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Abstract. The derivative nonlinear Schrödinger (DNLS) equation can be derived as an amplitude equation via multiple
scaling perturbation analysis for the description of the slowly varying envelope of an underlying oscillating and traveling
wave packet in dispersive wave systems. It appears in the degenerated situation when the cubic coefficient of the similarly
derived NLS equation vanishes. It is the purpose of this paper to prove that the DNLS approximation makes correct
predictions about the dynamics of the original system under rather weak assumptions on the original dispersive wave
system if we assume that the initial conditions of the DNLS equation are analytic in a strip of the complex plane. The
method is presented for a Klein–Gordon model with a cubic nonlinearity.
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1. Introduction

The nonlinear Schrödinger (NLS) equation

i∂T A = ν1∂
2
XA + ν̃2A|A|2, (1)

with coefficients ν1, ν̃2 ∈ R, can be derived for the description of small modulations in time and space of
oscillatory wave packets in dispersive wave systems, such as the quadratic (f(u) = u2) or cubic (f(u) = u3)
Klein–Gordon equation

∂2
t u = ∂2

xu − u − f(u), (x, t, u(x, t) ∈ R),

the water wave problem and systems from nonlinear optics. For the cubic Klein–Gordon equation, the
ansatz for the derivation of the NLS equation is given by

u(x, t) = εA(ε(x − cgt), ε2t)ei(k0x−ω0t) + c.c.,

where cg is the linear group velocity, k0 the basic spatial wave number, ω0 the basic temporal wave
number and 0 < ε � 1 a small perturbation parameter.

Various NLS approximation results have been proved in the last decades. Such a result can trivially
be established for a dispersive wave system with no quadratic terms by using Gronwall’s inequality, cf.
[18]. However, in case of quadratic nonlinearities such a result is non-trivial since terms of order O(ε)
have to be controlled on the long O(1/ε2)-timescale. The idea to get rid of this problem is to use so-
called normal form transformations. By a near identity change of variables, the terms of order O(ε) can
be eliminated if non-resonance conditions are satisfied, cf. [13]. The last years saw various attempts to
weaken these non-resonance conditions in order to control appearing resonances, cf. [22], and to make
the theory applicable to quasilinear systems, cf. [4,7,28], such as the water wave problem, cf. [6,8,11,27].

It turned out that in case of initial conditions for the NLS equation which are analytic in a strip of the
complex plane almost no non-resonance conditions are necessary, cf. [5,21]. It is the purpose of this paper
to explain that the method developed in [5,21] can be used in the justification of the derivative nonlinear

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-023-02121-7&domain=pdf


224 Page 2 of 20 M. Heß and G. Schneider ZAMP

Schrödinger (DNLS) approximation, too. Interestingly, it allows us to get rid of a problem which is not
present in the justification of the NLS approximation, see below.

The DNLS equation

i∂T A = ν1∂
2
XA + ν2A|A|2 + iν3|A|2∂XA + iν4A

2∂XA + ν5A|A|4, (2)

with T ≥ 0, X ∈ R, A(X,T ) ∈ C, and coefficients νj ∈ R for j = 1, . . . , 5, appears if the cubic coefficient
ν̃2 = ν̃2(k0) in (1) vanishes for the chosen basic spatial wave number k0. This situation appears for
instance in the water wave problem for one-dimensional sets in the parameter plane of surface tension
and basic spatial wave number k0, cf. [1]. The DNLS equation can be derived with an ansatz

u(x, t) = ε1/2A(ε(x − cgt), ε2t)ei(k0x−ω0t) + c.c.. (3)

The justification is more difficult and from a mathematical point of view even more interesting than that
for the NLS approximation since for original dispersive wave systems with a quadratic nonlinearity, in the
equation for the error, terms of order O(ε1/2) have to be controlled on a long O(1/ε2)-timescale. Even
for dispersive wave systems with a cubic nonlinearity, in the equation for the error, terms of order O(ε)
have to be controlled on a long O(1/ε2)-timescale, and so, as a first step in establishing an approximation
theory for the DNLS approximation we start with the most simple toy problem, namely a nonlinear
Klein–Gordon equation with a special cubic nonlinearity,

∂2
t u = ∂2

xu − u + �(∂x)u3. (4)

Herein, x ∈ R, t ∈ R, u(x, t) ∈ R, and

�(ik) =
k2 − 1
k2 + 1

, resp. �(∂x) = −(1 − ∂2
x)−1(1 + ∂2

x).

Plugging the ansatz (3) with k0 = 1 into (4) and equating the coefficients in front of ei(k0x−ω0t) to zero
gives at O(ε1/2) the linear dispersion relation ω2

0 = k2
0 + 1 and at O(ε3/2) the linear group velocity

cg = k0/ω0. Using the expansion

�(i + ε∂X) =
−(i + ε∂X)2 − 1
−(i + ε∂X)2 + 1

= −iε∂X + O(ε2)

gives at O(ε5/2) the DNLS equation

− 2iω0∂T A = (1 − c2g)∂
2
XA − 3i∂X(A|A|2). (5)

Remark 1.1. The Fourier transform of the DNLS approximation (3) is given by

û(k, t) = ε1/2ε−1
̂A(

k − k0
ε

, ε2t)e−iω0t−icg(k−k0)t + ĉ.c. (6)

Hence, the Fourier transform is strongly concentrated at the wave numbers ±k0 = ±1 and so the evolution
of ̂A is determined by the form of the dispersion relation and of the nonlinearity at the wave number
k0 = 1.

It is the goal of this paper to prove that the DNLS equation (5) makes through the ansatz (3) correct
predictions about the dynamics of the Klein–Gordon model (4).

For the formulation of our approximation theorem, we need.

Definition 1.2. For σ, s ≥ 0, we define the Gevrey spaces

Gs
σ = {u : R → C : ‖u‖Gs

σ
:= ‖eσ(|k|+1)(1 + |k|2s)1/2û(k)‖L2(dk) < ∞}.

Then our approximation theorem is as follows.
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Theorem 1.3. Let sA ≥ 12, σ0 > 0, and A ∈ C([0, T0], GsA
σ0

) be a solution of the DNLS equation (5).
Then there exist ε0 > 0, T1 ∈ (0, T0], and C > 0 such that for all ε ∈ (0, ε0) we have solutions u of the
Klein–Gordon model (4) such that

sup
t∈[0,T1/ε2]

sup
x∈R

|u(x, t) − (ε1/2A(ε(x − ct), ε2t)ei(k0x−ω0t) + c.c.)| ≤ Cε.

Remark 1.4. As already said, such an approximation result is non-trivial since solutions of order O(ε1/2)
of (4) have to be controlled on an O(1/ε2)-timescale. Although we have a cubic nonlinearity, a simple
application of Gronwall’s inequality would only give estimates on an O(1/ε)-timescale.

Remark 1.5. Such an approximation result should not be taken for granted. There are counterexamples,
cf. [10,19,23], showing that there are amplitude equations which are derived in a formally correct way, but
fail to make correct predictions about the original system on the natural timescale of the approximation.

Remark 1.6. We recall that for σ, s ≥ 0 due to the Paley–Wiener theorem functions u ∈ Gs
σ can be

extended to a strip {z ∈ C : |Imz| < σ} in the complex plane, cf. [15].

Remark 1.7. The approximation result is not optimal in the sense that error estimates can only be proved
on the correct timescale, namely for t ∈ [0, T1/ε2], but not necessarily for all t ∈ [0, T0/ε2]. Hence, we can
only guarantee that parts of the DNLS dynamics can be seen in the original system.

It turns out that there are two new difficulties which were not present in the justification analysis
of other modulation equations so far and which have to be overcome, namely the problem of a total
resonance and the problem of a second-order resonance, see below and Sect. 4 for detailed definitions of
these resonances. We get rid of the second-order resonance by adapting a method developed in [5,21]
for justifying the NLS approximation under rather weak non-resonance conditions, however, with the
drawback that the initial conditions for the NLS equation have to be chosen to be analytic in a strip of
the complex plane. This approach will be combined with some energy estimates in order to get rid of the
total resonance which is also not present in the justification analysis of the NLS approximation. For a
detailed outline of the proof, see Sect. 2.

Remark 1.8. We call the following approach to justify the DNLS approximation robust since our approx-
imation result holds under rather weak non-resonance conditions.

Remark 1.9. For completeness, we remark that the DNLS equation is a well-studied nonlinear dispersive
system. Local well-posedness of smooth solutions in Sobolev spaces Hs with s > 3/2 was established by
Tsutsumi and Fukuda [26]. See also [3,9,25,29,30] for further improvements. The complete integrability
of the DNLS equation has been established in [16]. For a recent overview, see [12].

Notation. The Fourier transform of a function u : R 	→ C is given by

(Fu)[k] = û(k) =
1
2π

∫

R

u(x)e−ikxdx.

The inverse Fourier transform of a function û : R 	→ C is given by

(F−1û)[x] = u(x) =
∫

R

û(k)eikxdk.

Multiplication (uv)(x) = u(x)v(x) in physical space corresponds in Fourier space to the convolution

(û ∗ v̂)(k) =
∫

R

û(k − l)v̂(l)dl.

The weighted Lebesgue space L2
s which will be used a few times in Fourier space is equipped with the

norm ‖û‖L2
s

= ‖ûρs
0‖L2 with ρ0(k) = (1 + k2)1/2.
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In the following, many possibly different constants are denoted with the same symbol C if they can
be chosen independent of the small perturbation parameter 0 < ε � 1.

2. Plan of the paper

The plan of the paper is as follows. In Sect. 3, we write the Klein–Gordon model (4) as a first-order system
in Fourier space and derive the equations for the error made by an improved DNLS approximation. The
improved DNLS approximation is O(ε3/2)-close to the original DNLS approximation (3), but has the
advantage that it makes the residual smaller, i.e., the terms which do not cancel after inserting the
ansatz in the original system. The improved DNLS approximation is constructed and remaining residual
terms are estimated in “Appendix A.”

There are terms of order O(ε) in the equations for the error which prevents us to obtain bounds on the
long O(1/ε2)-timescale. Therefore, in Sect. 4 we perform some normal form transformations in order to
get rid of these terms in the equations for the error. It turns out that this elimination is a non-trivial task
since resonances are present in the system, and therefore, not all terms of order O(ε) can be eliminated
by these transformations.

There are cubic terms which cannot be eliminated for any wave number k ∈ R. We call the associated
resonance a total resonance. Moreover, there is another resonance at the wave numbers ±k0 = ±1. The
denominator in the normal from transformation vanishes of second order for these wave numbers and so
this resonance will be called second-order resonance in the following. Since the nonlinear terms which
appear in the nominator only vanish linearly at the wave numbers ±k0 = ±1, the associated part of the
normal form transform would be unbounded. Therefore, in Sect. 4 we only eliminate all terms which are
not associated with the total resonance or second-order resonance. It turns out that the total resonant
terms can be controlled with a simple energy estimate, and so, we concentrate on the handling of the
terms associated with the second-order resonance by the use of Gevrey spaces in the following.

As a preparation we recall some estimates from the local existence and uniqueness proof for the DNLS
equation in Gevrey spaces in Sect. 5. By lowering the decay rates σ in the definition of the norm ‖ · ‖Gs

σ

with time, we obtain an artificial smoothing which allows us to get rid of first-order derivatives in the
nonlinearity.

The transfer of the analysis made in Sect. 5 to Fourier space is the basis of our approach to get rid of
the terms associated with the second-order resonance. The transfer to Fourier space corresponds to giving
up the exponential localization of the solutions in Fourier space with time which will allow us to use the
derivative in front of the nonlinear term in (5) to come to the correct O(1/ε2)-timescale. However, in
order to use this idea on the original system (4) we have to get rid of the fact that the DNLS modes are
concentrated at the wave number k0 = 1 and that the nonlinear term vanishes at this wave number, too.
Hence, in Sect. 6 we introduce a space where the Fourier modes are located at integer multiples of k0 with
an exponential decay proportional to |k − mk0|. Again by lowering the decay rates with time, we rebuilt
the construction from Sect. 5 for (4), cf. Fig. 1. This allows us to come with our error estimates to the
natural O(1/ε2)-timescale of the DNLS approximation. This construction originally was used in [5,21] to
get rid of resonances which are bounded away from the integer multiples of the basic wave number k0.
The solutions at such resonant wave numbers will grow like eO(ε)t. However, by the chosen spaces the
solutions are initially e−O(1/ε) small. Thus, the error will stay O(1)-bounded on a long O(1/ε2)-timescale
in t.

In Sect. 7, we introduce so-called mode filters which allow us to separate the error function. These
mode filters allow us to handle different parts of the error function in Fourier space differently. At the
wave number k = ±k0 and except for small neighborhoods around integer multiples of k0, we use the
time-dependent weighted L2-spaces to control the magnitude of the error. In the small neighborhoods
around the integer multiples of k0, without the neighborhoods around k = ±k0, we use normal form
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Fig. 1. The mode distribution of the solutions ̂A and û will be controlled by weighted L2-spaces. The left panel shows the

inverse of the weight for the DNLS equation (5) for t = 0 in blue and for a t > 0 in red, Moreover, it shows the vanishing of
the nonlinearity at K = 0 in Fourier space in green. The right panel shows the inverse of the weight for the original system
(4) for t = 0 in blue and for a t > 0 in red, Moreover, it shows the vanishing of the nonlinearity at k = ±1 in green again
(color figure online)

transformations. Estimates for the normal form transformations in the chosen spaces can be found in
Sect. 8. The final error estimates can be found in Sect. 9. We use energy estimates for the transformed
system since we still have to get rid of the totally resonant terms. All ideas from the previous sections
can be incorporated in these energy estimates. We close the paper in Sect. 10 with a discussion about
possible improvements, generalizations and about the possible transfer to more complicated systems.

3. Equations for the error

The Fourier transformed cubic Klein–Gordon model (4) is given by

∂2
t û(k, t) = −ω2(k)û(k, t) − ω(k)ρ(k)û∗3(k, t) (7)

where ω(k) = sign(k)
√

1 + k2 and ρ(k) = −�(ik)
ω(k) . By this choice of ω and ρ, the subsequent variables will

be real-valued in physical space. With u = u1, we write (7) as a first-order system

∂tû1(k, t) = −iω(k)û2(k, t),
∂tû2(k, t) = −iω(k)û1(k, t) − iρ(k)û∗3

1 (k, t).

This system is diagonalized with

2v̂−1 = û1 + û2, 2v̂1 = û1 − û2.

With V = (v−1, v1), we obtain

∂tV = ΛV + N(V, V, V ), (8)

where in Fourier space

̂Λ(k) =
(

−iω(k) 0
0 iω(k)

)

is a skew-symmetric operator and

̂N(̂V , ̂V , ̂V )(k, t) =
1
2
iρ(k)

(

−(v̂1 + v̂−1)∗3

(v̂1 + v̂−1)∗3

)

(k, t)

a symmetric trilinear mapping. The DNLS approximation is of the form

ε1/2ψ =
(

ε1/2a1 + ε1/2a−1 + ε3/2ψs,−1

ε3/2ψs,1

)

, (9)
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cf. (30), with aj concentrated at the wave number k = j and higher-order approximation terms ε3/2ψs,±1.
See “Appendix A” for the detailed construction. The error ε

˜βR = V − ε1/2ψ with ˜β > 3/2 made by the
DNLS approximation satisfies

∂tR = ΛR + εLc(R) + ε2Ls(R) + ε
˜β+1/2Lr(R) + ε−˜βRes(ε1/2ψ), (10)

where εLc(R) are terms which are linear in R but have too few powers of ε in front and thus make
difficulties to obtain O(1)-bounds for R on the long O(1/ε2)-timescale, where ε2Ls(R) are terms which
are linear in R and have enough powers of ε in front, and where ε

˜β+1/2Lr(R) are terms which are nonlinear
in R (and have enough powers of ε in front), in detail

L̂c(R)(k, t) =
3
2
iρ(k)

(

−(â1 + â−1)∗2 ∗ ( ̂R1 + ̂R−1)
(â1 + â−1)∗2 ∗ ( ̂R1 + ̂R−1)

)

(k, t),

L̂s(R)(k, t) = 3iρ(k)

(

−(â1 + â−1) ∗ ( ̂ψs,1 + ̂ψs,−1) ∗ ( ̂R1 + ̂R−1)
(â1 + â−1) ∗ ( ̂ψs,1 + ̂ψs,−1) ∗ ( ̂R1 + ̂R−1)

)

(k, t)

+ε
3
2
iρ(k)

(

−( ̂ψs,1 + ̂ψs,−1)∗2 ∗ ( ̂R1 + ̂R−1)
( ̂ψs,1 + ̂ψs,−1)∗2 ∗ ( ̂R1 + ̂R−1)

)

(k, t),

L̂r(R)(k, t) =
3
2
iρ(k)

(

−( ̂ψ1 + ̂ψ−1) ∗ ( ̂R1 + ̂R−1)∗2

( ̂ψ1 + ̂ψ−1) ∗ ( ̂R1 + ̂R−1)∗2

)

(k, t)

+ε
˜β−1/2 1

2
iρ(k)

(

−( ̂R1 + ̂R−1)∗3

( ̂R1 + ̂R−1)∗3

)

(k, t).

Moreover, ε−˜βRes(ε1/2ψ) are the so-called residual terms. These are the terms which do not cancel after
inserting the DNLS approximation into the nonlinear Klein–Gordon equation (4).

In the following, we concentrate on estimating the error made by the DNLS approximation and
postpone the standard construction of an improved approximation and the estimates for the residual to
Appendix A. The improved approximation will be chosen in such a way that the term ε−˜βRes(ε1/2ψ) is
of order O(ε2).

In the following, in our notation we keep ˜β > 3/2 in order to show that by using improved approxi-
mations the error can be made arbitrarily small. All terms on the right-hand side of (10) are at least of
order O(ε2) except for the first two terms. Since Λ is skew-symmetric, the first term on the right-hand
side of (10) makes no problems, too. However, the second term εLc(R) which is of order O(ε) makes
serious problems in estimating the error on the long O(1/ε2)-timescale.

4. Normal form transformations and the resonance structure

The approach to get rid of the dangerous term εLc(R) in (10), which is a sum of trilinear mappings of
aj1 , aj2 and Rj3 , with j1, j2, j3 ∈ {−1, 1}, are normal form transformations. By these near identity change
of variables

R = w + εM(ψ,ψ,R),

with M a trilinear mapping, the O(ε)-terms can be transformed into O(ε2)-terms, if a number of non-
resonance conditions are satisfied.

Remark 4.1. In order to eliminate a trilinear term εB(aj1 , aj2 , Rj3) of the form

̂B(aj1 , aj2 , Rj3) =
∫ ∫

b(k, k − k1, k1 − k2, k2)âj1(k − k1)âj2(k1 − k2) ̂Rj3(k2)dk2dk1
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Fig. 2. Plots of rjj1j2j3 (k) for the resonances with the second-order touching. The left panel shows the case (j, j1, j2, j3) =
(−1, 1, 1,−1), and the right panel shows the case (j, j1, j2, j3) = (−1,−1,−1,−1)

from the equation of Rj by a near identity transformation wj = Rj + εM(aj1 , aj2 , Rj3), using the fact
that the âj in (9) are strongly concentrated at the wave numbers k = j, we have to choose

̂M(aj1 , aj2 , Rj3) =
∫ ∫

m(k, k − k1, k1 − k2, k2)âj1(k − k1)âj2(k1 − k2) ̂Rj3(k2)dk2dk1,

with

m(k, k − k1, k1 − k2, k2) =
b(k, k − k1, k1 − k2, k2)

−jω(k) − ω(j1) − ω(j2) + j3ω(k − j1 − j2)
,

cf. [24, §11]. For the terms which will be eliminated, the nominator b is bounded and the denominator is
bounded away from zero.

Thus, the non-resonance condition

rjj1j2j3(k) = −jω(k) − ω(j1) − ω(j2) + j3ω(k − j1 − j2) �= 0 (11)

has to be satisfied for all k ∈ R for the elimination of a term âj1 ∗ âj2 ∗ Rj3 from the equation for Rj ,
cf. [24, §11] or Remark 4.1. The non-resonance conditions (11) can be analyzed graphically. We find no
resonances except for

(TR) For (j, j1, j2, j3) = (j, j1,−j1, j), the resonance function rjj1j2j3(k) vanishes identically. Thus,
the associated terms in εLc(R) cannot be eliminated by a normal form transformation.

(SOR) For (j, j1, j2, j3) = (−1, j1, j1,−1), cf. Fig. 2, there is a resonance at k = j1, which is of second
order, in detail

ω(k) − 2ω(j1) − ω(k − 2j1) = 2ω′′(j1)(k − j1)2 + O(|k − j1|3)
for k near j1. This second-order resonance would appear in the denominator of the normal
form transformation. It cannot be balanced by the term ρ in the nominator of the normal form
transformation which only vanishes linearly at k = ±1. Thus, the normal form transformation
would be singular near the wave numbers k = ±1.

Thus, besides the normal form transformations which we use to get rid of the non-resonant terms, we
need an idea to get rid of the terms which cannot be eliminated at all due to the total resonance (TR),
and we need an idea to get rid of the terms which cannot be eliminated in a small neighborhood of the
wave numbers k = ±1 due to the second-order resonance (SOR).

It turned out that the problem with the total resonance (TR) can be solved rather easily by using
energy estimates. For the handling of the second-order resonance (SOR), we use the fact that in lowest
order the system near the wave numbers k = ±1 is given by the DNLS equation. Our approach to solve
this problem is similar to the approach chosen for instance in [17,20] for the justification of the KdV
approximation. By this approach, we not only get rid of the quasilinearity of the DNLS equation but also
gain the missing O(ε) order to come to the long O(1/ε2)-timescale. In order to explain this approach, we
have a look at the solution theory of the DNLS equation in Gevrey spaces in Sect. 5 first.
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Solving the NLS equation in Gevrey spaces was also the basis of the approach which has been used in
[5,21] for justifying the NLS approximation under rather weak non-resonance conditions. This underlying
idea of the approach is introduced in Sect. 6. Interestingly, it also allows us to get rid of the second-order
resonances which are not present in the justification of the NLS approximation.

And so in the end the transfer of the method developed in [5,21] from the NLS approximation to the
DNLS approximation not only gains the missing O(ε) order in order to come to the long O(1/ε2)-timescale
but also allows us to justify the DNLS approximation under rather weak non-resonance conditions. Since
we need to control the total resonant terms, too, we use energy estimates instead of the variation of
constant formula, and so the L1-based spaces in Fourier space from [5] are replaced here by L2-based
spaces.

5. The DNLS equation in Gevrey spaces

As already said, we solve the DNLS equation in Gevrey spaces Gs
σ equipped with the norm

‖u‖Gs
σ

:= ‖eσ(|ξ|+1)(1 + |ξ|2s)1/2û(ξ)‖L2(dξ). (12)

In our presentation of the properties of these spaces, we follow [2]. For the local existence and uniqueness
of solutions, we use that Gs

σ is an algebra for s > 1/2 and σ ≥ 0, i.e., if u, v ∈ Gs
σ, then uv ∈ Gs

σ and

‖uv‖Gs
σ

≤ Cs‖u‖Gs
σ
‖v‖Gs

σ
, (13)

where the constant Cs is independent of σ ≥ 0. Since the DNLS equation is a quasilinear system, we need
the following improved, so-called tame, estimate

‖uv‖Gs
σ

≤ Cs(‖u‖Gs
σ
‖v‖Gκ

σ
+ ‖u‖Gκ

σ
‖v‖Gs

σ
) (14)

which holds for all σ ≥ 0, κ ≥ 0 and s > 1/2. The elements of Gs
σ form a proper subset of the space of

functions which are analytic in a strip of the complex plane of width < 2σ, symmetric around the real
axis, equipped with the sup-norm due to the Paley–Wiener theorem, cf. [15].

For the DNLS equation, we have the following local existence and uniqueness result.

Theorem 5.1. Let s > 1 and σA > 0. Then, for every R0 > 0, there exist η = η(R0, s, σA) such that for
every A0 ∈ Gs

σA
, with ‖A0‖Gs

σA
≤ R0, there exists a unique local solution A(T ) ∈ Gs

σ(T ) of the DNLS
equation (5) with σ(T ) := σA − ηT , T ∈ [0, σA/η], and supT∈[0,σA/η] ‖A(T )‖Gs

σ(T )
≤ R0.

Proof. By rescaling T , X and A, the DNLS equation (5) is brought in its normal form

∂T A = i∂2
XA − ∂X(A|A|2).

Next we set

A(·, T ) = S(T )B(·, T ) = e−σ(T )(1+M)B(·, T ),

where M =
√

−∂2
x. Then B satisfies

∂T B = −η(1 + M)B + i∂2
XB − ∂X(S−1(T )((S(T )B)|S(T )B|2)).

We denote the scalar product in Hs with (·, ·)s and obtain

∂T (B,B)s = −η((1 + M)1/2B, (1 + M)1/2B)s + g(B),

where

|g(B)| ≤ C‖B‖2Hs‖B‖2Hs+1/2 ≤ C‖B‖2Hs((1 + M)1/2B, (1 + M)1/2B)s

such that

∂T (B,B)s ≤ (−η + C‖B‖2Hs)((1 + M)1/2B, (1 + M)1/2B)s.
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Hence, (B,B)s decays in time if η > 0 is chosen so large that initially

(−η + C‖B|T=0‖2Hs) < 0.

With these a priori estimates, the existence and uniqueness of solutions follow standard arguments, cf.
[14]. �

The existence of the solutions of the DNLS equation (5) which is assumed in Theorem 1.3 is guaranteed
by the following corollary.

Corollary 5.2. Let sA ≥ 12 and σA > 0. Then, for every R0 > 0, there exist η = η(R0, sA, σA) such that
for every A0 ∈ GsA

σA
, with ‖A0‖G

sA
σA

≤ R0 and σ0 ∈ [0, σA) there exists a T0 > 0 and unique local solution
A ∈ C([0, T0], GsA

σ0
) of the DNLS equation (5) with supT∈[0,σA/η] ‖A(T )‖Gs

σ(T )
≤ R0.

Proof. As above choose σ(T ) := σA − ηT and stop for σ(T0) = σ0. �

6. Modulational Gevrey spaces

In the last section, we have seen that with an initial exponential decay in Fourier space for wave numbers
|K| → ∞ we can create an artificial smoothing which allows us to control the derivative in front of the
nonlinear terms of the DNLS equation. For the nonlinear Klein–Gordon equation (4), the DNLS equation
is the lowest order approximation for the modes located at the wave number k = 1; in particular, the
derivative in front of the nonlinear terms of the DNLS equation corresponds to the vanishing of the
nonlinear terms of the nonlinear Klein–Gordon equation (4) at the wave number k = 1. For the DNLS
approximation, the associated modes decay with an exponential rate around the wave number k = 1, cf.
Fig. 1. However, by nonlinear interaction small peaks with width of order O(ε) are created at odd integer
multiples of the basic wave number k0 = 1. See the right panel of Fig. 1. This means that the solutions
of the nonlinear Klein–Gordon equation (4) will have a Fourier mode distribution which is bounded from
above by a multiple of 1/ϑβ , where

ϑβ(k) := exp
(

β inf
m∈Zodd

|k − mk0|
)

or equivalently
1

ϑβ(k)
= sup

m∈Zodd

e−β|k−mk0|

for β ≥ 0. We define a number of spaces to combine these facts with the ideas from Sect. 5 for the DNLS
equation (2) in order to handle the nonlinear Klein–Gordon equation (4). For estimating the solutions
of the original system, we use energy estimates, and so, the nonlinear Klein–Gordon equation (4) will be
solved in the L2-based space

Ms
β = {u : R → C : ‖u‖Mβ

= ‖û(k)ϑβ(k)(1 + k2)s/2‖L2(dk) < ∞}.

As a consequence for u ∈ Ms
β , with β > 0, the modes bounded away from integer multiples of the basic

wave number k0 = 1 are exponentially small w.r.t. ε, i.e., these modes are of order O(e−r/ε) for 0 < ε � 1
with an O(1)-bound r > 0. Due to the L2-scaling properties, the DNLS approximation is of order O(1)
in the Ms

β-spaces and not of the formal order O(ε1/2). Therefore, we additionally define the spaces

Ws
β = {u : R → C : ‖u‖Ws

β
= ‖û(k)ϑβ(k)(1 + k2)s/2‖L1(dk) < ∞}

for which the DNLS approximation is of order O(ε1/2).
For the subsequent error estimates, we need that these spaces are closed under point-wise multiplica-

tion.
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Lemma 6.1. For all β ≥ 0 and s > 1/2, we have

‖uv‖Ms
β

≤ ‖u‖Ms
β
‖v‖Ms

β
.

Moreover, for all β, s ≥ 0 we have

‖uv‖Ms
β

≤ ‖u‖Ws
β
‖v‖Ms

β
and ‖uv‖Ws

β
≤ ‖u‖Ws

β
‖v‖Ws

β
. (15)

Proof. The estimates immediately follow from

‖uv‖Ms
β

= ‖(û ∗ v̂)ϑβ‖L2
s

≤ ‖ûϑβ‖L1‖v̂ϑβ‖L2
s
+ ‖ûϑβ‖L2

s
‖v̂ϑβ‖L1

≤ ‖u‖W0
β
‖v‖Ms

β
+ ‖u‖Ms

β
‖v‖W0

β

due to Young’s inequality for convolutions, Sobolev’s embedding

‖u‖Ws
β

≤ C‖v‖Ms+δ
β

for δ > 1/2, and the inequality
1

ϑβ(k − l)ϑβ(l)
= sup

m∈Zodd

(

e−β|k−l−mk0|
)

sup
m∈Zodd

(

e−β|l−mk0|
)

≤ sup
m∈Zodd

(

e−β|k−mk0|
)

=
1

ϑβ(k)
.

�

Remark 6.2. The inequalities of (15) will be used to estimate combinations of the approximation with
the error subsequently. The DNLS approximation will be estimated in the space Ws

β where it is of order
O(ε1/2). The error will be estimated in the space Ms

β .

The initial value problem for (4) for initial conditions of order O(ε1/2) can be solved in these spaces
on a time interval of length O(1/ε) using the variation of constant formula, using the fact that we have
a cubic nonlinearity and the fact that these spaces are closed under multiplication. In order to bound
the error not only on the short O(1/ε)-timescale but also on the natural O(1/ε2)-timescale of the DNLS
approximation, we use the spaces Ms

β , but now with time-dependent β. Similar to above, we choose

β(t) = σ0/ε − ηεt, (16)

with constants σ0, η > 0, which can be chosen independently of 0 < ε � 1. Note that (16) is the scaled
version of σ(T ) = σ0 − ηT defined in Theorem 5.1 and that T1 = σ0/η. If A is initially in a space Gs+1

σ0
,

then according to Remark 1.1 the DNLS approximation is initially in a space Ws
σ0/ε. This is the reason

why β(t) starts with σ0/ε. The decay −ηεt allows us to consider t on the natural O(1/ε2)-timescale of
the DNLS approximation. It turns out that subsequently choosing η = O(1) is sufficient for our purposes.

In the subsequent sections, we explain in detail how with this approach all problems to come to the
long O(1/ε2)-timescale, found in Sect. 4, can be solved.

7. Separation of the modes

In order to obtain a bound for the error on the long O(1/ε2)-timescale, independently of the small
perturbation parameter 0 < ε � 1, we have to get rid of the term εLc(R) in (10). Except at the resonant
wave numbers, this term is oscillatory and can be removed by a near identity change of variables. In the
last sections, we explained our strategy to get rid of the total resonance (TR) and of the second-order
resonance (SOR).
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�
k
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En Er
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−1
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1
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Fig. 3. Support of the mode filters Er, En and Ec in Fourier space

Hence, for the error estimates we separate the modes in three parts. The first part which is denoted by
Rn has a support near the odd integer multiples of the basic wave number k0 = 1 excluding neighborhoods
around the basic wave numbers ±k0 = ±1. It will be handled with normal form transformations and
energy estimates. The second part which is denoted by Rr has a support which is bounded away from
the odd integer multiples of the basic wave number k0 = 1 and will linearly be exponentially damped by
our choice of time-dependent weights. The third part which is denoted by Rc has support near the basic
wave numbers ±k0 = ±1 and will be handled with the ideas which have been explained above in Sect. 5
and Sect. 6 and with energy estimates. The index n stands for normal form, r for rest, and c for critical.

In detail, we define for a small δr > 0, but independent of 0 < ε � 1, the mode filter

̂Er(k) =

{

1, for infn∈Zodd
|k − n| > δr,

0, else,

the mode filter

̂Ec(k) =

{

1, for infn∈{−1,1} |k − n| ≤ δr,

0, else,

and finally the mode filter ̂En = 1 − ̂Er − ̂Ec.
We use these projections to separate the error R = Rr + Rn + Rc in three parts, namely Rr = ErRr,

Rc = EcRc and Rn = EnRn. These new variables satisfy

∂tRr = ΛRr + εErLc(R) + ε2ErG, (17)
∂tRn = ΛRn + εEnLc(R) + ε2EnG, (18)
∂tRc = ΛRc + εEcLc(R) + ε2EcG, (19)

where

ε2G = ε2Ls(R) + ε
˜β+1/2Lr(R) + ε−˜βRes(ε1/2ψ).

8. The normal form transform

As already said, in order to come to the long O(1/ε2)-timescale, we have to get rid of the terms

ε ̂EjLc(R)(k, t) = ε
3
2
iρ(k) ̂Ej(k)

(

−(â1 + â−1)∗2 ∗ ( ̂R1 + ̂R−1)
(â1 + â−1)∗2 ∗ ( ̂R1 + ̂R−1)

)

(k, t),

for j = n, r, c in (17)–(19). In a first step, we simplify the εEjLc(R) for j = n, r, c by eliminating all
non-resonant terms by normal form transformations. The εEjLc(R) for j = n, r, c are sums of trilinear
mappings w.r.t. aj1 , aj2 and Rj3 , with j1, j2, j3 ∈ {−1, 1}.

We recall from Remark 4.1 that to eliminate a trilinear term εB(aj1 , aj2 , Rj3) of the form

̂B(aj1 , aj2 , Rj3) =
∫ ∫

b(k, k − k1, k1 − k2, k2)âj1(k − k1)âj2(k1 − k2) ̂Rj3(k2)dk2dk1
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from the equation of Rj by a near identity transformation wj = Rj +εM(aj1 , aj2 , Rj3) we have to choose

̂M(aj1 , aj2 , Rj3) =
∫ ∫

m(k, k − k1, k1 − k2, k2)âj1(k − k1)âj2(k1 − k2) ̂Rj3(k2)dk2dk1

with

m(k, k − k1, k1 − k2, k2) =
b(k, k − k1, k1 − k2, k2)

−jω(k) − ω(j1) − ω(j2) + j3ω(k − j1 − j2)
.

By the analysis of the denominator, made in Sect. 4, we can eliminate all terms except for the total
resonant terms and second-order resonant terms.

After the transformation, we obtain a system

∂twr = Λwr + εErLc(wr) + ε2Hr, (20)
∂twn = Λwn + εB1(a1, a−1, wn) + ε2Hn, (21)
∂twc = Λwc + εB2(a1, a−1, wc)

+εB3(a−1, a−1, wc) + εB4(a1, a1, wc) + ε2Hc, (22)

where the Bj are smooth trilinear mappings in their arguments and ε2Hr,n,c = O(ε2) with properties
specified below.

• The totally resonant term B1(a1, a−1, wn) in (21) and the totally resonant term B2(a1, a−1, wc) in
(22) will be controlled by energy estimates in the following.

• For the second-order resonant terms B3(a−1, a−1, wc) and B4(a1, a1, wc) in (22), the denominator in
the above normal form transformation would vanish quadratically for k = ±1 as we have seen in Sect. 4.
Since the nominator only vanishes linearly at these wave numbers, the normal form transform would
be unbounded. Therefore, the second-order resonant terms will be handled with the ideas presented in
Sects. 5 and 6.

• The term εErLc(wr) contains totally resonant terms, too, i.e., it is of the form B0(a1, a−1, wr) +
O(ε2). In order to explain subsequently a few possible improvements to our approach, we handle the
totally resonant terms in εErLc(wr) differently than the other totally resonant terms. The reason for this
is, as already said, that the term εErLc(wr) will be exponentially small w.r.t ε initially, and that it will
take an O(1/ε2)-timescale to grow to an order O(ε) in any case. This observation allows us to reduce the
number of necessary non-resonance conditions for general dispersive systems subsequently.

The properties of the normal form transformation are summarized in the following lemma.

Lemma 8.1. Let s > 1/2 and σ0 ≥ 0. The transformation

T ε :
{

(Ms
σ/ε)

3 → (Ms
σ/ε)

3,

(Rn, Rr, Rc) 	→ (wn, wr, wc),

is a small perturbation of identity. For all σ ∈ [0, σ0], the mapping is analytic. For all C1 > 0, there
exists an ε0 > 0 such for all ε ∈ (0, ε0) and all σ ∈ [0, σ0] the following holds. For all (wn, wr, wc) with
‖(wn, wr, wc)‖Ms

σ/ε
≤ C1, there exists an analytic inverse. All bounds are independent of ε ∈ (0, ε0) and

σ ∈ [0, σ0].

Proof. The estimate (15), the fact that |rjj1j2j3(k)| is uniformly bounded away from zero for the terms
considered in the normal form transformation, and Neumann’s series imply the statements. �

With this lemma, we immediately have

Corollary 8.2. Let s > 1/2 and

M̌ = ‖w‖Ms
β(t)

:= ‖wr‖Ms
β(t)

+ ‖wn‖Ms
β(t)

+ ‖wc‖Ms
β(t)

,
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with β(t) defined in (16). There exist constants C1, C3 > 0 independent of M̌ and ε ∈ (0, ε0], with ε0 > 0
from Lemma 8.1, and a monotonically increasing function C2(M̌) > 0, independent of ε ∈ (0, ε0], such
that

‖ε2Hj‖Ms
β(t)

≤ C1ε
2‖w‖Ms

β(t)
+ C2(M̌)ε˜β+1/2‖w‖2Ms

β(t)
+ C3ε

2,

for j = r, n, c.

9. The final error estimates

In order to estimate the solutions of Eqs. (20)–(22) for the error, we use the modulational Gevrey spaces
introduced in Sect. 6. Introducing the new weighted variables

̂Wj(k) = ŵj(k)ϑβ(k)

for j = r, n, c allows us to work in classical Sobolev spaces. We find

∂tWr = ΛWr + ΓWr + εEr
˜Lc(Wr) + ε2 ˜Hr, (23)

∂tWn = ΛWn + ΓWn + ε ˜B1(a1, a−1,Wn) + ε2 ˜Hn, (24)

∂tWc = ΛWc + ΓWc + ε ˜B2(a1, a−1,Wc)

+ε ˜B3(a−1, a−1, wc) + ε ˜B4(a1, a1,Wc) + ε2 ˜Hc, (25)

where the operator Γ is defined in Fourier space by

̂ΓW (k) = −ηε( inf
m∈Zodd

|k − mk0|)̂W (k). (26)

The trilinear mappings Bj from (20)–(22) transform into the ˜Bj which are again smooth trilinear map-
pings in their arguments. They are estimated below in detail. The remaining terms Hj from (20)–(22)
transform into the ˜Hj whose properties are specified in the subsequent lemma.

Lemma 9.1. Let s > 1/2 and

M = ‖W‖Hs := (‖Wr‖2Hs + ‖Wn‖2Hs + ‖Wc‖2Hs)1/2.

There are constants C1, C3 > 0 independent of M and ε ∈ (0, ε0], with ε0 > 0 from Lemma 8.1, and a
monotonically increasing function C2(M) > 0, independent of ε ∈ (0, ε0], such that

‖ε2 ˜Hj‖Hs ≤ C1ε
2‖W‖Hs + C2(M)ε˜β+1/2‖W‖2Hs + C3ε

2,

for j = r, n, c.

Proof. The lemma is mainly a reformulation of Corollary 8.2. �

In order to estimate the solutions Wj of Eqs. (23)–(25), we use energy estimates, i.e., we multiply the
equation for Wj with Wj for j = r, n, c and take the Hs-scalar product (·, ·)s. We find

∂t(Wr,Wr)s = 2Re(s1 + s2 + s3 + s4),
∂t(Wn,Wn)s = 2Re(s5 + s6 + s7 + s8),
∂t(Wc,Wc)s = 2Re(s9 + s10 + s11 + s12 + s13 + s14),

with

s1 = (Wr,ΛWr)s, s2 = (Wr,ΓWr)s,

s3 = (Wr, εEr
˜Lc(Wr))s, s4 = (Wr, ε

2
˜Hr)s,
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with
s5 = (Wn,ΛWn)s, s6 = (Wn,ΓWn)s,

s7 = (Wn, ε ˜B1(a1, a−1,Wn))s, s8 = (Wn, ε2 ˜Hn)s,

and
s9 = (Wc,ΛWc)s, s10 = (Wc,ΓWc)s,

s11 = (Wc, ε ˜B2(a1, a−1,Wc))s, s12 = (Wc, ε ˜B3(a−1, a−1,Wc))s,

s13 = (Wc, ε ˜B4(a1, a1,Wc))s, s14 = (Wc, ε
2

˜Hc)s.

Among the terms s1, . . . , s14, there are terms which vanish identically and terms which do not make any
difficulties since they have an ε2 in front. The dangerous terms are the ones which only have an ε in
front, namely s3, s7, s11, s12, s13. They will be estimated through integration by parts, such as the totally
resonant terms s7 and s11, or by the damping terms s2, s6, s10, such as s3 or the second-order resonant
terms s12, s13.

We start with the terms which vanish identically, namely
s1, s5, s9: Due to the skew symmetry of Λ, we immediately have

s1 = s5 = s9 = 0.

For the terms which have an ε2 in front, we proceed as follows and find:
s4, s8, s14: Using Lemma 9.1, the Cauchy–Schwarz inequality and a ≤ 1 + a2 in the last term in ˜Hr, ˜Hc

and ˜Hc, respectively, yields

|sj | ≤ C1ε
2‖W‖2Hs + C2(M)ε˜β+1/2‖W‖3Hs + C3ε

2(1 + ‖W‖2Hs),

for j = 4, 8, 14 using the notation from Lemma 9.1.
Next we go on with the rest of the Wr-equation.

s2: is the good term in the Wr-equation. There is a σ > 0 independent of 0 < ε2 � 1 such that

2Re(s2) = 2Re((Wr,ΓWr)s ≤ −α(η)ε(Wr,Wr)s.

We have α(η) → ∞ for η → ∞, cf. (26).
s3: is the dangerous term in the Wr-equation which, however, can be estimated by the s2-term. For the
s3-term, we have

|s3| = |(Wr, εEr
˜Lc(Wr))s| ≤ Cs3ε(Wr,Wr)s

for a constant Cs3 = Cs3(ψ) independent of 0 < ε2 � 1.
Next we go on with the rest of the Wn-equation.

s6: is the good term in the Wn-equation. However, for our purposes it is sufficient to have 2Re(s6) ≤ 0.
s7: comes from the totally resonant terms. In Fourier space, we have to control terms of the form

ε

∫

R

∫

R

∫

R

̂Wn(k)iϑ(k)ρ(k)
(

âj1(k − m)â−j1(m − l)ϑ−1(l)̂Wn(l)
)

dmdldk

+ε

∫

R

∫

R

∫

R

̂Wn(k)iϑ(k)ρ(k)
(

âj1(k − m)â−j1(m − l)ϑ−1(l)̂Wn(l)
)

dmdldk

= ε

∫

R

∫

R

∫

R

̂Wn(k)iϑ(k)ρ(k)
(

âj1(k − m)â−j1(m − l)ϑ−1(l)̂Wn(l)
)

dmdldk

+ε

∫

R

∫

R

∫

R

̂Wn(l)iϑ(l)ρ(l)
(

âj1(l − m)â−j1(m − k)ϑ−1(k)̂Wn(k)
)

dmdkdl

= ε

∫

R

∫

R

̂Wn(k)
(

Q(k, k − l, l)̂Wn(l)
)

dkdl,
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with

Q(k, k − l, l) =
∫

R

iϑ(k)ρ(k)âj1(k − m)â−j1(m − l)ϑ−1(l)

+iϑ(l)ρ(l)âj1(l − m)â−j1(m − k)ϑ−1(k)dm

=
∫

R

iϑ(k)ρ(k)âj1(k − m)â−j1(m − l)ϑ−1(l)

+iϑ(l)ρ(l)âj1(k − m)â−j1(m − l)ϑ−1(k)dm

= �1(k, l)
∫

R

âj1(k − m)â−j1(m − l)dm,

with

�1(k, l) = (iϑ(k)ρ(k)ϑ−1(l) − iϑ(l)ρ(l)ϑ−1(k)),

and where we used that the product aj1a−j1 is real. We have that (k, l) 	→ �1(k, l) is smooth and satisfies
�1(k, k) = 0 such that finally |�1(k, l)| ≤ C|k−l|. Since

∫

R

âj1(k−m)â−j1(m−l)dm is strongly concentrated

at k − l = 0, we gain another power of ε. In detail, we estimate

ε|
∫

R

∫

R

̂Wn(k)
(

Q(k, k − l, l)̂Wn(l)
)

dkdl|

≤ ε

∫

R

∫

R

|̂Wn(k)||O(k − l)
∫

R

âj1(k − m)â−j1(m − l)dm||̂Wn(l)
)

|dkdl

≤ ε‖̂Wn‖L2‖O(k − l)
∫

R

âj1(k − m)â−j1(m − l)dm‖L1(d(k−l))‖̂Wn‖L2

due to the Cauchy–Schwarz inequality and Young’s inequality for convolutions, such that finally

s7 = O(ε2).

Finally we come to the remaining terms of the Wc-equation.
s11: The totally resonant terms s11 are handled line for line as the totally resonant terms s7, and so, we
also have

s11 = O(ε2).

s10: is the good term which allows us to handle the second-order resonant terms. We have

2Re(s10) = 2Re(Wc,ΓWc)s ≤ −ηε(Γ1/2Wc,Γ1/2Wc)s.

s12, s13: In the following, Wc,1 denotes the part of Wc located at k = 1 and Wc,−1 the part of Wc located
at k = −1. Then the second-order resonant terms are written as

˜B3,4(a−1, a−1,Wc,1) = ρ
˜

˜B3,4(a−1, a−1,Wc,1)

and estimated by

|s12| + |s13| ≤ C|(Wc.−1, ε ˜B3(a−1, a−1,Wc,1))s| + C|(Wc,1, ε ˜B4(a1, a1,Wc,−1))s|

≤ Cε‖ρ1/2Wc,−1‖Hs‖ρ1/2 ˜

˜B3(a−1, a−1,Wc,1)‖Hs

+Cε‖ρ1/2Wc,1‖Hs‖ρ1/2 ˜

˜B4(a1, a1,Wc,−1)‖Hs .
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The term ‖ρ1/2 ˜

˜B4(a1, a1,Wc,−1)‖2L2 is in Fourier space of the form
∫ ∫ ∫

|ρ1/2(k)â1(k − l)â1(l − m)̂Wc,−1(m)|2dmdldk ≤ s15 + s16,

with

s15 =
∫ ∫ ∫

|(ρ(k) − ρ(m + 2))||â1(k − l)â1(l − m)̂Wc,−1(m)|2dmdldk,

s16 =
∫ ∫ ∫

|â1(k − l)â1(l − m)|2|ρ(m + 2)||̂Wc,−1(m)|2dmdldk.

We use that

ρ(k) − ρ(m + 2) = ρ(m + 2 + k − m − 2) − ρ(m + 2) = O(|k − m − 2|),
that

∫

â1(k − l)â1(l − m)dl is strongly concentrated at k − m ≈ 2 and Young’s inequality to obtain a
bound

s15 ≤ Cε‖Wc,−1‖2.
Less complicated is the bound

s16 ≤ C‖Γ1/2Wc,−1‖2

since ρ(m + 2) = O(|m + 1|). Thus, we finally obtain

|s12| + |s13| ≤ Cε(Γ1/2Wc,Γ1/2Wc)s + Cε3/2‖Γ1/2Wc‖Hs‖Wc‖Hs

≤ 2Cε(Γ1/2Wc,Γ1/2Wc)s + Cε2‖Wc‖2Hs

≤ Cψε(Γ1/2Wc,Γ1/2Wc)s + C1ε
2‖Wc‖2Hs

where we used ε3/2ab ≤ εa2+ε2b2. This defines the constant Cψ and we may increase the original constant
C1.
Summary: Collecting all estimates gives for

Es = (Wr,Wr)s + (Wn,Wn)s + (Wc,Wc)s

that

∂tEs ≤ 2Re(s2) + 2|s3| + 2|s4| + 2Re(s7) + 2|s8|
+2Re(s10) + 2Re(s11) + 2|s12| + 2|s13| + 2|s14|

≤ −α(η)ε(Wr,Wr)s + Cs3ε(Wr,Wr)s

−ηε(Γ1/2Wc,Γ1/2Wc)s + Cψε(Γ1/2Wc,Γ1/2Wc)s

+2C1ε
2Es + C2(M)ε˜β+1/2E3/2

s + C3ε
2(1 + Es).

The third and fourth line can be made negative by choosing η sufficiently large, but independent of the
small perturbation parameter 0 < ε � 1 such that we finally have

∂tEs ≤ 2C1ε
2Es + C2(M)ε˜β+1/2E3/2

s + C3ε
2(1 + Es).

Choosing C2(M)ε˜β−3/2E
1/2
s ≤ 1 yields

∂tEs ≤ (2C1 + C3 + 1)ε2Es + C3ε
2. (27)

Applying Gronwall’s inequality yields for all t ∈ [0, T1/ε2] that

Es(t) ≤ C3T1e
(2C1+C3+1)T1 =: M2

independent of ε ∈ (0, ε0) where ε0 > 0 had to be chosen so small that C2(M)ε˜β−3/2M ≤ 1. Therefore,
we are done. �
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10. Discussion

In this section, we make a number of remarks about possible improvements and generalizations.

Remark 10.1. For an arbitrary, but fixed, ˜β > 3/2, the improved approximation can be constructed in
such a way that the residual term ε−˜βRes(ε1/2ψ) is of order O(ε2), cf. “Appendix A.” Hence, the error
made by this higher-order approximation is of order O(ε˜β) in some Sobolev norm.

Remark 10.2. It is obvious by the proof that the assumption on the solutions of the DNLS equation (5),
namely A ∈ C([0, T0], GsA

σ0
), can be replaced by the weaker assumption that we take a solution constructed

in Theorem 5.1 with s = sA, σA = σ0 and A(T ) ∈ Gs
σ(T ) with σ(T ) = σ0 − ηT .

Remark 10.3. From (17) to (20), we have eliminated all terms of order O(ε) except for the totally resonant
ones. This is not necessary since finally εEr

˜Lc(Wr) appears in an equation where Wr is exponentially
damped. Hence, other terms can be kept and other resonances can be handled as long as they are bounded
away from odd integer multiples of the basic wave number k0 = 1. This follows line for line as in [5].
Obviously our approach breaks down if a resonance falls on an integer multiple of the basic wave number
k0.

Remark 10.4. We have demonstrated that the DNLS approximation makes correct predictions about the
dynamics of our chosen nonlinear Klein–Gordon equation (4). The question about possible generalizations
and about the possible transfer to more complicated systems occurs. First of all, we would like to mention
that the problems with the total resonance and the second-order resonance occur for all non-trivial systems
for which the DNLS approximation can be derived. On the one hand, with this respect our system is not
more complicated than necessary. On the other hand, the chosen nonlinear Klein–Gordon equation (4) is
sufficiently complicated to contain all principle difficulties which have to be overcome.

Remark 10.5. Other additional difficulties one could think of have been handled in our situation before.
For instance, quadratic terms in the original systems can be eliminated completely with a normal form
transform for Klein–Gordon models. For other more complicated original systems, additional quadratic or
quartic resonances can occur. It is not obvious how existing methods to handle such resonances interplay
with the presented approach of this paper. The same is true for quasilinear systems such as the water
wave problem. This will be the topic of future research.

Remark 10.6. It is the topic of parallel research to prove a DNLS approximation result for initial con-
ditions which are not analytic in a strip of the complex plane but only live in a Sobolev space. In this
case, the totally resonant terms have to be handled with energy estimates again. New ideas are needed
to handle the second-order resonant terms. Moreover, all other terms of order O(ε) in the error Eq. (10)
have to be eliminated by normal form transformations, i.e., no other resonances can be allowed. This is
different to the situation in this paper where additional resonances bounded away from integer multiples
of the basic wave number k0 = 1 can be allowed due to the exponential smallness of these modes initially,
cf. Remark 10.3.
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A. Higher-order DNLS approximation and estimates for the residual

In the previous sections, we concentrated on estimating the error made by a DNLS approximation. In
order to do so, we used an improved approximation introduced in (9) with the property that the residual
term ε−˜βRes(ε1/2ψ) is of order O(ε2) in the equations for the error (10). Since similar constructions can
be found in several papers, cf. [24], we took this part out of the line of proof. Nevertheless, we will provide
a few details in this appendix.

First we show how to construct an higher-order approximation. We define the residual

Resu(u) = −∂2
t u + ∂2

xu − u + �(∂x)u3 (28)

for the nonlinear Klein–Gordon equation (4). For the computation of a higher-order approximation, we
need a Taylor expansion of

�(ik) =
k2 − 1
k2 + 1

, resp. �(∂x) = −(1 − ∂2
x)−1(1 + ∂2

x)

at k0 = 1 and at other odd integer multiples of k0 = 1. We find, for instance,

�(i + ε∂X) = −iε∂X +
1
2
ε2∂2

X +
1
4
ε4∂4

X +
1
4
iε5∂5

X +
1
8
ε6∂6

X + O(ε7).

The improved ansatz is given

ε1/2ψu(x, t) =
∑

n∈Nodd,|n|≤N

N
∑

j=0

εp(n)+jAn,j(X,T )En

= ε1/2A1,0(X,T )E + ε3/2A1,1(X,T )E + ε3/2A3,0(X,T )E3 + c.c. + h.o.t.,

with E = ei(k0x−ω0t), X = ε(x − cgt), T = ε2t, and p(n) = (||n| − 1| + 1)/2, with a fixed chosen N ∈ N.
For expository reasons, we restrict ourselves in the following to the three terms explicitly displayed in
the ansatz. They represent the three essential types of approximation equations which occur.

Plugging the ansatz into (28) and equating the coefficients in front of E to zero give as before the
linear dispersion relation ω2

0 = k2
0 + 1 at O(ε1/2) and the linear group velocity cg = k0/ω0 at O(ε3/2). At

O(ε5/2), we again obtain the DNLS equation

− 2iω0∂T A1,0 = (1 − c2g)∂
2
XA1,0 − 3i∂X(A1,0|A1,0|2). (29)

At O(ε7/2), we obtain the equation for A1,1, namely

−2iω0∂T A1,1 = (1 − c2g)∂
2
XA1,1 − 6i∂X(A1,1|A1,0|2) − 3i∂X((A1,0)2A−1,1)

+
3
2
∂2

X(A1,0|A1,0|2).

This is a linearized DNLS equation with some inhomogeneity. All A1,j for j ≥ 2 satisfy linearized DNLS
equations with inhomogeneities, too, whose solutions exist in Gevrey spaces as long as the solutions of
the DNLS equation (29) do exist.

http://creativecommons.org/licenses/by/4.0/
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Equating the coefficients in front of E3 to zero gives the determining approximation equation for A3,0

at O(ε3/2), namely

−9ω2
0A3,0 = −9k2

0A3,0 − A3,0 + �(3i)(A1,0)3

which can be solved w.r.t. A3,0 since 9ω2
0 − 9k2

0 − 1 �= 0. All An,j with |n| ≥ 3 satisfy algebraic equations
which are linear in the An,j with a nonvanishing coefficient in front. Again the solutions exist in Gevrey
spaces as long as the solutions of the DNLS equation (29) do exist.

The set of equations is structured in such a way that they can be solved one after the other. Therefore,
more and more terms cancel in the residual, and so, the residual Resu can be made of order O(ε˜β+2).

The approximation for the first-order system (8) is obtained by first setting

̂ψu1 = ̂ψu, ̂ψu2(k, t) = (−iω(k))−1∂t
̂ψu1(k, t)

and then by setting

2 ̂ψv−1 = ̂ψu1 + ̂ψu2 , 2 ̂ψv1 = ̂ψu1 − ̂ψu2 ,
̂ψ = ( ̂ψv−1 ,

̂ψv1).

From

ψu1 = ψu = ε1/2A1,0(X,T )E + c.c. + O(ε3/2),

using ω(1 + εK) = ω0 + O(ε), we find

ψu2 = (−iω(k))−1(−iω0)ε1/2A1,0(X,T )E + c.c. + O(ε3/2)

= ε1/2A1,0(X,T )E + c.c. + O(ε3/2),

and so

ε1/2ψ =
(

2ε1/2A1,0(X,T )E + 2ε1/2ε1/2A−1,0(X,T )E−1 + ε3/2ψs,−1

ε3/2ψs,1

)

, (30)

which defines the aj in (9).
Since in exactly the same way we obtain the residual term ε−˜βRes(ε1/2ψ) in the equations for the

error (10) from Resu(ε1/2ψu), we find

sup
t∈[0,T1/ε2]

‖ε−˜βRes(ε1/2ψ)‖Ms
β(t)

≤ Cε2

for the term in (10) as stated in Corollary 8.2. Moreover, we have

sup
t∈[0,T1/ε2]

‖ε1/2ψ‖Ws
β(t)

≤ Cε1/2.

More details can be added following the existing literature about the validity of the NLS approximation,
cf. [24] for an overview.

References

[1] Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform, vol. 4. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia (1981)

[2] Bridges, T.J., Kostianko, A., Schneider, G.: A proof of validity for multiphase Whitham modulation theory. Proc. R.
Soc. Lond. A Math. Phys. Eng. Sci. 476(2243), 19 (2020)

[3] Colliander, J.E., Keel, M., Staffilani, G., Takaoka, H., Tao, T.C.: A refined global well-posedness result for Schrödinger
equations with derivative. SIAM J. Math. Anal. 34(1), 64–86 (2002)

[4] Duell, W.-P., Heß, M.: Existence of long time solutions and validity of the nonlinear Schrödinger approximation for a
quasilinear dispersive equation. J. Differ. Equ. 264(4), 2598–2632 (2018)

[5] Duell, W.-P., Hermann, A., Schneider, G., Zimmermann, D.: Justification of the 2D NLS equation for a fourth order
nonlinear wave equation—quadratic resonances do not matter much in case of analytic initial conditions. J. Math. Anal.
Appl. 436(2), 847–867 (2016)



224 Page 20 of 20 M. Heß and G. Schneider ZAMP

[6] Duell, W.-P., Schneider, G., Eugene Wayne, C.: Justification of the nonlinear Schrödinger equation for the evolution of
gravity driven 2D surface water waves in a canal of finite depth. Arch. Ration. Mech. Anal. 220(2), 543–602 (2016)

[7] Duell, W.-P.: Justification of the nonlinear Schrödinger approximation for a quasilinear Klein–Gordon equation. Com-
mun. Math. Phys. 355(3), 1189–1207 (2017)

[8] Duell, W.-P.: Validity of the nonlinear Schrödinger approximation for the two-dimensional water wave problem with
and without surface tension in the arc length formulation. Arch. Ration. Mech. Anal. 239(2), 831–914 (2021)

[9] Hayashi, N., Ozawa, T.: On the derivative nonlinear Schrödinger equation. Physica D 55(1–2), 14–36 (1992)
[10] Haas, T., Schneider, G.: Failure of the N -wave interaction approximation without imposing periodic boundary condi-

tions. ZAMM Z. Angew. Math. Mech. 100(6), e201900230 (2020)
[11] Ifrim, M., Tataru, D.: The NLS approximation for two dimensional deep gravity waves. Sci. China Math. 62(6), 1101–

1120 (2019)
[12] Jenkins, R., Liu, J., Perry, P., Sulem, C.: The derivative nonlinear Schrödinger equation: global well-posedness and

soliton resolution. Q. Appl. Math. 78(1), 33–73 (2020)
[13] Kalyakin, L.A.: Asymptotic decay of a one-dimensional wave-packet in a nonlinear dispersive medium. Math. USSR

Sb. 60(2), 457–483 (1988)
[14] Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58, 181–205

(1975)
[15] Katznelson, Y.: An Introduction to Harmonic Analysis. Cambridge University Press, Cambridge (2004)
[16] Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19, 798–801

(1978)
[17] Kano, T., Nishida, T.: A mathematical justification for Korteweg–de Vries equation and Boussinesq equation of water

surface waves. Osaka J. Math. 23, 389–413 (1986)
[18] Kirrmann, P., Schneider, G., Mielke, A.: The validity of modulation equations for extended systems with cubic nonlin-

earities. Proc. R. Soc. Edinb. Sect. A Math. 122(1–2), 85–91 (1992)
[19] Schneider, G.: Validity and limitation of the Newell–Whitehead equation. Math. Nachr. 176, 249–263 (1995)
[20] Schneider, G.: Limits for the Korteweg–de Vries-approximation. Z. Angew. Math. Mech. 76, 341–344 (1996)
[21] Schneider, G.: Justification of modulation equations for hyperbolic systems via normal forms. NoDEA Nonlinear Differ.

Equ. Appl. 5(1), 69–82 (1998)
[22] Schneider, G.: Justification and failure of the nonlinear Schrödinger equation in case of non-trivial quadratic resonances.

J. Differ. Equ. 216(2), 354–386 (2005)
[23] Schneider, G., Sunny, D.A., Zimmermann, D.: The NLS approximation makes wrong predictions for the water wave

problem in case of small surface tension and spatially periodic boundary conditions. J. Dyn. Differ. Equ. 27(3–4),
1077–1099 (2015)

[24] Schneider, G., Uecker, H.: Nonlinear PDEs. A Dynamical Systems Approach, vol. 182. American Mathematical Society
(AMS), Providence (2017)

[25] Takaoka, H.: Well-posedness for the one-dimensional nonlinear Schrödinger equation with the derivative nonlinearity.
Adv. Differ. Equ. 4(4), 561–580 (1999)

[26] Tsutsumi, M., Fukuda, I.: On solutions of the derivative nonlinear Schrödinger equation. Existence and uniqueness
theorem. Funkc. Ekvacioj Ser. Int. 23, 259–277 (1980)

[27] Totz, N., Sijue, W.: A rigorous justification of the modulation approximation to the 2D full water wave problem.
Commun. Math. Phys. 310(3), 817–883 (2012)

[28] Eugene Wayne, C., Cummings, P.: Modified energy functionals and the NLS approximation. Discrete Contin. Dyn.
Syst. 37(3), 1295–1321 (2017)

[29] Yifei, W., Guo, Z.: Global well-posedness for the derivative nonlinear Schrödinger equation in H
1
2 (R). Discrete Contin.

Dyn. Syst. 37(1), 257–264 (2017)
[30] Yifei, W.: Global well-posedness on the derivative nonlinear Schrödinger equation. Anal. PDE 8(5), 1101–1112 (2015)

Max Heß and Guido Schneider
Institut für Analysis, Dynamik und Modellierung
Universität Stuttgart
Pfaffenwaldring 57
70569 Stuttgart
Germany
e-mail: guido.schneider@mathematik.uni-stuttgart.de

(Received: September 30, 2022; revised: September 1, 2023; accepted: September 18, 2023)


	A robust way to justify the derivative NLS approximation
	Abstract
	1. Introduction
	2. Plan of the paper
	3. Equations for the error
	4. Normal form transformations and the resonance structure
	5. The DNLS equation in Gevrey spaces
	6. Modulational Gevrey spaces
	7. Separation of the modes
	8. The normal form transform
	9. The final error estimates
	10. Discussion
	Acknowledgements
	A. Higher-order DNLS approximation and estimates for the residual
	References




