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Abstract. The wrinkling instabilities produced by in-plane angular accelerations in a rotating disc are discussed here in a
particular limit of relevance to very thin plates. By coupling the classical linear elasticity solution for this configuration
with the Föppl–von Kármán plate buckling equation, a fourth-order boundary-value problem with variable coefficients is

obtained. The singular-perturbation character of the resulting problem arises from a combination of factors encompassing

both the pre-stress (due to the spinning motion) and the geometry of the annular domain. With the help of a simplified

multiple-scale perturbation method in conjunction with matched asymptotics, we succeed in capturing the dependence of

the critical (wrinkling) acceleration on the instantaneous speed of the disc as well as other physical parameters. We show

that the asymptotic predictions compare well with the results of direct numerical simulations of the original bifurcation

problem. The limitations of the formulae obtained are also considered, and some practical suggestions for improving their

accuracy are suggested.
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1. Introduction

An understanding of the stress distribution in rotating discs plays a crucial role in ensuring their structural
integrity and overall performance. For example, excessive stress concentrations at specific locations can
cause material fatigue, cracks, or even catastrophic rupture. By identifying high stress concentration
areas, appropriate design modifications such as varying thickness, using reinforcing materials, or adding
structural features (like ribs or spokes) can be applied as mitigating factors. This optimisation process
allows for reducing unnecessary material usage and weight, resulting in more efficient and cost-effective
design without compromising the structural integrity (e.g. see [1–3]).

In linear elasticity, there are several well-established elementary strategies for dealing with the cal-
culation of stress distributions in rotating discs. Typically, for a thin disc the variation of radial and
tangential stresses through the thickness is ignored and the problem is solved as a special case of the
usual plane-stress approximation. The classical situation discussed in most textbooks (e.g. see [4–7]) per-
tains to uniform speeds and is based on setting the appropriate component of the body force equal to
the centrifugal force; as a result, the obtained stress distribution turns out to be radially symmetric.
For thick discs, the situation is a bit more complicated and relies on making suitable a priori symmetry
assumptions in the three-dimensional Beltrami-Michell system (e.g. see [8], pp. 388–390). The simplified
thin-disc solution mentioned above was extended in the mid-1960s/early 1970s to cope with nonzero
angular accelerations [9,10] (for discs of variable thickness, see [11,12]). A key ingredient in the proposed
new solution strategy was the observation that the angular acceleration contributes only to the azimuthal
component of the body force; dynamic stress propagation effects were ignored, with the corresponding
final formulae depending on either the instantaneous speed of the disc (normal stresses) or the acceleration
(shear stress). The resulting approximate expression of the in-plane stress distribution is still of practical
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value as demonstrated in [13], where these new results were used to estimate the least time in which a
relatively thin disc can be run up to its maximum speed without producing plastic deformations.

The existence of a closed-form solution for the acceleration stresses in rotating thin discs brings up
additional open questions regarding its stability with respect to out-of-plane infinitesimal perturbations.
A particular such scenario has been partly addressed in a recent numerical study by Sader et al. [14], who
have considered the possibility of buckling in a related configuration; this consisted of an in-plane spinning
annular thin plate having the inner rim clamped and the outer edge stress-free. The corresponding
mathematical model was obtained by coupling together the usual Föppl–von Kármán buckling equation
(e.g. [15–17]) with an inhomogeneous basic state given by the explicit solutions derived by Stern [9]
and Tang [10]. It was noted by the authors of [14] that in certain cases the shear-induced buckling
patterns observed in their numerical simulations had the tendency to concentrate near the clamped edge
when the rotational speeds were sufficiently large. However, this feature was not entirely conspicuous
since the magnitude of the chosen speeds was only moderate. One of the main objectives of the present
investigation is to shed further light on the work reported in [14] by exploring its connection to a couple
of prior studies [18,19]. In order to motivate our forthcoming developments, it is necessary to offer some
background regarding these last two papers.

The words ‘buckling’ and ‘wrinkling’ are often used interchangeably in the literature on thin-walled
structures; occasionally, the latter term is reserved exclusively for elastic instabilities caused by non-
compressive loads (e.g. [20,21]) or characterised by a short-wavelength deformation pattern, but we will
not make that distinction here. Our earlier studies mentioned above (i.e. [18,19]) were concerned with
the development of an asymptotic framework for the so-called partial wrinkling of pre-stressed annular
plates undergoing azimuthal shearing (e.g. see [22–25]). The annular domain was stretched by applying a
uniform in-plane displacement field to the outer boundary while the inner rim was subjected to a small
torque. Even though the radial and hoop pre-buckling stresses corresponding to this loading are tensile
throughout the plate, for a sufficiently large torque one of the principal stresses becomes negative in a
concentric region adjacent to the inner rim of the plate—see Fig. 1. Subsequently, once the torque has
exceeded a critical threshold, a local buckling pattern emerges in the vicinity of the central hole as seen
in the two contour plots included in the same Figure. It was shown in [18,19] that the spatial extent
of the region affected by this out-of-plane deformations depends on a suitably defined non-dimensional
asymptotic parameter that could be regarded as a combined measure of the relative thinness of the plate
and its background tension due to the applied in-plane displacement field.

The numerical study by Sader et al. [14] is qualitatively identical to the scenario outlined above; while
the specific expressions of the pre-buckling stresses in their spinning plate are somewhat different from
those derived in [18,19], the asymptotic structure of the two problems is not, as we will confirm in the
next sections.

The paper is organised as follows. A few key facts and notations relevant to the bifurcation equation
governing the wrinkling instabilities of the spinning plate are gathered together in the next section.
One of the main goals is to express the pertinent boundary-value problem in a manner that highlights
its clear connection with our previous studies [18,19]. The subsequent section (Sect. 3) includes a brief
discussion of the zero bending-rigidity case; while this is essentially a plane-stress scenario, which is thus
not suitable for the description of out-of-plane deformations experienced by the plate, simple calculations
lead to a lower bound for the critical angular accelerations that trigger such transverse deformations.
Direct numerical simulations are employed in Sect. 4 to explore further the dependence of the critical
load on the various parameters present in the bifurcation equation. We also confirm the localised nature
of the eigenmodes, as well as its relation to the aforementioned physical and geometrical parameters.
Informed by the numerical evidence gathered in that section, we then proceed to elaborate on the details
of the asymptotic structure underpinning the behaviour of the spinning plate in Sect. 5. This structure
consists of two interactive boundary-layers adjacent to the inner rim of the plate; outside those regions
the out-of-plane deformations are exponentially small. By using the method of matched asymptotics the
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Fig. 1. Examples of localised eigenmodes in the azimuthal shearing of a pre-stressed annular thin plate (see [18,19]). Here,
σj (j = 1, 2) represent the principal stresses prior to buckling. As illustrated by the two contour plots, the transverse
deformations of the plate are concentrated near the central hole, while the outer regions (in pale green) are virtually
undeformed (color figure online)

corresponding boundary-layer solutions are pieced together in order to obtain an asymptotic formula for
the critical load. The theoretical results are compared against the direct numerical simulations touched
upon earlier in Sect. 4, while their accuracy and limitations are also discussed in some detail. The paper
concludes with a number of further remarks and some future work.

2. The linearised BVP

A succinct description of the relevant boundary-value problem (BVP) that will be used in the rest of the
paper is included below. We will be content with just a few highlights required to set the stage and make
this work reasonably self-contained.

The situation of interest involves a flat annular thin elastic disc spinning about its vertical axis of
symmetry with angular speed ω̃ and acceleration ˜Ω (see Fig. 2). With the former parameter fixed, the main
question here concerns finding the critical value of the acceleration for which the disc will experience out-
of-plane deformations (i.e. buckling takes place). As already mentioned in the Introduction, the problem
was solved numerically by Sader et al. [14] with the help of some simplifying assumptions that will be
also employed tacitly in what follows.

The annular geometry of the disc is characterised by an inner radius R1, outer radius R2, and thickness
h (with 0 < h/R2 � 1). Linear elasticity is assumed for the constitutive behaviour of the plate material,
with E being its Young’s modulus and ν the corresponding Poisson’s ratio; ρm denotes the mass density
of the plate. We define a cylindrical coordinate system (r, θ, z) that rotates with the disc and having the
vertical axis coincident with the disc’s symmetry axis, as shown in Fig. 2. In this reference frame the
two-dimensional stress distribution in the disc, σ̊ = (̊σαβ) (α, β ∈ {r, θ}), can be found by solving ∇ · σ̊ =

−ρm

[

(rω̃2)er − (r˜Ω)eθ

]

, where {er,eθ} are the usual unit polar vectors (e.g. see [26]). The solution of
this plane-stress problem does not pose any particular challenges and it is relegated to “Appendix A”.
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Fig. 2. The geometry of the spinning annular disc considered in the main text. Its mid-surface is parametrised by the polar
coordinates (r, θ) with R1 ≤ r ≤ R2 and 0 ≤ θ < 2π. The disc is clamped to a vertical rigid shaft of radius R1 passing
through the centre of the circular domain

The buckling analysis in [14] was conducted upon the linearised Föppl–von Kármán equation (e.g.
[15–17]) for the incremental out-of-plane displacement w ≡ w(r, θ),

∇4w − h

D
∇ · (σ̊ · ∇w

)

= 0, (2.1)

where the constant D ≡ Eh3/12(1 − ν2) represents the usual bending rigidity of the plate. By making
use of the identity ∇ · (σ̊ ·∇w) =

(∇ · σ̊) ·∇w+ σ̊ : (∇⊗∇w) and the equation satisfied by σ̊ mentioned
earlier, (2.1) can be cast as

∇4w +
ρmh

D

⎡

⎣ω̃2

(

r
∂w

∂r

)

− ˜Ω
(

∂w

∂θ

)

− ρ−1
m σ̊ :

(∇ ⊗ ∇w
)

⎤

⎦ = 0; (2.2)

all the symbols/notations in (2.2) have their usual meaning (e.g. see Chapter 1 in [26]). We mention in
passing that the spinning action of the disc is responsible for generating the two underlined terms in
(2.2). This equation can be simplified further by introducing the non-dimensional quantities

ρ :=
r

R2
, η :=

R1

R2
,
{

Ω, ω2
}

:=
ρmR2

2

E

{

˜Ω, ω̃2
}

, (2.3a)

1
E

{

σ̊rr, σ̊θθ

}

=: ω2
{

Σ̊rr, Σ̊θθ

}

,
1
E

σ̊rθ =: Ω Σ̊rθ, μ2 := 12(1 − ν2)
(

R2

h

)2

. (2.3b)

For future reference, we note that η < ρ < 1 and μ � 1.
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On substituting (2.3) in (2.2), routine manipulations then show that the bifurcation equation can be
arranged in the non-dimensional form

(

∂2

∂ρ2
+

1
r

∂

∂ρ
+

1
ρ2

∂2

∂θ2

)2

w − μ2Ω
[

∂w

∂θ
+ 2Σ̊rθ

∂

∂ρ

(

1
ρ

∂w

∂θ

)]

+ μ2ω2

[

ρ
∂w

∂ρ
− Σ̊rr

∂2w

∂ρ2
− Σ̊θθ

1
ρ

(

∂w

∂ρ
+

1
ρ

∂2w

∂θ2

)]

= 0, (2.4)

where the first term is easily recognised as being the usual bi-Laplacian operator expressed in polar
coordinates. Solutions w ≡ w(ρ, θ) of this last equation will be sought by looking for a function with
separable variables. To this end, we write

w = Re
{

W (ρ)eimθ
}

, W (ρ) := WR(ρ) + iWI(ρ), (2.5)

in which the notation Re{z} stands for the real part of z ∈ C, and the radial amplitude functions Wj

(j ∈ {R, I}) are both real-valued. The arbitrary integer m ≥ 0, referred to as the mode number henceforth,
will be determined subject to additional constraints that will be spelled out shortly.

Performing the requisite calculations, it turns out that the unknown complex amplitude in (2.5)
satisfies the linear ordinary differential equation

W ′′′′ + A3(ρ)W ′′′ + A2(ρ)W ′′ + A1(ρ)W ′ + A0(ρ)W = 0, η < ρ < 1, (2.6)

where

A3(ρ) :=
2
ρ
, A2(ρ) := −

[(

2m2 + 1
ρ2

)

+ μ2ω2Σ̊rr

]

, (2.7a)

A1(ρ) :=
(

2m2 + 1
ρ3

)

+ μ2ω2

(

ρ − Σ̊θθ

ρ

)

− 2iμ2mΩ

(

Σ̊rθ

ρ

)

, (2.7b)

A0(ρ) :=
m2

ρ2

[(

m2 − 4
ρ2

)

+ μ2ω2Σ̊θθ

]

− imμ2Ω

(

1 − 2Σ̊rθ

ρ2

)

, (2.7c)

and i ≡ √−1 is the usual imaginary unit. The physical solution is obtained from (2.5) as

w(ρ, θ) = WR(ρ) cos(mθ) − WI(ρ) sin(mθ), (2.8)

with WR and WI satisfying two coupled fourth-order differential equations akin to (2.6)—we refer to
“Appendix B” for more details.

Finally, Eq. (2.6) is to be solved subject to an appropriate set of boundary conditions (e.g. see [14]).
At its inner rim, the plate is assumed to be clamped, so

W =
dW

dρ
= 0, for ρ = η, (2.9)

while the outer edge (ρ = 1) is traction-free, which translates into

d2W

dρ2
+ ν

dW

dρ
− νm2W = 0, (2.10a)

d3W

dρ3
+

d2W

dρ2
− [1 + (2 − ν)m2

]dW

dρ
+
[

(3 − ν)m2
]

W = 0. (2.10b)

This completes the description of the bifurcation problem that constitutes the departure point for the
subsequent asymptotic developments. The (instantaneous) angular speed ω is assumed to be given, while
Ω ≡ Ω(m;ω, μ) represents the unknown eigenvalue. It is further noted that m ∈ N is also unknown at
this stage and, for each fixed ω and μ, this parameter will have to be determined so that it renders the
global minimum of the curves Ω versus m. Although strictly speaking the mode number is a discrete
quantity, here it will be regarded as a positive continuous parameter, i.e. m ∈ R+. To summarise, for
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each fixed ω > 0 and μ � 1 the critical (wrinkling) eigenvalue, Ωc, and the critical mode number, mc,
will be identified by the conditions

Ωc = min
m>0

Ω(m;ω, μ), with Ωc = Ω(mc;ω, μ). (2.11)

Our main interest is in exploring the dependence of Ωc on μ � 1. To gain further insight into the math-
ematical structure of Eq. (2.6) in the large-μ limit, it is profitable to first examine closely the membrane
problem (i.e. zero bending rigidity); this is our next step.

3. A particular scenario: zero bending rigidity

The relevant equation for the limiting case of interest in this section is readily obtained from the bifurca-
tion Eq. (2.4) by multiplying the whole lot by μ−2, and then letting μ → ∞. As a result, the bi-Laplacian
drops out of the equation and the remaining terms become μ-independent.

Letting σj ≡ σj(ρ) (j = 1, 2) denote the non-dimensional principal stresses in the unwrinkled plate,
we have

σ1 + σ2 = ω2
(

Σ̊rr + Σ̊θθ

)

, σ1 · σ2 = ω4
(

Σ̊rr

)(

Σ̊θθ

)

− Ω2
(

Σ̊rθ

)2

. (3.1)

Using the expressions from “Appendix A”, routine algebraic manipulations indicate that

σ1(ρ) + σ2(ρ) =
1
2
ω2(1 + ν)

{

1
2

[

(3 + ν) + η4(1 − ν)
(1 + ν) + η2(1 − ν)

]

− ρ2
}

>
1
2
ω2(1 + ν)(1 − ρ2) > 0, for all η ≤ ρ < 1,

but the sign of σ1(ρ) · σ2(ρ) depends on the ratio Ω/ω2, and this product may become negative in some
parts of the annular domain of the plate under certain conditions. When this happens, one of the two
principal stresses, either σ1 or σ2, is compressive and the spinning plate will experience compression in the
direction of the negative principal stress. However, if the bending rigidity is not negligible, buckling will
not be initiated as soon as the plate experiences compression; this compression needs to be sufficiently
strong in order to trigger out-of-plane deformations. We will deal directly with the specifics of this
situation later in Sect. 5, but for now we will focus on the zero bending rigidity case.

The partial differential equation that results from passing to the limit as explained at the beginning
of this section is of second order and has variable coefficients. Although it cannot be used to describe
the out-of-plane wrinkling of our spinning circular configuration, one can formulate a simplified criterion
as suggested by Simmonds [27] in his pioneering study of a normally pressurised spinning nonlinear
membrane (see also [19–21,28,29]). Transplanted to the situation of interest here, this result stipulates
that a lower bound for the wrinkling load, λlow (say), corresponds to the vanishing of the second expression
in (3.1) when ρ = η. Re-arranging the corresponding algebraic equation yields

Ω ≥ Ωlow ≡ ω2

√

√

√

√

(

Σ0
rr

)(

Σ0
θθ

)

(

Σ0
rθ

)2 , (3.2)

where we have introduced the simplifying notations

Σ0
αβ := Σ̊αβ(η), α, β ∈ {r, θ}. (3.3)

When Ω = Ωlow we have σ1(η) ·σ2(η) = 0 and σ1(ρ) ·σ2(ρ) > 0 for all η < ρ < 1. For Ω > Ωlow one of the
two principal stresses becomes strictly negative near the inner rim, and the annular domain of the disc
develops a concentric sub-region of compressive stresses adjacent to ρ = η; as Ω is further increased, the
extent of this region grows uniformly.
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Fig. 3. Illustration of the dependence of the product σ1 ·σ2 on λ ≥ λlow: η = 0.1 (left) and η = 0.5 (right). In both windows,

we show D± ≡ (ρ/ω)4
{

(Σ̊rr)(Σ̊θθ) − 16λ2
(

Σ̊rθ

)2
}

as a function of η ≤ ρ ≤ 1 (ν = 0.25). The red curves correspond to

λ = λlow, while the blue ones are obtained for λ = 10−3(8 + 5k) > λlow with k = 1, 2, . . . , 9; the arrows show the direction
in which λ increases (color figure online)

A close inspection of the coefficients of the bifurcation Eq. (2.6) suggests that their dependence on μ
and ω is symmetric if we replace the original eigenvalue Ω with

λ :=
Ω

4ω2
(3.4)

and modify the expressions of Aj (j = 0, 1) accordingly. It will become apparent shortly that it is more
convenient to work with the new eigenparameter λ instead of Ω, a convention that will be adopted for
the rest of the paper. Note also that the criterion (3.2) leads to an alternative formulation, λ ≥ λlow ≡
Ωlow/(4ω2).

In Fig. 3 we illustrate the change of signs in the (non-dimensional) principal stresses for η = 0.1 and
η = 0.5 (with ν = 0.25); the red curves correspond to the case λ = λlow, while the rest of the other curves
are obtained for a suitably chosen monotonic increasing sequence of arbitrary λ-values (see caption for
details); in both windows, the black circular markers indicate the transition between σ1 · σ2 < 0 (left to
the marker) and σ1 · σ2 > 0 (right to the marker). We also mention in passing that λlow 
 3 × 10−3 for
η = 0.1 and λlow 
 6 × 10−2 for η = 0.5.

Later, in Sect. 5, it will be shown how the results of this section can be linked to the case of a thin
plate with very small (nonzero) bending rigidity. To prepare the stage for those developments, in the next
section we will probe further into the behaviour of the critical load and mode number by looking at a
small selection of direct numerical simulations regarding the bifurcation problem defined in Sect. 2. These
results complement those reported by Sader et al. [14] and highlight some new features of the problem
at hand.

4. Further numerical results

Past experience with similar type of wrinkling problems suggests that a natural choice of an asymptotic
parameter in Eq. (2.6) would be the quantity μ � 1 defined in (2.3b). However, in the light of the
remarks made vis-à-vis the new eigenparameter λ—see (3.4), it is more advantageous to work with the
combination (μω). Thus, we introduce

ε := (μω)−1 (4.1)
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Fig. 4. The dependence of the lowest positive critical eigenvalue λc (left) and the critical mode number mc (right) on the
asymptotic parameter defined in (4.1). The three curves included in each window correspond to η ∈ {0.1, 0.3, 0.5

}

; in all of
these numerical results ν = 0.25

and note that 0 < ε � 1 provided that ω � μ−1, an assumption that will be enforced tacitly in what
follows. It is clear that if one succeeds in finding an asymptotic approximation for λc ≡ λc(ε), then it is
entirely a routine task to express the corresponding formula as Ωc = Ωc(μ); similar remarks apply for the
mode number as well.

The numerical findings described in this section have been obtained with standard built-in routines
available in MATLAB. The method of compound matrices (e.g. see [19]) was also used as an additional
sanity check.

A first set of results is included in Fig. 4, in which we illustrate the dependence of λc and mc on ε for
three different values of the annular aspect ratio η (and ν = 0.25); we use ε−1 on the horizontal axes of
those plots because this parameter coincides with ω used in [14]. As ε−1 → +∞, the curves λc ≡ λc(ε−1)
in the left window asymptotically approach λlow ≡ λlow(η) mentioned in Sect. 3, albeit at a very slow rate
(this feature will be confirmed later on, in Sect. 5). It is also clear that the effect of increasing η translates
into a sizeable shift upwards in the stability curves. Changing the Poisson’s ratio to other values has
only a very minor effect on the quantitative data presented in the left window of Fig. 4, so in the interest
of brevity those results are omitted. The other set of plots in the same Figure suggest that for fixed η
and ν, the critical mode number mc ≡ mc(ε−1) increases with ε−1. All the features described above are
somewhat unsurprising and mirror closely those encountered in similar contexts (e.g. see [18–21,29]).

A less obvious trait of the response curves for the bifurcation problem of the accelerating annular disc
is related to the global minima of the functions λ ≡ λ(m) for a given/fixed 0 < ε � 1. According to the
representative data included in Fig. 5, the bottom parts of the graphs of these functions happen to be very
flat over extended regions. We consider the same η-values as in the previous figure and show the relevant
portions of the λ − m curves (2 ≤ m ≤ 30) for ε = 1/250 
 0.004 and ε = 1/350 
 0.0029; these appear
as the continuous and the dashed curves, respectively. Numerical optimisation techniques for identifying
minima situated in such flat regions of the graph of a given function are typically associated with slow
convergence. Broadly speaking, this aspect is also likely to impact the asymptotic approximations of such
critical points, as we will discover in the next section.

Finally, in closing this section we illustrate briefly the localised nature of the critical eigenmodes of
the differential Eq. (2.6) subject to the boundary constraints (2.9) and (2.10). Figure 6 includes the real
(WR) and imaginary (WI) parts of those functions for η = 0.1 corresponding to three different choices
of the small asymptotic parameter ε. For all values of ε considered here, the out-of-plane deformations
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Fig. 5. Sample of response curves for ε = 1/250 (continuous) and ε = 1/350 (dashed) for three different values of 0 < η < 1.
The round markers on each curve identify the global minima of the functions λ = λ(m) with 2 ≤ m ≤ 30. Here ν = 0.25

experienced by the wrinkled annulus are concentrated near the left edge where the plate is clamped to
the vertical shaft. This is not a by-product of the usual bending boundary layer normally encountered in
the literature on plates and shells (e.g. [30,31]), but the corresponding eigendeformations are confined to
a larger concentric region adjacent to the inner rim. By increasing η—see Fig. 7, the localisation becomes
less pronounced than before; it also seems that ε needs to be much smaller in order for the localisation
of the eigenmodes to visibly kick in. Such behaviour is to be expected due to the decrease in size of the
radial span of the annular disc in the scenario illustrated in Fig. 7. These observations indicate that the
specific behaviour exhibited by our eigenmodes can be attributed to the combined effect of two separate
influences. One is the thin-plate effect (controlled by ε), while the other corresponds to the size of the
central hole (of radius η) and can be likened to the Saint-Venant’s principle in linear elasticity—this will
be referred to as the local effect. For 0 < η � 1, it is the latter that plays a dominant role, whereas
the former becomes more significant when the central hole is sufficiently large (roughly, η � 0.3). It is
well known that the asymptotic description of each of the two effects mentioned above requires rather
different mathematical strategies (e.g. see [32] for the buckling of an annular plate in the limit η → 0+).
For this reason, in this work we will focus exclusively on the thin-plate effect.

The re-assessment of the various numerical results in this section has shed further light on the localised
nature of the critical eigenmodes, as well as the dependence of the λc and mc in terms of the asymptotic
parameter introduced in (4.1). With this in mind, we are now ready to tackle the details of the asymptotic
structure for the wrinkling problem.

5. Asymptotic approximations

According to the direct numerical simulations discussed in the preceding section, the critical eigenmodes
of the wrinkling problem under consideration display a multiple-scale structure in which a fast spatial
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Fig. 6. A representative sequence of critical eigenmodes for η = 0.1 showing the tendency to localisation as ε → 0+. Here
ν = 0.25, but these results are rather insensitive to the particular value chosen for the Poisson’s ratio

Fig. 7. The same as per Fig. 6, except that here η = 0.5

oscillation is modulated over a relatively narrow region adjacent to the inner rim of the disc; this lo-
calisation becomes more pronounced as ε → 0+. Although not immediately apparent in Figs. 6 and 7,
the shape of the eigenmodes involves another key spatial lengthscale, one that is essentially the result
of a boundary layer originating in the clamped edge constraint at ρ = η—see (2.9). The details of the
latter (secondary) effect will be taken up in Sect. 5.3 after we first pin down the multiple-scale asymptotic
structure mentioned above.

5.1. The main structure

Standard scaling arguments similar to those discussed at length in [18,19] can help establish the relevant
orders of magnitude of the key terms in Eq. (2.6). In particular, this suggests the introduction of the
re-scaled variable Y > 0 defined by

ρ = η + ε1/2Y, with Y = O(1). (5.1)
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We then start by writing

m = m0 ε−3/4 (5.2)

for some m0 = O(1) (to be determined), and look for solutions of (2.6) satisfying an ansatz of the form

W = V (Y ) exp
(

iκ ε−1/4Y
)

, (i ≡ √−1), (5.3)

where

V (Y ) = V0(Y ) + ε1/4V1(Y ) + ε1/2V2(Y ) + ε3/4V3(Y ) + εV4(Y ) + . . . , (5.4a)

λ = λ0 + λ1 ε1/2 + λ2 ε3/4 + λ3 ε + λ4ε
5/4 + λ5ε

3/2 + . . . . (5.4b)

The constant κ ∈ R is unknown at this stage but will be found as part of the solution, and the same
applies to the coefficients λj ∈ R (j = 0, 1, 2, . . . ). The complex exponential term in (5.3) accounts for the
fast spatial oscillations of the eigenmodes depicted in Sect. 4. These oscillations take place on a O(ε3/4)
scale which is much shorter than that described by the re-scaled independent variable Y in (5.1).

On substituting (5.4) and (5.3) in (2.6), we find at the leading and next-to-leading orders the following
relations

D1(λ0,m0, κ)V0 = 0 and D1(λ0,m0, κ)V1 + iD2(λ0,m0, κ)V ′
0 = 0, (5.5)

where the ‘dash’ stands for differentiation with respect to Y , a convention that will be employed from
now on. The quantities Dj (j = 1, 2) correspond to the definitions

D1 := κ2Σ0
rr + 8κλ0

(

m0

η

)

Σ0
rθ +

(

m0

η

)2

Σ0
θθ,

D2 := −2κΣ0
rr − 8λ0

(

m0

η

)

Σ0
rθ.

As a side note, we mention that the values of the pre-buckling stresses at the inner rim satisfy the identity
(

1 − Σ0
θθ

η2

)

− 2
η2

(

B1

η2
− B2η

2

)

+
Σ0

rr

η2
= 0, (5.6)

where the definitions of B1 and B2 can be found in “Appendix A”.
Since V0 cannot be identically zero, the two relations in (5.5) will be satisfied provided that D1(λ0,m0, κ) =

D2(λ0,m0, κ) = 0. From the first of these two equations it follows immediately that

λ0 = −1
8

[

ηκ

m0

(

Σ0
rr

Σ0
rθ

)

+
m0

ηκ

(

Σ0
θθ

Σ0
rθ

)]

, (5.7)

and it is also clear that λ0 ≡ λ0(κ,m0). As we are looking for the smallest λ0 > 0, one of the usual
criticality conditions, ∂λ0/∂κ = 0, yields the solution κ = κ∗ with

κ∗ = ±m0

η

(

Σ0
θθ

Σ0
rr

)1/2

=⇒ λ∗
0 := λ0

∣

∣

∣

κ=κ∗
=

1
4

√

√

√

√

(

Σ0
rr

)(

Σ0
θθ

)

(

Σ0
rθ

)2 . (5.8)

The dependence of λ0 on κ and m0 is symmetric and homogeneous, so the other criticality condition,
∂λ0/∂m0 = 0, does not yield any new information. We also note that the equation D2 = 0 is identically
satisfied when λ0 = λ∗

0 and κ = κ∗. Furthermore, a comparison between the critical value of λ0 in (5.8)
and the lower bound mentioned in Sect. 3 reveals that these two quantities are in fact identical, i.e.
λ∗
0 ≡ λlow.

The spatial structure of the critical eigenmode of (2.6) is fixed at the next order. For κ and λ0 as
found in (5.8), it turns out that

L[V0] ≡ V ′′
0 − (Γ1Y + Γ2)V0 = 0, (5.9)
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with

Γ1 := − 2m2
0

η3Σ0
rr

[(

B1

η2
− B2η

2

)

Σ0
θθ

Σ0
rr

+
1
4

(

η2 +
3
η2

)

Σ0
θθ

Σ0
rθ

+
(

2C1

η2
+ C3

)]

, (5.10a)

Γ2 :=
m2

0

η2Σ0
rr

[

m2
0

η2

(

Σ0
θθ

Σ0
rr

+ 1
)2

+ 2λ1

(

η2 − 1
η2

)

√

Σ0
θθ

Σ0
rr

]

. (5.10b)

We are going to see shortly that Eq. (5.9) can help establish a closed-form relationship between λ1 and
m0, whereby the corresponding values associated with the minimum-energy configurations of the spinning
disc can be obtained via routine calculations.

A further simplification of (5.9) is possible by adopting the re-scaling

Z := Γ1/3
1 Y +

Γ2

Γ2/3
1

, (5.11)

whereupon it follows that d2
̂V0/dZ2 − Z ̂V0 = 0, with ̂V0(Z) ≡ V0(Y (Z)). The solution of interest is

̂V0 = (1 + i)Ai(Z), where ‘Ai’ denotes the usual Airy function that decays exponentially quickly as
Z → +∞.

The boundary conditions W = (dW/dρ) = 0 at ρ = η (i.e. at Y = 0) cannot both be imposed; this
suggests that the main Y = O(1) region must be supplemented by an inner zone, but for the time being
we will demand that V0 → 0 as Y → 0+. We recall in passing that, in addition to decaying exponentially
as Z → +∞, the Airy function possesses a countable set of zeros along the negative Z-axis; the first
occurs at (−ζ0) 
 −2.338, so we can ensure that V0(Y ) = 0 at Y = 0 by requiring that Γ−2/3

1 Γ2 = −ζ0.
If the expressions (5.10) are substituted in this relation, after some algebra it follows that

2λ1

(

1
η2

− η2

)

=

[

ζ0m
−2/3
0 (2Δ)2/3

(

Σ0
rr

)1/3
+

m2
0

η2

(

Σ0
θθ

Σ0
rr

+ 1
)2
]

(

Σ0
rr

Σ0
θθ

)1/2

,

where Δ represents the negative of the square-bracket on the right-hand side of (5.10a). The correction
term λ1 varies with m0 and grows without bound when both m0 → 0+ and m0 → +∞. It is a simple
matter to check that λ1 is minimised when m0 = m∗

0, where

m∗
0 = η3/4

(

ζ0
3

)3/8

(2Δ)1/4
(

Σ0
rr

)1/8
(

Σ0
θθ

Σ0
rr

+ 1
)−3/4

, (5.12)

and then

λ∗
1 := λ1

∣

∣

∣

m0=m∗
0

=
2η3/2

1 − η4

(

ζ0
3

)3/4

(2Δ)1/2
(

Σ0
rr

)1/4
(

Σ0
rr

Σ0
θθ

+ 1
)1/2

. (5.13)

The result (5.12) completely determines the approximation of the mode number considered in (5.2). For
η = 0.1 and ν = 0.25, we get m∗

c ≡ m∗
0ε

−3/4 
 6.88 when ε = 1/200, while m∗
c 
 10.47 for ε = 1/350;

the corresponding direct numerical simulations predict critical mode numbers (approximately) equal to
7.2 and 11.0, respectively. Comparable results are obtained for other values of ν and η. In contrast to
our earlier studies [18,19], here a simplified approach is employed for the expression of the critical mode
number (5.12). The reason for this will become clear in Sect. 5.5 when we will examine the nature of the
asymptotic approximation for λc.

5.2. Higher-order terms

Our predictions for the critical load so far are formally valid as ε ≡ (μω)−1 → 0+, but given that the
proposed asymptotic developments require 0 < ε1/4 � 1—see (5.3), it is quite unlikely that they are
useful for all but very small ε. In an attempt to potentially improve the accuracy of these results, we are
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going to calculate a few more correction terms λj (j = 2, 3, . . . ) in the original ansatz (5.4b). The main
steps of the calculations are outlined below.

The equation for V1 ≡ V1(Y ) in (5.4a) satisfies an inhomogeneous version of (5.9) in which V0 → V1;
more specifically,

L[V1] = α0V0(Y ) +
(

α1 + α2Y
)

V ′
0(Y ), (5.14)

where the expressions of the coefficients αj (j = 0, 1, 2) can be found in “Appendix C”. Further use of
the change of variable (5.11) shows that (5.14) can be cast as an inhomogeneous Airy-type equation

d2
̂V1

dZ2
− Z ̂V1 = a0

̂V0(Z) +
(

a1 + a2Z
)

̂V
(1)
0 (Z), (5.15)

where ̂V1(Z) ≡ V1(Y (Z)) and the superscript on ̂V0 indicates differentiation with respect to Z. The new
coefficients on the right-hand side of (5.15) correspond to

a0 := α0Γ
−2/3
1 , a1 := α1Γ

−1/3
1 + α2ζ0Γ

−2/3
1 , a2 := α2Γ

−2/3
1 . (5.16)

A particular integral of (5.15) is readily identified as

̂V1(Z) = (a0 − a2)̂V
(1)
0 (Z) +

1
2
a1
̂V
(2)
0 (Z) +

1
4
a2
̂V
(4)
0 (Z). (5.17)

Since V1(Y ) → 0 as Y → 0+, it is necessary to evaluate ̂V1 at Z = −ζ0; this is routinely found by taking
advantage of the properties of the Airy operator present in (5.15), with the final result

̂V1

∣

∣

Z=−ζ0
= (1 + i)

(

a0 − 1
2
a2

)

Ai′0, (5.18)

where Ai′0 ≡ Ai′(−ζ0). To satisfy the aforementioned boundary condition, we need to require that the
right-hand side of the relation (5.18) vanishes identically. In principle, as the expression in question is
complex-valued, there will be two relations coming out of (5.18) that correspond to its real and imaginary
parts, respectively. However, use of the earlier identity (5.6) shows that the second bracket in (5.18) is in
fact real-valued since

Im

{

a0 − 1
2
a2

}

≡ 0,

where Im{z} stands for the imaginary part of z ∈ C. Thus, there is just one (linear) equation that follows
from (5.18), and that amounts to

λ2 = 0.

This prompts the need for considering the governing differential equations for the subsequent terms in
the ansatz (5.4a). It will become apparent shortly that it is helpful to have alternative expressions for ̂V1

and ̂V (1)
1 in terms of ̂V0 and its derivative; these results are listed below for convenience

̂V1(Z) =
(

γ0Z + γ1Z
2
)

̂V0(Z), (5.19a)

̂V
(1)
1 (Z) =

(

γ0 + 2γ1Z
)

̂V0(Z) +
(

γ0Z + γ1Z
2
)

̂V
(1)
0 (Z), (5.19b)

where

γ0 :=
a1

2
and γ1 :=

a2

4
.

The governing equation for V2 ≡ V2(Y ) assumes the form

L[V2] =
(

β1 + β2Y + β3Y
2
)

V0(Y ) + β4V
′
0(Y ) + (β5 + β6Y )V ′′

0 (Y )

+β7V1(Y ) + (β8 + β9Y ) V ′
1(Y ), (5.20)
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where the expressions of βj (j = 1, 2, . . . , 9) can be found in “Appendix D”. As already explained, (5.20)
can be cast in terms of Z so that the right-hand side depends only on the first-order solution and its
derivative,

d2
̂V2

dZ2
− Z ̂V2 = P(Z)̂V0(Z) + Q(Z)̂V (1)

0 (Z), (5.21)

with

P(Z) :=
2
∑

j=0

pjZ
j and Q(Z) :=

3
∑

j=0

qjZ
j ,

in which (some of the) pj and qj depend on m0 as well as λk (k = 0, 1, 3); the rather intricate expressions
of the coefficients of these two polynomials are included in “Appendix D”.

Before we can take full advantage of Eq. (5.21), we have to explore briefly a secondary asymptotic
structure associated with the original bifurcation Eq. (2.6).

5.3. The bending layer

It was noted while trying to solve Eq. (5.9) that the derivative condition part of (2.9) had to be dropped.
This is due to the presence of the usual boundary-layer associated with clamped boundary conditions
for thin plates and shells. In replacing the initial fourth-order differential Eq. (2.6) with the sequence
of second-order problems for the terms Vj(Y ) in the ansatz (5.4a), one has to “give up” some of the
original boundary constraints. Experience with similar situations [18,33] suggests that such issues admit
a satisfactory resolution within a thinner bending layer of size O(ε). This motivates the introduction of
a new re-scaled coordinate X such that

ρ = η + εX, X = O(1). (5.22)

The inner-layer solution, Winn (say), will be sought with an ansatz of the form

Winn = U(X) exp(iκ ε1/4X), (5.23)

in which we assume that

U = ε1/2U0(X) + ε3/4U1(X) + . . . . (5.24)

The functions Uj (j = 0, 1, . . . ) can be determined sequentially by solving a hierarchy of fourth-order
ordinary differential equations. The one for U0 is readily found to satisfy

d4U0

dX4
− K2 d2U0

dX2
= 0, K ≡

√

Σ0
rr. (5.25)

The solution of this equation is subject to the boundary conditions on the inner rim of the plate, U0 =
dU0/dX = 0 at X = 0, as well as the requirement that it does not grow exponentially as X → +∞.
Straightforward manipulations give

U0(X) = γ0

[

X − 1
K

(

1 − e−KX
)

]

, (γ0 ∈ C), (5.26)

whereby the asymptotic behaviour of this function as X → +∞ is immediately inferred.
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5.4. Matching and the critical value of λ3

The fix λ3 we must ensure that the solution in the main layer (see Sect. 5.1) matches with the bending-
layer solution of the previous section. Defining Wout as the solution W in the ansatz (5.3) and noting
that Y = ε1/2X, we have

Wout =
{

ε1/2
(

Π20 + Γ1/3
1 Π01X

)

+ O(ε3/4)
}

exp(iκε1/4X), (5.27)

where the constants Πkj ∈ C are defined by

Πkj :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

dj
̂Vk

dZj

∣

∣

∣

Z=−ζ0
if j ≥ 1,

̂Vk(−ζ0) if j = 0.

Comparing the O(ε1/2) terms in (5.23) and (5.27), we conclude that

̂V2

∣

∣

Z=−ζ0
≡ Π20 = −(1 + i)

Γ1/3
1 Ai′0
√

Σ0
rr

. (5.28)

Finally, to find λ3, Eq. (5.21) is multiplied by ̂V0(Z), followed by integrating the corresponding result
between (−ζ0) and +∞. Repeated integration by parts in combination with (5.28) then yields

− Γ1/3
1 Ai′ 20
√

Σ0
rr

=
2
∑

k=0

pkIk +
3
∑

k=0

qkJk, (5.29)

with

Ik :=

∞
∫

−ζ0

ZkAi2(Z) dZ, Jk :=

∞
∫

−ζ0

ZkAi(Z)Ai′(Z) dZ, (k = 0, 1, 2, . . . ).

These two sets of integrals can be evaluated in closed form as explained in [34] (see also [35]). It is noted
that (5.29) represents an algebraic relation that depends linearly on λ3 and so the critical value of this
parameter could be readily identified. The resulting expression is recorded below, and we recall that
“Appendix D” contains the precise form of the various expressions that enter into this formula,

λ∗
3 = − 1

β1

[

1
4
α1β8 +

Γ1

K
+ Λ1ζ0Γ

−1/3
1 + Λ2ζ

2
0Γ−2/3

1

]

; (5.30)

here, we have written β1 = λ3β1 and

Λ1 :=
2β2

3
+

α1

12
(3β9 − 2β7) +

1
6
α2β8 − 1

3
β5Γ1, (5.31a)

Λ2 :=
8β3

15
− α2

120
(14β7 − 23β9) − 2

15
β6Γ1. (5.31b)

A brief evaluation of the accuracy of our results up to this point will be undertaken in the next section.

5.5. Asymptotics versus numerics

Based on the calculations outlined above, it follows that for 0 < ε � 1 the critical load can be approxi-
mated according to the following formula

λc = λ∗
0 + λ∗

1ε
1/2 + λ∗

3ε + O(ε5/4), (5.32)
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Fig. 8. Comparisons of the asymptotic formula (5.32) with direct numerical simulations of the buckling equations described
in Sect. 2; η = 0.3 (left) and η = 0.5 (right). In both windows ν = 0.25, and the horizontal dashed line corresponds to the
lower bound λlow ≡ λ∗

0 discussed in Sect. 3

where the coefficients on the right-hand side in (5.32) are given by (5.8), (5.13), and (5.30). In order
to assess the usefulness of our predictions, it is necessary to compare the asymptotics with some direct
numerical simulations. A first set of comparisons is illustrated in Fig. 8 for η = 0.3 (left window) and
η = 0.5 (right window), where we have included one-, two-, and three-term truncations of the right-
hand side of (5.32). It is apparent that the O(ε) contribution in our approximation adds only a modest
improvement to the overall relative accuracy (RA). This is related to the “flat” minima of the curves λ
versus m (recall the discussion vis-à-vis Fig. 5 in Sect. 4). Given that the asymptotic work was carried out
under the assumption that 0 < ε1/4 � 1, the full three-term formula (5.32) performs reasonably well; for
example, if η = 0.5 then RA
 1.7% for ε = 1/600, which increases to RA 
 2.13% for ε = 1/500, and
RA 
 3.75% for ε = 1/300. For η = 0.3 these results change to RA 
 2.5% and 3.1% when ε = 1/600
and ε = 1/500, respectively. Comparable relative accuracies are found for η = 0.4 and η = 0.6, but in the
interest of brevity we do not include further details here.

For 0 < η � 0.3, the accuracy of (5.32) deteriorates quickly when 150 ≤ ε−1 ≤ 600; e.g. the corre-
sponding RAs range between 23% and 11% when η = 0.1. The origin of this behaviour is partly related
to the presence of the independent parameter η in the coefficients of the approximation for λc, that is
λ∗

j ≡ λ∗
j (η) for j = 0, 1, 3. In order for (5.32) to be considered a valid asymptotic expansion, it is essential

that |T0| � |T1| � |T3| � . . . (as ε → 0+), where T0 := λ∗
0, T1 := λ∗

1ε
1/2, T3 := λ∗

3ε, and so on. In theory,
this requirement will always hold true for sufficiently small ε—due to the particular form of the ansatz
(5.4b). However, from a practical point of view the situation is rather different. The effectiveness of an
asymptotic series relies primarily on its capability to offer satisfactory precision for a small (yet finite)
perturbation parameter, without necessarily requiring it to be infinitely small. In light of the remarks
made at the end of Sect. 3 regarding the numerical values of λlow ≡ λ∗

0, it is likely that the constraint
T0 � T1 will only be valid for a restricted set of values of η if ε is not arbitrarily small. To gain a
better perspective on this issue, in Fig. 9 we plot the dependence of T0 and T1 on η for a sequence of
decreasing values of ε (see caption for further details). The former quantity (T0) is independent of ε and
is represented by the dashed red line, while the curves corresponding to the latter expression (T1) appear
in blue (continuous lines). These two families of curves intersect each other, with some of the intersection
points for ε−1 = 300, 400, 500, 600 being indicated explicitly by black circular markers. For a given ε,
the inequality T0 > T1 will be satisfied only for η > η ε, where η ε is the horizontal coordinate of the
intersection point between T0 and T1 ≡ T1(ε).
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Fig. 9. The dependence of T0 ≡ λ∗
0 and T1 ≡ λ∗

1ε1/2 on η ∈ [0.1, 0.6] for ε = (1/j) × 10−2 (with j = 1, 2, . . . , 20) and
ν = 0.25. In this plot, the arrow shows the direction in which ε decreases; further details are included in the main text

The global picture that transpires from the numerical data in Fig. 9 is quite informative as it highlights
some of the limitations of the approximation for λc in terms of ε. In particular, it becomes clear that
for η between 0.1 and 0.2, the inequality T0 > T1 is satisfied only for ε � O(10−3). Therefore, the larger
relative errors mentioned above in connection to this range of η-values are not at all unexpected. We
remark in passing that for other choices of Poisson’s ratio there are no significant qualitative changes in
the topology of the curves shown in Fig. 9.

Despite the limitations mentioned earlier regarding the asymptotic developments for the problem at
hand, it is still feasible to propose an ad-hoc approximation for the critical eigenvalue when 0.1 � η � 0.2.
While the empirical accuracy of this new formula turns out to be comparable to what we have already
seen in Fig. 8, it is no longer an asymptotic approximation in the strictest sense. The general idea is to
suitably modify the expression of λ∗

3 in formula (5.32). To this end, we note that in matching the solutions
between the two layers we only used information coming from V0 and V2, but V1 was not directly involved
as this latter function already satisfied V1 = 0 for Y = 0. We also recall that λ2, the eigenvalue associated
with V1, was found to be zero so, to a certain extent, V1 plays only a passive role as far as the original
ansatz (5.4b) is concerned. With these observations in mind, we choose to take V1(Y ) ≡ 0 and set αj = 0
for j = 0, 1, 2. This change of tack will not impact λ∗

0 and λ∗
1, but it will eventually alter the expression of

λ∗
3 because the original right-hand side of the governing equation for V2 depends on V1. By implementing

the steps outlined above, we arrive at a modified version for λ∗
3, which will be denoted λ†

3 and corresponds
to

λ†
3 := − 1

β1

[

Γ1

K
+

ζ0

3Γ1/3
1

(2β2 − Γ1β5) +
2ζ20

15Γ2/3
1

(4β3 − Γ1β6)

]

. (5.33)

For convenience, the modified (ad-hoc) new formula for 0.1 � η � 0.2 is recorded below

λc 
 λ∗
0 + λ∗

1ε
1/2 + λ†

3ε, (5.34)

where λ∗
0, λ∗

1 are still given by (5.8) and (5.13), respectively, while λ†
3 has just been defined above.

The accuracy of the proposed modification for λc is illustrated in Fig. 10 for η = 0.1 (left window) and
η = 0.2 (right window). For the smaller η the formula (5.34) delivers similar RA as the approximations
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Fig. 10. Comparisons of the ad-hoc new formula (5.34) with direct numerical simulations of the buckling equations described
in Sect. 2; η = 0.1 (left) and η = 0.2 (right). In both windows ν = 0.25, and the horizontal dashed line corresponds to the
lower bound λlow ≡ λ∗

0 discussed in Sect. 3

included in Fig. 8; as η increases, the ad-hoc formula gets even better as it is already apparent for η = 0.2.
However, the predictions of this new approximation tend to slightly overtake the numerical results as ε
gets smaller (but the corresponding RAs are still less than 0.1%). For example, in the right window of
Fig. 10 this happens only for ε � (1/350) 
 0.0029. For larger values of η (e.g. those used in the earlier
comparisons), one finds that λc given by (5.34) represents a tight upper bound for the values coming
from the direct numerical simulations of the bifurcation equation. Given that formula (5.34) is merely a
heuristic/speculative result, we do not include further numerical evidence regarding its accuracy or lack
thereof.

6. Concluding remarks

This work has re-visited the shear-induced wrinkling instabilities of an accelerated spinning annular
disc/plate [14] by exploring several new asymptotic features of the associated bifurcation equation. With
the help of a general singular-perturbation strategy originally developed in our earlier studies (e.g. [20,21,
36]), we have demonstrated that the problem studied by Sader et al. in [14] shares the same asymptotic
structure as the scenario explored in [18,19]. More precisely, the critical wrinkling eigenmodes turned out
to have a multiple-scale structure consisting of a fast spatial oscillation modulated by a slowly varying
envelope described by a re-scaled Airy function (of the first kind). This solution was attached to the inner
edge of the annular region via an intermediary asymptotic structure that accounted for the minor bending
effects resulting from the clamped constraint at the inner rim of the spinning plate. An approximation
of the critical wrinkling load (the angular acceleration of the disc) was constructed by using a formal
asymptotic expansion in powers of a suitably defined non-dimensional parameter (0 < ε � 1). The first
two nonzero terms in this expansion were independent of the secondary asymptotic structure mentioned
above, while the determination of the subsequent terms required the asymptotic matching between the
two solutions (e.g. see [33] for a recent similar scenario). We have worked out just one such term, but
there is no particular challenge in calculating further contributions (other than the increasing amount of
algebra, of course).

Although the two problems considered in [14,18,19], respectively, are asymptotically equivalent, certain
quantitative differences present in the specific form of the bifurcation equations and the expressions of the
basic state impose stricter limitations on the accuracy of the asymptotic results for the former problem.
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Fig. 11. A comparison between (6.1) and direct numerical simulations of the full wrinkling problem discussed in Sect. 2.
The former data is shown as the (blue) continuous curve, while the latter results correspond to the (red) circular markers;
the dashed (red) curve is obtained by interpolating the data points shown as markers. Here ε = 1/400, 0.1 ≤ η ≤ 0.5, and
ν = 0.25 (color figure online)

Some of the issues that have transpired are not entirely surprising since the asymptotic analysis was
conducted under the implicit assumption that 0 < ε1/4 � 1. Another factor that contributes to the loss
of accuracy mentioned here is re-iterated below.

In this paper, we have dealt exclusively with the thin-plate asymptotics of the wrinkled plate; in other
words, the size η ∈ (0, 1) of the central hole was assumed to be an O(1) quantity which did not interfere
with the expansions in ε. The results obtained have not only confirmed the validity of this assumption
within the range 0.3 � η � 0.6, but have also exposed some of its limitations. As noticed in Sect. 5.5,
the asymptotic approximations deteriorate as η gets progressively smaller, an observation that indicates
the necessity of addressing the local effect introduced by the central hole of the annular disc through the
adoption of a modified form of the ansatz (e.g. in suitable powers of η rather than ε). We note in passing
that the leading-order term of our proposed approximation (5.32) is formally O(η2) for 0 < η � 1.
The asymptotic regime η → 0+ involves a singular perturbation of the plate domain, a situation that
demands a somewhat different approach from that used in the present study (e.g. see [32] for such a
related scenario). We hope to report the relevant details for this new case in the near future.

A final observation, which reinforces the remarks made above, is related to the choice of the small
parameter in the present study. Motivated by the form of Eq. (2.6) and its close analogy with our earlier
works [18,19], we have used ε defined in (4.1). However, the particular expressions of the coefficients in
the asymptotic formula (5.32) suggest that a more appropriate choice would be δ := ε/η. By re-scaling
the quantities of interest as indicated below

˜λc := λc/η2, ˜λ∗
0 := λ∗

0/η2, ˜λ∗
1 := λ∗

1/η3/2, ˜λ∗
3 := λ∗

3/η,

we find the equivalent representation of (5.32)

˜λc = ˜λ∗
0 + ˜λ∗

1 δ1/2 + ˜λ∗
3 δ + O(δ5/4). (6.1)

Note that this alternative approximation for the critical loads will have an asymptotic character as long
as 0 < δ � 1. But from a practical point of view one has to resort to direct numerical computations
in order to realistically ascertain how small δ should be. In Fig. 11, we compare the three-term formula
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(6.1) with the direct numerical simulations of the original wrinkling problem (see Sect. 2) for ε = 1/400
and 0.1 ≤ η ≤ 0.5. It is clear that for sufficiently small δ-values the predictions of our asymptotic
formula match very closely the numerical results (in the lower left-hand corner). On the other hand, for
0.1 ≤ η � 0.3, the smallness of ε is offset by η−1 in the definition of δ, and the agreement within that
range deteriorates. We also remark that (6.1) ceases to be an asymptotic approximation when δ = O(1)
or, equivalently, when ε = O(η).
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A The expression of the base state

For the sake of convenience, we record here the expressions of the (dimensional) pre-buckling stresses σ̊αβ

(α, β ∈ {r, θ}) that feature in (2.3)

1
E

[

σ̊rr

σ̊θθ

]

= ω2

[

Σ̊rr

Σ̊θθ

]

≡ ω2

[

B1ρ
−2 + B2ρ

2 + B3

C1ρ
−2 + C2ρ

2 + C3

]

, (A.1)

where

B1 :=
1
8
η2(1 − ν)

[

(3 + ν) − η2(1 + ν)
(1 + ν) + η2(1 − ν)

]

, C1 := −B1, (A.2a)

B2 := −1
8
(3 + ν), C2 := −1

8
(1 + 3ν), (A.2b)

B3 :=
1
8
(1 + ν)

[

(3 + ν) + η4(1 − ν)
(1 + ν) + η2(1 − ν)

]

, C3 := B3. (A.2c)

The pre-buckling shear stress is given by

σ̊rθ

E
= ΩΣ̊rθ ≡ 1

4
Ω
(

ρ2 − ρ−2
)

. (A.3)

http://creativecommons.org/licenses/by/4.0/
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The detailed derivations of various equivalent forms of these stresses can be found in several places in the
literature (e.g. see [9,13]).

B The governing system for WR and WI

The differential system satisfied by the real and imaginary parts of the complex amplitude W ≡ W (ρ) in
(2.5) is readily obtained by separating the real and imaginary parts of the bifurcation Eq. (2.6). In matrix
form, we have

[L1 −L2

L2 L1

] [

WR

WI

]

=
[

0
0

]

(B.1)

where we have introduced the new differential operators

L1 ≡ d4

dρ4
+ A3(ρ)

d3

dρ3
+ A2(ρ)

d2

dρ2
+ A(R)

1 (ρ)
d
dρ

+ A(R)
0 (ρ), (B.2a)

L2 ≡ A(I)
1 (ρ)

d
dρ

+ A(I)
0 (ρ), (B.2b)

and

A1(ρ) =: A(R)
1 (ρ) + iA(I)

1 (ρ), A0(ρ) =: A(R)
0 (ρ) + iA(I)

0 (ρ).

C Coefficients for the V1-equation

The coefficients that feature in Eq. (5.15) are recorded here for the sake of completeness

α0 :=
i

Σ0
rr

[

κ

(

η − Σ0
θθ

η

)

− 2λ0m0

(

1 +
1
η4

)]

+ 8κλ2

(

m0

η

)

Σ0
rθ

Σ0
rr

, (C.1)

α1 := − 4i
Σ0

rr

[

κ

(

κ2 +
m2

0

η2

)

+ 2λ1

(

m0

η

)

Σ0
rθ

]

, (C.2)

α2 :=
2i

Σ0
rr

[

2κ

η

(

B1

η2
− B2η

2

)

− λ0m0

(

1 +
3
η4

)]

. (C.3)
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D Coefficients for the V2-equation

The coefficients that appear on the right-hand side of Eq. (5.20) correspond to the expressions recorded
below

β1 := 8κλ3

(

m0

η

)

Σ0
rθ

Σ0
rr

, β2 :=
2m0

η2Σ0
rr

[

κλ1

(

η2 +
3
η2

)

− 2m0

η

(

κ2 +
m2

0

η2

)]

,

β3 :=
1

η2Σ0
rr

[

κ2

(

3B1

η2
+ B2η

2

)

− 12κm0λ0

η3
+

m2
0

η2

(

10C1

η2
+ 3C3

)]

,

β4 :=
1

Σ0
rr

(

η − Σ0
θθ

η

)

, β5 := − 2
Σ0

rr

(

3κ2 +
m2

0

η2

)

, β6 :=
2

ηΣ0
rr

(

B1

η2
− B2η

2

)

,

β7 :=
i

Σ0
rr

[

κ

(

η − Σ0
θθ

η

)

− 2λ0m0

(

1 +
1
η4

)]

,

β8 := − 4i
Σ0

rr

[

κ

(

κ2 +
m2

0

η2

)

+ 2λ1

(

m0

η

)

Σ0
rθ

]

,

β9 :=
2i

Σ0
rr

[

2κ

η

(

B1

η2
− B2η

2

)

− m0λ0

(

1 +
3
η4

)]

.

The coefficients of the polynomials P(Z) and Q(Z) in (5.21) correspond to

pj = pj1Γ
−1/3
1 + pj2Γ

−2/3
1 + pj3Γ−1

1 + pj4Γ
−4/3
1 + jβ5, (j = 0, 1),

p2 = p21Γ
−1/3
1 + p22Γ

−2/3
1 + p24Γ

−4/3
1 ,

qj = qj1Γ
−1/3
1 + qj2Γ

−2/3
1 , (j = 0, 1, 2), q3 = q32Γ

−2/3
1 ,

where

p01 := γ0β8, p11 := 2γ1β8 + β6ζ0, p21 := β6,

p02 := β1 + γ0β9ζ0, p12 := γ0β7 + β9

(

γ0 + 2γ1ζ0
)

, p22 := γ1(2β9 + β7),
p03 := β2ζ0, p13 := β2, p24 := β3,

p04 := β3ζ
2
0 , p14 := 2β3ζ0,

q01 := β4, q11 := γ0β8, q21 := γ1β8,

q02 := 0, q12 := γ0β9ζ0, q22 := β9(γ0 + γ1ζ0),
q32 = γ1β9.
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