affects only the term ei(Kξ−Ωτ). Therefore, in the case of a bright solitary wave, the hetero-
geneity of the semi-infinite space results only in a temporal shift along the propagation direction
of waves in the wave packet, while the envelope of waves remains unchanged and unaffected by the
material’s heterogeneity.

• In the cases of both bright and dark solitary waves, the term eiΛτ representing the effect of hetero-
geneity, causes a shift of the entire wave along the propagation direction over time.

Since the inhomogeneity functions in this study remain bounded with respect to the depth variable,
they have the importance in terms of their physical validity for models involving an elastic layer in
semi-infinite space. Furthermore, the weak inhomogeneity approach has applications in various problems
related to the propagation of nonlinear elastic waves in waveguides of all types of geometries and with
different polarizations.

Another problem that can be explored concerning the thin-layer approach is the reevaluation of the
problem in the long-wave limit by considering the layer thickness as a small parameter. A similar analysis
has been conducted by assuming the materials constituting the layered half-space as linear and using a
small parameter defined based on the layer thickness [51]. Furthermore, the propagation of nonlinear SH
waves in a two-layered elastic medium has also been investigated in the long-wave limit [9]. However,
achieving the same analysis for nonlinear SH waves propagating in a layered half-space in the long-wave
limit continues to pose an unresolved challenge, even under the condition of material homogeneity. For this
new problem, we made various attempts with different scaling alternatives on h/L by assuming ε = (h/L)α

to construct a uniformly valid asymptotic expansion using the method of multiple scales with the goal
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of deriving an evolutionary type equation in the long-wave limit. Here, h and L denote characteristic
width and characteristic wavelength, respectively. Initially, we considered the parameter α as a variable.
In the leading-order problem, we successfully identified non-trivial solutions for the displacements that
satisfy both the radiation condition at −∞ and the boundary conditions. However, determining an
appropriate value for α to obtain non-trivial solutions in the subsequent order perturbation problems
proved challenging. If the half-space is inhomogenous, as in our problem, the propagation problem in the
long-wave limit will become more complex.

Therefore, such problems provide rich content for future research.

6. Appendix

The right-hand side of the second-order non-homogeneous equation (3.27):

D1 =
(

2iωρ20
∂A1

∂t2
+ 2ikμ20

∂A1

∂x2

)
+

(
2iωρ20

∂A2

∂t1
+ 2ikμ20

∂A2

∂x1

)
− ρ20

∂2A1

∂t21
+ μ20

∂2A1

∂x2
1

,

D2 =
2ω2ρ2

20

kpμ20

∂2A1

∂t21
+

4ωρ20

p

∂2A1

∂x1∂t1
+

2kμ20

p

∂2A1

∂x2
1

,

D3 = −dkpμ20 + k2μ20(1 − p2) + ω2ρ20,

D4 = k4n20(−3 + 2p2 + 9p4)ρ20,

D5 = 3k4n20(−1 + p2)2ρ20.

(6.1)

The coefficients of the second-order particular solution (3.29):

C1 = − 2kpK1 − K2

k2μ20 + 3k2p2μ20 − ω2ρ20
,

C2 = −2kpμ20K2 + K1(k2μ20 − k2p2μ20 − ω2ρ20)
2μ20(k2μ20 + 3k2p2μ20 − ω2ρ20)

,

C3 = − K3

d2μ20 − k2μ20 + 2dkpμ20 + k2p2μ20 + ω2ρ20
B1,

C4 = − K4

(−k2μ20 + 9k2p2μ20 + ω2ρ20)
B2

1B1e.

(6.2)
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