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Abstract. In this paper, we will revisit the model studied in Lou and Zhao (J Math Biol 62:543–568, 2011), where the
model takes the form of a nonlocal and time-delayed reaction–diffusion model arising from the fixed incubation period. We
consider the infection age to be a continuous variable but without the limitation of the fixed incubation period, leading to
an age-space structured malaria model in a bounded domain. By performing the elementary analysis, we investigate the
well-posedness of the model by proving the global existence of the solution, define the explicit formula of basic reproduction
number when all parameters remain constant. By analyzing the characteristic equations and designing suitable Lyapunov
functions, we also establish the threshold dynamics of the constant disease-free and positive equilibria. Our theoretical
results are also validated by numerical simulations for 1-dimensional and 2-dimensional domains.
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1. Introduction

Human malaria, caused by the genus Plasmodium, belongs to a mosquito-borne disease. The main inter-
mediary vector is female anopheles mosquitoes. Rapid spread and global distribution (especially in Africa,
Asia and South America) of human malaria causes public health problems and kills over a million people
a year [20]. Since the classical work of [19], a lot of mathematical models based on vector-borne diseases
framework (see, e.g., [3,7,9,13–17,27,30,31]) have been devoted to investigating the temporal and spatial
patterns of disease burden and control strategies, which provides useful insights into the malaria trans-
mission dynamics. In recent years, more and more biologically factors affecting vector-borne diseases are
incorporated into mathematical models, such as immunity and clinical death [1,21], spatial heterogene-
ity [3,14,15,27,31], the mobility of human and mosquito populations, extrinsic incubation period (EIP),
vector-bias mechanism and seasonality (see, e.g., [3,9,14,15,27,30,31]). Here, EIP is a time interval dur-
ing which mosquitoes could not transmit the malaria parasite to humans, which varies from 10 to 14 days
[12] and significantly affect the number of infected mosquitoes. Spatial heterogeneity reflects the distinct
contact patterns in distinct geographic regions, demonstrating the diversity in habitats. It is widely ac-
cepted and well known that the environmental conditions vary spatially, affecting the biting patterns,
so setting the disease transmission parameters depending the location variable is biologically reasonable.
The reaction–diffusion model is one of the most common tool in describing the spatial evolution of an
epidemic, generalizing the classical models [16,17,19].

Let Ω ⊂ R
n (n ≥ 1) be a bounded domain equipped with a smooth boundary ∂Ω. For x ∈ Ω, we

introduce the Laplacian operator Δ = ∂2/∂x2 to represent the random mobility of human and mosquito
populations in the domain. At time t and location x, we denote by Sm := Sm(t, x), Im := Im(t, x) and
Ih := Ih(t, x) the density of susceptible mosquitoes, infected mosquitoes and infected humans, whose
diffusion rates are given by Dm, Dm and Dh, respectively. The model studied in [14] takes the following
form,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂Sm

∂t
− DmΔSm = μ(x) − bβ(x)

H(x)
SmIh − dmSm,

∂Im

∂t
− DmΔIm = −dmIm + e−dmτ

∫

Ω

Γ(Dmτ, x, y)
bβ(y)
H(y)

Sm(t − τ, y)Ih(t − τ, y)dy,

∂Ih

∂t
− DhΔIh =

cβ(x)
H(x)

(H(x) − Ih)Im − (dh + ρ)Ih,

(1.1)

for x ∈ Ω, t > 0 and

∂Sm

∂n
=

∂Im

∂n
=

∂Ih

∂n
= 0, x ∈ ∂Ω, t > 0. (1.2)

Here, the density of total human population is assumed to be remained at H(x), H(x) ∈ C2(Ω, (0,∞))∩
C1(Ω, (0,∞)) and H(x) satisfies

− DhΔH(x) = dhH(x)
(

1 − H(x)
K(x)

)

, x ∈ Ω;
∂H(x)

∂n
= 0, x ∈ ∂Ω, (1.3)

where K(x) ∈ C(Ω, (0,∞)) is the carrying capacity dependent of location x and dh the birth rate of
humans, so the density of susceptible humans is given by H(x) − Ih; The force of infection for human
and mosquito populations is, respectively, characterized by bβ(x)

H(x) SmIh and cβ(x)
H(x) (H(x)− Ih)Im; μ(x) and

β(x), respectively, depict the space-dependent recruitment rate of adult female mosquitoes emerged from
larval and biting rate; dm and dh, respectively, stand for the natural death rate of mosquito and human
populations; b and c describe the transmission probabilities per bite from infected humans to susceptible
female mosquitoes and from infected female mosquitoes to susceptible humans; ρ is the recovery rate of
humans; Γ(Dmτ, x, y) is the Green function with respect to Laplace operator DmΔ subject to (1.2); τ
is a positive constant representing the fixed incubation period; ∂

∂n denotes the differentiation along the
outward normal n to ∂Ω. The basic assumptions on the parameters are as follows: Dm,Dh, dm, ρ, b, c ∈
(0,∞); β, μ ∈ C(Ω, [0,∞)); β1 ∈ L∞(R+, [0,∞)).

The main feature of (1.1) is the nonlocal and time-delayed term appeared in Im equation, which is
obtained by the assumption that the incubation period is fixed at τ > 0 and the standard method on
characterizing age structured population with spatial diffusion [10]. Let im := im(t, a, x) the density of
the mosquitoes with infection age a at time t and location x, and im(t, 0, x) = bβ(x)

H(x) SmIh be the newly
infected mosquitoes, which comes from the contact of susceptible mosquitoes and infectious humans.
Then, im(t, a, x) fulfills

⎧
⎪⎨

⎪⎩

(
∂

∂t
+

∂

∂a
− DmΔ

)

im = −dmim, x ∈ Ω, t > 0, a ≥ 0,

∂im
∂n

= 0, x ∈ ∂Ω, a ≥ 0,

(1.4)

By the integration along characteristics, the nonlocal and time-delayed term in (1.1) is given by im(t, τ, x).

Unlike in [14] where spatial movements in EIP will cause nonlocal infection, here we plan to ignore
the fixed incubation period and view the infection age as a continuous variable. In this paper, adopting
the same notations used in [14], we directly investigate the following malaria model with age and space
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structure:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Sm

∂t
− DmΔSm = μ(x) − bβ(x)

H(x)
SmIh − dmSm, x ∈ Ω, t > 0,

(
∂

∂t
+

∂

∂a
− DmΔ

)

im = −dmim, x ∈ Ω, t > 0, a > 0,

∂Ih

∂t
− DhΔIh =

cβ(x)(H(x) − Ih)
H(x)

∞∫

0

β1(a)imda − (dh + ρ)Ih, x ∈ Ω, t > 0,

im(t, 0, x) =
bβ(x)
H(x)

SmIh, x ∈ Ω, t > 0,

(1.5)

where the initial condition for (1.5) is given by, for all x ∈ Ω and a ≥ 0,

Sm(0, x) = φ1(x), im(0, a, x) = φ2(a, x), Ih(0, x) = φ3(x), (1.6)

where φ1, φ3 ∈ C+(Ω) and φ2 ∈ L1
+(R+, C(Ω)). The boundary condition for (1.5) is the homogeneous

Neumann condition, that is, for all x ∈ ∂Ω, t > 0 and a > 0,
∂Sm

∂n
=

∂im
∂n

=
∂Ih

∂n
= 0. (1.7)

We also note that some studies on spatial Zika models [9,15,27] could be viewed as an extension
of the classical models in [16,17,19]. Specifically, in a recent paper [33], the authors implemented the
global attractivity of a positive constant equilibrium of model (1.1) in a homogeneous case by designing
a suitable Lyapunov functional, where the same problem was partially solved in [14], but requiring a
sufficient condition through the fluctuation method. Very recently, Wang and Wang in [28] attempted
to solve the global threshold dynamics of the problem (1.5)–(1.7) with mass-action mechanism and a
stabilized density of susceptible humans H(x), which is not altered by the epidemics as in [15].

Our main goal of this paper is to provide a rigorous analysis of (1.5), where (1.5) can be viewed as the
one for the generalization version of model (1.1). Here, we use an age structured population with spatial
diffusion reflecting the diffusion of the latent individuals. Following the main idea in [3,14] but using
different analysis method, we address in Sect. 3, the basic questions on the existence, uniqueness and
positivity of solutions to problem (1.5)–(1.7). We first treat the local existence of solution on [0, T ] × Ω
for small T > 0, where the method is different to that of [5,6,28,29,32]. The main reason is that we
cannot construct a fixed point problem with one equation. To overcome this issue, we construct a fixed
point problem with vector-valued functions. We also confirm that the solution never blows up in finite
time and globally exists in a positive invariant set D for all t > 0. In Sect. 4, we derive the next-generation
operator aiming to define the basic reproduction number �0 through renewal equations. In general, �0

cannot be directly calculated. However, in a spatially homogeneous case, the next-generation operator
is compact. Thus, the Krein–Rutman theorem can be directly applied to get the explicit formula of �0.
Section 4 is devoted to investigating the local and global dynamics of the disease-free and positive steady
states in a spatially homogeneous case. It should be highlighted here that it is not easy work to design
suitable Lyapunov functions. The main results obtained in Sect. 4 are validated by numerical simulations
in Sect. 5 for 1-dimensional and 2-dimensional domain.

2. Preliminaries

Throughout of the paper, for ease of notations, we set

β1 := ess.sup
a≥0

β1(a), f∗ := sup
x∈Ω

f(x), f∗ := inf
x∈Ω

f(x),

where f ∈ {μ, β,H,Λ}.
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Let Y := C(Ω,R) and X := L1(R+,Y) equipped with norms

‖ϕ‖Y := sup
x∈Ω

|ϕ(x)|, ϕ ∈ Y and ‖ϕ‖X :=

∞∫

0

‖ϕ(a)‖Yda, ϕ ∈ X,

, respectively. Denote the positive cones of X and Y by X+ and Y+, respectively. It is a classical fact
that the diffusion operators DmΔ and DhΔ with (1.7) generate the strongly continuous semigroups
{Ti(t)}t≥0 : Y+ → Y+ (i = 1, 2) defined by, for t > 0,

(Ti(t)ϕ)(x) =
∫

Ω

Γi(t, x, y)ϕ(y)dy, and Ti(0)ϕ = ϕ, ϕ ∈ Y+,

where Γi(t, x, y) (i = 1, 2) denote the associated Green functions. Note that, for any ϕ ∈ Y+, i = 1, 2 and
t > 0,

‖Ti(t)ϕ‖Y ≤
∫

Ω

Γi(t, x, y)dy‖ϕ‖Y = ‖ϕ‖Y, (2.1)

because
∫

Ω

Γi(t, x, y)dy = 1.

Let X = Y × X × Y and X+ = Y+ × X+ × Y+, equipped with norm

‖(ϕ1, ϕ2, ϕ3)‖X := ‖ϕ1‖Y + ‖ϕ2‖X + ‖ϕ3‖Y, (ϕ1, ϕ2, ϕ3) ∈ X.

The state space for our system is as follows:

D :=

⎧
⎨

⎩
(ϕ1, ϕ2, ϕ3) ∈ X+ : 0 ≤ ϕ1(x) +

∞∫

0

ϕ2(a, x)da ≤ μ∗

dm
, 0 ≤ ϕ3(x) ≤ H(x), x ∈ Ω

⎫
⎬

⎭
.

Our main result of this section reads as follows.

Theorem 2.1. There exists a solution semiflow {Φ(t)}t≥0 : X+ → X+ such that, for any φ := (φ1, φ2, φ3) ∈
D, Φ(0)φ = φ and

Φ(t)φ := (Sm(t, ·), im(t, a, ·), Ih(t, ·)) ∈ D, t > 0,

gives a unique global solution to problem (1.5)–(1.7).

Before proving Theorem 2.1, we first introduce a lemma. For convenience, let us denote the newly
infected mosquitoes by

B(Sm, Ih)(t, x) := im(t, 0, x) =
bβ(x)
H(x)

SmIh, t > 0, x ∈ Ω. (2.2)

By appealing to the method of characteristics, one can easily get that, for all x ∈ Ω,

im(t, a, x) =
{

(T1(a)(B(Sm, Ih)(t − a, ·)))Π(a), t > a,
(T1(t)φ2(a − t, ·))Π(t), a ≥ t,

(2.3)

where Π(a) := e−dma. Hence, we directly have
∞∫

0

β1(a)im(t, a, x)da =

t∫

0

β1(a)(T1(a)(B(Sm, Ih)(t − a, ·)))Π(a)da

+

∞∫

t

β1(a)(T1(t)φ2(a − t, ·))Π(t)da.

We now show the local existence of the solution.
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Lemma 2.2. For each φ ∈ X, there exists a T > 0 such that problem (1.5)–(1.7) has a unique solution
for all t ∈ (0, T ).

Proof. Solving the equations of Sm and Ih in (1.5), we directly obtain: for t > 0,

Sm(t, ·) = F1(t, ·) +

t∫

0

e−dm(t−s)T1(t − s)[μ(·) − B(Sm, Ih)(s, ·)]ds =: F1(Sm, Ih)(t, ·), (2.4)

Ih(t, ·) = F2(t, ·) + F3(t, ·) +

t∫

0

e−(dh+ρ)(t−s)T2(t − s)[C(Sm, Ih)(s, ·)]ds =: F2(Sm, Ih)(t, ·), (2.5)

where

F1(t, ·) := e−dmtT1(t)φ1, F2(t, ·) := e−(dh+ρ)tT2(t)φ3,

F3(t, ·) :=

t∫

0

e−(dh+ρ)(t−s)T2(t − s)

⎡

⎣cβ(·)
∞∫

s

β1(a)T1(s)φ2(a − s, ·)Π(s)da

⎤

⎦ ds,
(2.6)

and

C(Sm, Ih)(s, ·) :=cβ(·)
s∫

0

β1(a)T1(a)[B(Sm, Ih)(s − a, ·)]Π(a)da

− cβ(·)Ih(s, ·)
H(·)

s∫

0

β1(a)T1(a)[B(Sm, Ih)(s − a, ·)]Π(a)da

− cβ(·)Ih(s, ·)
H(·)

∞∫

s

β1(a)T1(s)[φ2(a − s, ·)]Π(s)da.

For T > 0, we set

YT := C([0, T ],Y) with ‖ψ‖YT
:= sup

0≤t≤T
‖ψ(t, ·)‖Y, ψ ∈ YT ,

WT := YT × YT with ‖(ψ1, ψ2)‖WT
:= ‖ψ1‖YT

+ ‖ψ2‖YT
, (ψ1, ψ2) ∈ WT .

Let F be a nonlinear operator defined on WT to itself,

F
(

ψ1

ψ2

)

:=
(F1(ψ1, ψ2)

F2(ψ1, ψ2)

)

, ψ1, ψ2 ∈ WT .

Next, we show that F has a fixed point on WT , i.e., (1.5)–(1.7) has a unique solution on [0, T ] × Ω. For
any (S′

m, I ′
h), (S′′

m, I ′′
h ) ∈ WT , we have

‖B(S′
m, I ′

h) − B(S′′
m, I ′′

h )‖YT
≤bβ∗

H∗
‖S′

mI ′
h − S′′

mI ′′
h‖YT

≤bβ∗

H∗
(‖I ′

h‖YT
‖S′

m − S′′
m‖YT

+ ‖S′′
m‖YT

‖I ′
h − I ′′

h‖YT
) .
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Hence, by virtue of (2.1), we obtain

‖F1(S′
m, I ′

h) − F1(S′′
m, I ′′

h )‖YT
≤

t∫

0

e−dm(t−s)ds‖B(S′
m, I ′

h) − B(S′′
m, I ′′

h )‖YT

≤bβ∗(1 − e−dmt)
dmH∗

(‖I ′
h‖YT

‖S′
m − S′′

m‖YT
+ ‖S′′

m‖YT
‖I ′

h − I ′′
h‖YT

)

≤h1(T )
∥
∥
∥
∥

(
S′

m

I ′
h

)

−
(

S′′
m

I ′′
h

)∥
∥
∥
∥
WT

,

where

h1(T ) :=
bβ∗(1 − e−dmT )

dmH∗
max (‖I ′

h‖YT
, ‖S′′

m‖YT
) .

Note that for any 0 < T∗ < T , we can regard (S′
m, I ′

h), (S′′
m, I ′′

h ) as functions in WT∗ , and

h1(T∗) =
bβ∗(1 − e−dmT∗)

dmH∗
max

(‖I ′
h‖YT∗ , ‖S′′

m‖YT∗

)

≤bβ∗(1 − e−dmT∗)
dmH∗

max (‖I ′
h‖YT

, ‖S′′
m‖YT

) =
1 − e−dmT∗

1 − e−dmT
h1(T ),

and thus, h1(T∗) → 0 as T∗ → +0. Hence, we let T being sufficiently small that h1(T ) < 1 (regarding T∗
such that h(T∗) < 1 as a new T ). Similarly, we obtain

‖C(S′
m, I ′

h) − C(S′′
m, I ′′

h )‖YT
≤ sup

0≤s≤T

⎧
⎨

⎩
cβ∗β1

(

1 +
‖I ′

h‖YT

H∗

) s∫

0

Π(a)da‖B(S′
m, I ′

h) − B(S′′
m, I ′′

h )‖YT

+
cβ∗‖I ′

h − I ′′
h‖YT

H∗

s∫

0

β1(a)‖T1(a)[B(S′′
m, I ′′

h )(s − a, ·)]‖YΠ(a)da

+
cβ∗‖I ′

h − I ′′
h‖YT

H∗

∞∫

s

β1(a)‖T1(s)[φ2(a − s, ·)]‖YΠ(s)da

⎫
⎬

⎭

≤ cβ∗β1

dm

(

1 +
‖I ′

h‖YT

H∗

)

‖B(S′
m, I ′

h) − B(S′′
m, I ′′

h )‖YT
+

cβ∗β1

H∗

(
bβ∗‖S′′

mI ′′
h‖YT

dmH∗
+ ‖φ2‖X

)

‖I ′
h − I ′′

h‖YT
,

and hence,

‖F2(S′
m, I ′

h) − F2(S′′
m, I ′′

h )‖YT
≤

t∫

0

e−(dh+ρ)(t−s)ds‖C(S′
m, I ′

h) − C(S′′
m, I ′′

h )‖YT

≤ h2(T )
∥
∥
∥
∥

(
S′

m

I ′
h

)

−
(

S′′
m

I ′′
h

)∥
∥
∥
∥
WT

,

where

h2(T ) :=
cβ∗β1(1 − e−(dh+ρ)T )

(dh + ρ)
max(g1, g2),

g1 :=
bβ∗

dmH∗

(

1 +
‖I ′

h‖YT

H∗

)

‖I ′
h‖YT

,

g2 :=
bβ∗

dmH∗

(

1 +
‖I ′

h‖YT

H∗

)

‖S′′
m‖YT

+
1

H∗

(
bβ∗‖S′′

mI ′′
h‖YT

dmH∗
+ ‖φ2‖X

)

.
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Similar to the case of h1, we let T being sufficiently small that h2(T ) < 1. Consequently, we obtain

∥
∥
∥
∥F

(
S′

m

I ′
h

)

− F
(

S′′
m

I ′′
h

)∥
∥
∥
∥
WT

≤ max(h1(T ), h2(T ))
∥
∥
∥
∥

(
S′

m

I ′
h

)

−
(

S′′
m

I ′′
h

)∥
∥
∥
∥
WT

.

As max(h1(T ), h2(T )) < 1, the operator F is a strict contraction in WT . Consequently, F has a unique
fixed point in WT . Hence, the local existence of Sm and Ih follows. The local existence of im then follows
from (2.2) and (2.3). The regularity of the solution directly follows because the right-hand sides of (2.4)
and (2.5) are continuously differentiable with respect to t and twice continuously differentiable with
respect to x by virtue of the Green functions in {Ti(t)}t≥0, i = 1, 2. This proves Lemma 2.2. �

Using Lemma 2.2, we continue to show Theorem 2.1.

Proof of Theorem 2.1. Let φ = (φ1, φ2, φ3) ∈ D and T̃ ∈ (0, T ). We first show the positivity of Sm on
(0, T̃ ) × Ω. Clearly, for x ∈ Ω, t ∈ (0, T̃ ),

∂Sm

∂t
− DmΔSm > −

[
bβ(x)
H(x)

Ih + dm

]

Sm.

As bβ(x)Ih/H(x)+dm is bounded and continuous on (0, T̃ )×Ω, a standard result for PDEs ensures that
Sm > 0 for all (t, x) ∈ (0, T̃ ) × Ω.

We next show that, for all (t, x) ∈ (0, T̃ ) × Ω,

0 < M(t, x) := Sm +

∞∫

0

imda ≤ μ∗

dm
. (2.7)

By (1.5)–(1.7), we have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂M

∂t
− DmΔM = μ(x) − dmM ≤ μ∗ − dmM, x ∈ Ω, t ∈ (0, T̃ ),

M(0, x) = φ1(x) +

∞∫

0

φ2(a, x)da ≤ μ∗

dm
, x ∈ Ω,

∂M

∂n
= 0, x ∈ ∂Ω, t ∈ (0, T̃ ).

One can then easily see from the maximum principle that the last inequality in (2.7) holds. In addition,
we have

∂M

∂t
− DmΔM > −dmM, x ∈ Ω, t ∈ (0, T̃ ).

Hence, similar to the above, one can easily see that M(t, x) > 0 for all (t, x) ∈ (0, T̃ ) × Ω.
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We then show that Ih < H(x) for all (t, x) ∈ (0, T̃ ) × Ω. Let Yh := H − Ih. It then follows from
(1.5)–(1.7) and (1.3) that

∂Yh

∂t
− DhΔYh

= −cβ(x)Yh

H(x)

∞∫

0

β1(a)imda + (dh + ρ)[H(x) − Yh] − DhΔH(x)

= Λ(x) + ρH(x) −
⎡

⎣
cβ(x)
H(x)

∞∫

0

β1(a)imda + dh + ρ

⎤

⎦ Yh

> −
⎡

⎣
cβ(x)β1

H(x)

∞∫

0

imda + dh + ρ

⎤

⎦Yh, x ∈ Ω, t ∈ (0, T̃ ),

and

Yh(0, x) = H(x) − φ3(x) ≥ 0, x ∈ Ω;
∂Yh

∂n
= 0, x ∈ ∂Ω, t ∈ (0, T̃ ).

Similar to the above, as cβ(x)β1

∞∫

0

imda/H(x) + dh + ρ is bounded and continuous on (0, T̃ ) × Ω, the

standard result for PDEs yields that Yh > 0, (t, x) ∈ (0, T̃ ) × Ω. We then directly have Ih < H(x) for all
(t, x) ∈ (0, T̃ ) × Ω.

We continue to prove that Ih ≥ 0 for all (t, x) ∈ (0, T̃ ) × Ω. The abstract equation (2.5) in Y can be
rewritten as follows: for t ∈ (0, T̃ ),

Ih(t, ·) = F2(t, ·) + F4(t, ·) +

t∫

0

e−(dh+ρ)(t−s)T2(t − s)[C̃(Sm, Ih)(s, ·)]ds, (2.8)

where F2 is given as in (2.6) and

F4(t, ·) :=

t∫

0

e−(dh+ρ)(t−s)T2(t − s)

⎡

⎣
cβ(·)(H(·) − Ih(s, ·))

H(·)

∞∫

s

β1(a)T1(s)φ2(a − s, ·)Π(s)da

⎤

⎦ ds,

C̃(Sm, Ih)(s, ·) :=
cβ(·)(H(·) − Ih(s, ·))

H(·)

s∫

0

β1(a)T1(a)[B(Sm, Ih)(s − a, ·)]Π(a)da.

By (2.2), we get

B(Sm, Ih)(t, ·) =
bβ

H
Sm(t, ·)

⎡

⎣F2(t, ·) + F4(t, ·) +

t∫

0

e−(dh+ρ)(t−s)T2(t − s)[C̃(Sm, Ih)(s, ·)]ds

⎤

⎦ . (2.9)

This is a renewal equation and the solution can be written as B =
∑∞

n=0 Bn, where

B0(t, ·) :=
bβ

H
Sm(t, ·) [F2(t, ·) + F4(t, ·)] ,

Bn(t, ·) :=
bβ

H
Sm(t, ·)

t∫

0

e−(dh+ρ)(t−s)T2(t − s)

⎡

⎣cβ(·)(H(·) − Ih(s, ·))
H(·)

s∫

0

β1(a)T1(a)[Bn−1(s − a, ·)]Π(a)da

⎤

⎦ ds,

n = 1, 2, . . . .
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Since Sm and H − Ih are positive, one can see that Bn is nonnegative for all n ≥ 0. Hence, B =
∑∞

n=0 Bn

is also nonnegative. From (2.8), one knows that Ih ≥ 0 for all (t, x) ∈ (0, T̃ ) × Ω. In addition, the
nonnegativitiy of im also follows from (2.3).

In conclusion, the solution remains in the bounded set D for all t ∈ (0, T̃ ), that is, D is positively
invariant for system (1.5)–(1.7). Thus, the solution never blows up in finite time and globally exists in
D for all t > 0. The existence of the solution semiflow {Φ(t)}t≥0 is a simple consequence. This proves
Theorem 2.1. �

3. The basic reproduction number

The disease-free equilibrium of (1.5) with boundary condition (1.7) can be written as E0 := (S0
m(x), 0, 0) ∈

D, where S0
m(x) satisfies

−DmΔS0
m(x) = μ(x) − dmS0

m(x), x ∈ Ω;
∂S0

m(x)
∂n

= 0, x ∈ ∂Ω.

More precisely, using the Green function Γ1, we can obtain the following explicit formulation of S0
m(x):

S0
m(x) =

∞∫

0

e−dms

∫

Ω

Γ1(s, x, y)μ(y)dyds, x ∈ Ω.

Note that, if μ(x) ≡ μ, then S0
m ≡ μ/dm.

By appealing to the standard procedures as those in [8,25], let us define the basic reproduction number
�0 of (1.5)–(1.7). The linearized system of (1.5)–(1.7) around E0 is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂im
∂t

+
∂im
∂a

− DmΔim = −dmim,

∂Ih

∂t
− Dh�Ih = cβ(x)

∞∫

0

β1(a)imda − (dh + ρ)Ih,

im(t, 0, x) =
bβ(x)
H(x)

S0
m(x)Ih =: B̃(t, x),

im(0, a, x) = φ2(a, x), Ih(0, x) = φ3(x),

(3.1)

for x ∈ Ω, t > 0, a > 0 and
∂im
∂n

=
∂Ih

∂n
= 0, x ∈ ∂Ω, t > 0, a > 0. (3.2)

By integrating the equations of Ih and im in (3.1), we obtain the following abstract equations in Y:

Ih(t, ·) = e−(dh+ρ)tT2(t)φ3 +

t∫

0

e−(dh+ρ)(t−s)T2(t − s)

⎛

⎝cβ(·)
∞∫

0

β1(a)im(s, a, ·)da

⎞

⎠ ds, t > 0,

and

im(t, a, ·) =
{

T1(a)B̃(t − a, ·)Π(a), t > a,
T1(t)φ2(a − t, ·)Π(t), a ≥ t,

t > 0, a > 0. (3.3)

Hence, we get the following abstract equation in Y: for t > 0,

B̃(t, ·) =
bβ

H
S0

m(x)Ih(t, ·)

=G(t, ·) +
bβ

H
S0

m(x)

t∫

0

e−(dh+ρ)(t−s)T2(t − s)

⎛

⎝cβ(·)
s∫

0

β1(a)T1(a)B̃(s − a, ·)Π(a)da

⎞

⎠ ds,
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where

G(t, ·) :=
bβ

H
S0

m(x)

[

e−(dh+ρ)tT2(t)φ3(·)

+

t∫

0

e−(dh+ρ)(t−s)T2(t − s)

⎛

⎝cβ(·)
∞∫

s

β1(a)T1(s)φ2(a − s, ·)Π(s)da

⎞

⎠ ds

]

.

Hence, the generational expression B̃ =
∑∞

n=0 B̃n can be obtained, where

B̃0(t, ·) := G(t, ·),

B̃n(t, ·) :=
bβ

H
S0

m(x)

t∫

0

e−(dh+ρ)(t−s)T2(t − s)

⎛

⎝cβ(·)
s∫

0

β1(a)T1(a)B̃n−1(s − a, ·)Π(a)da

⎞

⎠ ds,

n = 1, 2, . . . .

Note that B̃n denotes the newly infected population in the n-th generation. Let B̂n :=
∞∫

0

B̃n(t, ·)dt. We

then have, by changing the order of integration,

B̂n =

∞∫

0

bβ

H
S0

m(x)

t∫

0

e−(dh+ρ)(t−s)T2(t − s)

⎛

⎝cβ(·)
s∫

0

β1(a)T1(a)B̃n−1(s − a, ·)Π(a)da

⎞

⎠ dsdt

=
bβ

H
S0

m(x)

∞∫

0

∞∫

s

e−(dh+ρ)(t−s)T2(t − s)dt

⎛

⎝cβ(·)
s∫

0

β1(a)T1(a)B̃n−1(s − a, ·)Π(a)da

⎞

⎠ ds

=
bβ

H
S0

m(x)

∞∫

0

e−(dh+ρ)uT2(u)du

⎛

⎝cβ(·)
∞∫

0

s∫

0

β1(a)T1(a)B̃n−1(s − a, ·)Π(a)dads

⎞

⎠

=
bβ

H
S0

m(x)

∞∫

0

e−(dh+ρ)uT2(u)du

⎛

⎝cβ(·)
∞∫

0

β1(a)Π(a)T1(a)

∞∫

a

B̃n−1(s − a, ·)dsda

⎞

⎠

=
bβ

H
S0

m(x)

∞∫

0

e−(dh+ρ)uT2(u)du

⎛

⎝cβ(·)
∞∫

0

β1(a)Π(a)T1(a)B̂n−1da

⎞

⎠ .

Thus, the next-generation operator K : Y+ → Y+ can be defined by

Kψ :=
bβ

H
S0

m(x)

∞∫

0

e−(dh+ρ)uT2(u)du

⎛

⎝cβ(·)
∞∫

0

β1(a)Π(a)T1(a)ψ

⎞

⎠ , ψ ∈ Y+.

More precisely, for ψ ∈ Y+ and x ∈ Ω,

Kψ(x) =

bβ(x)S0
m(x)

H(x)

∞∫

0

e−(dh+ρ)u

∫

Ω

Γ2(u, x, y)cβ(y)

∞∫

0

β1(a)Π(a)
∫

Ω

Γ1(a, y, z)ψ(z)dzdadydu.

One can easily see that K is strictly positive, i.e., if ψ ∈ Y+\{0}, then Kψ(x) > 0 for all x ∈ Ω. According
to [8,25], �0 := r(K), the spectral radius of K. In general, �0 cannot be explicitly calculated. However,
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in a spatially homogeneous case that

μ(x) ≡ μ, β(x) ≡ β and H(x) ≡ H,

we can get that S0
m(x) ≡ μ/dm and K is compact. The Krein–Rutman theorem [2, Theorem 3.2] guaran-

tees that �0 is the only positive eigenvalue of K associated with a positive eigenvector. More precisely,
we obtain

[�0] =
bcβ2μ

Hdm(dh + ρ)

∞∫

0

β1(a)Π(a)da. (3.4)

4. Dynamical analysis in the spatially homogeneous case

In the spatially homogeneous case, problem (1.5)–(1.7) reduces to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Sm

∂t
− DmΔSm = μ − bβ

H
SmIh − dmSm, x ∈ Ω, t > 0,

∂im
∂t

+
∂im
∂a

− DmΔim = −dmim, x ∈ Ω, t > 0, a > 0,

∂Ih

∂t
− DhΔIh =

cβ(H − Ih)
H

∞∫

0

β1(a)imda − (dh + ρ)Ih, x ∈ Ω, t > 0,

im(t, 0, x) =
bβ

H
SmIh, x ∈ Ω, t > 0,

(4.1)

with the same initial and boundary conditions (1.6) and (1.7).

Corollary 4.1. The solution semiflow {Φ}t≥0 of (4.1) admits a global attractor in D.

Proof. With the help of Theorem 2.1, one knows that Φ is point dissipative and eventually bounded on
bounded sets of D. Moreover, one can easily confirm that Φ is asymptotically smooth in the spatially
homogeneous case by using the method as in [18]. An application of [22, Theorem 2.33] confirms that
(4.1) admits a global attractor. This proves Corollary 4.1. �

System (4.1) has constant equilibria which are solutions to the following equations:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = μ − bβ

H
SmIh − dmSm, (dh + ρ)Ih =

cβ(H − Ih)
H

∞∫

0

β1(a)im(a)da,

∂im
∂a

= −dmim, a > 0, im(0) =
bβ

H
SmIh.

(4.2)

Obviously, there exists a constant disease-free equilibrium Ẽ0 := (S0
m, 0, 0) ∈ D, where S0

m = μ/dm.
Moreover, rearranging (4.2), we have

Sm =
Hμ

bβIh + Hdm
, Ih =

cβHKim(0)
cβKim(0) + H(dh + ρ)

, im(a) = im(0)Π(a), a > 0,

where K :=
∞∫

0

β1(a)Π(a)da. By the equation of im(0) in (4.2), we have

im(0) =
μbβIh

bβIh + Hdm
⇔ [im(0) − μ]bβIh + Hdmim(0) = 0

⇔ [im(0) − μ]bcβ2HKim(0)
cβKim(0) + H(dh + ρ)

+ Hdmim(0) = 0
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⇔ cβK(bβ + dm)im(0)
[

im(0) − H(dh + ρ)dm

cβK(bβ + dm)
([�0] − 1)

]

= 0.

Thus, we have the following proposition on the existence of constant equilibrium.

Proposition 4.2. Let [�0] is defined in (3.4). If [�0] > 1, then (4.1) admits a constant equilibrium E∗ =
(S∗

m, i∗m(a), I∗
h) ∈ D, where

S∗
m =

Hμ

bβI∗
h + Hdm

, I∗
h =

cβHKi∗m(0)
cβKi∗m(0) + H(dh + ρ)

, i∗m(a) = i∗m(0)Π(a), a > 0,

and

i∗m(0) =
H(dh + ρ)dm

cβK(bβ + dm)
([�0] − 1) > 0.

4.1. Local asymptotic stability of equilibria

We shall prove that both Ẽ0 and E∗ are locally asymptotically stable (LAS).

Theorem 4.3. Let [�0] be defined by (3.4).

(i) If [�0] < 1, then Ẽ0 is LAS;
(ii) If [�0] > 1, then E∗ is LAS.

Proof. We first prove (i). The linearized system of (4.1) around Ẽ0 is as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Sm

∂t
− DmΔSm = −bβ

H
S0

mIh − dmSm, x ∈ Ω, t > 0,

∂im
∂t

+
∂im
∂a

− DmΔim = −dmim, x ∈ Ω, t > 0, a > 0,

∂Ih

∂t
− DhΔIh = cβ

∞∫

0

β1(a)imda − (dh + ρ)Ih, x ∈ Ω, t > 0,

im(t, 0, x) =
bβ

H
S0

mIh, x ∈ Ω, t > 0,

(4.3)

with boundary condition (1.7). Let μj (j = 1, 2, . . .) be the eigenvalues of linear operator −Δ on Ω with
homogeneous Neumann boundary condition corresponding to the eigenvectors vj ∈ C2(Ω) ∩ C1(Ω):

Δvj = −μjvj , x ∈ Ω;
∂vj

∂n
= 0, x ∈ ∂Ω.

From a well-known fact, we can assume that 0 = μ0 < μ1 < μ2 < · · · . Substituting (Sm, im, Ih) =
eηtvi(x)(u1, u2(a), u3) (η ∈ C) into (4.3) and dividing each side by eηtvi(x), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηu1 + Dmμiu1 = −bβ

H
S0

mu3 − dmu1,

ηu2(a) +
∂u2(a)

∂a
+ Dmμiu2(a) = −dmu2(a),

ηu3 + Dhμiu3 = cβ

∞∫

0

β1(a)u2(a)da − (dh + ρ)u3,

u2(0) =
bβ

H
S0

mu3.

(4.4)

It is easy checked from the second and fourth equations of (4.4) that

u2(a) =
bβ

H
S0

mu3e
−ηaΠ̃(a),
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where Π̃(a) = e−DmμiaΠ(a). Rewriting (4.4) in terms of (u1, u3), we obtain the following characteristic
equation:

∣
∣
∣
∣
∣
∣

η + Dmμi + dm
bβ
H S0

m

0 η + Dhμi + dh + ρ − bcβ2

H S0
m

∞∫

0

β1(a)e−ηaΠ̃(a)da

∣
∣
∣
∣
∣
∣
= K(η)(η + Dmμi + dm) = 0,

where K(η) = η + Dhμi + dh + ρ − bcβ2

H S0
m

∞∫

0

β1(a)e−ηaΠ̃(a)da. To show that Ẽ0 is LAS, we suppose on

the contrary that η = m + ni (m,n ∈ R, i2 = −1) with m ≥ 0. We then see that η + Dmμi + dm �= 0,
and thus, we can only pay attention to the roots of K(η) = 0. This equation can be rewritten as

bcβ2

H S0
m

∞∫

0

β1(a)e−ηaΠ̃(a)da

η + Dhμi + dh + ρ
= 1.

Taking the absolute value of both sides, we have

1 =

∣
∣
∣
∣
∣
∣
∣
∣

bcβ2

H S0
m

∞∫

0

β1(a)e−ηaΠ̃(a)da

η + Dhμi + dh + ρ

∣
∣
∣
∣
∣
∣
∣
∣

≤
bcβ2

H S0
m

∞∫

0

β1(a)Π(a)da

dh + ρ
= [�0],

which leads to a contradiction with [�0] < 1. Hence, m ≤ 0. This proves (i).

We next proceed to prove (ii). The linearized system of (4.1) around E∗ is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Sm

∂t
− DmΔSm = −bβ

H
S∗

mIh − bβ

H
I∗
hSm − dmSm, x ∈ Ω, t > 0,

∂im
∂t

+
∂im
∂a

− DmΔim = −dmim, x ∈ Ω, t > 0, a > 0,

∂Ih

∂t
− DhΔIh = cβ

∞∫

0

β1(a)imda − cβ

H
I∗
h

∞∫

0

β1(a)imda

−cβ

H
Ih

∞∫

0

β1(a)i∗m(a)da − (dh + ρ)Ih, x ∈ Ω, t > 0,

im(t, 0, x) =
bβ

H
SmI∗

h +
bβ

H
S∗

mIh, x ∈ Ω, t > 0,

(4.5)
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with boundary condition (1.7). Substituting (Sm, im, Ih) = eηtvi(x)(u1, u2(a), u3) into (4.5) and dividing
each side by eηtvi(x), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηu1 + Dmμiu1 = −bβ

H
S∗

mu3 − bβ

H
I∗
hu1 − dmu1,

ηu2(a) +
∂u2(a)

∂a
+ Dmμiu2(a) = −dmu2(a),

ηu3 + Dhμiu3 = cβ

∞∫

0

β1(a)u2(a)da − cβ

H
I∗
h

∞∫

0

β1(a)u2(a)da

−cβ

H
u3

∞∫

0

β1(a)i∗m(a)da − (dh + ρ)u3,

u2(0) =
bβ

H
S∗

mu3 +
bβ

H
I∗
hu1.

(4.6)

It is easily checked that

u2(a) =
(

bβ

H
S∗

mu3 +
bβ

H
I∗
hu1

)

e−ηaΠ̃(a).

Hence, rewriting (4.6) in terms of (u1, u3), we obtain the following characteristic equation:
∣
∣
∣
∣
∣

η + Dmμi + dm + bβ
H I∗

h
bβ
H S∗

m

− bcβ2(H−I∗
h)

H2 I∗
hP η + Dhμi − bcβ2(H−I∗

h)
H2 S∗

mP + cβ
H Q + (dh + ρ)

∣
∣
∣
∣
∣
= 0,

where P =
∞∫

0

β1(a)e−ηaΠ̃(a)da and Q =
∞∫

0

β1(a)i∗m(a)da. Rearranging this equation, we obtain

η + Dhμi + dh + ρ +
cβ

H
Q =

η + Dmμi + dm

η + Dmμi + dm + bβ
H I∗

h

bcβ2(H − I∗
h)

H2
S∗

mP. (4.7)

To show that E∗ is LAS, we suppose on the contrary that η = m + ni (m,n ∈ R, i2 = −1) with m ≥ 0.
By taking the absolute value of both sides of (4.7), we obtain

dh + ρ <

∣
∣
∣
∣η + Dhμi + dh + ρ +

cβ

H
Q

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

η + Dmμi + dm

η + Dmμi + dm + bβ
H I∗

h

bcβ2(H − I∗
h)

H2
S∗

mP

∣
∣
∣
∣
∣

<
bcβ2(H − I∗

h)
H2

S∗
mK.

It then follows from the equilibrium equations that

0 <
bcβ2(H − I∗

h)
H2

S∗
mK − (dh + ρ) = 0,

a contradiction. Hence, m ≤ 0. This proves (ii). �

4.2. Global dynamics

We shall investigate the threshold dynamics of (4.1) in terms of [�0], that is, both Ẽ0 and E∗ are globally
attractive. This together with the related results in above subsection tells us that both Ẽ0 and E∗ are
globally asymptotically stable (GAS).

Theorem 4.4. Suppose that [�0] < 1. Then, Ẽ0 is GAS in D.
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Proof. Note that, in D, Sm ≤ μ/dm = S0
m for all t > 0 and x ∈ Ω. Hence, an application of the comparison

principle gives 0 ≤ im ≤ im and 0 ≤ Ih ≤ Ih, where (im, Ih) is the solution to the following auxiliary
system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂im
∂t

+
∂im
∂a

− DmΔim = −dmim,

∂Ih

∂t
− DhΔIh =

cβ(H − Ih)
H

∞∫

0

β1(a)imda − (dh + ρ)Ih,

im(t, 0, x) =
bβ

H
S0

mIh,

im(0, a, x) = φ2(a, x), Ih(0, x) = φ3(x),

for x ∈ Ω, t > 0, a > 0 and

∂im
∂n

=
∂Ih

∂n
= 0, x ∈ ∂Ω, t > 0, a > 0.

It then suffices to show that (im, Ih) converges to (0, 0) as time goes to infinity, which implies that (im, Ih)
convereges to (0, 0), and thus, Sm converges to S0

m as time goes to infinity.
Let

Ψ1(a) :=
cβ

Π(a)

∞∫

a

β1(θ)Π(θ)dθ.

One can then easily check that
{

Ψ′
1(a) = −cββ1(a) + dmΨ1(a),

Ψ1(0) = cβK.

Let V (t) := V1(t) + V2(t) be a Lyapunov function, where

V1(t) :=
∫

Ω

∞∫

0

Ψ1(a)imdadx, V2(t) :=
∫

Ω

Ihdx.

We then have that

V ′
1(t) =

∂

∂t

∫

Ω

∞∫

0

Ψ1(a)imdadx =
∫

Ω

∞∫

0

Ψ1(a)
[
∂im
∂t

]

dadx

=
∫

Ω

∞∫

0

Ψ1(a)
[

−∂im
∂a

+ DmΔim − dmim

]

dadx

=
∫

Ω

⎧
⎨

⎩
Ψ1(0)im(t, 0, x) +

∞∫

0

[Ψ′
1(a) − dmΨ1(a)] imda

⎫
⎬

⎭
dx

=
∫

Ω

⎡

⎣
bcβ2K

H
S0

mIh − cβ

∞∫

0

β1(a)imda

⎤

⎦ dx,
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and

V ′
2(t) =

∫

Ω

⎡

⎣DhΔIh +
cβ(H − Ih)

H

∞∫

0

β1(a)imda − (dh + ρ)Ih

⎤

⎦dx

=
∫

Ω

⎡

⎣

(

cβ − Ih

H

) ∞∫

0

β1(a)imda − (dh + ρ)Ih

⎤

⎦dx.

Hence, the derivative of V gives

V ′(t) =
∫

Ω

⎡

⎣
bcβ2K

H
S0

mIh − (dh + ρ)Ih − Ih

H

∞∫

0

β1(a)imda

⎤

⎦ dx

=(dh + ρ) ([�0] − 1)
∫

Ω

Ihdx − 1
H

∫

Ω

Ih

∞∫

0

β1(a)imdadx ≤ 0.

Consequently, Ẽ0 is globally attractive in D when [�0] < 1 (see, for instance, [26, Theorem 4.2]).
Combined with the results in Theorem 4.3, one knows that Ẽ0 is GAS. This completes the proof of
Theorem 4.4. �

To define a Lyapunov function for E∗ when [�0] > 1, we need a uniform persistence result. The
following estimation for Sm immediately follows.

Proposition 4.5. There exists an ε0 > 0 such that, for any φ ∈ D and x ∈ Ω,

lim inf
t→∞ Sm > ε0. (4.8)

Proof. By Theorem 2.1, and Ih ≤ H, one can get that ∂Sm

∂t ≥ DmΔSm + μ − (bβ + dm)Sm. Again from
the comparison principle, one can get that for any x ∈ Ω,

lim inf
t→∞ Sm >

μ

bβ + dm
=: ε0.

This proves Proposition 4.5. �

We next define the following subset of D:

D0 := {ϕ = (ϕ1, ϕ2, ϕ3) ∈ D : ϕ3 �≡ 0} . (4.9)

Epidemiologically, D0 is the set where the disease persists. The forthcoming lemma immediately follows.

Lemma 4.6. If φ ∈ D0, then Ih > 0 for all t > 0 and x ∈ Ω.

The following result indicates that {Ẽ0} is a uniform weak repeller in D.

Lemma 4.7. If [�0] > 1, then there exists an ε1 > 0 such that, for any φ ∈ D0,

lim sup
t→∞

‖Φ(t)φ − Ẽ0‖X > ε1.

Proof. We proceed it indirectly and assume that for any ε1 > 0, there exists a φ ∈ D0 that

lim sup
t→∞

‖Φ(t)φ − Ẽ0‖X ≤ ε1.

This inequality implies that there exists a t1 > 0 such that, for any t > t1 and x ∈ Ω,

Sm ≥ S0
m − ε1,

∞∫

0

imda ≤ ε1, Ih ≤ ε1. (4.10)
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Without loss of generality, taking Φ(t1)φ be the new initial condition, we can assume that inequalities
(4.10) hold for all t > 0 and x ∈ Ω.

For simplicity, we write B(t) = B(Sm, Ih)(t). By (2.9), we obtain the following abstract inequality in
Y:

B(t) ≥bβ

H
(S0

m − ε1)

t∫

0

e−(dh+ρ)(t−s)T2(t − s)

⎡

⎣
cβ(H − ε1)

H

s∫

0

β1(a)T1(a)[B(s − a)]Π(a)da

⎤

⎦ ds

=
bcβ2

H
(S0

m − ε1)
(
1 − ε1

H

) t∫

0

e−(dh+ρ)(t−s)T2(t − s)

⎡

⎣

s∫

0

β1(a)T1(a)[B(s − a)]Π(a)da

⎤

⎦ds.

(4.11)

For any λ > 0, let B̂(λ) :=
∞∫

0

e−λt
∫

Ω

B(t, x)dxdt. By Lemma 4.6 and (2.2), we can easily confirm that

0 < B̂(λ) < +∞. Moreover, from (4.11), we have

B̂(λ) ≥bcβ2

H
(S0

m − ε1)
(
1 − ε1

H

) ∞∫

0

e−λt

t∫

0

e−(dh+ρ)(t−s)

s∫

0

β1(a)
∫

Ω

B(s − a, x)dxΠ(a)dadsdt

=
bcβ2

H
(S0

m − ε1)
(
1 − ε1

H

) 1
λ + dh + ρ

∞∫

0

e−λaβ1(a)Π(a)daB̂(λ)

=[�ε1,λ]B̂(λ), (4.12)

where

[�ε1,λ] :=
bcβ2

H
(S0

m − ε1)
(
1 − ε1

H

) 1
λ + dh + ρ

∞∫

0

e−λaβ1(a)Π(a)da.

One can easily see that [�ε1,λ] → [�0] > 1 as (ε1, λ) → (0, 0), which allow us to choose ε1 > 0 and λ > 0
small enough such that [�ε1,λ] > 1. We then have from (4.12) that B̂(λ) > B̂(λ), a contradiction. This
proves Lemma 4.7. �

Using Lemma 4.7, we now prove the following result.

Proposition 4.8. If [�0] > 1, then there exists an ε2 > 0 such that, for any φ ∈ D0 and x ∈ Ω,

lim inf
t→∞ Ih(t, x) > ε2. (4.13)

Before the proof, we prepare some notations:

• ∂D0 := D \ D0 = {ϕ = (ϕ1, ϕ2, ϕ3) ∈ D : ϕ3 ≡ 0}.
• M∂ := {ϕ ∈ ∂D0 : Φ(t)ϕ ∈ ∂D0 for all t > 0}.
• ω(ϕ) := ∩t≥0∪s≥tΦ(s)ϕ: the omega limit set.
• δ(ϕ) := infx∈Ω ϕ3(x), ρ : D → R+: a generalized distance function.
• W s(Ẽ0) := {ϕ ∈ D : limt→∞ ‖Φ(t)ϕ − Ẽ0‖X = 0}: the stable set of Ẽ0.

Proof. One can easily confirm that

1. ∪ϕ∈M∂
ω(ϕ) = {Ẽ0}.

2. No subset of {Ẽ0} forms a cycle in ∂D0.
3. {Ẽ0} is isolated in D.
4. W s(Ẽ0) ∩ δ−1(0,∞) = ∅.
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Moreover, by Corollary 4.1, Φ has a global attractor in D. Thus, conditions in [23, Theorem 3] are satisfied
and there exists an ε2 > 0 such that

min
ϕ∈L

δ(ϕ) > ε2,

where L is an arbitrary compact chain transitive set in D \ {Ẽ0}. Hence, for any φ ∈ D0 and x ∈ Ω,
(4.13) holds. This proves Proposition 4.8. �

By Propositions 4.5 and 4.8, there exists ci > 0, i = 1, 2, such that, for any total trajectory in a
persistence attractor (see, e.g., [18, Theorem 8.3]), the following inequalities hold:

c1 <
im

i∗m(a)
=

T1(a)(B(t − a, ·))(x)
i∗m(0)

< c2, x ∈ Ω, t ∈ R, a ≥ 0.

Thus, for any total trajectory in a persistence attractor, the following functions are finite for all t ∈ R:

W1(t) :=
∫

Ω

S∗
mg

(
Sm

S∗
m

)

dx, W2(t) :=
∫

Ω

∞∫

0

Ψ2(a)i∗m(a)g
(

im
i∗m(a)

)

dadx,

W3(t) :=
∫

Ω

I∗
hg

(
Ih

I∗
h

)

dx,

where g(u) := u − 1 − ln u and

Ψ2(a) :=
cβ

Π(a)

(

1 − I∗
h

H

) ∞∫

a

β1(θ)Π(θ)dθ.

Clearly, g(u) > 0 for each u ∈ (0,∞)\{1} and g(1) = 0. Using a Lyapunov function W := κW1+W2+W3

with κ > 0 to be determined below, we can obtain the following result.

Theorem 4.9. Suppose that [�0] > 1. Then, E∗ is GAS in D0.
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Proof. By appealing to [18, Theorem 9.5], we consider a total trajectory in the persistence attractor.
Then, W (t) = κW1(t) + W2(t) + W3(t) is finite for all t ∈ R. Direct calculation gives

W ′
1(t) =

∫

Ω

[(

1 − S∗
m

Sm

) (

DmΔSm + μ − bβ

H
SmIh − dmSm

)]

dx

= − DmS∗
m

∫

Ω

|∇Sm|2
S2

m

dx + dmS∗
m

∫

Ω

(

2 − S∗
m

Sm
− Sm

S∗
m

)

dx

+
bβ

H
S∗

mI∗
h

∫

Ω

(

1 − S∗
m

Sm
+

Ih

I∗
h

− SmIh

S∗
mI∗

h

)

dx

= − DmS∗
m

∫

Ω

|∇Sm|2
S2

m

dx − dmS∗
m

∫

Ω

[

g

(
S∗

m

Sm

)

+ g

(
Sm

S∗
m

)]

dx

+ i∗m(0)
∫

Ω

[

−g

(
S∗

m

Sm

)

+ g

(
Ih

I∗
h

)

− g

(
SmIh

S∗
mI∗

h

)]

dx,

W ′
3(t) =

∫

Ω

⎡

⎣

(

1 − I∗
h

Ih

)
⎛

⎝DhΔIh + cβ

(

1 − Ih

H

) ∞∫

0

β1(a)imda − (dh + ρ)Ih

⎞

⎠

⎤

⎦ dx

= − DhI∗
h

∫

Ω

|∇Ih|2
I2
h

dx + cβ

∫

Ω

(

1 − I∗
h

Ih

) (

1 − Ih

H

) ∞∫

0

β1(a)imdadx

+ (dh + ρ)I∗
h

∫

Ω

(

1 − Ih

I∗
h

)

dx

= − DhI∗
h

∫

Ω

|∇Ih|2
I2
h

dx − cβ

∫

Ω

(Ih − I∗
h)2

HIh

∞∫

0

β1(a)imdadx

+ cβ

(

1 − I∗
h

H

)∫

Ω

∞∫

0

β1(a)i∗m

(

1 − Ih

I∗
h

+
im
i∗m

− I∗
him

Ihi∗m

)

dadx

= − DhI∗
h

∫

Ω

|∇Ih|2
I2
h

dx − cβ

∫

Ω

(Ih − I∗
h)2

HIh

∞∫

0

β1(a)imdadx

− cβ

(

1 − I∗
h

H

)

Ki∗m(0)
∫

Ω

g

(
Ih

I∗
h

)

dx

+ cβ

(

1 − I∗
h

H

)∫

Ω

∞∫

0

β1(a)i∗m

[

g

(
im
i∗m

)

− g

(
I∗
him

Ihi∗m

)]

dadx,

and

W ′
2(t) =

∫

Ω

∞∫

0

Ψ2(a)
(

1 − i∗m
im

)(

DmΔim − ∂im
∂a

− dmim

)

dadx
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Fig. 1. Ω = (0, 1). The time evolution of susceptible mosquitoes Sm(t, x), infected mosquitoes with I(t, x) =
∞∫

0

im(t, a, x)da)

and infected humans Ih(t, x) of system (4.1) with (5.1), β=0.026 and Ω = (0, 1). The initial data is φ1(x) = 100, φ2(a, x) =
e−dm∗a(x − 0.3)(0.7 − x) and φ3(x) = 0.

= − Dm

∫

Ω

∞∫

0

Ψ2(a)
|∇im|2

i2m
dadx −

∫

Ω

∞∫

0

Ψ2(a)
(

1 − i∗m
im

) (
∂im
∂a

+ dmim

)

dadx.

Here, note that

i∗m
∂

∂a
g

(
im
i∗m

)

=i∗m

(

1 − i∗m
im

)
∂

∂a

(
im
i∗m

)

=
(

1 − i∗m
im

)(
∂im
∂a

+ dmim

)

.

Thus, we have

W ′
2(t) = − Dm

∫

Ω

∞∫

0

Ψ2(a)
|∇im|2

i2m
dadx −

∫

Ω

∞∫

0

Ψ2(a)i∗m
∂

∂a
g

(
im
i∗m

)

dadx

= − Dm

∫

Ω

∞∫

0

Ψ2(a)
|∇im|2

i2m
dadx + Ψ2(0)i∗m(0)

∫

Ω

g

(
im(t, 0, x)

i∗m(0)

)

dx
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Fig. 2. The time evolution of susceptible mosquitoes Sm(t, x), infected mosquitoes with I(t, x) =
∞∫

0

im(t, a, x)da) and

infected humans Ih(t, x) of system (4.1) with (5.1), β = 0.036 and Ω = (0, 1). The initial data is φ1(x) = 100, φ2(a, x) =
e−dm∗a(x − 0.3)(0.7 − x) and φ3(x) = 0.

− cβ

(

1 − I∗
h

H

)∫

Ω

∞∫

0

β1(a)i∗mg

(
im
i∗m

)

dadx.

Hence, letting κ := cβ(1 − I∗
h/H)K, we obtain

W ′(t) =κW ′
1(t) + W ′

2(t) + W ′
3(t)

= − κDmS∗
m

∫

Ω

|∇Sm|2
S2

m

dx − κdmS∗
m

∫

Ω

[

g

(
S∗

m

Sm

)

+ g

(
Sm

S∗
m

)]

dx − κi∗m(0)
∫

Ω

g

(
S∗

m

Sm

)

dx

− DhI∗
h

∫

Ω

|∇Ih|2
I2
h

dx − cβ

∫

Ω

(Ih − I∗
h)2

HIh

∞∫

0

β1(a)imdadx
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Fig. 3. t = 280. The time evolution of susceptible mosquitoes Sm(t, x), infected mosquitoes with I(t, x) =
∞∫

0

im(t, a, x)da)

and infected humans Ih(t, x) of system (4.1) with (5.1), β = 0.26 and Ω = (0, 1) × (0, 1). The initial data is φ1(x, y) =
100, φ2(a, x, y) = e−dm∗a(x − 0.3)(0.7 − x)(y − 0.3)(0.7 − y) and φ3(x, y) = 0.

− cβ

(

1 − I∗
h

H

) ∫

Ω

∞∫

0

β1(a)i∗mg

(
I∗
him

Ihi∗m

)

dadx − Dm

∫

Ω

∞∫

0

Ψ2(a)
|∇im|2

i2m
dadx

≤0.

One can easily see that W ′(t) = 0 iff (Sm, im, Ih) = E∗. As in the proof of [18, Theorem 9.5], we see that
the singleton {E∗} is indeed the persistence attractor. This gives the global attractivity of E∗. Together
with Theorem 4.3, one can get E∗ is GAS. This proves Theorem 4.9. �

5. Numerical simulations

5.1. Dynamical behaviors of system (4.1)

We perform numerical simulations to support the main results obtained in Sect. 4. Specifically, we shall
carry out the simulations for 1-dimensional and 2-dimensional domain to validate Theorems 4.4 and 4.9,
that is, both Ẽ0 and E∗ are GAS.
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Fig. 4. t = 350. The time evolution of susceptible mosquitoes Sm(t, x), infected mosquitoes with I(t, x) =
∞∫

0

im(t, a, x)da)

and infected humans Ih(t, x) of system (4.1) with (5.1), β = 0.36 and Ω = (0, 1) × (0, 1). The initial data is φ1(x, y) =
100, φ2(a, x, y) = e−dm∗a(x − 0.3)(0.7 − x)(y − 0.3)(0.7 − y) and φ3(x, y) = 0.

For the case that Ω = (0, 1), we set the following parameters:

μ = 20, dm = 0.2, b = 0.5, c = 0.5, H = 100, dh = 0.00004, ρ = 0.1,

Dm = Dh = 0.000125, β1 = 1.
(5.1)

If we take β = 0.26, we can compute [�0] = 0.844669. From Theorem 4.4, we know that Ẽ0 is GAS
in D. Figure 1a, b and c illustrates that the density of susceptible mosquitoes will attain a positive level
and infected mosquitoes and infected humans decay to zero. We also know from Fig. 1d that the spatial
distribution of infected mosquitoes gradually enlarges with higher prevalence but decays to zero.

If we take β = 0.36 and the other parameters remain the same as in (5.1), then [�0] = 1.619366.
It is known from Theorem 4.9 that E∗ is GAS in D0. Figure 2a, b and c illustrates that the densities
of susceptible mosquitoes, infected mosquitoes and infected humans will attain a positive level as time
evolves. Figure 2d illustrates that the spatial distribution of infected mosquitoes gradually enlarge with
higher prevalence.

For the case that Ω = (0, 1)×(0, 1). We set the same parameters as in Fig. 1 and 2. Figure 3a illustrates
that the density of susceptible mosquitoes will attain a positive level. We can see from Fig. 3b, c that the
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Fig. 5. PRCC for [�0].

Fig. 6. Sensitive analysis of the [�0] via parameters
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Fig. 7. The influence of n on [�0].

densities of infected mosquitoes and infected humans decay to zero. Figure 4 demonstrates the densities
of susceptible mosquitoes, infected mosquitoes and infected humans will attain a positive level.

5.2. The influence of parameters on [�0]

To analyze the effects of the parameter values on [�0], we perform sensitivity analysis to check the effects
of the parameter values on [�0] by Latin Hypercube Sampling and partial rank correlation coefficient
(PRCC) method (see, for example, [4,11]). Under the setting that μ, dm, ρ and β1 are changed concomi-
tantly, we can observe the dependence of [�0] on parameters μ, dm, ρ and β1, respectively. Specifically,
numeric plots in Fig. 5 indicate that [�0] is a monotonically increasing function with respect to μ and β1,
while [�0] is a monotonically decreasing function of dm and ρ, respectively. Figure 6 demonstrates that
[�0] is more sensitive to μ and β1.

We next investigate the influence of β1(a) on [�0]. As pointed in [24], the smaller the age of infection,
the smaller transmission rate β1(a) of the disease. The rate of infection increases along with the infectious
age. When the age of infection is very large, the infection rate is reduced to zero due to the loss of
infectivity. Therefore, we artificially select the following form of β1,

β1(a) = 0.3 + 0.63ae−n(a−10)2 , n ∈ (0, 1].

It can be observed from Fig. 7 that [�0] decreases monotonically as n increases.
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