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Abstract. To solve fractional partial differential equations (FPDEs) under various physical conditions, this study developed
a novel method known as the Hermite wavelet method employing the functional integration matrix. The method that has
been suggested is based on the Hermite wavelet collocation process. To determine the solution of the fractional differential
equations, the Caputo fractional derivative operator of order α ∈ (0, 1] is used. With the use of appropriate grid points, this

method converts FPDEs into a system of nonlinear algebraic equations. We achieve a solution by solving these nonlinear

algebraic equations by the Newton–Raphson method. Tables and graphs show that the suggested method produces superior

results. We provide various illustrative examples to establish the effectiveness of the suggested concept, and the outcomes

support the applicability of the suggested strategy. Obtained results are numerically expressed in terms of absolute errors.

Finally, convergence analyses are discussed as some theorem with proof.
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1. Introduction

Fractional differential equations (FDEs) are differential equations that have derivatives of arbitrary (frac-
tional) order. Fractional derivatives offer a fantastic tool for describing diverse materials and processes’
memory and inherited characteristics. A more comprehensive range of behaviours can be modelled by
switching from integer order to fractional derivatives. It has been discovered that the fractional-order sys-
tem theory may accurately describe the behaviour of many physical systems. Partial differential equations
(PDEs), which are the mathematical depiction of physical, chemical, and biological issues encountered
in real-world situations, are used to describe a variety of physical events in nature. PDE has evolved in
recent years into a common language for several disciplines, including general relativity, electrostatics,
thermodynamics, quantum physics, elasticity, sound, and heat. Nonlinear models are a common source of
real-world issues in many branches of research and engineering, particularly in chemical physics, plasma
physics, solid-state physics, fluid mechanics, and plasma waves. Due to their extensive use in science and
engineering, fractional differential equations are gaining a lot of study attention. Therefore, it is essential
to study fractional-order differentiation.
fractional partial differential equations are frequently used to represent equations in a variety of study do-
mains, including continuous-time random walks, chaos, mechanical schemes, anomalous diffusive, control,
chaos synchronisation, etc. Many fundamental problems are modelled using fractional partial differential
equations. The fractional-order technique has the advantage of allowing the problem to have more sub-
stantial degrees of freedom. The term “local operator” refers to a differential operator with integer order.
In contrast, a fractional-order differential operator is a nonlocal operator since it takes into account that a
possible state depends on all of its preceding instances’ past and present. i.e. The integer-order derivative
is useful for studying a point’s immediate environment, whereas the fractional derivative is useful for
studying the entire interval [1,38–41]. Developing precise and effective techniques for solving fractional
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differential equations has been a focus of active study. The numerical solution of differential equations of
integer order has been a central idea in numerical and computational mathematics for a very long time.
However, despite many newly framed applied problems, the state of the art is far less advanced for
generalised order equations, and only a few techniques have been proposed for numerically solving these
equations. The majority of these numerical methods deal with linear single-term problems of orders
lower than unity. Little efforts have been made to address nonlinear problems. Due to their ability to
imitate complicated processes, they have attracted much interest. The fractional derivative was initially
formulated by Liouville and Riemann near the close of the nineteenth century. Riemann invented the
Riemann–Liouville derivative concept in 1876. Since then, a wide range of scientific and technological
sectors have shown how these Riemann–Liouville fractional derivatives and integrals can be used. The
essential role and basic properties of the fractional differential equations are briefly explained in [2–5].
In applied mathematics and mathematical analysis, the fractional derivative is a derivative of any arbitrary
order, real or complex. Even though the term “fractional” is a misnomer, it has been widely accepted
for such a derivative for a long time. The concept of a fractional derivative was coined by the famous
mathematician Leibnitz in 1695 in his letter to L’Hôpital. In recent years, fractional calculus has drawn
increasing attention due to its applications in many fields. We use the Caputo derivative with fractional
order that was proposed by Italian Caputo in 1967. Its physical meaning, advantages, and disadvantages
are explained in [48].
Many mathematicians and physicists have exploited diverse techniques for the investigation of fractional
partial differential equations such as the Laplace transform method [6], Legendre functions matrix method
[7], an efficient approach for fractional Rosenau–Hyman equation [8], Hermite wavelets approach for the
multi-term fractional differential equations [9], wavelet technique for the fractional telegraph equation
[10], Legendre polynomials method for fractional Sobolev equation [11], fractional model of Fokker–
Planck equations [12], numerical solution for nonlinear KG equation [13], an efficient numerical approach
for space FPDEs [14], a new approach for KG equation [15], generalised Mellin transform method [44],
Haar wavelet method [51,52], and modified decomposition method [16].
Let’s consider the fractional partial differential equation of the form:

∂2δy(x, t)
∂t2δ

=
∂2αy(x, t)

∂x2α +F
[
x, t, y (x, t) ,

∂y (x, t)
∂x

, . . . ,
∂β−1y (x, t)

∂xβ−1

]
, (1.1)

with the primary condition,

y (x, 0) = h(x)

boundary condition

y (0, t) = i (t) , y (β1, t) = j (t) .

where δ and α are fractional or integer values, δ, α ∈ (0, 1] and h (x) , i (t) , and j (t) are real functions,
β1 is a positive real constant.
Wavelet is a function, more precisely, a mathematical function used to separate a specified function
signal into different scale components. Wavelets comprise a family of functions created by the translation
and dilation of a single function known as the mother wavelet. Wavelets are built on Joseph Fourier’s
fundamental theory of superpositioning, which states that a collection of self-similar functions can express
a complex function. The mathematical analysis of Morlet, Meyer, Stromberg, Daubechies, and Grossmann
has greatly advanced wavelet theory. This wavelet-based representation of differential operations can be
precise and stable even in areas with significant gradients or oscillations. Many scholars are drawn to it
because of its distinctive characteristics, such as orthogonality, compactly supported, and multiresolution
analysis. Numerous dynamical system problems have extensively used approximate solutions using an
orthogonal family of functions. Using truncated orthogonal functions to approximate the various signals
in the equation, one can approximate the underlying differential equation using orthogonal functions.
For some of the common mathematical problems, different wavelet collocation methods have been used,
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such as the Chebyshev wavelet collocation method [17], the collocation method based on Bernoulli and
Gegenbauer wavelets [18], and Laguerre wavelet collocation method [19]. Several wavelet collocation
techniques are typically employed to solve fractional differential equations, which include Haar wavelets
[20], Chelyshkov wavelets [21], Fibonacci wavelets [22], Cubic B spline [23], Chebyshev wavelets [24],
Genocchi wavelets [25], Bernoulli wavelets [26–28], Legendre wavelet tau method [29], Legendre wavelets
[45] and Gegenbauer wavelets [30]. Wavelets are being used widely in the field of numerical analysis by
mathematicians, and as a result, many novel strategies for solving differential equations have recently
been developed. One such technique is a study using Hermite wavelets for the fractional Jaulent–Miodek
equation [31], HWM for fractional differential equations [32,46,47], HWM for solving nonlinear Rosenau–
Hyman equation [33], high mass transfer via wavelet frames [34], integrodifferential equations via Hermite
wavelet [35] and so on [36,37,49,50].
The major goal of this article is to present a novel wavelet-based method for solving a system of fractional
partial differential equations. According to our review of the literature, there are no studies on fractional
partial differential equations using Hermite wavelets. Here, we implemented a creative strategy using
a functional integration matrix and solved a few fractional partial differential equations. The suggested
method is clear, does not require any alterations for the situations given, and is easy to apply numerically.
As a result, we are forced to suggest the HWM for the higher-order fractional partial differential equations
and the effectiveness of the current approach is demonstrated using tables and graph simulation.
This article is organised as follows: Section 2 is devoted to the properties of the Hermite wavelets and
convergence analysis. Section 3 is devoted to the functional integration of the matrix. Section 4 is about
the Hermite wavelet method. Section 5 is concerned with the numerical experiment, results, and error
analysis of the illustrative problems. Finally, the conclusion of the proposed work is discussed in section
6.

2. Results on Hermite wavelets and fractional derivatives

Definition 1. The Riemann–Liouville’s fractional integral of f εCμ of the order δ ≥ 0 defined as [42,43],

Jδ
s f (s) =

⎧⎨
⎩

f(s) if δ = 0
1

Γ (δ)

s∫
0

(s − t)δ−1
f (t) dt if δ > 0.

The gamma function is indicated here by the symbol Γ , where Cμ is continuous linear space.

Definition 2. The Caputo fractional derivative of f (s) εCμ is defined as [42,43]:

∂δf (s)
∂sδ

=
1

Γ (m − δ)

s∫
0

(s − t)m−δ−1
f (m) (t) dt

for m− 1 < δ ≤ m, m is any positive integer, s > 0, f (s) εCm
μ , μ ≥ −1. where Cm

μ is continuous linear
space containing fm(s).

Definition 3. The Hermite wavelets are defined as [36]:

φn,m (x) =

{
2

k+1
2√
π

Hm

(
2kx − 2n + 1

)
, n−1
2k−1 ≤ x < n

2k−1

0, Otherwise

where m = 0, 1, 2, . . . ,M − 1, n = 1, 2, . . . , 2k−1. Here Hm (x) is Hermite polynomials of degree m con-
cerning weight function W (x) =

√
1 − x2 on the real line R and satisfies the following recurrence formula

H0 (x) = 1,H1 (x) = 2x,

Hm+2 (x) = 2xHm+1 (x) − 2 (m + 1) Hm (x) , m = 0, 1, 2, . . . .
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Theorem 1. If {φi,j(t)} be the sequence of continuous functions on [a, b] converges to the function φ (t)
uniformly on [a, b]. Then φ (t) is continuous on [a, b].

Proof. By data φi,j (t) uniformly converges to φ (t). Let ε > 0 be an arbitrary real number, then,

‖φi,j (t) − φ(t)‖ <
ε

3
,∀t ∈ [a, b]

Since each φi,j (t) is continuous in [a, b]. Then, there exists δ > 0 such that
‖φi,j (t) − φ(t)‖ < ε

3 , whenever ‖t0 − t‖ < ε,∀t0, t ∈ [a, b].

By Minkowski’s inequality, we have

‖φ(t0) − φ(t)‖ = ‖φ (t0) − φi,j (t0) + φi,j (t0) + φi,j (t) − φi,j (t) − φ(t)‖
‖φ(t0) − φ(t)‖ ≤ ‖φ (t0) − φi,j (t0)‖ + ‖φi,j (t) − φ (t)‖ + ‖φi,j (t0) − φi,j (t)‖
‖φ(t0) − φ(t)‖ <

ε

3
+

ε

3
+

ε

3
= ε.where |t0 − t| < δ with t0, t ∈ [a, b].

Hence, φ (t) is continuous on [a, b].

Theorem 2. Let y (x, t) ∈ L2 (R × R) be bounded continuous function defined on [0.1) × [0.1) , then the
Hermite wavelet expansion of y (x, t) is uniformly converged to it [19].

Proof. Consider y (x, t) to be a continuous function defined on [0, 1) × [0, 1) and |y (x, t)| ≤M , where M
is a positive real number. Then, we define y (x, t) in the form

y (x, t) =
∞∑

i=1

∞∑
j=0

Ci,jφi,j (x) φi,j (t) ,

where Ci,j =< y (x, t) , φi,j (x) φi,j (t) > and <,> denotes inner product. Then, Hermite wavelet coeffi-
cients of continuous functions y (x, t) are defined as:

Ci,j =

1∫
0

1∫
0

y (x, t) φi,j (x) φi,j (t) dxdt,

Ci,j =

1∫
0

∫
I

y (x, t)
2

k+1
2√
π

hm

(
2kx−2n+1

)
φi,j (t) dxdt, where I =

[
n−1
2k−1

,
n

2k−1

)

Now, by changing the variable 2kx−2n+1 =p, we obtain

Ci,j =
2

k+1
2√
π

1∫
0

⎡
⎣

1∫
−1

y

(
p−1 + 2n

2k
, t

)
hm (p)

dp

2k

⎤
⎦φi,j (t) dt,

Ci,j =
2

1−k
2√
π

1∫
0

⎡
⎣

1∫
−1

y

(
p−1 + 2n

2k
, t

)
hm (p) dp

⎤
⎦ φi,j (t) dt,

Using the generalised mean value theorem for integrals, we obtain the following equation

Ci,j =
2

1−k
2√
π

1∫
0

y

(
ζ−1 + 2n

2k
, t

)
φi,j (t) dt

⎡
⎣

1∫
−1

hm (p) dp

⎤
⎦ ,
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where ζ∈ (−1, 1). Since hm (x) is continuous and integrable on (−1, 1), we choose
1∫

−1

Lm (p) dp = A such

that,

Ci,j = A
2

1−k
2√
π

1∫
0

y

(
ζ−1 + 2n

2k
, t

)
φi,j (t) dt,

Ci,j = A
2

1−k
2√
π

n

2k−1∫
n−1
2k−1

y

(
ζ−1 + 2n

2k
, t

)
2

k+1
2√
π

hm

(
2kt−2n+1

)
dt,

Now, by repeating the above procedure and by changing the variable 2kt−2n+1 =q, we obtain,

Ci,j =
2A

(
√

π)2

1∫
−1

y

(
ζ−1 + 2n

2k
,
q−1 + 2n

2k

)
hm (q)

dq

2k
,

Ci,j =
A21−k

(
√

π)2

1∫
−1

y

(
ζ−1 + 2n

2k
,
q−1 + 2n

2k

)
hm (q) dq,

Also, using the generalised mean value theorem for integrals,

Ci,j =
A21−k

(
√

π)2
y

(
ζ−1 + 2n

2k
,
η−1 + 2n

2k

) 1∫
−1

hm (q) dq, where η∈ (−1, 1) ,

Since hm (x) is continuous and integrable on (−1, 1), we choose
1∫

−1

Lm (q) dq = B, and this gives the

following,

Ci,j =
AB21−k

(
√

π)2
y

(
ζ−1 + 2n

2k
,
η−1 + 2n

2k

)
,whereη, ζ∈ (−1, 1) ,

Therefore,

|Ci,j | =

∣∣∣∣∣
AB21−k

π

∣∣∣∣∣
∣∣∣∣y

(
ζ−1 + 2n

2k
,
η−1 + 2n

2k

)∣∣∣∣ , where η, ζ∈ (−1, 1) ,

Since y (x, t) is bounded. That is, |y (x, t)| ≤M , where M is the real constant.

|Ci,j | =

∣∣∣∣∣
AB21−k

π

∣∣∣∣∣ M =
|A| |B| 2M

π2k
,

where M is any positive integer. Therefore,
∑∞

i=0

∑∞
j=0 ci,j is convergent. Hence, the Hermite wavelet

expansion of y (x, t) is converged uniformly. �

3. Functional integration matrix

The Hermite wavelet is a compactly supported, continuous, and orthogonal basis studied in [22]. At k =
1, the following Hermite wavelet bases were extracted:

φ1,0(x) =
2√
π
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φ1,1(x) =
1√
π

(8x − 4)

φ1,2(x) =
1√
π

(32x2 − 32x + 4)

φ1,3(x) =
1√
π

(128x3 − 192x2 + 48x + 8)

φ1,4(x) =
1√
π

(512x4 − 1024x3 + 384x2 + 128x − 40)

φ1,5(x) =
1√
π

(2048x5 − 5120x4 + 2560x3 + 1280x2 − 800x + 16)

φ1,6(x) =
1√
π

(8192x6 − 24576x5 + 15360x4 + 10240x3 − 9600x2 + 384x + 368)

φ1,7(x) =
1√
π

(32768x7 − 114688x6 + 86016x5

+71680x4 − 89600x3 + 5376x2 + 10304x − 928)

φ1,8(x) =
1√
π

(131072x8 − 524288x7 + 458752x6 + 458752x5 − 716800x4

+57344x3 + 164864x2 − 29696x − 3296)

φ1,9(x) =
1√
π

(524288x9 − 2359296x8 + 2359296x7 + 2752512x6 − 5160960x5 + 516096x4

+1978368x3 − 534528x2 − 118656x + 21440)

φ1,10(x) =
1√
π

(2097152x10 − 10485760x9 + 11796480x8 + 15728640x7 − 34406400x6

+4128768x5 + 19783680x4 − 7127040x3

−2373120x2 + 857600x + 16448)

φ1,11(x) =
1√
π

(8388608x11 − 46137344x10 + 57671680x9 + 86507520x8 − 216268800x7

+30277632x6 + 174096384x5 − 78397440x4

−34805760x3 + 18867200x2 + 723712x − 461696)

φ1,12(x) =
1√
π

(33554432x12 − 201326592x11 + 276824064x10

+461373440x9 − 1297612800x8 + 207618048x7

+1392771072x6 − 752615424x5 − 417669120x4

+301875200x3 + 17369088x2 − 22161408x + 561536)

where φ9(x) = [φ1,0(x), φ1,1(x), φ1,2(x), φ1,3(x), φ1,4(x), φ1,5(x), φ1,6(x), φ1,7(x), φ1,8(x)]T .
Integrate the aforementioned first nine basis concerning the x limit between 0 and x, and then express

as a linear combination of Hermite wavelet basis as
x∫

0

ϕ1,0 (x) dx =
[
1
2

1
4 0 0 0 0 0 0 0

]
ϕ9(x)

x∫
0

ϕ1,1 (x) dx =
[ −1

4 0 1
8 0 0 0 0 0 0

]
ϕ9(x)
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x∫
0

ϕ1,2(x)dx =
[ −1

3 0 0 1
12 0 0 0 0 0

]
ϕ9(x)

x∫
0

ϕ1,3(x)dx =
[
5
4 0 0 0 1

16 0 0 0 0
]
ϕ9(x)

x∫
0

ϕ1,4(x)d =
[ −2

5 0 0 0 0 1
20 0 0 0

]
ϕ9(x)

x∫
0

ϕ1,5 (x) dx =
[ −23

3 0 0 0 0 0 1
24 0 0

]
ϕ9(x)

x∫
0

ϕ1,6(x)dx =
[
116
7 0 0 0 0 0 0 1

28 0
]
ϕ9(x)

x∫
0

ϕ1,7(x)dx =
[
103
2 0 0 0 0 0 0 0 1

32

]
ϕ9(x)

x∫
0

ϕ1,8 (x) dx =
[ −2680

9 0 0 0 0 0 0 0 0
]
ϕ9(x) +

1
36

ϕ1,9(x).

Hence,

x∫
0

φ(x) dx = H9×9 φ9(x) + φ̄9(x)

where

H9×9 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
4 0 0 0 0 0 0 0

−1
4 0 1

8 0 0 0 0 0 0
−1
3 0 0 1

12 0 0 0 0 0
5
4 0 0 0 1

16 0 0 0 0
−2
5 0 0 0 0 1

20 0 0 0
−23
3 0 0 0 0 0 1

24 0 0
116
7 0 0 0 0 0 0 1

28 0
103
2 0 0 0 0 0 0 0 1

32
−2680

9 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, φ9(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0

1
36φ1,9(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, the above-mentioned nine basis are twice integrated as shown below.

x∫
0

x∫
0

φ1,0(x) dxdx =
[

3
16

1
8

1
32 0 0 0 0 0 0

]
φ9(x)

x∫
0

x∫
0

φ1,1(x) dxdx =
[ −1

6
−1
16 0 1

96 0 0 0 0 0
]

φ9(x)
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x∫
0

x∫
0

φ1,2(x) dxdx =
[ −1

16
−1
12 0 0 1

192 0 0 0 0
]

φ9(x)

x∫
0

x∫
0

φ1,3(x) dxdx =
[
3
5

5
16 0 0 0 1

320 0 0 0
]

φ9(x)

x∫
0

x∫
0

φ1,4(x) dxdx =
[ −7

12
−1
10 0 0 0 0 1

480 0 0
]

φ9(x)

x∫
0

x∫
0

φ1,5(x) dxdx =
[ −22

7
−23
12 0 0 0 0 0 1

672 0
]

φ9(x)

x∫
0

x∫
0

φ1,6(x) dxdx =
[
81
8

29
7 0 0 0 0 0 0 1

896

]
φ9(x)

x∫
0

x∫
0

φ1,7(x) dxdx =
[
148
9

103
8 0 0 0 0 0 0 0

]
φ9(x) +

1
1152

φ1,9(x)

x∫
0

x∫
0

φ1,8(x) dxdx =
[ −773

5
−670

9 0 0 0 0 0 0 0
]

φ9(x) +
1

1440
φ1,10(x).

Hence,
x∫

0

x∫
0

φ(x) dxdx = H ′
9×9 φ9(x) + φ̄′

9(x)

where,

H ′
9×9 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
16

1
8

1
32 0 0 0 0 0 0

−1
6

−1
16 0 1

96 0 0 0 0 0
−1
16

−1
12 0 0 1

192 0 0 0 0
3
5

5
16 0 0 0 1

320 0 0 0
−7
12

−1
10 0 0 0 0 1

480 0 0
−22
7

−23
12 0 0 0 0 0 1

672 0
81
8

29
7 0 0 0 0 0 0 1

896
148
9

103
8 0 0 0 0 0 0 0

−773
5

−670
9 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, φ′
9(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0

1
1152φ1,9(x)
1

1440φ1,10(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Similarly, we can generate matrices for our suitability.

4. Method of Solution

The collocation approach is used in this section along with the wavelet’s functional matrix to solve the
fractional partial differential equations defined in Eq. (1.1).
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Assume that,

∂3y(x, t)
∂x2∂t

= φ(t)T
Kφ(x) (4.1)

where

φT (t) =
[
φ1,0 (t) , . . . , φ1,M−1 (t) , φ2,0 (t) , . . . , φ2,M−1 (t) , . . . , φ2k−1,M−1 (t)

]
,

φ (x) =
[
φ1,0 (x) , . . . , φ1,M−1 (x) , φ2,0 (x) , . . . , φ2,M−1 (x) , . . . , φ2k−1,M−1 (x)

]T
,

K = [apq]n×n, where apq stands for undetermined coefficients that need to be determined and
n = 2k−1M.
Integrating Eq. (4.1) concerning t from 0 to t now yields

∂2y(x, t)
∂x2 =

∂2y(x, 0)
∂x2 +

t∫
0

φ(t)T
Kφ(x)dt,

∂2y(x, t)
∂x2 =

∂2y(x, 0)
∂x2 +

[
Hn×nφ (t) + φ̄(t)

]T
Kφ (x) . (4.2)

Integrating Eq. (4.2) concerning x from 0 to x,

∂y(x, t)
∂x

=
∂y(0, t)

∂x
+

∂y(x, 0)
∂x

− ∂y (0, 0)
∂x

+

x∫
0

[
Hn×nφ (t) + φ̄(t)

]T
Kφ (x)dx

∂y(x, t)
∂x

=
∂y(0, t)

∂x
+

∂y(x, 0)
∂x

− ∂y (0, 0)
∂x

+
[
Hn×nφ (t) + φ̄(t)

]T
K

[
Hn×nφ (x) + φ̄(x)

]
. (4.3)

Integrating Eq. (4.3) concerning x from 0 to x,

y (x, t) = y (0, t) + y (x, 0) − y (0, 0) + x

[
∂y (0, t)

∂x
− ∂y (0, 0)

∂x

]

+

x∫
0

[[
Hn×nφ (t) + φ̄(t)

]T
K

[
Hn×nφ (x) + φ̄(x)

]]
dx

y (x, t) = y (0, t) + y (x, 0) − y (0, 0) + x

[
∂y (0, t)

∂x
− ∂y (0, 0)

∂x

]

+
[
Hn×nφ (t) + φ̄(t)

]T
K

[
H

′
n×nφ (x) + φ̄′ (x)

]
. (4.4)

Put x = β in the above equation,

y (β, t) = y (0, t) + y (β, 0) − y (0, 0) + β

[
∂y (0, t)

∂x
− ∂y (0, 0)

∂x

]

+
[
Hn×nφ (t) + φ̄(t)

]T
K

[
H

′
n×nφ (x) + φ̄′ (x)

]
|x=β .[

∂y (0, t)
∂x

− ∂y (0, 0)
∂x

]
=

1
β

[y (β, t) − y (0, t) − y (β, 0) + y (0, 0)]

− [
Hn×nφ (t) + φ̄(t)

]T
K

[
H

′
n×nφ (x) + φ̄′ (x)

]
|x=β . (4.5)

Substituting Eq. (4.5) in (4.4), we get,

y (x, t) = y (0, t) + y (x, 0) − y (0, 0)

+x

[
1
β

[y (β, t) − y (0, t) − y (β, 0) + y (0, 0)]
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− [
Hn×nφ (t) + φ̄(t)

]T
K

[
H

′
n×nφ (x) + φ̄′ (x)

]
|x=β .

]

+
[
Hn×nφ (t) + φ̄(t)

]T
K

[
H

′
n×nφ (x) + φ̄′ (x)

]
. (4.6)

By twice differentiating Eq. (4.6) concerning t, we obtain

∂y(x, t)
∂t

=
∂y(0, t)

∂t
+ x

d
dt

[
1
β

[y (β, t) − y (0, t)] − [
Hn×nφ (t) + φ̄ (t)

]T
K

[
H

′
n×nφ (x) + φ̄′ (x)

]
|x=β .

]

+
d
dt

[
Hn×nφ (t) + φ̄(t)

]T
K

[
H

′
n×nφ (x) + φ̄′ (x)

]
. (4.7)

∂2y(x, t)
∂t2

=
∂2y(0, t)

∂t2
+ x

d2

dt2

[
1
β

[y (β, t) − y (0, t)] − [
Hn×nφ (t) + φ̄ (t)

]T
K

[
H

′
n×nφ (x) + φ̄′ (x)

]
|x=β .

]

+
d2
dt2

[
Hn×nφ (t) + φ̄(t)

]T
K

[
H

′
n×nφ (x) + φ̄′ (x)

]
. (4.8)

Substituting Eqs. (4.8), (4.6), and (4.2) in Eq. (1.1) assuming δ = 2 = α, we get,

[
∂2y (0, t)

∂t2
+ x

d2

dt2

[
1
β

[y (β, t) − y (0, t)] − [
Hn×nφ (t) + φ̄(t)

]T
K

[
H

′
n×nφ (x) + φ̄′ (x)

]
|x=β .

]

+
d2

dt2
[
Hn×nφ (t) + φ̄(t)

]T
K

[
H

′
n×nφ (x) + φ̄′ (x)

]]

=
[
∂2y(x, 0)

∂x2 +
[
Hn×nφ (t) + φ̄(t)

]T
Kφ (x)

]

+F

[
t, x,

(
y (0, t) + y (x, 0) − y (0, 0) + x

[
1
β

[y (β, t) − y (0, t) − y (β, 0) + y (0, 0)]

− [
Hn×nφ (t) + φ̄(t)

]T
K

[
H

′
n×nφ (x) + φ̄′ (x)

]
|x=β .

]

+
[
Hn×nφ (t) + φ̄(t)

]T
K

[
H

′
n×nφ (x) + φ̄′ (x)

])
,(

∂y(0, t)
∂t

+ x
d

dt

[
1
β

[y (β, t) − y (0, t)]

− [
Hn×nφ (t) + φ̄ (t)

]T
K

[
H

′
n×nφ (x) + φ̄′ (x)

]
|x=β .

]

+
d
dt

[
Hn×nφ (t) + φ̄(t)

]T

K
[
H

′
n×nφ (x) + φ̄′ (x)

])]

Collocate the aforementioned equation by the collocation points xi = ti = 2i−1
2n2 , i = 1, 2, . . . , n2 and then

use suitable solvers to resolve this system to provide Hermite wavelet coefficients. By substituting these
coefficients in (4.6), we get a numerical solution of (1.1).
For the fractional order: differentiate Eq. (4.6) concerning t and x of order δ ∈ (0, 1) and α ∈ (0, 1),
respectively. Then substitute ∂2δy(x,t)

∂t2δ , ∂2αy(x,t)
∂x2α , y (x, t) and ∂y(x,t)

∂x in Eq. (1.1) and collocate the obtained
equation using the following collocation points xi = ti = 2i−1

2n2 , i = 1, 2, . . . , n2. Then consider this obtained
system of algebraic equations by Newton’s Raphson method to get the Hermite wavelet coefficients. By
substituting these coefficients in (4.6), we get a numerical solution of (1.1) for the fractional order.
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Fig. 1. Geometrical interpretation of HWM solution and its AE

5. Applications

Example 1. Consider the Telegraph FPDEs [6]:

∂2δy

∂x2δ
− ∂2αy

∂t2α − ∂αy

∂tα
− y +

(
xδ

δ

)2

+
(

tα

α

)
= 1, (5.0)

With conditions,

y (x, 0) = x2, y (0, t) = t, and y (1, t) = 1 + t.

For this problem y (x, t) = x2 + t is the exact solution at δ = α = 1. Using the proposed method
described in Section 4 at n = 3, we were able to solve this problem and obtained a Hermite wavelet
numerical solution that is the same as the exact solution. A visual representation of the solution obtained
by the HWM is drawn in Fig. 1. HWM solution at distinct values of δ and α is shown in Fig. 2. Figures 3
and 4 represent the HWM solution for various fractional values at x = 1 and t = 1, respectively. Table
1 represents the absolute error of the ND solver and HWM with the exact solution. Table 1 shows the
accuracy of HWM, and it is better than the ND solver solution in Mathematica.

Numerical implementation:
Assume that,

∂3y(x, t)
∂x2∂t

= φ(t)T
Kφ(x) (5.1)

where

φT (t) =
[
φ1,0 (t) , φ1,1(t), φ1,2 (t)

]
, φ (x) =

[
φ1,0 (x) , φ1,1(x), φ1,2 (x)

]T
, and K = [apq]3×3 ,

Using Eq. (5.1) to integrate the data for t from 0 to t, we obtain

∂2y(x, t)
∂x2 =

∂2y(x, 0)
∂x2 +

[
H3×3φ (t) + φ̄(t)

]T
Kφ (x) . (5.2)
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Fig. 2. Plot of HWM solution at δ = 1, α = 0.2, 0.4, 0.6 and α = 1, δ = 0.2, 0.4, 0.6.

Fig. 3. Plot of HWM solution at δ = 1, x = 1, and various values of α

Integrating Eq. (5.2) concerning x from 0 to x,

∂y(x, t)
∂x

=
∂y(0, t)

∂x
+

∂y(x, 0)
∂x

− ∂y (0, 0)
∂x

+
[
H3×3φ (t) + φ̄(t)

]T
K

[
H3×3φ (x) + φ̄(x)

]
. (5.3)
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Fig. 4. Plot of HWM at α = 1, t = 1, and distinct values of δ

Integrating Eq. (5.3) concerning x from 0 to x,

y (x, t) = y (0, t) + y (x, 0) − y (0, 0) + x

[
∂y (0, t)

∂x
− ∂y (0, 0)

∂x

]

+
[
H3×3φ (t) + φ̄(t)

]T
K

[
H

′
3×3φ (x) + φ̄′ (x)

]
. (5.4)

Put x = 1 in the above equation,[
∂y (0, t)

∂x
− ∂y (0, 0)

∂x

]
= [y (1, t) − y (0, t) − y (1, 0) + y (0, 0)]

− [
H3×3φ (t) + φ̄(t)

]T
K

[
H

′
3×3φ (x) + φ̄′ (x)

]
|x=1. (5.5)

Substituting Eq. (5.5) in (5.4), we get,

y (x, t) = t + x2 + x
[
− [

H3×3φ (t) + φ̄(t)
]T

K
[
H

′
3×3φ (x) + φ̄′ (x)

]
|x=1

]

+
[
H3×3φ (t) + φ̄(t)

]T
K

[
H

′
3×3φ (x) + φ̄′ (x)

]
. (5.6)

Differentiating Eq. (5.6) twice concerning t, we get

∂y (x, t)
∂t

= 1 + x
d
dt

[
− [

H3×3φ (t) + φ̄ (t)
]T

K
[
H

′
3×3φ (x) + φ̄′ (x)

]
|x=β .

]

+
d
dt

[
H3×3φ (t) + φ̄(t)

]T
K

[
H

′
3×3φ (x) + φ̄′ (x)

]
. (5.7)

∂2y (x, t)
∂t2

= x
d2

dt2

[
− [

H3×3φ (t) + φ̄ (t)
]T

K
[
H

′
3×3φ (x) + φ̄′ (x)

]
|x=β .

]

+
d2

dt2
[
H3×3φ (t) + φ̄(t)

]T
K

[
H

′
3×3φ (x) + φ̄′ (x)

]
. (5.8)
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Fig. 5. Visual representation of HWM solution with its AE

Substituting Eqs. (5.8), (5.7), (5.6), and (5.2) in Eq. (5.0) and collocating with the grid points mentioned
below,

xi = ti =
2i − 1

18
, i = 1, 2, . . . , 9,

then we get the following system,

0.0686a11−0.1377a12−0.1379a13−0.1217a21+0.2455a22
+0.2402a23−0.1961a31+0.3889a32+0.4103a33 = 0

0.1915a11 − 0.3959a12 − 0.4032a13 − 0.2462a21 + 0.5466a22 + 0.4164a23
−0.8379a31 + 1.6122a32 + 2.0863a33 = 0

0.2909a11 − 0.6439a12 − 0.6905a13 − 0.2120a21
+0.6710a22 + 0.1269a23 − 1.6370a31 + 3.0976a32 + 4.8687a33 = 0

0.3614a11 − 0.9017a12 − 1.0692a13 − 0.0219a21 + 0.7083a22
−0.6262a23 − 2.3822a31 + 4.6001a32 + 8.4683a33 = 0

0.3978a11 − 1.1936a12 − 1.6446a13 + 0.3183a21 + 0.7427a22
−1.7683a23 − 2.8647a31 + 6.0478a32 + 12.5201a33 = 0

0.3950a11 − 1.5488a12 − 2.5646a13 + 0.7997a21 + 0.8494a22
−3.1699a23 − 2.8817a31 + 7.5347a32 + 16.7988a33 = 0

0.3476a11 − 2.0010a12 − 4.0272a13 + 1.4104a21 + 1.0912a22
−4.6713a23 − 2.2396a31 + 9.3091a32 + 21.4058a33 = 0
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Fig. 6. HWM solution at δ = 1, α = 0.2, 0.4, 0.6 and α = 1, δ = 0.2, 0.4, 0.6.

Fig. 7. HWM solution at α = 1, t = 1, and different values of δ
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Fig. 8. Numerical solution by HWM at δ = 1, x = 1, and different values of α

0.2505a11 − 2.5887a12 − 6.2865a13 + 2.1351a21 + 1.5151a22
−6.1139a23 − 0.7575a31 + 11.7579a32 + 26.9210a33 = 0

0.0983a11 − 3.3549a12 − 9.6603a13 + 2.9556a21 + 2.1486a22
−7.3761a23 + 1.7290a31 + 15.3856a32 + 34.5067a33 = 0

The following are the Hermite wavelet coefficients obtained after solving the aforementioned system using
Newton’s Raphson method: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 = 0
a12 = 0
a13 = 0
a21 = 0
a22 = 0
a23 = 0
a31 = 0
a32 = 0
a33 = 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

then substitute these values in Eq. (5.6), we get a numerical solution of Eq. (5.0) as y (x, t) = x2 + t.

Example 2. Consider the Telegraph FPDEs [6]:

∂2αy

∂t2α − ∂2δy

∂x2δ
− 2t

∂αy

∂tα
+ y = 0,

With conditions,

y (x, 0) = 0, y (0, t) = t2, and y (1, t) = e1t2.

For this problem y (x, t) = ext2 is the exact solution at δ = α = 1. Using the method described in
Section 4 at n = 3, we were able to solve this problem and obtained a Hermite wavelet numerical solution
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Fig. 9. HWM solution represented graphically together with its absolute error

Fig. 10. Visual representation of solution by HWM at δ = 1, α = 0.2, 0.4, 0.6 and α = 1, δ = 0.2, 0.4, 0.6.
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Fig. 11. Numerical solution by HWM at δ = 1, x = 1/2, and different values of α.

Fig. 12. Plot of the solution by HWM at α = 1, t = 1, at different values of δ.



61 Page 24 of 31 L. Yan et al. ZAMP

T
a
b
l
e
6
.

T
h
e

A
E

o
f
th

e
H

W
M

a
t

n
=

3
w

it
h

th
e

ex
a
ct

so
lu

ti
o
n

t
x

=
0
.1

,
n

=
3

x
=

0
.2

,
n

=
3

x
=

0
.4

,
n

=
3

x
=

0
.5

,
n

=
3

x
=

0
.6

,
n

=
3

0
0

0
0

0
0

0
.1

1
.0

0
0
0
e-

0
7

1
.5

0
0
0
e-

0
7

2
.5

0
0
0
e-

0
7

3
.1

0
0
0
e-

0
7

3
.8

0
0
0
e-

0
7

0
.2

8
.0

0
0
0
e-

0
7

1
.2

0
0
0
e-

0
6

2
.0

0
0
0
e-

0
6

2
.4

8
0
0
e-

0
6

3
.0

4
0
0
e-

0
6

0
.3

2
.7

0
0
0
e-

0
6

4
.0

5
0
0
e-

0
6

6
.7

5
0
0
e-

0
6

8
.3

7
0
0
e-

0
6

1
.0

2
6
0
e-

0
5

0
.4

6
.4

0
0
0
e-

0
6

9
.6

0
0
0
e-

0
6

1
.6

0
0
0
e-

0
5

1
.9

8
4
0
e-

0
5

2
.4

3
2
0
e-

0
5

0
.5

1
.2

5
0
0
e-

0
5

1
.8

7
5
0
e-

0
5

3
.1

2
5
0
e-

0
5

3
.8

7
5
0
e-

0
5

4
.7

5
0
0
e-

0
5

0
.6

2
.1

6
0
0
e-

0
5

3
.2

4
0
0
e-

0
5

5
.4

0
0
0
e-

0
5

6
.6

9
6
0
e-

0
5

8
.2

0
8
0
e-

0
5

0
.7

3
.4

3
0
0
e-

0
5

5
.1

4
5
0
e-

0
5

8
.5

7
5
0
e-

0
5

1
.0

6
3
3
e-

0
4

1
.3

0
3
4
e-

0
4

0
.8

5
.1

2
0
0
e-

0
5

7
.6

8
0
0
e-

0
5

1
.2

8
0
0
e-

0
4

1
.5

8
7
2
e-

0
4

1
.9

4
5
6
e-

0
4

0
.9

7
.2

9
0
0
e-

0
5

1
.0

9
3
5
e-

0
4

1
.8

2
2
5
e-

0
4

2
.2

5
9
9
e-

0
4

2
.7

7
0
2
e-

0
4

1
1
.0

0
0
0
e-

0
4

1
.5

0
0
0
e-

0
4

2
.5

0
0
0
e-

0
4

3
.1

0
0
0
e-

0
4

3
.8

0
0
0
e-

0
4



ZAMP Numerical solution of fractional PDEs through... Page 25 of 31 61

T
a
b
l
e
7
.

T
h
e

A
E

o
f
th

e
H

W
M

so
lu

ti
o
n

a
t

n
=

3
w

it
h

th
e

ex
a
ct

so
lu

ti
o
n

x
t
=

0
.1

,
n

=
3

t
=

0
.2

,
n

=
3

t
=

0
.3

,
n

=
3

t
=

0
.4

,
n

=
3

t
=

0
.5

,
n

=
3

0
0

0
0

0
0

0
.1

2
.0

0
0
0
e-

0
6

1
.0

0
0
0
e-

0
6

3
.0

0
0
0
e-

0
6

4
.1

0
0
0
e-

0
6

4
.5

0
0
0
e-

0
6

0
.2

8
.0

0
0
0
e-

0
6

4
.0

0
0
0
e-

0
6

1
.2

0
0
0
e-

0
5

1
.6

4
0
0
e-

0
5

1
.8

0
0
0
e-

0
5

0
.3

1
.8

0
0
0
e-

0
5

9
.0

0
0
0
e-

0
6

2
.7

0
0
0
e-

0
5

3
.6

9
0
0
e-

0
5

4
.0

5
0
0
e-

0
5

0
.4

3
.2

0
0
0
e-

0
5

1
.6

0
0
0
e-

0
5

4
.8

0
0
0
e-

0
5

6
.5

6
0
0
e-

0
5

7
.2

0
0
0
e-

0
5

0
.5

5
.0

0
0
0
e-

0
5

2
.5

0
0
0
e-

0
5

7
.5

0
0
0
e-

0
5

1
.0

2
5
0
e-

0
4

1
.1

2
5
0
e-

0
4

0
.6

7
.2

0
0
0
e-

0
5

3
.6

0
0
0
e-

0
5

1
.0

8
0
0
e-

0
4

1
.4

7
6
0
e-

0
4

1
.6

2
0
0
e-

0
4

0
.7

9
.8

0
0
0
e-

0
5

4
.9

0
0
0
e-

0
5

1
.4

7
0
0
e-

0
4

2
.0

0
9
0
e-

0
4

2
.2

0
5
0
e-

0
4

0
.8

1
.2

8
0
0
e-

0
4

6
.4

0
0
0
e-

0
5

1
.9

2
0
0
e-

0
4

2
.6

2
4
0
e-

0
4

2
.8

8
0
0
e-

0
4

0
.9

1
.6

2
0
0
e-

0
4

8
.1

0
0
0
e-

0
5

2
.4

3
0
0
e-

0
4

3
.3

2
1
0
e-

0
4

3
.6

4
5
0
e-

0
4

1
2
.0

0
0
0
e-

0
4

1
.0

0
0
0
e-

0
4

3
.0

0
0
0
e-

0
4

4
.1

0
0
0
e-

0
4

4
.5

0
0
0
e-

0
4



61 Page 26 of 31 L. Yan et al. ZAMP

T
a
b
l
e
8
.

T
h
e

A
E

o
f
th

e
N

D
so

lv
er

w
it
h

th
e

ex
a
ct

so
lu

ti
o
n

t
x

=
0
.1

x
=

0
.2

x
=

0
.3

x
=

0
.4

x
=

0
.5

0
1
.5

5
4
3
e

−
1
7

4
.1

6
3
3
e

−
1
7

3
.5

0
2
4
e

−
1
7

5
.5

5
1
1
e

−
1
9

3
.3

7
5
0
e

−
1
7

0
.1

5
.9

2
8
8
e

−
3

9
.6

4
3
0
e

−
3

9
.9

2
5
7
e

−
3

8
.6

0
2
1
e

−
3

2
.0

4
5
9
e

−
1

0
.2

8
.4

7
5
3
e

−
3

1
.3

6
6
1
e

−
2

1
.5

4
5
2
e

−
2

1
.9

7
2
9
e

−
1

3
.7

7
4
4
e

−
1

0
.3

6
.3

6
1
0
e

−
3

1
.1

5
4
9
e

−
2

1
.9

7
2
7
e

−
1

3
.7

4
2
6
e

−
1

4
.9

5
9
1
e

−
1

0
.4

2
.7

9
1
3
e

−
3

2
.0

5
6
4
e

−
1

3
.8

0
3
2
e

−
1

4
.9

8
5
6
e

−
1

6
.0

7
5
7
e

−
1

0
.5

2
.1

0
4
2
e

−
1

3
.8

7
1
6
e

−
1

5
.0

6
0
7
e

−
1

6
.1

4
1
4
e

−
1

6
.0

8
8
0
e

−
1

0
.6

3
.8

6
7
4
e

−
1

5
.0

6
3
5
e

−
1

6
.1

7
6
1
e

−
1

6
.1

5
1
3
e

−
1

6
.0

7
1
5
e

−
1

0
.7

2
.9

2
1
6
e

−
1

6
.1

1
9
8
e

−
1

6
.1

1
7
2
e

−
1

6
.0

9
4
2
e

−
1

4
.9

5
1
7
e

−
1

0
.8

2
. 2

2
1
4
e

−
1

3
.9

3
7
8
e

−
1

6
.0

2
8
7
e

−
1

4
.9

2
6
1
e

−
1

3
.7

6
3
6
e

−
1

0
.9

9
.9

7
6
7
e

−
2

2
.1

3
0
8
e

−
1

2
.8

3
9
4
e

−
1

3
.7

6
8
7
e

−
1

2
.0

2
6
5
e

−
1

1
7
.8

3
9
4
e

−
3

1
.1

0
6
1
e

−
1

3
.3

2
6
0
e

−
1

1
.5

6
8
3
e

−
2

2
.6

8
0
4
e

−
3



ZAMP Numerical solution of fractional PDEs through... Page 27 of 31 61

T
a
b
l
e
9
.

T
h
e

A
E

o
f
th

e
N

D
so

lv
er

w
it
h

th
e

ex
a
ct

so
lu

ti
o
n

x
t
=

0
.1

t
=

0
.2

t
=

0
.3

t
=

0
.4

t
=

0
.5

0
2
.2

8
7
4
e

−
1
7

7
.5

3
5
4
e

−
1
7

7
sp

sd
o
t1

0
6
5
e

−
1
7

3
.2

7
8
5
e

−
1
8

4
.9

2
2
0
e

−
1
7

0
.1

5
.9

2
8
8
e

−
3

8
.4

7
5
3
e

−
3

6
.3

6
1
0
e

−
3

2
.7

9
1
3
e

−
3

2
.1

0
4
3
e

−
1

0
.2

9
.6

4
3
0
e

−
3

1
.3

6
6
1
e

−
2

1
.1

5
4
9
e

−
2

2
.0

5
6
4
e

−
1

3
.8

7
1
9
e

−
1

0
.3

9
.9

2
5
7
e

−
3

1
.5

4
5
2
e

−
2

1
.9

7
2
7
e

−
1

3
.8

0
3
2
e

−
1

5
.0

6
1
0
e

−
1

0
.4

8
.6

0
2
1
e

−
3

1
.9

7
2
9
e

−
1

3
.7

4
2
6
e

−
1

4
.9

8
5
6
e

−
1

6
.1

4
1
8
e

−
1

0
.5

2
.0

4
5
9
e

−
1

3
.7

7
4
4
e

−
1

4
.9

5
9
1
e

−
1

6
.0

7
5
7
e

−
1

6
.0

8
8
4
e

−
1

0
.6

3
.8

4
5
0
e

−
1

5
.0

1
0
0
e

−
1

6
.0

8
9
5
e

−
1

6
.0

5
2
1
e

−
1

6
.0

0
1
3
e

−
1

0
.7

2
.9

6
5
0
e

−
1

6
.1

6
2
5
e

−
1

6
.1

0
5
9
e

−
1

6
.0

1
3
8
e

−
1

4
.8

3
5
7
e

−
1

0
.8

2
. 3

3
3
4
e

−
1

4
.0

8
6
8
e

−
1

6
.1

1
2
2
e

−
1

4
.9

0
2
8
e

−
1

3
.6

4
8
9
e

−
1

0
.9

1
.1

4
3
4
e

−
1

2
.3

1
8
3
e

−
1

2
.9

1
8
7
e

−
1

3
.7

6
9
0
e

−
1

1
.9

6
7
7
e

−
1

1
1
.9

3
6
8
e

−
4

5
.1

5
8
4
e

−
3

3
.0

0
1
9
e

−
3

2
.9

6
7
3
e

−
3

2
.4

8
3
3
e

−
2



61 Page 28 of 31 L. Yan et al. ZAMP

tabulated in the tables and graphs. A visual representation of the solution obtained by the HWM is
drawn in Fig. 5. HWM solution at distinct values of δ and α is shown in Fig. 6. Figures 7 and 8 represent
the HWM solution for numerous fractional values at x = 1 and t = 1, respectively. Tables 2 and 3 show
the absolute error of the HWM solution with the exact solution for different values of x and t. Tables 4
and 5 show the absolute error of the ND solver solution obtained by Mathematica with the exact solution
for different values of x and t. From Tables 2, 3, 4 and 5, we can see that HWM is better than ND solver
in terms of accuracy in the solution.

Example 3. The fractional PDE is of the form [6]:

∂2δy

∂x2δ
− ∂2αy

∂t2α = sin

(
πxδ

δ

)
,

With the following constraints,

y (x, 0) = 0, y (0, t) = 0, and y (1, t) = 0.

The exact solution is y (x, t) = sin(πx)
π2 [cos (πt) − 1] at δ = α = 1. We solved this problem by the current

approach at n = 3, 9, and obtained an HMT numerical solution. Figure 9 illustrates the geometrical inter-
pretation of the HWM solution and its absolute error in comparison with the actual solution for various
values of n. The numerical solution by HWM for various values of δ and α is shown in Fig. 10. Figures 11
and 12 represent the HWM solution for various fractional values at x = 1

2 and t = 1, respectively.

6. Conclusion

This article established an innovative technique for FPDEs through the functional matrix of Hermite
wavelets. By using discrete grid points, this method converts a given FPDE into a set of algebraic
equations. We solved three examples by HWM. Tables and graphs are used to discuss the results, together
with the exact solution. This study shows that HWM is easy to use, produces superior results, and takes
considerably less time. As the matrix size rises, the accuracy of the solution likewise improves, as seen in
Fig. 9. From the figures and tables above, we infer that the numerical solutions achieved by the developed
methodology are closer to the exact solution and require less CPU time than the current methods. It is
important to note that the developed strategy minimises the amount of computational work compared to
the existing techniques while upholding excellent accuracy of numerical results. Therefore, the suggested
scheme (HWM) effectively solves FPDEs. Some theorems are discussed with proof of convergence analysis.
Tables 1–9 reveal that the proposed technique is better than the ND solver in Mathematica.
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