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Abstract. The frozen-planet periodic orbit of the classical collinear Helium model with negative energy is shown to exist by
a simple shooting argument. This simplifies the approach established in Cieliebak et al. (Ann Inst H Poincaré Anal Non

Linéaire 40:379–455, 2022). With this argument, it also follows that the algebraic count of the number of such orbits with
a given negative energy is 1, as recently established in Cieliebak et al. (Nondegeneracy and integral count of frozen-planet
orbits in helium, 2022. arXiv:2209.12634). The same argument also leads to the existence of other collinear periodic orbits
of the classical collinear Helium model.
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1. Introduction

In the classical description, the Helium is modeled as a charged three-particle problem with a nucleus
composed with two protons and two nucleons, together with two moving electrons. The nucleus, with
charge + 2, is much heavier than the electrons, and is considered to be fixed in the space. The two electrons
q1, q2 are moving and both have charge − 1. In this problem, the masses of the microscopic particles are
much smaller as compared to their charges, and therefore will be neglected when appropriate.

Special collinear periodic orbits, along which all the particles move on a fixed line, play important
role in the understanding of the Helium model in the semiclassical theory of quantum mechanics. The
physicists have studied their existence and dynamical properties numerically. For all of these, we refer to
the physical references [1,2] for more details. These studies give rise to interesting mathematical questions
which should be further rigorously investigated. Note that due to the collinearity and the presence of
attractive forces, in this note periodic orbits are understood so that double collisions are allowed and are
regularized.

We now consider the collinear Helium model and identify the ambient line with R while putting the
nucleus at 0. The electrons have positions q1, q2 ∈ R (Fig. 1).

According to whether both electra lie on the same side of the nucleus or not, there are two regimes
to be considered:

1. (Zee) Both electrons lie on the same side of the nucleus. We assume in this case 0 < q1 < q2.
2. (eZe) The lie on the different sides of the nucleus. We assume in this case q1 < 0 < q2.

The aim of this note is to explain how shooting argument can provide us the existence of various
types of periodic orbits in these regimes. In the (Zee) regime, the existence of frozen-planet orbits has
been recently established in [3] with an involved non-local analysis argument. In Sect. 2, we provide an
alternative proof of this existence. In Sect. 3, we explain how the same method leads in a rather simple
way the existence of plenty of periodic orbits in the (eZe) regime.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-023-02120-8&domain=pdf
http://arxiv.org/abs/2209.12634
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Fig. 1. The (Zee) and (eZe) regimes

2. (Zee): The frozen-planet orbits

In the (Zee)-regime, the Hamiltonian of the system is given by

H(p1, p2, q1, q2) =
p21
2

+
p22
2

− 2
q1

− 2
q2

+
1

q2 − q1
,

which is defined on the exact symplectic manifold

(T ∗Q,λ = p1dq1 + p2dq2)

in which

Q := {(q1, q2) ∈ R
2, q1 > q2 > 0}.

To allow an analysis of collisional orbits in this model, we regularize the collisions of q1 with q0 = 0
by the usual Levi-Civita regularization [4] restricted to a line, performed on the energy level {H = E}.
See also [5].

This means to pull-back the time-reparametrized system on {H − E = 0} given by the Hamiltonian
q1(H − E) by the mapping

(z1, w1, q2, p2) �→ (q1 = z21 , p1 = w1/(2z1), q2, p2).

This procedure leads to the following regularized system with Hamiltonian

K(w1, p2, z1, q2) =
w2

1

8
+

z21p
2
2

2
+ z21

(
−E − 2

q2
+

1
q2 − z21

)
− 2 = 0, (1)

which can now be extended to define on the exact symplectic manifold

(T ∗Q̃, λ = w1dz1 + p2dq2)

in which

Q̃ := {(z1, q2) ∈ R
2, q2 > z21}.

The exact symplectic manifold T ∗Q̃ is equipped with two commuting anti-symplectic involutions

ρ1 := (z1, w1, p2, q2) �→ (−z1, w1,−p2, q2)

and

ρ2 : (z1, w1, p2, q2) �→ (z1,−w1,−p2, q2).

The invariant loci of these two anti-symplectic involutions are, respectively,
• L1 := {z1 = 0, p2 = 0}, which is an exact Lagrangian submanifold and corresponds to the status

that the inner electron is at a collision with the nucleus while the outer electron brakes (having zero
velocity); and
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• L2 := {w1 = 0, p2 = 0}, which is also an exact Lagrangian submanifold and corresponds to the
status that both electrons brake.

Note that since points with (z1, w1) = (0, 0) cannot lie in {K = 0}, we have

L1 ∩ L2 ∩ {K = 0} = ∅.

Now we switch back to the original, non-regularized problem and consider an orbit γ(t), t ∈ [0, τ) such
that

p1(0) = 0, lim
t→τ−0

q1(t) = 0, p2(0) = 0, lim
t→τ−0

p2(t) = 0, q2([0, τ ]) > 0.

The time t refers to the original time variable. Along such an orbit, the inner electron q1 moves with
initial velocity zero and tends to collide with the nucleus at 0 at time instant t = τ , while there is no
collision of q1 with 0 in the time interval [0, τ). The outer electron q2 moves with zero initial velocity and
brakes again at time instant t = τ .

By the above regularization procedure, such an orbit is lifted and extended to an orbit chord γ̃
connecting L2 to L1 in the regularized system in {K = 0}. It follows from the Hamiltonian equations
associated to K, that there hold

w1(0) = 0, z1(0) �= 0, q2(0) > z1(0)2, p2(0) = 0,
w′

1(0) �= 0, z′
1(0) = 0, q′

2(0) = 0

at L2, and

z1(τ) = 0, w1(τ) = 4, q2(τ) > 0, p2(τ) = 0,
z′
1(τ) �= 0, w′

1(τ) = 0, q′
2(τ) = 0, p′

2(τ) = 0

at L1. We have used ′ to denote the time derivative with respect to the regularized time s, related to the
original time by the relationship

dt = z21(s)ds.

We equip T ∗Q̃ with its standard Euclidean structure. Then one readily sees that the velocities of the
orbit chord γ̃ are orthogonal to L1 and L2 at its end points, respectively. They are reflected, respectively,
by ρ1 and ρ2 again to vectors which are orthogonal to L1 and L2. Therefore, after reflecting the chord
γ̃ under ρ1, ρ2 and ρ1 ◦ ρ2 and patching these chords, we get from γ̃ a periodic orbit of the regularized
system. Along such a periodic orbit, q1 collides and bounces at the nucleus 0, then move away from the
nucleus until it brakes and move again toward the nucleus, while q2 librates far-away from the nucleus. A
periodic orbit of this kind is called a frozen-planet orbit of Helium [1], [2]. The reason for this terminology
is that in observation the libration of q2 is insignificant as compared to the motion of q1, and appear to
be somehow frozen in a region far-away from the nucleus (Fig. 2).

The following theorem on the existence of a frozen-planet orbit has been recently established in [3]
using intensive techniques of calculus of variations and non-local analysis:

Theorem 2.1. There exists a frozen-planet orbit for any negative energy E.

Here we provide an alternative, elementary proof based on the shooting argument.

Proof. We use a shooting argument to show the existence of a γ(t), t ∈ [0, τ) in the initial system such
that

p1(0) = 0, lim
t→τ−0

q1(t) = 0, p2(0) = 0, lim
t→τ−0

p2(t) = 0.

The conclusion then follows from the previous discussions.
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Fig. 2. Motion along a frozen-planet orbit

Fig. 3. An illustration for the shooting argument

The equations of the motion which we shall use for our analysis are

q̈1 = − 2
q21

− 1
(q2 − q1)2

,

q̈2 = − 2
q22

+
1

(q2 − q1)2
.

(2)

The right-hand side of the last equation is the force on q2, whose sign depends on the ratio q1/q2. In
particular, it follows from this equation that q̈2 < 0 when q1/q2 < 2 +

√
2.

By normalization, we set

q1(0) = 1, q2(0) = x.

We call a frozen-planet orbit with this normalization a normalized frozen-planet orbit.
We release q1, q2 with this initial configuration, with zero initial velocities, so q̇1(0) = q̇2(0) = 0. In

the Hamiltonian formalism, this corresponds to the condition p1(0) = p2(0) = 0 (Fig. 3).
The force on q1 is composed of two parts, namely the attraction from the nucleus and the repulsion

from q2. Now by ignoring the force from q2 on q1, we get that τ is smaller than the (first) collision time
of q1 with 0 when it is only attracted by the nucleus at 0. By the theory of the Kepler problem, it is not
hard to make a precise computation, but it is enough for us to know from this standard theory that this
latter quantity is finite. Consequently we obtain τ < ∞.

Alternatively, this finiteness τ < ∞ follows directly from the fact that in the time interval [0, τ) we
always have q̈1(t) < 0, thus the particle q1 moves monotonically from 1 to 0. Consequently the velocity
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q̇1(t) < 0 and |q̇1(t)| increases with time and tends to infinity when t → τ − 0, i.e., when q1 moves toward
the nucleus.

Now τ is determined implicitly by the equation
τ∫

0

(−q̇1(t))dt = 1.

In the regularized system, the corresponding equation reads
S∫

0

(−z′
1(s))ds = 1, (3)

with

τ =

S∫
0

z1(s)2ds (4)

and s = S corresponds to t = τ. We have used ′ to denote the derivative with respect to τ .
By continuous dependence of solutions of ODE on parameters, z1(s) depends continuously on E.

Moreover, z′
1(s) remains finite, with norm bounded from below when s is close to S in the regularized

system. It thus follows from (3) that S depends also continuously on E. Consequently by (4), τ depends
continuously on E as well. Consequently, we obtain that the mapping

R → R, E �→ q̇2(τ(E))

is continuous.
Since the initial velocities are zero, the energy is related to the normalized initial configuration by the

relation

E = − 2
x

− 2 +
1

x − 1
. (5)

Thus,
dE

dx
=

2
x2

− 1
(x − 1)2

. (6)

From (6), we deduce that the monotonicity of E with respect to x changes at the critical point

x = q∗
2 := 2 +

√
2: we obtain

dE

dx
< 0 when 1 < x < q∗

2 and
dE

dx
> 0 when x > q∗

2 .
When x > q∗

2 , the combined force on q2 attracts it toward the nucleus. Moreover, since 0 < q1 < q2,
the force on q1 is always stronger than the force on q2, so there holds

q̇1(t) < q̇2(t) < 0, t ∈ (0, τ).

So when q1 reaches the position 1−δ, δ ∈ (0, 1) we have at the same instant q2 ∈ (x−δ, x). By considering
the ratio q1/q2 when q1 = 1 − δ, δ ∈ (0, 1), we obtain that in the time interval (0, τ) there holds

q1
q2

<
1 − δ

x − δ
<

1 − δ

2 +
√

2 − δ
<

1
2 +

√
2
,

which combined with (2) thus leads to

q̈2(t) < 0, t ∈ (0, τ).

We thus get that no triple collision happens in the time interval [0, τ ], and q̇2(τ) < 0.
It can be shown that q̇2(τ) > 0 when x is sufficiently close to 1, corresponding to the case that E is

sufficiently large. We shall not discuss this and defer the discussion to Proposition 2.2 as we aim to show
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the existence of an orbit with negative energy E. For this purpose, we now consider the case E = 0 and
we aim to show that q̇2(τ) > 0 in this case.

When E = 0, we have in this case1

x = (1 +
√

17)/4 ≈ 1.2808 < q∗
2 .

We observe from the equations of motion (2) that there always holds

|q̈1(t)| > |q̈2(t)|
and thus

|q̇1(t)| > |q̇2(t)|
for t ∈ [0, τ).

The initial acceleration of q1 is

q̈1(0) = − 1
(x − 1)2

− 2
x2

≈ −13.902.

The initial acceleration of q2

q̈2(0) =
1

(x − 1)2
− 2

x2
≈ 11.464.

Since |q̈1(t)| > |q̈2(t)|, in the time interval [0, τ), when q1 moves from 1 to 1−σ, σ ∈ (0, 1), the particle
q2 will not reach the point x + σ, i.e., will stay in the interval (1 − σ, x + σ).

We consider the following function describing the force on q2:

F (q2, q1) := − 2
q22

+
1

(q2 − q1)2
.

As long as q1 < q2, this function is monotonically increasing in the q1 variable. Its partial derivative with
respect to q2 is

∂F (q2, q1)
∂q2

=
4
q32

− 2
(q2 − q1)3

which is negative, so F (q2, q1) is monotonically decreasing in the q2-variable, as long as

1 < q2/q1 < 22/3 + 21/3 + 2 ≈ 4.8473.

Thus, for q2 ∈ (1 − σ, x + σ) with
x + σ

1 − σ
< 22/3 + 21/3 + 2

there holds

F (q2, 1 − σ) > F (x + σ, 1 − σ).

The equation

F (x + σ, 1 − σ) = 0

has only one real root at

σ0 = −3
√

17
28

+
13
28

+
5
√

2
28

+
√

34
28

≈ 0.48332.

Consequently, we have

F (q2, q1) ≥ 0

1In this argument, we shall need to compute numerical values of quantities, which can be done with a standard
calculator or a scientific computation software.
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till q1 to move from 1 to the position 1 − σ0 ≈ 0.51668: This follows from the estimates
q2
q1

<
x + σ

1 − σ
≤ x + σ0

1 − σ0
≈ 3.4141 < 22/3 + 21/3 + 2 ≈ 4.8473,

and thus

F (q2, q1) ≥ F (q2, 1 − σ0) ≥ F (x + σ0, 1 − σ0) ≥ 0. (7)

Therefore, the velocity q̇2(t) does not decrease, and therefore q2 keeps moving away from the nucleus
before q1 reaches the position 1 − σ0 ≈ 0.51668.

We now estimate the velocity q̇2 at the instant t1 ∈ (0, τ) that q1 reaches the position 0.9. The
acceleration of q1 is given by

q̈1(t) = − 2
q1(t)2

− 1
(q2(t) − q1(t))2

.

In the time interval [0, t1], we have that q̇1(t) < 0 and q̇2(t) − q̇1(t) > 0. Thus, when q1 moves from 1 to
0.9, we have

|q̈1(t)| ≤ 2
0.92

+
1

(x − 1)2
≈ 15.152.

From the relationship among travel distance, velocity and acceleration of a particle we get
t1∫
0

t∫
0

q̈(t̃) dt̃dt = −0.1,

we have now
t1∫
0

(
2

0.92
+

1
(x − 1)2

)
tdt ≥ 0.1.

The positive solution t∗1 of the equation(
2

0.92
+

1
(x − 1)2

)
· t2

2
= 0.1

is thus a lower bound for t1. Solving the above equation, we get

t1 ≥ t∗1 :=
9
√

10
√(

13 − 3
√

17
) (

406 − 75
√

17
)

8120 − 1500
√

17
≈ 0.11491.

Next we have that by (7), when q1 moves from 1 to 0.9, a lower bound for q̈2(t) is given by

F (x + 0.1, 0.9) = −2

(
7
20

+
√

17
4

)−2

+

(
−11

20
+

√
17
4

)−2

≈ 3.2768.

Therefore, we have that the velocity

q̇2(t1) =

t1∫
0

q̈2(t)dt

has the lower bound

t∗1 · F (x + 0.1, 0.9) ≈ 0.37653.

Now since q̇2 does not decrease till q1 reach 1 − σ0, this lower bound for q̇2(t1) is also a lower bound
for q̇2(τ ′) at the instant τ ′ that q1 reaches the position 1 − σ0.
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We check now how much at most can q̇2 decrease till the instant τ when q1 collides with the nucleus.
For this purpose, we first estimate τ − τ ′. This elapsed time has an upper bound, which is the elapsed
time of q1 from 1 − σ0 to 0 in the Coulomb system

q̈1 = − 2
q21

,

which describes the motion of q1 with the pure Coulomb attraction from the nucleus, while the repulsion
from q2 is dropped.

In this pure Coulomb problem, q̈1 is negative and decreases in the time interval t ∈ [0, τ), as well as
the velocity q̇1. This means q1 travels faster and faster toward the nucleus. Therefore, this elapsed time

has a (rather loose) upper bound (1 − τ0)T for T =
√

6π

12
the half-period of the pure Coulomb motion.

This upper bound is approximately 0.33133.
We now derive a lower bound for q̈2(t) in the time interval [τ ′, τ). We assume that q̇2 changes sign,

and reaches the point 1 for the first time at the time instant τ ′′ ∈ (τ ′, τ ]. Then for t ∈ [τ ′, τ ′′], we have
q2(t) ≥ 1, and

q̈2(t) ≥ − 1
q22(t)

≥ −1,

which is obtained by comparing with the situation that q1 stays colliding with the nucleus. The velocity
q̇2 has to be zero at the instant of brake τb, which by assumption is in the time interval (τ ′, τ ′′). Thus,
we have the estimation

q̇2(t) ≥ −1 · (1 − σ0)T ≈ −0.33133, t ∈ [τb, τ
′′].

But then in the time interval [τb, τ
′′), the particle q2 can travel in the negative direction at most for

a distance of (1 − σ0)2T 2 ≈ 0.10978. On the other hand, it has to travel at least from x to 1, which
has distance (x − 1) ≈ 0.28080. Contradiction. So whenever q2 changes its direction of motion or not, it
cannot reach the point 1 in the time interval (0, τ ], and thus the estimate

q̈2 ≥ −1

holds in the time interval [τ ′, τ).
We then have

q̇2(t) ≥ q̇2(t1) − (1 − σ0) · T ≈ 0.04520 > 0, t ∈ [t1, τ ].

Consequently, when E = 0, the particle q2 does not change its direction of motion in the time interval
(0, τ) and thus q̇2(τ) > 0.

Previously we have shown that when x > q∗
2 , we have q̇2(τ) < 0. Thus by continuity, there exists an

x in the interval ((1 +
√

17)/4, q∗
2 ] such that the corresponding orbit has q̇2(τ) = 0, and thus gives rise

to a normalized frozen-planet orbit. Moreover, this orbit has negative energy, as it follows from (5) that
E < 0 for any x ∈ ((1 +

√
17)/4, q∗

2 ].
Finally, it is classically known that the system has a rescaling symmetry: If q(t) = (q1(t), q2(t)) is a

solution of the system with energy E, then λ2q(λ−3t) is also a solution, now with energy λ−2E. With
this observation, we conclude that there exists a frozen-planet orbit with any negative energy. �

The following result has been deduced in [6], for which we also provide a short proof.

Proposition 2.2. For any negative energy E, the algebraic count of the number of frozen-planet orbit is 1.

Proof. We continue with the previous proof, and consider the case that x is sufficiently close to 1, with
x = 1 + ν for ν > 0 small. This corresponds to the case that E >> 0 is large by (5). We consider the
motion of q2 which move away from the position x.

Remind that the system can be rescaled and if q(t) = (q1(t), q2(t)) is a solution with velocity q̇(t) =
(q̇1(t), q̇2(t)), so is λ2q(λ−3t) with velocity λ−1q(λ−3t).
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We rescale the system by the factor 1/ν, and consider the motion from the initial condition

q2(0) − q1(0) = 1, q̇2(0) = q̇1(0) = 0.

Note that now the nucleus is at the distance 1/ν to q1(0). For the motion of q2 before its first break time,
it follows from (2) that q̈2(t) is bounded in the interval[

− 2
(1 + 1/ν)2

+
1

(q2(t) − q1(t))2
,

1
(q2(t) − q1(t))2

)
.

So provided ν is sufficiently small, the motions of q1 and q2 are O(ν2)-perturbations of their repulsive
two-body motions on a fixed time interval. Consequently, we have q̇2(t) > 0 for t ∈ (0, 1] for ν sufficiently
small. We set v2 = q̇2(1) > 0.

Now we rescale back by setting λ = ν1/2. Then we get back to the initial conditions we first considered
in the proof of Theorem 2.1. With the rescaling we get that q̇2(t) > 0 for t ∈ (0, ν3/2] with q̇2(ν3/2) =
ν−1/2v2 ∼ ν−1/2. Therefore for ν sufficiently small, there is a time instant, namely ν3/2 on which q̇2 can
be arbitrarily large.

We estimate the force on q2 from the time instant ν3/2 till it breaks in a fairly rough way, as

F (q2, q1) := − 2
q22

+
1

(q2 − q1)2
≥ −2.

With this we conclude that the time that q2 does not break in the time interval [0, ν−1/2v2/2].
On the other hand, by ignoring the repulsion of q2 on q1 we conclude that the first collision time τ of

q1 is uniformly bounded by the half-period T of the pure Coulomb motion of q1 attracted by the nucleus
from 1 to 0. As this quantity is independent of ν we conclude that q̇2(τ) > 0 provided ν sufficiently small,
corresponding to the case that x is sufficiently close to 1.

Combined with the conclusion from the previous proof that q̇2(τ) < 0 when x is sufficiently large, we
get that the algebraic count of zeros of the function R �→ R, E �→ q̇2(τ) is 1. Thus, the algebraic count of
the frozen-planet orbit is 1 for any negative energy. �

3. (eZe) Various periodic orbits

The Hamiltonian of the system is now

H =
p21 + p22

2
+

2
q1

− 2
q2

+
1

q2 − q1
.

in which q1 < 0, q2 > 0.
On the energy level {H = E} a simultaneous regularization of non-simultaneous double collisions is

given by application of Levi-Civita regularizations to each of the particles: We set

q1 = −z21 , q2 = z22 , p1 = − w1

2z1
, p2 =

w2

2z2

in which one accounts the negativity of q1 for the choice of the transformation.
After a proper time change with the factor −q1q2, we get the Hamiltonian

−q1q2p
2
1 − q1q2p

2
2

2
− 2q2 + 2q1 − q1q2

q2 − q1
+ Eq1q2 = 0,

and further the regularized Hamiltonian

z22w
2
1 + z21w

2
2

8
− 2z22 − 2z21 +

z21z
2
2

z22 + z21
− Ez21z

2
2 = 0. (8)
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Note that the set of triple collisions {q1 = q2 = 0} is now transformed into {z1 = z2 = 0} which
remains singular. Only non-simultaneous double collisions of q1 and q2 with 0 are regularized in the
regularized system (8).

A collinear periodic orbit in this setting is called of type (n,m) for n,m ∈ N+ if during one period q1
goes n-times from brake to collision and back, and q2 goes m-times so.

To show the existence of these orbits, we consider to shoot from the singular set {q1 = 0, q2 > 0, q̇2 = 0}
to the singular set {q1 < 0, q̇1 = 0, q2 = 0}. After regularization, these sets correspond, respectively, to
the sets

{z1 = 0, z2 > 0, w2 = 0}
and

{z1 > 0, w1 = 0, z2 = 0},

which are (open) Legendrian submanifolds in the regularized energy hypersurface. As in previous discus-
sion, a regularized orbit connecting them without passing through triple collisions can again get reflected
and be patched to a closed orbit in the regularized system free from triple collisions.

To be able to consider shooting in the non-regularized system between singular sets, we rewrite the
Hamiltonian of the system as

H = HKep,1 +
p22
2

− 2
q2

+
1

q2 − q1
.

with

HKep,1 =
p21
2

+
2
q1

being the Coulomb energy of q1: This is a quantity which thanks to the regularization [4] is well-defined
at collisions of q1 with 0, despite the singularity at q1 = 0. See also the discussion in [5,7] for this point.

Next we show the existence of periodic orbits of type (1, 2n− 1). As normalization, we may normalize
so that

HKep,1(0) = −1.

The parameter we take is the total energy E of the system, which uniquely determines the position
q2(0) = x > 0 that we will take as a parameter in the shooting argument. Note that this implies E < −1
by the expression of the Hamiltonian, with E → −1 when x → +∞.

We assume that there are no triple collisions. For any n ∈ N+, the n-th collision times and brake
times of q1 and q2 with 0 depend continuously on E: This follows from the same type of argument as in
the previous proof for the (Zee) case.

Theorem 3.1. There exists a collinear periodic orbit of type (1, 2n − 1) or of type (2n − 1, 1) for n ∈ N+

with any negative energy.

Proof. We treat the case for periodic orbits of type (1, 2n − 1). The other case is completely similar.
Again we search for an orbit starting from the status that q1(0) collides with the nucleus and q2(0) > 0
brakes, q̇2(0) = 0, to the status that q1 achieve its n-th brake while q2 collides with the nucleus.

We set

τ = (1-st collision time of q2) − (n-th brake time of q1)

which depends continuously on E, and we wish to show that there exists an energy E = E0 with
τ(E0) = 0. This follows from the following simple consideration, which we indicate in an intuitive way:

When x = q2(0) is sufficiently close to 0, the energy E is small and thus q2 collides first with 0 before
q1 brakes. Thus, for all n we may have τ < 0 when E is sufficiently small. When x = q2(0) is sufficiently
large, E < 0 is sufficiently close to −1, the point x = q2(0) >> 1 is sufficiently far-away from 0 and q2
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can be made to move to 0 after the n-th brake of q1. Indeed the time for q1 to reach its n-th brake has
an upper bound, which is (n − 1/2) times the Coulomb period of q1 with the pure attraction from the
nucleus. Now consider the motion of q2 from x to 1. An upper bound of |q̈2| is obtained from the pure
Coulomb attracting force from the nucleus on q2 when q2 reaches 1. With this upper bound, we conclude
that when x is sufficiently large, q2 > 1 holds till the n-th brake of q1 happen. Thus when E is sufficiently
close to 1, we have τ > 0.

The conclusion follows by continuity of τ on E as well as the symmetric considerations in the regu-
larized system to patch chords into a periodic orbit similar to the argument from the previous section.

This argument thus gives a periodic orbit of the prescribed type for an energy E ≤ −1. The same
rescaling argument as in the previous section thus shows the existence of an orbit of prescribed type for
any negative energy. �

It is a rather different story to analyze periodic orbits containing, or close to total triple collisions.
Various periodic orbits have been identified with the help of a symbolic dynamics of triple-collision orbits
[2]. These have been nicely discussed in [8, Chap. 42] and references therein. See also [9]. As this requires
rather different techniques we shall not discuss these orbits in this note.
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