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1. Introduction

Following the by-now classical theory of nonlinear elasticity [1,2,12,36], we consider an elastic body
occupying in its reference configuration an open bounded set Ω ⊆ R

d with Lipschitz boundary ∂Ω, subject
to a prescribed boundary condition on a part Γ ⊂ ∂Ω with positive surface measure, i.e., Hd−1(Γ) > 0.
A possible deformation of the body is described by a mapping y : Ω → R

d such that y = y0 on Γ, where
y0 is the imposed boundary data. Its associated internally stored elastic energy is given by the functional

E(y) :=
∫

Ω

W (∇y(x)) dx, (1.1)

with a function W representing material properties: the local energy density, which is here assumed
to be only a function of the deformation gradient and not of the position x. A crucial aspect of this
mathematical model [6] is to define a suitable class of admissible deformations that capture relevant
features, such as non-interpenetration of matter, which mathematically translates into injectivity of y.
However, considering different admissible classes can lead to a Lavrentiev phenomenon, i.e., the functional
infima differ when restricting the minimization of (1.1) to more regular deformations, such as W 1,∞ in
place of W 1,p. Functionals demonstrating this behavior were first discovered in the early twentieth century
[29,31]. There the minimum value over W 1,1 is strictly less than the infimum over W 1,∞. For an extensive
survey on the Lavrentiev phenomenon in a broader context, we refer the interested reader to [11].

In the context of nonlinear elasticity, the Lavrentiev phenomenon was first observed with admissible
deformations that allow cavitations, i.e., the formation of voids in the material [4]. For the study of
cavitations, we refer to [9,23] and references therein.

A natural question raised in [7] and [5] is:
Can the Lavrentiev phenomenon occur for elastostatics under growth conditions on the stored-energy

function, ensuring that all finite-energy deformations are continuous?
This is indeed the case, and the first example of this kind has been given in two dimensions [17–

19]. It features an energy density with desirable properties: W is smooth, polyconvex, frame-indifferent,
isotropic, W (F ) � |F |p with p > 2, and W (F ) → ∞ as det F → 0+. Moreover, admissible deformations
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are almost everywhere (a.e.) injective. In these examples, the reference configuration is represented by
a disk sector Ωα := {r(cos θ, sin θ) : 0 < r < 1, 0 < θ < α}. A crucial aspect for the emergence of
the Lavrentiev phenomenon in that example is the local behavior of (almost) minimizers near the tip at
r = 0, interacting with a particular choice of boundary conditions. The latter fix the origin y(0, 0) = (0, 0),
y(1, θ) = (1, β

αθ) and y(Ωα) ⊂ Ωβ , where 0 < β < 3
4α.

In the current paper, we provide examples of the Lavrentiev phenomenon in elasticity both in two
and three dimensions. The elastic energy is of a simple neo-Hookean form with physically reasonable
properties as described above, and admissible deformations are continuous and a.e.-injective. Differently
from [17–19], the Lavrentiev phenomenon in our example is not related to the local behavior of almost
minimizers near prescribed boundary data, but to a possible global self-intersection of the material that
still maintains a.e. injectivity by compressing two different material cross sections to a single point (or
line in 3D) of self-contact in deformed configuration. It turns out to be energetically favorable due to our
particular choice of boundary conditions but is no longer possible if we restrict to a sufficiently smooth
class of admissible deformations. This then leads to a higher energy infimum.

Throughout the paper, we consider locally orientation preserving deformations with p-Sobolev regu-
larity

W 1,p
+ (Ω; Rd) := {y ∈ W 1,p(Ω; Rd) | det ∇y > 0 a.e. in Ω} ⊂ W 1,p(Ω; Rd). (1.2)

If p > d, the Sobolev embedding theorems ensure the continuity of W 1,p-mappings. The question of
injectivity of deformations, i.e., non-interpenetration of matter, is more delicate, and it has been exten-
sively studied. Let us mention just a few references. For local invertibility conditions, see [8,16,25]. As
for global injectivity, one may ask some coercivity with respect to specific ratios of powers of a matrix
F , its cofactor matrix cof F , and its determinant detF combined with global topological information
from boundary values [3,24,27,28,33,38] or second gradient [21], as well as other regularity [13,38,39]
and topological restrictions such as (INV)-condition [8,14,22,34,37] and considering limits of homeomor-
phisms [10,15,27,33]. In this paper, we adopt the approach from [13], where the authors investigate a
class of mappings y ∈ W 1,p

+ (Ω; Rd) satisfying the Ciarlet–Nečas condition:
∫

Ω

det(∇y(x)) dx ≤ |y(Ω)| , (CN)

and prove that the mappings of this class are a.e.-injective.
In the examples, we consider W (F ) � |F |p + (det F )−q, the reference configuration Ω in dimension

d = 2, 3. The boundary data y0 are chosen in such a way that the energy E favors deformations that
have non-empty sets of non-injectivity. In particular, we construct in Sect. 3 (resp. Sect. 4) a competitor
y ∈ W 1,p

+ (Ω; R2) (resp. y ∈ W 1,p
+ (Ω; R3)) satisfying the Ciarlet–Nečas condition (CN) and having a

line (resp. a plane) of non-injectivity. The energy of such deformation is shown to be strictly less than
that of Lipschitz deformations, for which injectivity is ensured everywhere. The global injectivity in this
case follows from the Reshetnyak theorem for mappings of finite distortion [30]. Specifically, a mapping
y ∈ W 1,d

loc (Ω; Rd) with det∇y ≥ 0 a.e. has finite distortion if |∇y(x)| = 0 whenever det∇y(x) = 0. If,

in addition, the distortion Ky := |∇y|d
det ∇y ∈ Lκ with κ > d − 1, then y is either constant or open and

discrete. Furthermore, it is not difficult to see that an a.e.-injective and open mapping y ∈ W 1,d
loc (Ω; Rd)

is necessarily injective everywhere, as pointed out in [20, Lemma 3.3]. For a general theory of mappings
of finite distortion, the reader is referred to [26].

Our example also shows that, depending on the precise properties of the energy density W , there can
be an energy gap between the class of orientation preserving a.e. injective deformations (i.e., satisfying the
Ciarlet–Nečas condition) on the one hand and the strong (or weak) closure of Sobolev homeomorphisms
in the ambient Sobolev space on the other hand. If these classes do not coincide (which can certainly
happen if there is not enough control of the distortion via the energy to apply the Reshetnyak theorem
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[30] as above, see [35, Fig. 4]), one has to carefully choose which constraint to use to enforce non-
interpenetration of matter, even if p > d. In our example, the Ciarlet–Nečas condition does allow a “deep”
self-interpenetration in such a scenario. As a matter of fact, this self-interpenetration is also topologically
stable in the sense that all C0-close deformations still self-intersect (see Figs. 1 and 2 for reference and
deformed configurations in the 2D case). To us, it seems doubtful that such a deformation corresponds
to a physically meaningful state. This strongly speaks for preferring a closure of homeomorphisms as the
admissible class in such cases. An open problem in this context is to find sharp conditions for the energy
density so that all a.e.-injective orientation preserving Sobolev maps can be found as strong (or weak)
limits of Sobolev homeomorphisms in W 1,p. In case p ≥ d, having Ky ∈ Lκ with κ > d − 1 as above is
clearly sufficient, but probably not necessary, at least not in dimension d ≥ 3.

The plan of the paper is the following. Section 2 is dedicated to the general setting of the problem
and a few basic auxiliary results. In Sects. 3 and 4, we discuss the Lavrentiev phenomenon in dimensions
two and three for the energy E in the class of deformations y ∈ W 1,p

+ (Ω, Rd) satisfying the Ciarlet–Nečas
condition (CN) as well as suitable Dirichlet boundary conditions on selected parts of ∂Ω.

2. General setting

In dimension d ≥ 2, we consider a Neo-Hookean nonlinear elastic material with energy density:

W (F ) :=

⎧⎨
⎩

|F |p + γ
1

(det F )q
if detF > 0,

+∞ else,
for F ∈ R

d×d. (2.1)

In (2.1), |F | :=
(∑

ij F 2
ij

) 1
2 denotes the standard Euclidean matrix norm, p > d and q > 0 are constants,

and γ > 0 is chosen in such a way that W is minimized at the identity matrix 1l, i.e.,

γ :=
pd

p
2 −1

q
. (2.2)

Indeed, let detF > 0 and λ1, . . . , λd > 0 be singular values of F , then

W (F ) = W(λ1, . . . , λd) =
( d∑

k=1

λ2
k

) p
2

+ γ
( d∏

k=1

λk

)−q

and equalities ∂
∂λi

W |λj=1= 0 give us (2.2). Moreover, λi = 1, i = 1, . . . d, is the global minimizer of W.
Indeed, if (λ1, . . . λd) is a local minimum, then for any i = 1, . . . d,

∂

∂λi
W = pλi

( d∑
k=1

λ2
k

) p
2 −1

− γq
1
λi

( d∏
k=1

λk

)−q

= 0.

Therefore, λi = 1 for all i = 1, . . . d. In other words, only rotation matrices F ∈ SO(d) are minimizers of
W .

Below we summarize some “good” [6] properties of the energy density W .

Proposition 2.1. For W given by (2.1) and (2.2), we have that

1. W ∈ C∞(Rd×d
+ ; R),

2. W (F ) → +∞ as det F → 0+,
3. W is frame-indifferent and isotropic, i.e., W (RF ) = W (FR) = W (F ) for all R ∈ SO(d) and

F ∈ R
d×d
+ ,

4. W is polyconvex,
5. W (F ) − W (1l) ≥ 0 for all F ∈ R

d×d
+ ,
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6. there exist constants c = c(d, p, q) > 0 and b = b(d, p, q) ∈ R such that

W (F ) ≥ c
(
|F |p + |cof F | p

d−1 + (detF )
p
d

)
+ b. (2.3)

For later use, we point out the following proposition, which expresses the minimality of the identity
map in a quantitative form. From now on, ‖F‖2 denotes the operator norm of F ∈ R

d×d, i.e., ‖F‖2 :=
sup{|Fe| : |e| = 1}.

Proposition 2.2. For W given by (2.1) and (2.2), we have the following lower bound

W (F ) − W (1l) ≥ c |‖F‖2 − 1|p + c(‖F‖2 − 1)2 (2.4)

for some constant c = c(d, p, q) > 0.

Proof. As before, we express W (F ) = W(λ1, . . . , λd) and ‖F‖2 = max{λi : i = 1, . . . , d} in terms of the
singular values of F . Abbreviating

S :=
(∑d

k=1 λ2
k

) 1
2
, P :=

∏d
k=1 λk,

we have that W(λ1, . . . , λd) = Sp + γP−q. Thus, it holds

∂2

∂λi∂λj
W(λ1, . . . , λd) =

(
p(p − 2)λiλj + pδijS

2
)
Sp−4 + γq(q + δij)

1
λiλj

P−q.

Notice that
(
p(p − 2)Sp−4λiλj

)
ij

and
(
γq2P−qλ−1

i λ−1
j

)
ij

are positive semidefinite matrices of rank 1,
while the other contributions involving Kronecker’s δij give a diagonal matrix with positive coefficients
that can be estimated for all i = j. Indeed, defining

μ = μ(d, q) := min
{
λ−2

j P−q | 1 ≥ λ1, . . . , λd > 0, S = 1
} ≥ d

qd
2 > 0

(due to symmetry, μ does not depend on j), we obtain that

pSp−2 + γqλ−2
j P−q ≥ pSp−2 + γqμS−qd−2. (2.5)

Choosing α ∈ (0, 1) such that p ≤ 2−α
1−α , we may continue in (2.5) with

pSp−2 + γqλ−2
j P−q ≥ (1 − α)p(p − 1)Sp−2 +

(
(α − 1)p2 + (2 − α)p

)
Sp−2 + γqμS−qd−2,

from which we infer the existence of a constant ĉ = ĉ(γ, d, p, q, μ) > 0 such that

pSp−2 + γqλ−2
j P−q ≥ ĉ(p(p − 1)Sp−2 + 2).

Altogether, we get

ξ · D2W(λ1, . . . , λd)ξ ≥ ĉ(p(p − 1)Sp−2 + 2) |ξ|2 for ξ ∈ R
d. (2.6)

We now conclude for (2.4). Without loss of generality, we may assume that ‖F‖2 = λ1. Let us define
the curve λ : [0, 1] → (0,+∞)d connecting (λ1, . . . , λd) to (1, . . . , 1)

t �→ λ(t) = (λ1(t), . . . , λd(t)) := (tλ1 + 1 − t, . . . , tλd + 1 − t).
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Since ∂
∂λj

W(1, . . . , 1) = 0, integrating twice along λ and using (2.6) we obtain

W (F ) − W (1) =

1∫

0

τ∫

0

d2

dt2
W(λ1(t), . . . , λd(t)

)
dt dτ

≥ ĉ

1∫

0

τ∫

0

(p(p − 1)λ1(t)p−2 + 2)λ̇1(t)2 dt dτ

= ĉ

1∫

0

τ∫

0

d

dt

[(
pλ1(t)p−1 + 2λ1(t)

]
λ̇1(t) dt dτ

= ĉ
(
λp

1 − 1 − p(λ1 − 1) + (λ1 − 1)2
) ≥ c

(|λ1 − 1|p + (λ1 − 1)2
)
,

with c := min
{
ĉ, 1

2

}
(exploiting that p ≥ 2). �

In both the examples we present in this paper, we fix as reference configuration an open bounded
set Ωs ⊆ R

d with Lipschitz boundary ∂Ωs. Our set will always have two connected components whose
precise shape will be chosen depending on the dimension d and will further depend on a parameter s > 0.
For every y ∈ W 1,p

+ (Ωs, R
d), we define the energy functional

Es(y) :=
∫

Ωs

(W (∇y) − W (1l)) dx.

In particular, notice that the energy Es is normalized to 0 at y = id, since W attains minimum value
on SO(d). Let Γs be a subset of ∂Ωs, Hn−1(Γs) > 0, with imposed Dirichlet boundary data y0 ∈
W 1,p

+ (Ωs, R
d). The set of admissible deformations Ys ⊆ W 1,p

+ (Ωs, R
d) reads as

Ys :=
{

y ∈ W 1,p
+ (Ωs; Rd) | (CN) holds and y = y0 on Γs

}
. (2.7)

The existence of minimizers is nowadays classic and follows, e.g., from [13, Theorem 5] due to Propo-
sition 2.1 since p > d.

Theorem 2.3. If Ys �= ∅ and inf
y∈Ys

Es(y) < ∞, then there exists ŷs ∈ Ys such that inf
y∈Ys

Es(y) = Es(ŷs).

3. The Lavrentiev phenomenon in dimension two

In dimension d = 2, we consider a reference configuration Ωs consisting of two stripes of width 0 < s < 1,
given by (see also Fig. 1)

Ωs := S1 ∪ S2, where S1 := (−1, 1) × (−s, s), S2 := ξ + QS1,

Q :=
(

0 −1
1 0

)
and ξ :=

(
4
0

)
.

(3.1)

We denote by Γs the subset of ∂Ωs given by

Γs :=
[{−1, 1} × (−s, s)

] ∪ [(4 − s, 4 + s) × {−1, 1}] ⊂ ∂Ωs.

On Γs, we impose the following Dirichlet boundary condition

y0(x) :=

{
x for x ∈ S1,

x − ξ for x ∈ S2
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Fig. 1. Visualization of the reference configuration Ωs = S1 ∪ S2

Fig. 2. yα,β(S1) and yα,β(S2)

Notice that on both pieces of Ωs the function y0 is such that ∇y0 = 1l, which minimizes W pointwise.
However, y0(Ωs) is cross-shaped with y0 doubly-covering the center. Hence, y0 is not globally injective
and does not satisfy (CN). It is not hard to see that Ys, defined by (2.7), still contains many admissible
functions as long as s < 1.

Remark 3.1. Our reference configuration Ωs is not connected, but this is not essential for our examples,
just convenient. In fact, we could add a connecting piece S3 to Ωs, say from {−1} × (−s, s) (the left
edge of S1) to (4 − s, 4 + s) × {1} (the upper edge of S2), while still imposing the Dirichlet condition
on Γs as before. This would not affect our analysis near the possible self-intersection which only involves
S1 ∪S2 (cf. Fig. 2 and Fig. 3), but it would create extra technical hassle, as we would then have to control
behavior of y and the minimal energy contribution on S3 as well. A more refined example for the extended
reference configuration Ω̃s := S1 ∪ S2 ∪ S3 could even try to replace the “inner” part of the Dirichlet
condition on ({−1} × (−s, s)) ∪ ((4 − s, 4 + s) × {1}) ⊂ Γ ∩ Ω̃s by an obstacle that the deformations are
forced to wrap around. The precise formulation and analysis for this would be much more challenging
and technical, though.
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Fig. 3. Injective everywhere deformation

Theorem 3.2. (The Lavrentiev phenomenon occurs) Let p ∈ (2,+∞) and q ∈ (1, p
p−2 ]. Then, there exists

s ∈ (0, 1) such that for every s ∈ (0, s] the following holds:

inf
y∈W 1,∞(Ωs;Rd)∩Ys

Es(y) > min
y∈Ys

Es(y). (3.2)

The proof of Theorem 3.2 is a consequence of the following two propositions, which determine the
asymptotic behavior of the minimum problems in (3.2).

Proposition 3.3. Let p ∈ (2,+∞) and q ∈ (1, p
p−2 ]. Then, miny∈Ys

Es(y) = o(s), i.e., we have that

lim
s↘0

1
s

inf
y∈Ys

Es(y) = 0. (3.3)

Proposition 3.4. Let p ∈ (2,+∞) and q ∈ (1, p
p−2 ] Then, there exists s ∈ (0, 1) such that for every

s ∈ (0, s] and every s ∈ (0, s],
ms ≤ inf

y∈W 1,∞(Ωs;R2)∩Ys

Es(y) ≤ Ms. (3.4)

with constants 0 < m < M < +∞ independent of s.

We start with the proof of Proposition 3.3.

Proof of Proposition 3.3. In order to prove (3.3), we explicitly construct a deformation yα,β forming a
cross with self-intersection. By squeezing with suitable rate two central cross sections to a point, which
will be the only point of intersection in yα,β(Ω), we produce an almost-minimizer of Es in Ys.

We start with the case q ∈ (1, p
p−2 ). We divide S1 into two subsets S′

1 = S1 ∩ {|x1| ≤ s} and
S′′

1 = S1 ∩ {|x1| ≥ s} and fix p−1
p < α < β ≤ 1. For x ∈ S′

1, we set

yα,β(x) :=

⎛
⎜⎝

x1

|x1|1−α

|x1|β
sβ

x2

⎞
⎟⎠ , whence ∇yα,β(x) =

⎛
⎜⎝

α

|x1|1−α 0

β

sβ
|x1|β−2

x1x2
|x1|β
sβ

⎞
⎟⎠ .
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For x ∈ S′′
1 , we connect yα,β to the boundary datum y0 as follows:

yα,β(x) :=

⎛
⎝ x1

|x1|
(

1 − sα

1 − s
(|x1| − 1) + 1

)

x2

⎞
⎠ , whence ∇yα,β(x) =

( 1 − sα

1 − s
0

0 1

)
.

In particular, det∇yα,β = 1−sα

1−s > 0 in S′′
1 and det∇yα,β = α

sβ |x1|α+β−1
> 0 a.e. in S′

1 and

1
(det ∇yα,β)q

=

⎧⎪⎨
⎪⎩

sβq

αq
|x1|(1−α−β)q

, if x ∈ S′
1,( 1 − s

1 − sα

)q

, if x ∈ S′′
1 ,

Moreover, for x ∈ S′
1 we have that

|∇yα,β | =

(
α2

|x1|2(1−α)
+

β2

s2β
|x1|2β−2 |x2|2 +

|x1|2β

s2β

) 1
2

≤ α

|x1|1−α + β
s1−β

|x1|1−β
+ 1.

Thus, (det ∇yα,β)−q + |∇yα,β |p ∈ L1(S1) as long as
(1 − α − β)q > −1, p(α − 1) > −1, p(β − 1) > −1. (3.5)

Such restrictions on α and β can be satisfied whenever q ∈ (1, p
p−2 ) by choosing α ∈ (p−1

p , 1) and β ∈ (α, 1]
accordingly.

We now estimate the behavior of the energy Es(yα,β) as s → 0. Below, the symbol � stands for an
inequality up to a positive multiplicative constant independent of s ∈ (0, 1] and x ∈ S1. We further
write ≈ if such inequalities hold in both directions. By minimality of the identity matrix, by definition
of W , and by construction of yα,β on S′

1, we have that

0 ≤ W (∇yα,β) − W (1l) � |∇yα,β |p +
1

(det ∇yα,β)q

� |x1|p(α−1) + βsp(1−β)|x1|p(β−1) + 1 + sβq|x1|(1−α−β)q.

(3.6)

Moreover, since 0 < α < 1, the mean value theorem gives

1 − sα

1 − s
− 1 ≈ sα + s ≈ sα.

This means that on S′′
1 it holds that |∇yα,β − 1l| � sα uniformly in x. By Taylor expansion of W at 1l

(where DW (1l) = 0 by definition of γ), we infer that

0 ≤ W (∇yα,β) − W (1l) � s2α on S′′
1 . (3.7)

Combining (3.6) and (3.7), we obtain the following upper bound for the energy for all sufficiently
small s as long as (3.5) holds:∫

S1

W (∇yα,β) − W (1l) dx

�
∫

S′
1

(
|x1|p(α−1) + sp(1−β)|x1|p(β−1) + sβq|x1|(1−α−β)q + 1

)
dx +

∫

S′′
1

s2α dx

=
4s · spα−p+1

1 + p(α − 1)
+

4s2

1 + p(β − 1)
+

4s · sβq · s1+(1−α−β)q

1 + (1 − α − β)q
+ 4s2 + 4s(1 − s)s2α

≈ spα−p+2 + s2 + s2+(1−α)q + s2α+1. (3.8)
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Setting γ := min{pα − p + 2, 2 + (1 − α)q, 2α + 1}, since p−1
p < α < β ≤ 1, we have that γ > 1. By (3.8),

we conclude that ∫

S1

W (∇yα,β) − W (1l) dx � sγ . (3.9)

For x ∈ S2, we extend yα,β with a suitable shifted copy. With a slight abuse of notation, we set

yα,β(x) := Qyα,β(QT (x − ξ)),

where Q and ξ are given by (3.1). It is straightforward that yα,β is injective on Ωs \ ({0} × (−s, s) ∪ (4 −
s, 4 + s) × {0}) while yα,β({0} × (−s, s)) = yα,β((4 − s, 4 + s) × {0}) = {0}. By the change-of-variables
formula for Sobolev mappings, yα,β satisfies (CN). Clearly, the estimate (3.9) holds true also on S2. This
concludes the proof of (3.3) for q ∈ (1, p

p−2 ).
To cover q = p

p−2 , we need to consider a slightly different example. With the same notation introduced
above for S′

1 and S′′
1 , we set

ŷα,β(x) :=

⎛
⎜⎜⎝

x1

|x1|1−α |ln |x1||∣∣∣∣ ln s

ln |x1|
∣∣∣∣
2

· |x1|β
sβ

x2

⎞
⎟⎟⎠ for x ∈ S′

1,

and for x ∈ S′′
1

ŷα,β(x) :=

⎛
⎜⎝

x1

|x1|

(
1 − sα

|ln s|
1 − s

(|x1| − 1) + 1

)

x2

⎞
⎟⎠ .

It is straightforward to check that in S′
1

|∇ŷα,β |p � |x1|p(α−1)

|ln |x1||p +
|x1|p(α−1)

|ln |x1||2p +
|x1|p(β−1)| ln s|2p

s(β−1)p| ln |x1||2p
+

|x1|p(β−1)| ln s|2p

s(β−1)p| ln |x1||3p
+

|x1|βp| ln s|2p

sβp| ln |x1||2p
.

and

(det ∇ŷα,β)−q � sqβ

| ln s|2q
|x1|q(1−α−β) | ln |x1||3q.

We have (det ∇ŷα,β)−q + |∇ŷα,β |p ∈ L1(S1) if β ≥ α, (1 − α − β)q ≥ −1 and p(α − 1) ≥ −1. Moreover,
if β = α = p−1

p and q = p
p−2 ,

∫

S1

W (∇yα,β) − W (1l) dx � o(s).

On S′′
1 we can repeat the argument of (3.7). This concludes the proof of the proposition. �

Proof of Proposition 3.4. With an explicit construction of a competitor y ∈ W 1,∞(Ωs; R2) ∩ Ys as

y(x) :=

⎧⎨
⎩

x for x ∈ S1,

x − ξ +
(

1+s
1−2s (1 − |x2|)

0

)
for x ∈ S2,

one can show that there exists M > 0 such that

min
y∈W 1,∞(Ωs;Rd)∩Ys

Es(y) ≤ Ms.
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Fig. 4. Graphic representation of y(Tσ
1 ) satisfying (i)

Let us now fix y ∈ W 1,∞(Ωs; R2) ∩ Ys with finite energy Es(y). We claim that for a.e. σ ∈ (−s, s) one
of the following inequalities are satisfied:

1∫

−1

|∂x1y(x1, σ)|dx1 ≥ 2
√

2(1 − s), (3.10a)

1∫

−1

|∂x2y(4 + σ, x2)|dx2 ≥ 2
√

2(1 − s). (3.10b)

For σ ∈ (−s, s), let us denote by T σ
1 := (−1, 1) × {σ} and T σ

2 := {4 + σ} × (−1, 1) the sections of each
stripe. By the boundary conditions and continuity of y, for every σ, ζ ∈ (−s, s) the curve y(Tσ

1 ) has to
intersect the line {z ∈ R

2 | z1 = ζ}. Similarly, y(T σ
2 ) has to intersect {z ∈ R

2 | z2 = ζ} (see also Fig. 4).
For σ ∈ (−s, s), we distinguish two cases:

(i) y(T σ
1 ) intersects {σ} × ((−∞,−1] ∪ [1,+∞)) or y(T σ

2 ) intersects ((−∞,−1] ∪ [1,+∞)) × {σ};
(ii) y(T σ

1 ) and y(T σ
2 ) only intersect {σ} × (−1, 1) and (−1, 1) × {σ}, respectively.

Denoting by K(x, y(x)) the distortion of y ∈ W 1,∞(Ωs; R2) ∩ Ys in x ∈ Ωs

K(x, y(x)) :=
|∇y(x)|2

(det ∇y(x))
, (3.11)

we notice that y satisfies ∫

Ωs

Kq(x, y) dx � ‖∇y‖2q
L∞ Es(y) < ∞,

with q > d − 1 = 1. Since y is non-constant, due to the boundary data, by the Reshetnyak theorem [30]
for mappings of finite distortion, y is open and discrete. Moreover, any open map that is injective almost
everywhere is indeed injective everywhere (as pointed out in [20, Lemma 3.3]). Hence, the case (ii) is
impossible, and the general deformation is pictured in Fig. 3.

Therefore, for every σ ∈ (−s, s) we are in the case (i). For every σ ∈ (−s, s) such that the integrals
in (3.10) are well defined, we may assume without loss of generality that y(T σ

1 )∩ [{σ}× [1,+∞)] �= ∅ (the
other cases can be treated similarly), and let x1 ∈ (−1, 1) be such that y(x1, σ) ∈ y(T σ

1 )∩ [{σ}× [1,+∞)].
Since the shortest path connecting (−1, σ) to the point y(x1, σ) is the segment, by the boundary conditions
of y we have that

x1∫

−1

|∂x1y(x1, σ)|dx1 ≥
√

2(1 − σ) ≥
√

2(1 − s). (3.12)
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With the same argument, we deduce that
1∫

x1

|∂x1y(x1, σ)|dx1 ≥
√

2(1 − s). (3.13)

Combining (3.12)–(3.13), we obtain (3.10a). If y(T σ
2 ) intersects ((−∞,−1] ∪ [1,+∞)) × {σ}, the same

argument leads to (3.10b).
We are now in a position to conclude for (3.4). We define the sets

A := {x2 ∈ (−s, s) | (3.10a) is satisfied} ,

B := {x1 ∈ (−s, s) \ A | (3.10b) is satisfied} .

In view of (3.10), we have that A ∪ B = (−s, s), up to a set of L1-measure zero. Moreover, A ∩ B = ∅.
By (2.4), we estimate (recall that ‖ · ‖2 denotes the operator norm)∫

Ωs

(W (∇y) − W (1)) dx

=

s∫

−s

1∫

−1

(W (∇y) − W (1)) dx1 dx2 +

4+s∫

4−s

1∫

−1

(W (∇y) − W (1)) dx2 dx1

≥ c

∫

A

1∫

−1

|‖∇y‖2 − 1|p + (‖∇y‖2 − 1)2 dx1 dx2

+ c

∫

4+B

1∫

−1

|‖∇y‖2 − 1|p + (‖∇y‖2 − 1)2 dx2 dx1. (3.14)

Thanks to the Jensen inequality, to (3.10), and to the definition of A and B, we continue in (3.14) with∫

Ωs

(W (∇y) − W (1))dx

≥ c

∫

A

1∫

−1

||∂x1y| − 1|p + (|∂x1y| − 1)2 dx1 dx2

+ c

∫

4+B

1∫

−1

||∂x2y| − 1|p + (|∂x2y| − 1)2 dx2 dx1

≥ c

∫

A

∣∣∣∣∣∣
1∫

−1

|∂x1y|dx1 − 1

∣∣∣∣∣∣

p

+
( 1∫

−1

|∂x1y|dx1 − 1
)2

dx2

+ c

∫

4+B

∣∣∣∣∣∣
1∫

−1

|∂x2y|dx2 − 1

∣∣∣∣∣∣

p

+
( 1∫

−1

|∂x2y|dx2 − 1
)2

dx1

≥ c (|A| + |B|)[(2√
2(1 − s) − 1

)p +
(
2
√

2(1 − s) − 1
)2] ≥ ms + o(s)

for some positive constant m independent of y and of s. This concludes the proof of (3.4). �

Remark 3.5. The Lavrentiev phenomenon is valid even if we replace W 1,∞(Ωs; R2) with W 1,r(Ωs; R2) for
r > 2q

q−1 . In this case, we have that for y ∈ W 1,r(Ωs; R2)∩Ys with Es(y) < +∞, the distortion coefficient
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K(x, y) defined in (3.11), belongs to Lη(Ωs) for η := rq
2q+r , η ∈ (1, q). Indeed, by Hölder inequality it

holds ∫

Ωs

( |∇y|2
det ∇y

)η

dx ≤
⎛
⎝
∫

Ωs

|∇y|2η q
q−η dx

⎞
⎠

q−η
q
⎛
⎝
∫

Ωs

dx

det ∇yη q
η

⎞
⎠

η
q

< ∞, (3.15)

since r = 2qη
q−η and Es(y) < +∞. This implies that any competitor y ∈ W 1,r(Ωs; R2) ∩ Ys with finite

energy must satisfy (i) for every σ ∈ (−s, s). Then, the proof of the lower bound of Es(y) proceeds as in
the W 1,∞-case.

Remark 3.6. The argument in Remark 3.5 also shows that the two-dimensional example in Proposition 3.3
is optimal in the following sense: If p > 2 and q > p

p−2 , then every y ∈ W 1,p(Ωs; R2) ∩ Ys with finite
energy satisfies Ky ∈ Lη(Ωs) for η = pq

2q+p > 1 (see (3.15)). Hence, y has to be injective. This would rule
out the example constructed in the proof of Proposition 3.3.

4. The Lavrentiev phenomenon in dimension three

In this section, we show a three-dimensional generalization of the Lavrentiev phenomenon proven in The-
orem 3.2. The example is created by simply thickening the two-dimensional version in another direction,
corresponding to the variable x1 below, while (x2, x3) correspond to the two variables of the 2D example.

For s ∈ (0, 1), the reference configuration Ωs consists now of the union of two thin cuboids of width s.
Namely, we write

Ωs := S1 ∪ S2,

S1 := (−1, 1) × (−1, 1) × (−s, s), S2 := ξ + QS1 ,

Q :=

⎛
⎝1 0 0

0 0 −1
0 1 0

⎞
⎠ , ξ :=

⎛
⎝0

4
0

⎞
⎠ .

(4.1)

We consider the Dirichlet datum

y0(x) :=

{
x for x ∈ S1,

x − ξ for x ∈ S2,

and the set of admissible deformations
Ys :=

{
y ∈ W 1,p

+ (Ωs; R3) | (CN) holds and y = y0 on Γs

}
,

where

Γs :=
(
[−1, 1] × {−1, 1} × [−s, s]

) ∪ ([−1, 1] × [4 − s, 4 + s] × {−1, 1}) ⊂ ∂Ωs.

Similar to Theorem 3.2, we have the Lavrentiev phenomenon in the following form.

Theorem 4.1. For every p ∈ (3, 4) and every q ∈ (2, p
p−2 ), there exists s ∈ (0, 1] such that for every

s ∈ (0, s] the following holds:

inf
y∈W 1,∞(Ωs;R3)∩Ys

Es(y) > inf
y∈Ys

Es(y). (4.2)

The proof of Theorem 4.1 is subdivided into two propositions given below. Compared to the two-
dimension case, we now have to face an additional difficulty, because “fully going around” (case (i) in the
proof of Proposition 3.4) is no longer the only way the two pieces can avoid each other after deformation.
In principle, it should be possible to generalize our three-dimensional example to any dimension d ≥ 3,
but for the sake of simplicity, we will stick to d = 3, the practically most relevant case.
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Proposition 4.2. For every p ∈ (3, 4) and every q ∈ (2, p
p−2 ), infy∈Ys

Es(y) = o(s), i.e.,

lim
s↘0

1
s

inf
y∈Ys

Es(y) = 0. (4.3)

Proposition 4.3. For every p ∈ (3, 4) and every q ∈ (2, p
p−2 ), there exists s ∈ (0, 1) such that for every

s ∈ (0, s]
ms ≤ inf

y∈W 1,∞(Ωs;R3)∩Ys

Es(y) ≤ Ms (4.4)

with constants 0 < m < M < +∞ independent of s.

We start with the proof of Proposition 4.2.

Proof of Proposition 4.2. As in the proof of Proposition 3.3, it is enough to construct a sequence of
competitors ys ∈ Ys satisfying Es(ys) = o(s) as s ↘ 0. To this purpose, let us fix α, β ∈ (0, 1) (to
be determined later on) and let us define S′

1 := {x ∈ S1 : |x2| ≤ s}, S′
2 := {x ∈ S2 : |x3| ≤ s}, and

S′′
i := Si \ S′

i for i = 1, 2.
In order to prove the asymptotic (4.3), we define the map yα,β : Ωs → R

3 as

yα,β(x) :=

⎛
⎜⎜⎜⎝

x1
x2

|x2|1−α

|x2|β
sβ

x3

⎞
⎟⎟⎟⎠ for x ∈ S′

1,

yα,β(x) :=

⎛
⎜⎜⎝

x1

x2

|x2|
(

1 − sα

1 − s
(|x2| − 1) + 1

)

x3

⎞
⎟⎟⎠ for x ∈ S′′

1 ,

yα,β(x) := Qyα,β(QT (x − ξ)) for x ∈ S2.

To show that yα,β ∈ Ys for s small, we have to show that ∇yα,β ∈ Lp(Ωs; R3×3). We focus on S1, as the
definition of yα,β leads to the same computations on S2. By construction of yα,β , on S1 we have that

∇yα,β(x) =

⎛
⎝

1 0 0
0 α|x2|α−1 0
0 β

sβ |x2|β−2x2x3
|x2|β

sβ

⎞
⎠ forx ∈ S′

1,

∇yα,β(x) =

⎛
⎝1 0 0

0 1−sα

1−s 0
0 0 1

⎞
⎠ for x ∈ S′′

1 .

Imposing ∇yα,β ∈ Lp(S1; R3×3) implies that

α, β > 1 − 1
p
. (4.5)

We notice that

det ∇yα,β(x) =
α|x2|α+β−1

sβ
inS′

1,

det ∇yα,β(x) =
1 − sα

1 − s
in S′′

1 ,

so that det ∇yα,β > 0 on Ωs. As in the proof of Theorem 3.2, yα,β is injective on Ωs \ ((−1, 1) × {0} ×
(−s, s) ∪ (−1, 1) × (4 − s, 4 + s) × {0}) and while yα,β((−1, 1) × {0} × (−s, s)) = yα,β((−1, 1) × (4 − s, 4 +
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s) × {0}) = (−1, 1) × {0} × {0}. Thus, yα,β satisfies (CN) and yα,β ∈ Ys for α, β ∈ (0, 1) such that (4.5)
holds.

Imposing the integrability of (det∇yα,β)−q on S1, we deduce that it must be

(1 − α − β)q > −1. (4.6)

Combining (4.5) and (4.6), we infer that for any choice of p ∈ (3, 4) and of q ∈ (2, p
p−2 ), we can find

α, β ∈ (0, 1) such that yα,β ∈ Ys with (det∇yα,β)−q ∈ L1(Ωs). A direct estimate of W (∇yα,β) on S′
1

yields that

0 ≤
∫

S′
1

W (∇yα,β) − W (1l) dx � s2 + s(α−1)p+2 + sβq+1s(1−α−β)q+1. (4.7)

From (4.5)–(4.7), we deduce that there exists ρ ∈ (0, 1) (depending on α, β but not on s) such that

0 ≤
∫

S′
1

W (∇yα,β) − W (1l) dx � s1+ρ. (4.8)

As for S′′
1 , we may use the estimate of (3.7) and obtain that

0 ≤
∫

S′′
1

W (∇yα,β) − W (1l) dx � s1+2α. (4.9)

Defining δ := min{ρ, 2α}, we infer that

0 ≤
∫

S1

W (∇yα,β) − W (1l) dx � s1+δ. (4.10)

Arguing in the same way, estimate (4.10) can be obtained on S2, leading to (4.3). This concludes the
proof of the proposition. �

The following two lemmas show some useful properties of deformations y ∈ W 1,∞(Ωs; R3) ∩ Ys with
low energy, which will be useful to conclude for (4.4). In the sequel, we denote by π : R → [−1, 1] the
projection of R to the interval [−1, 1], defined as

π(t) :=

⎧⎪⎨
⎪⎩

t, if − 1 ≤ t ≤ 1,

−1, if t < −1,

1, if t > 1.

Lemma 4.4. There exists M > 0 such that for every s ∈ (0, 1)

min
y∈W 1,∞(Ωs;R3)∩Ys

Es(ys) ≤ Ms. (4.11)

Proof. The thesis follows easily by a direct construction of a competitor y ∈ W 1,∞(Ωs; R3) ∩ Ys. For
instance, we define

y(x) :=

⎧⎪⎪⎨
⎪⎪⎩

x for x ∈ S1,

x − ξ +

⎛
⎝ 0

1+s
1−2s (1 − |x3|)

0

⎞
⎠ for x ∈ S2.

Then, it is clear that Es(y) ≤ Ms for some M > 0 independent of s. �
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Lemma 4.5. Let s ∈ (0, 1), N > 0, γ := 1 − 2
p , σ ∈ (−s, s), and y ∈ W 1,∞(Ωs; R3) ∩ Ys be such that

1∫

−1

1∫

−1

W (∇y(x1, x2, σ)) − W (1l) dx1 dx2 ≤ N. (4.12)

Then, there exists cN,p > 0 depending only on p and N (but not on s) such that for every ε > 0 the
following holds: If

1∫

−1

∣∣∣∣∣
1∫

−1

(|∂2y|(x1, x2, σ) − 1
)
dx2

∣∣∣∣∣
p

dx1 ≤ ε, (4.13)

then for every x1, x2 ∈ [−1, 1]∣∣y(x1, x2, σ) − (x1, π(y2(x1, x2, σ)), σ)
∣∣ ≤ cN,p ε

γ
p+1 . (4.14)

Similarly, if
1∫

−1

1∫

−1

W (∇y(x1, σ + 4, x3)) − W (1l) dx1 dx3 ≤ N, (4.15)

1∫

−1

∣∣∣∣∣
1∫

−1

(|∂3y|(x1, σ + 4, x3) − 1
)
dx3

∣∣∣∣∣
p

dx1 ≤ ε, (4.16)

then, for every x1, x3 ∈ [−1, 1]∣∣y(x1, σ + 4, x3) − (x1, σ, π(y3(x1, σ + 4, x3)))
∣∣ ≤ cN,p ε

γ
p+1 . (4.17)

Proof. As p > 3, Morrey’s embedding and (4.12) imply that the map (x1, x2) �→ y(x1, x2, σ) is Hölder-
continuous. Precisely, there exists c̃N,p > 0 depending only on p and N such that for every x1, x2, x1, x2 ∈
[−1, 1]

|y(x1, x2, σ) − y(x1, x2, σ)| ≤ c̃N,p |(x1, x2) − (x1, x2)|γ . (4.18)
Let us define the set Dε ⊆ (−1, 1) as

Dε :=

{
x1 ∈ (−1, 1) :

1∫

−1

(|∂2y|(x1, x2, σ) − 1
)
dx2 ≤ ε

1
p+1

}
.

In particular, we notice that, due to the boundary condition on Γs, we have that
1∫

−1

(|∂2y|(x1, x2, σ) − 1
)
dx2 ≥ 0 for a.e. x1 ∈ (−1, 1).

Then, by (4.13) and by the Chebyshev inequality,

H1((−1, 1) \ Dε) ≤ 1

ε
p

p+1

1∫

−1

∣∣∣∣∣
1∫

−1

(|∂2y|(x1, x2, σ) − 1
)
dx2

∣∣∣∣∣
p

dx1 ≤ ε
1

p+1 . (4.19)

Let us now fix x1 ∈ Dε and x2 ∈ [−1, 1], let us denote by θx1 : [−1, 1] → R
3 the curve θx1(t) :=

y(x1, t, σ), and let us write

y(x1, x2, σ) = (x1, π(y2(x1, x2, σ)), σ) + v.

for suitable v = (v1, v2, v3) ∈ R
3 depending on (x1, x2). In particular, we notice one of the two cases must

hold:
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(i) π(y2(x1, x2, σ)) = y2(x1, x2, σ) and v2 = 0,
(ii) π(y2(x1, x2, σ)) ∈ {1,−1} and |v2| = min{|1 − y2(x1, x2, σ)|; |1 + y2(x1, x2, σ)|}.

In the case (i), by definition of Dε and by the boundary conditions on y we have that

2 + ε
1

p+1 ≥
1∫

−1

|θ̇x1(t)|dt ≥ |(x1,−1, σ) − y(x1, x2, σ)| + |y(x1, x2, σ) − (x1, 1, σ)|

= |(v1, y2(x1, x2, σ) + 1, v3)| + |(v1, y2(x1, x2, σ) − 1, v3)|
=
√

(v2
1 + v2

3) + (y2(x1, x2, σ) + 1)2 +
√

(v2
1 + v2

3) + (y2(x1, x2, σ) − 1)2

≥ min
z∈[−1,1]

√
(v2

1 + v2
3) + (z + 1)2 +

√
(v2

1 + v2
3) + (z − 1)2

= 2
√

(v2
1 + v2

3) + 1, (4.20)

which implies that |v| ≤ ε
1

p+1 + ε
1

2(p+1) .
If (ii) holds and y2(x1, x2, σ) /∈ [−1, 1], we may repeat the argument of the first two lines of (4.20) and

obtain that |v| ≤ ε
1

p+1 . All in all, we have shown that for every x1 ∈ Dε and every x2 ∈ [−1, 1] it holds

|y(x1, x2, σ) − (x1, π(y2(x1, x2, σ), σ)| ≤ ε
1

p+1 + ε
1

2(p+1) . (4.21)

To achieve (4.14), it remains to consider x1 /∈ Dε. In this case, by (4.19) we may find x1 ∈ Dε such
that |x1 − x1| ≤ 2ε

1
p+1 . Then, by triangle inequality, by the Hölder continuity (4.18) of y, and by the

previous step we have that for every x2 ∈ [−1, 1]

|y(x1, x2, σ) − (x1, π(y2(x1, x2, σ)), σ)|
≤ |y(x1, x2, σ) − y(x1, x2, σ)| + |y(x1, x2, σ) − (x1, π(y2(x1, x2, σ)), σ)|

+ |(x1, π(y2(x1, x2, σ)), σ) − (x1, π(y2(x1, x2, σ)), σ)|
≤ 2 c̃N,p |x1 − x1|γ + ε

1
p+1 + ε

1
2(p+1) + |x1 − x1|

≤ 21+γ c̃N,p ε
γ

p+1 + 3ε
1

p+1 + ε
1

2(p+1) ≤ cN,pε
γ

p+1 (4.22)

for a suitable constant cN,p > 0 depending only on γ and c̃N,p, and therefore only on p and N . This
concludes the proof of (4.14).

The same argument can be used to infer (4.17) taking into account the boundary conditions on ∂S2.
�

We are now in a position to prove Proposition 4.3.

Proof of Proposition 4.3. Since Lemma 4.4 holds, we are left to provide a lower bound for the minimum
problem (4.4). To this purpose, let M > 0 be the constant determined in Lemma 4.4 and fix a deformation
y ∈ W 1,∞(Ωs; R3) ∩ Ys such that

Es(y) ≤ (M + 1)s. (4.23)
Let us fix N > 0 such that M+1

N < 1
10 , and let us set

AN :=

{
σ ∈ (−s, s) :

1∫

−1

1∫

−1

W (∇y(x1, x2, σ)) − W (1l) dx1 dx2 ≤ N

}
,

BN :=

{
σ ∈ (−s, s) :

1∫

−1

1∫

−1

W (∇y(x1, σ + 4, x3)) − W (1l) dx1 dx3 ≤ N

}
.
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Then, by the Chebyshev inequality and by (4.23) we have that

H1((−s, s) \ AN ) ≤ 1
N

Es(y) ≤ M + 1
N

s <
s

10
, (4.24)

H1((−s, s) \ BN ) ≤ 1
N

Es(y) ≤ M + 1
N

s <
s

10
. (4.25)

Hence, we deduce from (4.24) and (4.25) that

H1(AN ∩ BN ) ≥ 18
10

s. (4.26)

We further set γ := 1 − 2
p and fix ε > 0 such that cN,p ε

γ
p+1 ≤ 1

3 , where cN,p > 0 is the constant defined
in Proposition 4.5. We claim that for every σ ∈ AN ∩ BN , at least one of the following inequalities must
hold:

1∫

−1

∣∣∣∣∣
1∫

−1

(|∂2y|(x1, x2, σ) − 1
)
dx2

∣∣∣∣∣
p

dx1 > ε, (4.27a)

1∫

−1

∣∣∣∣∣
1∫

−1

(|∂3y|(x1, σ + 4, x3) − 1
)
dx3

∣∣∣∣∣
p

dx1 > ε. (4.27b)

By contradiction, let us assume that both inequalities (4.27a) and (4.27b) are not satisfied for some σ.
By Lemma 4.5, we deduce that for every x1, x2, x3 ∈ [−1, 1],

|y(x1, x2, σ) − (x1, π(y2(x1, x2, σ)), σ)| ≤ 1
3
, (4.28a)

|y(x1, σ + 4, x3) − (x1, σ, π(y3(x1, σ + 4, x3)))| ≤ 1
3
. (4.28b)

We now show that given (4.28a) and (4.28b), y ∈ Ys cannot be injective in Ωs. This immediately yields
a contradiction, as we already know that any y ∈ W 1,∞(Ωs; R3) ∩ Ys with finite energy must be a
homeomorphism (as a consequence of the theory mappings of finite distortion [30], as already outlined
in the introduction).

To see that y indeed cannot be injective, let us consider the function

g : [−1, 1]3 → R
3, g(x1, τ1, τ2) := y(x1, τ1, σ) − y(0, σ + 4,−τ2).

Notice that if g(x̂1, τ̂1, τ̂2) = 0 for some (x̂1, τ̂1, τ̂2) ∈ (−1, 1)3, then y is not injective, since (x̂1, τ̂1, σ) ∈ S1,
(0, σ + 4,−τ̂2) ∈ S2 and the values of y on these two points coincide. As a consequence of (4.28) and of
the boundary conditions of y ∈ Ys on Γs, the vector field g = (g1, g2, g3) always points outwards on the
boundary of the cube [−1, 1]3:

g1(−1, τ1, τ2) ≤ −1 +
2
3

< 0,

g1(1, τ1, τ2) ≥ 1 − 2
3

> 0,

g2(x1,−1, τ2) = −1 − y2(0, σ + 4,−τ2) ≤ −1 − σ +
1
3

< 0,

g2(x1, 1, τ2) = 1 − y2(0, σ + 4,−τ2) ≥ 1 − σ − 1
3

> 0,

g3(x1, τ1,−1) = y3(x1, τ1, σ) − 1 ≤ σ +
1
3

− 1 < 0,

g3(x1, τ1, 1) = y3(x1, τ1, σ) + 1 ≥ 1 − σ +
1
3

> 0.
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(Above, we also used that s is small enough so that |σ| ≤ s < 1
3 .) As g is also continuous, it thus

satisfies the prerequisites of the Poincaré–Miranda theorem (see [32]). The latter yields that g attains
the value 0 ∈ R

3 in [−1, 1]3; actually even in (−1, 1)3, as the above rules out zeroes on the boundary.
(Alternatively, this is also not hard to see directly, observing that the topological degree of g satisfies
deg(g; (−1, 1)3; 0) = deg(id; (−1, 1)3; 0) = 1 by homotopy invariance of the degree.) Consequently, y is
not injective on Ωs.

We are in a position to conclude the proof of Theorem 4.1. Let us define

A := {σ ∈ AN ∩ BN | (4.27a) holds},

B := {σ ∈ AN ∩ BN | (4.27b) holds} \ A.

Since one of inequalities (4.27a) or (4.27b) holds for every σ ∈ AN ∩BN , we have that A∪B = AN ∩BN ,
while by construction we clearly have that A ∩ B = ∅. Arguing as in (3.14), applying Proposition 2.2 we
estimate the energy Es(y) as

Es(y) ≥ c

∫

A

1∫

−1

1∫

−1

∣∣‖∇y(x1, x2, x3)‖2 − 1
∣∣pdx1 dx2 dx3

+ c

∫

A

1∫

−1

1∫

−1

∣∣‖∇y(x1, x2, x3)‖2 − 1
∣∣2dx1 dx2 dx3

+ c

∫

B+4

1∫

−1

1∫

−1

∣∣‖∇y(x1, x2, x3)‖2 − 1
∣∣pdx1 dx3 dx2

+ c

∫

B+4

1∫

−1

1∫

−1

∣∣‖∇y(x1, x2, x3)‖2 − 1
∣∣2dx1 dx3 dx2

≥ c

∫

A

1∫

−1

1∫

−1

∣∣|∂2y(x1, x2, x3)| − 1
∣∣pdx1 dx2 dx3

+ c

∫

A

1∫

−1

1∫

−1

∣∣|∂2y(x1, x2, x3)| − 1
∣∣2dx1 dx2 dx3

+ c

∫

B+4

1∫

−1

1∫

−1

∣∣|∂3y(x1, x2, x3)| − 1
∣∣pdx1 dx3 dx2

+ c

∫

B+4

1∫

−1

1∫

−1

∣∣|∂3y(x1, x2, x3)| − 1
∣∣2dx1 dx3 dx2

≥ 2p−1c

∫

A

1∫

−1

∣∣∣∣∣
1∫

−1

(|∂2y(x1, x2, x3)| − 1)dx2

∣∣∣∣∣
p

dx1 dx3

+ 2p−1c

∫

B+4

1∫

−1

∣∣∣∣∣
1∫

−1

(|∂3y(x1, x2, x3)| − 1)dx3

∣∣∣∣∣
p

dx1 dx2
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≥ 2p−1c ε
18
10

s.

All in all, we have shown that any deformation y ∈ W 1,∞(Ωs; R3)∩Ys satisfying (4.23) has energy Es(y) ≥
δs for some positive constant δ independent of s. Thus, (4.4) holds and the proof of the proposition is
concluded. �

Remark 4.6. Similarly to Remark 3.5, we point out that the Lavrentiev phenomenon in dimension d = 3
is valid if we replace W 1,∞(Ωs; R3) with W 1,r(Ωs; R3) for r > 6q

q−2 . As in (3.15), we would indeed have

that for y ∈ W 1,r(Ωs; R2)∩Ys with Es(y) < +∞ the distortion coefficient Ky = |∇y|3
det ∇y belongs to Lη(Ωs)

for η := rq
3q+r , η ∈ (2, q). This implies that any competitor y ∈ W 1,r(Ωs; R3) ∩ Ys with energy Es(y) ≈ s

still fulfills (4.13) and (4.16) of Lemma 4.5. Hence, the proof of the lower bound of Es(y) in Proposition 4.3
proceeds as in the W 1,∞-case.
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