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Abstract. We study a mathematical model of a viscous compressible fluid obeying the slip boundary condition of friction
type. We present a notion of weak solutions to this model, in which the momentum equation and the associated energy
inequality are combined into a single relation. Moreover, the slip boundary condition of friction type is incorporated into
this relation by the use of a boundary integral. Our main result proves the existence of such weak solutions. The proof of
this result combines the classical existence theory for the compressible Navier–Stokes equations with an approximation of
the aforementioned boundary integral via a convex regularization of the absolute value function.
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1. Introduction

The subject of this article is a new model of a compressible viscous fluid satisfying the so-called slip
boundary condition of friction type (SBCF). In this paper, we prove the existence of weak solutions to
this model.

Classical (or strong) solutions to the compressible Navier–Stokes equations can be expected only for
small data (or, more generally, for data close to an equilibrium). The first such result for the Cauchy
problem for the Navier–Stokes Fourier system (when heat conductivity is included) goes back to the
eighties [18]; for further developments, see e.g., [20] or [2]. However, classical solutions are not known
to exist globally in time if the data are arbitrary. The concept of weak solutions was for the first time
successfully used by Lions (see [17]) in the case of isentropic flow. In this book, several kinds of boundary
conditions were considered: The no-slip boundary condition, which describes the vanishing of the fluid
velocity on the boundary of the domain, periodic boundary conditions as well as the case of a fluid covering
the whole space. A detailed proof of the existence of weak solutions in the case of the no-slip boundary
condition can further be found in [21]. A weak solution in the case of heat-conducting fluids satisfying
the no-slip boundary condition was for the first time constructed by Feireisl (see [4]) by combining the
internal energy balance and the global energy balance. Another approach, presented by Feireisl and
Novotný, is based on the entropy inequality (see [5]). In the latter book, the case of the complete-slip
boundary condition, i.e., the case of fluids for which the normal component of the velocity vanishes on
the boundary, is additionally taken into consideration. Moreover, the existence of weak solutions in the
case of incompressible fluids is treated for example in [16] for the no-slip boundary condition, periodic
boundary conditions as well as in the whole space R

N .
The no-slip boundary condition has been the most widely used given its success in reproducing the

standard velocity profiles for incompressible/compressible viscous fluids for many years. The no-slip
hypothesis seems to be in good agreement with experiments but it can lead to certain rather surprising
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conclusions, e.g., the most striking one being the absence of collisions of rigid objects immersed in a
linearly viscous fluid [11,12].

The Navier–Stokes equations have also been studied in combination with more uncommon boundary
conditions. The so-called Navier boundary condition, which allows for slip, offers more freedom and is likely
to provide a physically acceptable solution at least to some of the paradoxical phenomena resulting from
the no-slip boundary condition, see e.g., Moffat [19]. Recent developments in macrofluidic and nanofluidic
technologies have renewed interest in the slip behavior that may become significant in the small spatial
scales even for a relatively small Reynolds number (cf. Priezjev and Troian [22]). Mathematically, the
behavior of the tangential component of the velocity is a delicate issue.

We further mention the Coulomb friction law boundary condition, which is used for the description
of fluids that can slip on the boundary provided that the tangential component of the stress tensor is
sufficiently large. In [1], the existence of weak solutions to the incompressible Navier–Stokes equations
satisfying this boundary condition is proved in the case of two and three spatial dimensions. Another
boundary condition modelling this phenomenon is the slip boundary condition of friction type introduced
by Fujita [7] and Fujita [8] for the stationary Stokes and Navier Stokes equations. The same boundary
condition was studied for the incompressible Navier–Stokes equations in [14], wherein the existence of
solutions is proved globally in time in the 2D case and locally in time in the 3D case. A numerical
analysis of the slip boundary condition of friction type can be found in [13]. Moreover, some applications
to real-world problems with numerical simulations are given in [9,10,15].

In the present article, we combine, for the first time, the compressible Navier–Stokes equations with
the slip boundary condition of friction type. We prove the existence of weak solutions in this setting.
Since the slip boundary condition of friction type is particularly interesting for the modelling of fluids
in moving domains or fluid–structure interaction, our result can be considered as a first stepping stone
toward the study of these more sophisticated problems. From the mathematical point of view, the main
novelty in our existence proof lies in the addition of one further approximation level to the classical
approximation method used for the construction of weak solutions to the compressible Navier–Stokes
equations with the no-slip boundary condition, c.f. for example [21]. This additional approximation level
follows closely the approximation methods used in [1,14] in the case of the incompressible Navier–Stokes
equations with the Coulomb friction law boundary condition and the slip boundary condition of friction
type, respectively. It consists of the addition of a boundary integral to the momentum equation which
contains the gradient of a smooth and convex approximation of the absolute value of the velocity field,
c.f. (28). Due to the convexity of the approximation, this boundary integral can later be replaced by
the desired boundary integral which expresses the slip boundary condition of friction type in our weak
formulation (12). Another novelty results from the fact that as in the incompressible case in [14], the
weak formulation to our problem merges the momentum equation and the energy inequality into one
single relation, c.f. (12). For technical reasons, however, we also need to study the momentum equation
separately in order to deduce the same improved density estimates and the effective viscous flux identity
as in the existence proof in the case of the no-slip boundary condition in [21], which are required for
passing to the limit in the pressure term. As a consequence, we are forced to also pass to the limit in the
momentum equation separately on every approximation level, which leads to a relation which we refer to
as the alternative momentum equation, c.f. Remark 4.1.

The paper is organized as follows. In Sect. 2, we present the full model. A corresponding weak formula-
tion of this model is presented in Sect. 3. In the same section, we further show that this weak formulation
constitutes a suitable definition of weak solutions and present our main result. The full proof of the main
result extends across Sects. 4.1–4.5.
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2. Model

The model which we study in this paper is as follows. We consider a viscous compressible fluid occupying
an open and bounded domain Ω ⊂ R

3 with locally Lipschitz boundary Γ = ∂Ω and with outward unit
normal vector n on Γ. The density ρ : (0, T ) × Ω → R and the velocity field u : (0, T ) × Ω → R

3 of the
fluid are determined via the system

∂tρ + ∇ · (ρu) = 0 in (0, T ) × Ω, (1)

∂t(ρu) + ∇ · (ρu ⊗ u) = ∇ · σ + ρf in (0, T ) × Ω, (2)

ρ(0) = ρ0, (ρu)(0) = q in Ω, (3)

u · n = 0 on (0, T ) × Γ, (4)

|(σn)τ | ≤ g, (σn)τ · uτ + g |uτ | = 0 on (0, T ) × Γ, (5)

where the Cauchy stress tensor

σ = σ(u, p) := 2νD(u) + λ(∇ · u)Id − pId, D(u) :=
1
2
∇u +

1
2
(∇u)T

with the viscosity coefficients ν, λ ∈ R, satisfying

ν > 0, λ + ν ≥ 0,

can be split into its normal component σn = σn · n and its tangential component στ = σn − σnn.
Moreover, the positive constant g in (5) is the threshold of slippage. Further, the pressure p is defined by
the isentropic constitutive relation

p = aργ , γ >
3
2
, a > 0.

In the considered model, Eqs. (1) and (2) represent the continuity equation and the momentum equation,
respectively. The initial conditions are presented in (3). Finally, Eqs. (4) and (5) represent the slip
boundary condition of friction type.

3. Weak formulation and main result

Here, we present the definition of a weak solution to the system (1)–(5) and state our main result. To this
end, we denote by H1

n(Ω;R3) the Sobolev space of all functions in H1(Ω;R3) whose normal component
vanishes on the boundary,

H1
n

(
Ω;R3

)
:=

{
u ∈ H1

(
Ω;R3

)
: u · n = 0 on Γ

}
.

Definition 3.1. Let T > 0 and let Ω ⊂ R
3 be a bounded domain. Let ν, λ, a, γ ∈ R be given constants

which satisfy

ν, a > 0, γ >
3
2
, ν + λ ≥ 0. (6)

Further assume that f ∈ L∞((0, T ) × Ω), g ∈ L2((0, T ) × Γ) and assume the initial data to satisfy the
conditions

0 ≤ ρ0 ∈ Lγ(Ω), q ∈ L1(Ω),
|q|2
ρ0

∈ L1(Ω), q = 0 a.e. in {x ∈ Ω : ρ0(x) = 0} (7)

Then, a pair of functions (ρ, u), such that

0 ≤ ρ ∈ L∞ (0, T ;Lγ (Ω;R))
⋂

C
(
[0, T ];L1 (Ω;R)

)
and u ∈ L2

(
0, T ;H1

n

(
Ω,R3

))
, (8)

is said to be a weak solution to system (1)–(5) if it satisfies:
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(i) the continuity equation in the distributional sense,

∂tρ + ∇ · (ρu) = 0 in D′ ((0, T ) × R
3
)
, (9)

and the renormalized sense,

∂tζ(ρ) + ∇ · (ζ (ρ) u) + [ζ ′ (ρ) ρ − ζ (ρ)] ∇ · u = 0 in D′ ((0, T ) × R
3
)
, (10)

for all ζ ∈ C1 ([0,∞)) : |ζ ′(r)| ≤ crσ ∀r ≥ 1 for certain c > 0, σ > −1, (11)

(ii) the momentum and energy inequality
∫

Ω

1
2
ρ(0) |u(0)|2 +

aργ(0)
γ − 1

dx −
∫

Ω

1
2
ρ(τ) |u(τ)|2 +

aργ(τ)
γ − 1

dx

+

τ∫

0

∫

Ω

−ρu · ∂tφ − (ρu ⊗ u) : ∇φ + (2νD(u) + λ (∇ · u) I) : [∇φ − ∇u]

− p I : ∇φ − ρf · [φ − u] dxdt +

τ∫

0

∫

∂Ω

g|φ| − g|u|dΓdt ≥ 0 (12)

for almost all τ ∈ [0, T ] and all φ ∈ D((0, τ) × Ω) with φ · n|∂Ω = 0 and
(iii) the initial conditions

ρ(0) = ρ0, lim
τ→0+

∫

Ω

ρ(τ, x)u(τ, x) · φ(x) dx =
∫

Ω

q(x) · φ(x) dx (13)

for all φ ∈ D(Ω) with φ · n |∂Ω = 0.

In order to make sure that Definition (3.1) is a suitable definition of weak solutions, we show that
any classical solution to the system (1)–(5) is also a weak solution and, vice versa, any weak solution
with a sufficient amount of regularity solves problem (1)–(5) in the classical sense. In order to obtain the
variational inequality (12) from system (1)–(5), we first pick an arbitrary time τ ∈ [0, T ] and multiply
the momentum equation (2) by an arbitrary function φ ∈ D((0, τ) × Ω) with φ · n |∂Ω = 0. Integrating
(by parts) over (0, τ) × Ω, we obtain the identity

τ∫

0

∫

Ω

−ρu · ∂tφ − (ρu ⊗ u) : ∇φ + σ : ∇φ dxdt =

τ∫

0

∫

Ω

ρf · φ dxdt +

τ∫

0

∫

∂Ω

(σn)τ · φ dΓdt. (14)

Similarly, we test the momentum equation (2) by u and subtract from it the continuity equation (1)
tested by 1

2 |u|2. Hence, we infer the energy inequality

1
2

∫

Ω

ρ(τ)|u(τ)|2 +
aργ(τ)
γ − 1

dx +

τ∫

0

2ν |D(u)|2 + λ |∇ · u|2 dxdt

=
1
2

∫

Ω

ρ(0) |u(0)|2 +
aργ(0)
γ − 1

dx +

τ∫

0

∫

Ω

ρf · u dxdt +

τ∫

0

∫

∂Ω

(σn)τ · u dΓdt.
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The last identity is subtracted from equation (14), and then we use the boundary condition (5).
Finally, we obtain

∫

Ω

1
2
ρ(0) |u(0)|2 +

aργ(0)
γ − 1

dx −
∫

Ω

1
2
ρ(τ) |u(τ)|2 +

aργ(τ)
γ − 1

dx +

τ∫

0

∫

Ω

−ρu · ∂tφ − (ρu ⊗ u) : ∇φ

+ (2νD(u) + λ (∇ · u) I) : [∇φ − ∇u] − p I : ∇φ − ρf · [φ − u] dxdt +

τ∫

0

∫

∂Ω

g|φ| − g|u|dΓdt

=

τ∫

0

∫

∂Ω

(σn)τ · [φ − u] dΓdt +

τ∫

0

∫

∂Ω

g|φ| − g|u|dΓdt (15)

=

τ∫

0

∫

∂Ω

(σn)τ · φ dΓdt +

τ∫

0

∫

∂Ω

g|φ|dΓdt ≥ 0, (16)

which is exactly the variational inequality (12). Conversely, we need to check that any sufficiently regular
weak solution in the sense of Definition 3 also satisfies the system (1)–(5) in the classical sense. Hereof,
continuity equation (1), the initial condition (3) and the boundary condition (4) are clear. For the deriva-
tion of the momentum equation, we test the variational inequality (12) by ψu ± φ for some arbitrary
functions ψ ∈ D(0, T ), φ ∈ D((0, T ) × Ω). Under exploitation of the assumed smoothness of ρ and u, this
yields the relation

∫

Ω

1
2
ρ(0) |u(0)|2 +

aργ(0)
γ − 1

dx −
∫

Ω

1
2
ρ(τ) |u(τ)|2 +

aργ(τ)
γ − 1

dx +

T∫

0

∫

Ω

∂t (ρu) · (ψu ± φ)

+ (∇ · (ρu ⊗ u)) · (ψu ± φ) + (∇ · (2νD(u) + λ (∇ · u) I)) · [(1 − ψ) u ± φ] + ∇p · (ψu ± φ)

+ ρf · [(1 − ψ) u ± φ] dxdt +

T∫

0

∫

∂Ω

g|ψu| − g|u|dΓdt ≥ 0

Letting ψ → 1, we see that the φ-independent terms in this inequality cancel each other, and we are
left with the equality

T∫

0

∫

Ω

∂t (ρu) · φ + (∇ · (ρu ⊗ u)) · φ − (∇ · (2νD(u) + λ (∇ · u) I)) · φ + ∇p · φ − ρf · φ dxdt = 0. (17)

Hence, by the arbitrary choice of φ ∈ D((0, T ) × Ω), the classical formulation (2) of the momentum
equation is satisfied. This in particular implies that identity (15) again holds true. Subtracting (15) from
the given variational inequality (12), we find the estimate

−
τ∫

0

∫

∂Ω

(σn)τ · [φ − u] dΓdt ≤
τ∫

0

∫

∂Ω

g|φ| − g|u|dΓdt (18)

for any φ ∈ D((0, τ) × Ω) with φ · n|∂Ω = 0 and, by a density argument, for any φ ∈ L2(0, τ ;H1
n(Ω)).

We choose s = T and test this inequality by u ± φ. Hence, replacing φ by u ± φ, we conclude, from the
reverse triangle inequality, the estimate

∣
∣
∣
∣
∣
∣

τ∫

0

∫

∂Ω

(σn)τ · φ dΓdt

∣
∣
∣
∣
∣
∣
≤

τ∫

0

∫

∂Ω

g|φ|dΓdt.
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It follows that |(σn)τ | ≤ g on ∂Ω and further, from the estimate (18) with the choice φ = 0 that
(σn)τ · u + g|u| = 0 on ∂Ω. Hence, also the boundary condition (5) is satisfied.

We are now in the position to present the main result of our article, which is as follows:

Theorem 3.1. Let T > 0 and let Ω ⊂ R
3 be a bounded domain of class C2,η

⋃
C0,1 for some η > 0. Let

the data ν, λ, a, γ ∈ R, f ∈ L∞((0, T ) × Ω), g ∈ L2((0, T ) × ∂Ω), ρ0 ∈ Lγ(Ω) and q ∈ L1(Ω) satisfy the
conditions (6)–(7). Then, there exists a weak solution (ρ, u), in the sense of Definition 3.1, to the system
(1)–(5).

We remark that the C2,η-regularity of Ω in Theorem 3.1 is necessary for the construction of the density
in the approximate system in Sect. 4.1, c.f. [5, Lemma 3.1, Theorems 10.22, 10.23], [21, Proposition 7.39].
Moreover, the C1-regularity of Ω is needed to extend u to an L2(0, T ;H1(R3))-function when showing that
the couple (ρ, u) satisfies the renormalized continuity equation in Sect. 4.4, c.f. [3, Sect. 5.4, Theorem 1].

4. Approximate system

In this section, we present an approximate version of the problem introduced in Sect. 2, followed by a
brief explanation of the individual approximation levels. We fix four parameters n ∈ N, δ, ε, α > 0, each
of them associated to one of these approximation levels. We further fix some parameter β > max{γ, 4}.
By Vn ⊂ C2(Ω;R3) ⊂ L2(Ω;R3) we denote an n-dimensional vector space equipped with the L2(Ω)-inner
product, such that

⋃

n∈N

Vn is dense in W 1,p
n (Ω) :=

{
φ ∈ W 1,p(Ω) : φ · n|Γ = 0

} ∀1 ≤ p < ∞. (19)

For technical reasons (c.f. the deduction of the convergence (65)), we assume that without loss of
generality the sequence of spaces (Vn)n contains a subsequence (V0,n)n of spaces V0,n ⊂ C2

0 (Ω;R3) such
that

⋃

n∈N

V0,n is dense in W 1,p
0 (Ω) ∀1 ≤ p < ∞. (20)

Moreover, following the approximation method used for the proof of the existence of weak solutions to
the Navier–Stokes equations with the Coulomb friction law boundary condition in [1, Sect. 3], we denote
by

jδ(v) :=

{
|v| for |v| > δ,

|v|2
2δ + δ

2 for |v| ≤ δ,

a convex approximation jδ ∈ C1(R3)
⋂

C1,1
loc (R3) of the absolute value function. We remark that while

in [1] the local Lipschitz continuity of the gradient of jδ is not required, it is necessary in our setting
in order to achieve continuity of the operator T in the fixed point argument for the construction of an
approximate solution in Sect. 4.1. The approximation jδ further has the properties

jδ(0) = 0, (21)

grad jδ(v) · v ≥ 0 ∀ v ∈ R
3, (22)

|grad jδ(v)| ≤ 1 ∀ v ∈ R
3, (23)

|jδ(v) − |v|| ≤ δ ∀ v ∈ R
3, (24)
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where grad jδ denotes the gradient of jδ. Our approximate problem on the highest approximation level
consists of finding functions

ρδ ∈W :=
{

ψ ∈ C
(
[0, T ];C2,η

(
Ω
))⋂

C1
(
[0, T ];C0,η

(
Ω
))

: ∇ψ · n|Γ = 0
}

, (25)

uδ ∈C ([0, T ];Vn) (26)

which satisfy the approximate continuity equation

∂tρδ + ∇ · (ρδuδ) =εΔρδ, ∇ρδ · n|Γ = 0. (27)

in (0, T ) × Ω and the approximate momentum equation
∫

Ω

∂t (ρδuδ) · φ dx =
∫

Ω

(ρδuδ ⊗ uδ) : ∇φ − 2νD (uδ) : D(φ) − λ(∇ · uδ)(∇ · φ) + aργ
δ ∇ · φ + αρβ

δ ∇ · φ

+ ρδf · φ − ε (∇uδ∇ρδ) · φ dx −
∫

∂Ω

g grad jδ(uδ) · φ dΓ (28)

in [0, T ] for all φ ∈ C([0, T ];Vn) as well as the initial conditions

ρ(0, x) = ρ0(x), u(0, x) = u0(x) ∀x ∈ Ω. (29)

Here, the initial data u0 for the velocity field is defined by

u0 := Pn

(
q

ρ0

)
∈ Vn, (30)

where Pn denotes the orthogonal projection from L2(Ω) onto Vn, and the initial data ρ0, q is assumed to
satisfy the additional regularity criteria

ρ0 ∈ C2,η
(
Ω
)
, 0 < α ≤ ρ0 ≤ α− 1

2β , ∇ρ0 · n|Γ = 0, q ∈ C2
(
Ω
)
. (31)

Having introduced the full approximate problem (25)–(29), we now give a short explanation of the
individual approximation levels in the order, in which we will later pass to the limit in them, beginning
with the δ-level. On this level, following the proof of the existence of weak solutions to the incompressible
Navier–Stokes equations with the Coulomb friction law boundary conditions in [1], we add a boundary
integral containing the quantity grad jδ(uδ) to the momentum equation. The convexity of jδ then allows us
to transform the approximate momentum equation (28) into an inequality in which the desired boundary
condition is incorporated in the same way as in the momentum and energy inequality (12) in our weak
formulation.

The remaining approximation levels coincide precisely with the corresponding approximation levels in
the classical theory of the existence of weak solutions to the compressible Navier–Stokes equations, which
can be found for example in [21, Chapter 7]. On the n-level, we carry out a Galerkin approximation,
which allows us to find a solution to the approximate system. More precisely, this procedure reduces the
problem to a finite dimensional problem in the spatial component, which can be solved via the classical
theory of ordinary differential equations and a fixed point argument. The reason why we pass to the limit
with respect to δ → 0 before passing to the limit in the Galerkin approximation lies in the high spatial
regularity available on the Galerkin level. This regularity allows us to achieve uniform convergence of the
velocity field uδ when letting δ tend to zero, which is required for passing to the limit in the quantity
jδ(uδ).

On the ε-level the additional quantity εΔρδ is added to the continuity equation. This procedure (c.f.
[21, Section 7.6]), known as the parabolic regularization of the continuity equation, is required to make
sure that the density in our approximate system and consequently also in our final system is non-negative.
For the sake of preserving an energy inequality under this modification of the continuity equation, the
term ε(∇uδ∇ρδ) is moreover added to the momentum equation.
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Lastly, we have the α-level, on which we add the artificial pressure αρβ is added to the momentum
equation. The choice β > max{γ, 4} provides us with a higher regularity of the density, which in turn
allows us to pass to the limit in the quantity ε(∇uδ∇ρδ) in the limit passage with respect to n → ∞, see
[21, Sect. 7.8.2].

4.1. Solution to the approximate problem

Our proof of the existence of a solution to the approximate problem (25)–(29) mainly follows the classical
existence theory for the compressible Navier–Stokes equations (c.f. for example [21, Sect. 7.7]) with the
difference lying only in the consideration of the additional boundary integral in the momentum equation
(28). We start by fixing an arbitrary function w ∈ C([0, T ];Vn). Then by the classical theory for the
parabolic Neumann problem (see [5, Lemma 3.1, Theorems 10.22, 10.23], [21, Proposition 7.39]) there
exists a unique function ρ = ρ(w) ∈ W which solves the problem

∂tρ + ∇ · (ρw) = εΔρ in [0, T ] × Ω, (32)

ρ(0, ·) = ρ0(·) in Ω, 0 < ρ ≤ ρ0(·) ≤ ρ < ∞, in Ω (33)

and which in addition satisfies the estimate

0 < ρ exp
(
−‖w‖L1(0,t;Vn)

)
≤ ρ(t, ·) ≤ ρ exp

(
‖w‖L1(0,t;Vn)

)
< ∞ in Ω (34)

for all t ∈ [0, T ]. Further, this solution satisfies the estimates

‖ρ(w)‖C([0,T ];C2,η(Ω)) + ‖ρ(w)‖C1([0,T ];C0,η(Ω)) ≤ c(w), (35)
∥
∥ρ

(
w1

) − ρ
(
w2

)∥∥
C([0,T ];L2(Ω))

≤ c
(
w1, w2

) ∥∥w1 − w2
∥
∥

C([0,T ];W 1,∞(Ω))
(36)

for all w,w1, w2 ∈ C([0, T ];Vn), where the constants c(w), c(w1, w2) > 0 are bounded as long as w,w1, w2

are bounded in the norm on C([0, T ];Vn). Moreover, due to the bound (34) of ρ(w) away from 0, it is
easy to see from the classical theory of ordinary differential equations that there exists a unique solution
u = u(w) ∈ C([0, T ];Vn) to the associated linearized problem

∫

Ω

∂t (ρ(w)u) · φ dx =
∫

Ω

(ρ(w)w ⊗ u) : ∇φ − 2νD (u) : D(φ) − λ(∇ · u)(∇ · φ)

+
(
aρ(w)γ + αρ(w)β

)∇ · φ + ρ(w)f · φ − ε (∇u∇ρ(w)) · φ dx

−
∫

∂Ω

g grad jδ(w) · φ dΓ in [0, T ], (37)

u(0, ·) = u0(·) in Ω. (38)

This allows us to consider the desired solution uδ to the momentum equation (28) as a fixed point of
the operator

T : C ([0, T ];Vn) → C ([0, T ];Vn) , T(w) := u(w),

mapping w ∈ C([0, T ];Vn) to the corresponding solution to the linearized problem (37). The existence of
such fixed point follows from the version [3, Sect. 9.2.2, Theorem 4] of the Schauder fixed point theorem.
We show that T is continuous, compact and fixed points of sT are bounded in C([0, T ];Vn) uniformly
with respect to s ∈ [0, 1]. To this end, we introduce the operator

Mρ(w)(t) : Vn → V ∗
n ,

〈Mρ(w)(t)v, φ
〉

V ∗
n ×Vn

:=
∫

Ω

ρ(w)(t)v · φ dx ∀φ, v ∈ Vn.
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The bound (34) of ρ(w) away from zero implies the existence of an inverse M−1
ρ(w)(t) of Mρ(w)(t), with

the properties

∥
∥
∥M−1

ρ(w)(t)

∥
∥
∥

L(V ∗
n ,Vn)

≤ 1
inf(0,T )×Ω ρ(w)

, (39)

∥
∥
∥M−1

ρ(w1)(t) − M−1
ρ(w2)(t)

∥
∥
∥

L(V ∗
n ,Vn)

≤ c(n)
(
inf(0,T )×Ω min {ρ (w1) , ρ (w2)})2

∥
∥ρ

(
w1

)
(t) − ρ

(
w2

)
(t)

∥
∥

L1(Ω)
,

(40)

as well as

∂t

〈Mρ(w)(t)v(t), φ
〉

V ∗
n ×Vn

=
〈
M−1

ρ(w)(t)M∂tρ(w)(t)M−1
ρ(w)(t)v(t) + M−1

ρ(w)(t)∂tv(t), φ
〉

V ∗
n ×Vn

in D′(0, T ), (41)

∥
∥
∥M−1

ρ(w)(t)M∂tρ(w)(t)M−1
ρ(w)(t)

∥
∥
∥

L(V ∗
n ,Vn)

≤ c(n)
(
inf(0,T )×Ω ρ(w)

)2 ‖∂tρ(w)(t)‖L1(Ω) (42)

for any t ∈ [0, T ], any w,w1, w2, v ∈ C([0, T ];Vn) and any φ ∈ Vn, c.f. [21, Sect. 7.7.1]. Denoting

〈N (w, ρ, u) , φ〉V ∗
n ×Vn

:=
∫

Ω

(ρ(w)w ⊗ u) : D(φ) + aργ(w)∇ · φ + αρβ(w)∇ · φ

− 2νD (u) : D(φ) − λ(∇ · u)(∇ · φ) + ρ(w)f · φ − ε (∇u∇ρ(w)) · φ dx

−
∫

∂Ω

g grad jδ(w) · φ dΓ,

〈
(ρ0u0)

∗
, φ

〉
V ∗

n ×Vn
:=

∫

Ω

ρ0u0 · φ dx,

for any φ ∈ Vn, the solution u = T(w) to the linearized problem (37), (38) can be expressed as

u(t) = M−1
ρ(w)(t)

⎡

⎣(ρ0u0)
∗ +

t∫

0

N (w, ρ(w), u) dτ

⎤

⎦ . (43)

Combining this identity with the estimates (34), (35), (39), (40) and the local Lipschitz continuity of
grad jδ, we deduce that the operator T is continuous. Further, the combination of the identity (43) with
the identity (41) and the estimates (34), (36), (39) and (42) leads to the estimate

‖∂tu‖2
L2(0,T ;Vn) ≤ c(n,w) (44)

with a constant c(n,w) > 0 which remains bounded as long as w is bounded in the norm of C([0, T ];Vn).
From this estimate, we infer that the operator T is also compact. Finally, we consider an arbitrary number
s ∈ [0, 1] and an arbitrary fixed point u ∈ C([0, T ];Vn) of the operator sT. We test the corresponding
linearized momentum equation (37) by u and subtract from it the corresponding continuity equation (32),
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tested by 1
2 |u|2. This yields the energy equality

d

dt

∫

Ω

1
2
ρ(u)(t)|u(t)|2 + s

aργ(u)(t)
γ − 1

+ s
αρβ(u)(t)

β − 1
dx +

∫

Ω

2ν|D(u)(t)|2 + λ |∇ · u|2 dx

+ sεγ

∫

Ω

ργ−2(u) |∇ρ(u)|2 dx + sεβ

∫

Ω

ρβ−2(u) |∇ρ(u)|2 dx +
∫

∂Ω

sg grad jδ(u) · u dΓ

= s

∫

Ω

ρ(u)(t)f(t) · u(t) dx (45)

for all t ∈ [0, T ]. According to the property (22) of jδ, it holds that grad jδ(u) ·u ≥ 0 and, by assumption,
g is nonnegative. Hence, from the Gronwall lemma, we deduce that all fixed points u of sT are bounded
in the norm of C([0, T ];Vn), independently of s. This and the continuity as well as the compactness
of T provides the conditions for the fixed point theorem [3, Sect. 9.2.2, Theorem 4], which proves the
existence of a fixed point u ∈ C([0, T ];Vn) of T. Setting (ρδ, uδ) = (ρ(u), u), the pair (ρδ, uδ) constitutes
the desired solution to our approximate problem (25)–(29). Integrating the energy inequality (45), which
ρδ, uδ satisfy for s = 1, we have shown the following proposition:

Proposition 4.1. Let the conditions of Theorem 3.1 be satisfied, let n ∈ N, δ, ε, α > 0 and let β >
max{4, γ}. Moreover, let u0 ∈ Vn be defined by (30) and assume ρ0, q, defined by (7), to satisfy the
additional regularity conditions (31). Then, there exists a solution (ρδ, uδ) ∈ W × C([0, T ];Vn) to the
approximate problem (25)–(29) which in addition satisfies the energy equality

∫

Ω

1
2
ρδ(τ)|uδ(τ)|2 +

aργ
δ (τ)

γ − 1
+

αρβ
δ (τ)

β − 1
dx +

τ∫

0

∫

Ω

2ν|D (uδ) (t)|2 + λ |∇ · uδ|2 + εγργ−2
δ |∇ρδ|2

+ εβρβ−2
δ |∇ρδ|2 dxdt +

τ∫

0

∫

∂Ω

g grad jδ (uδ) · uδ dΓdt

=

τ∫

0

∫

Ω

ρδf · uδ dxdt +
∫

Ω

1
2
ρ0|u0|2 +

aργ
0

γ − 1
+

αρβ
0

β − 1
dx (46)

for all τ ∈ [0, T ].

4.2. Limit passage with respect to δ → 0

Our next goal is to pass to the limit in the regularization of the function j, i.e., the approximation param-
eter δ tend to zero. From the energy inequality (46), the equivalence of norms on the finite dimensional
space Vn and the estimates (34), (35) for the solution ρδ to the Neumann problem (32), (33) with w = uδ,
we infer the uniform bounds

‖ρδ‖C([0,T ];C2,η(Ω)) + ‖ρδ‖C1([0,T ];C0,η(Ω)) +
∥
∥
∥
∥

1
ρδ

∥
∥
∥
∥

C([0,T ]×Ω)

+ ‖uδ‖C([0,T ];Vn) ≤ c

with a constant c > 0 independent of δ. In particular, the bound for uδ implies that the bound (44) for
∂tuδ still holds true,

‖∂tu‖2
L2(0,T ;Vn) ≤ c (47)
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with a constant c > 0 independent of δ. Consequently, making use of the Aubin–Lions Lemma, we may
extract subsequences and find functions

0 ≤ ρ ∈
{

ψ ∈ C
(
[0, T ];H1,2(Ω)

)⋂
C ([0, T ];Lp(Ω))

⋂
L2

(
0, T ;H2,2(Ω)

)
:

∂tψ ∈ L2 ((0, T ) × Ω) , ∇ψ · n|∂Ω = 0
}

∀1 ≤ p < ∞,

u ∈ {
φ ∈ C ([0, T ];Vn) : ∂tφ ∈ L2 (0, T ;Vn)

}
, (48)

such that

ρδ → ρ in C
(
[0, T ];H1,2(Ω)

)
and C ([0, T ];Lp(Ω)) , uδ → u in C ([0, T ];Vn) , (49)

ρδ ⇀ ρ in L2
(
0, T ;H2,2(Ω)

)
, ∂tρδ ⇀ ∂tρ in L2 ((0, T ) × Ω) , ∂tuδ ⇀ ∂tu in L2 (0, T ;Vn) . (50)

Clearly, these convergences are sufficient to pass to the limit in the continuity equation (27) and infer
that the limit functions ρ, u satisfy

∂tρ + ∇ · (ρu) =εΔρ a.e. in (0, T ) × Ω. (51)

As in the weak formulation (12), we want to combine the momentum equation and the energy in-
equality into one single relation. To this end, we integrate the momentum equation (28) over [0, τ ] for
some arbitrary τ ∈ [0, T ] and subtract from it the energy equality (46). Further, we exploit the convexity
and the C1-regularity of jδ to estimate

grad jδ (uδ) · (φ − uδ) ≤ jδ(φ) − jδ (uδ) ,

which allows us to bring the boundary integrals into the same form as in the weak formulation (12).
Altogether we obtain the inequality

∫

Ω

1
2
ρ0|u0|2 + a

ργ
0

γ − 1
+

αρβ
0

β − 1
dx −

∫

Ω

1
2
ρδ(τ)|uδ(τ)|2 + a

ργ
δ (τ)

γ − 1
+

αρβ
δ (τ)

β − 1
dx

+

τ∫

0

∫

Ω

−ρδuδ · ∂tφ − (ρδuδ ⊗ uδ) : ∇φ + 2νD (uδ) : D(φ − uδ) + λ(∇ · uδ)(∇ · (φ − uδ))

− aργ
δ ∇ · φ − αρβ

δ ∇ · φ − εaργ−2
δ |∇ρδ|2 − εβρβ−2

δ |∇ρδ|2 + ε (∇uδ∇ρδ) · φ − ρδf · (φ − uδ) dxdt

+

τ∫

0

∫

∂Ω

gjδ(φ) − gjδ(uδ) dΓdt ≥ 0 ∀φ ∈ C1
c ((0, τ);Vn) , τ ∈ [0, T ]. (52)

Due to the uniform convergences (24) of jδ and (49) of uδ, we can pass to the limit in the boundary
integral,

τ∫

0

∫

∂Ω

gjδ(φ) − gjδ(uδ) dΓdt →
τ∫

0

∫

∂Ω

g |φ| − g |u| dΓdt.

The strong convergences (49) also allow us to pass to the limit in the remaining terms of the inequality
(52). Hence, dropping the nonpositive quantity −εaργ−2

δ |∇ρδ|2 from the left-hand side of this inequality,
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we conclude that the limit functions ρ, u satisfy
∫

Ω

1
2
ρ0|u0|2 + a

ργ
0

γ − 1
+

αρβ
0

β − 1
dx −

∫

Ω

1
2
ρ(τ)|u(τ)|2 + a

ργ(τ)
γ − 1

+
αρβ(τ)
β − 1

dx

+

τ∫

0

∫

Ω

−ρu · ∂tφ − (ρu ⊗ u) : ∇φ + 2νD (u) : D(φ − u) + λ(∇ · u)(∇ · (φ − u))

− aργ∇ · φ − αρβ∇ · φ − εβρβ−2 |∇ρ|2 + ε (∇u∇ρ) · φ − ρf · (φ − u) dxdt

+

τ∫

0

∫

∂Ω

g |φ| − g |u| dΓdt ≥ 0 ∀φ ∈ C1
c ((0, τ);Vn) , τ ∈ [0, T ]. (53)

Remark 4.1. As a technical tool we will need in (65), (77) and (79) a limit version of the momentum
equation (28) itself. In this limit equation, it will be sufficient to restrict ourselves to test functions
vanishing on Γ. Using such test functions in the momentum equation (28), we see that the boundary
integral vanishes, and we can pass to the limit to obtain the identity

−
T∫

0

∫

Ω

ρu · ∂tφ dxdt =

T∫

0

∫

Ω

(ρu ⊗ u) : ∇φ − 2νD (u) : D(φ) − λ(∇ · u)(∇ · φ) + aργ∇ · φ

+ αρβ∇ · φ + ρf · φ − ε (∇u∇ρ) · φ dxdt (54)

for all φ ∈ C1
c ((0, T );Vn) such that φ|Γ = 0.

4.3. Limit passage with respect to n → ∞

In this section, we pass to the limit in the Galerkin approximation, i.e., we let n tend to infinity. Choosing
φ = 0 in the momentum and energy inequality (53), we obtain a classical energy inequality. In combination
with the classical regularity for the regularized continuity equation (51) (see for example [21, Lemmas 7.37,
7.38, Sect. 7.8.2]) this yields the uniform bounds

∥
∥ρn|un|2∥∥

L∞(0,T ;L1(Ω))
+ ‖ρn‖L∞(0,T ;Lβ(Ω)) + ‖un‖L2(0,T ;H1(Ω)) ≤ c, (55)

ε
1
2

∥
∥
∥ρ

β
2
n

∥
∥
∥

L2(0,T ;H1(Ω))
+ ε ‖∇ρn‖Lr((0,T )×Ω) + ε ‖∂tρn‖Lr̃((0,T )×Ω) + ε2 ‖Δρn‖Lr̃((0,T )×Ω) ≤ c (56)

for a constant c > 0 independent of n ∈ N, where we can choose

r :=
10β − 6
3β + 3

> 2, r̃ :=
5β − 3

4β
> 1,

provided that β > 4. Interpolations between these bounds lead to the uniform bounds

‖ρnun‖
L∞(0,T ;L

2β
β+1 (Ω))

+ ‖ρnun ⊗ un‖
L

6β
4β+3 ((0,T )×Ω)

+ ε
3
5β ‖ρn‖

L
5
3 β((0,T )×Ω)

≤ c (57)

for another constant c > 0 independent of n. Combining the bounds (55)–(57) with the Aubin–Lions
Lemma, we may extract a subsequence and conclude the existence of functions u ∈ L2(0, T ;H1

n(Ω)),
ρu ⊗ u ∈ L

6β
4β+3 ((0, T ) × Ω) and

0 ≤ ρ ∈L∞ (
0, T ;Lβ(Ω)

)⋂
L2

(
0, T ;H1(Ω)

)⋂
Lr̃

(
0, T ;W 2,r̃(Ω)

)

with the properties

∂tρ ∈ Lr̃ ((0, T ) × Ω) , ∇ρ · n|∂Ω = 0 (58)
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such that

ρn → ρ in Lβ (Q) and L2
(
0, T ;H1,2(Ω)

)
, ρn ⇀ ρ in Lr̃

(
0, T ;W 2,r̃(Ω)

)
, (59)

un ⇀ u in L2(0, T ;H1,2(Ω)), ∂tρn ⇀ ∂tρ in Lr̃ ((0, T ) × Ω) , (60)

ρnun
∗
⇀ ρu in L∞

(
0, T ;L

2β
β+1 (Ω)

)
, ρnun ⊗ un ⇀ ρu ⊗ u in L

6β
4β+3 ((0, T ) × Ω) . (61)

With these convergences, we can directly pass to the limit in the continuity equation (51) and infer
that

∂tρ + ∇ · (ρu) =εΔρ a.e. in (0, T ) × Ω. (62)

This equation immediately implies that also the renormalized regularized continuity equation

∂tζ (ρ) + ∇ · (ζ (ρ) u) + [ζ ′ (ρ) ρ − ζ (ρ)] ∇ · u − εΔζ (ρ) = −εζ ′′ (ρ) |∇ρ|2 ≤ 0 a.e. in (0, T ) × Ω (63)

holds true for all convex functions ζ ∈ C2([0,+∞)). In order to pass to the limit in the momentum and
energy inequality (53) we need to identify the limit function ρu ⊗ u from the convergence (61). To this
end, we test the alternative momentum equation (54) by ψφ for some arbitrary functions ψ ∈ D(0, T )
and φ ∈ VN , N ≤ n, such that φ|Γ = 0. Under exploitation of the uniform bounds (55)–(57), this leads
us to the dual estimate

∥
∥
∥
∥
∥
∥
∂t

∫

Ω

ρnun · φ dx

∥
∥
∥
∥
∥
∥

L
min{ 6

5 , 2r
2+r }(0,T )

≤ c

for a constant c > 0 depending on N but not on n. This allows us to infer from the Arzelà-Ascoli theorem
that

∫

Ω

ρn(·, x)un(·, x) · φ dx →
∫

Ω

ρ(·, x)u(·, x) · φ dx in C ([0, T ]) (64)

for any fixed φ ∈ VN , N ∈ N. Since the Galerkin spaces VN have been choosen such that the functions
φ ∈ ⋃∞

N=1 VN with φ|Γ = 0 are dense in L
2β

β+1 (Ω) (c.f. (20)) and due to the continuity of the functions
ρnun with respect to the time variable (c.f. (49)) the convergence (64) suffices to infer that

ρnun → ρu in Cweak

(
[0, T ];L

5
4 (Ω)

)
and thus in L2

(
0, T ;H−1(Ω)

)
, (65)

which is sufficient to identify, as desired,

ρu ⊗ u = ρu ⊗ u a.e. in (0, T ) × Ω. (66)

For the limit passage in the boundary integrals, we note that by the weak convergence of un in
L2(0, T ;H1(Ω)) and the trace theorem, un also converges weakly in L2((0, T ) × ∂Ω). Hence, the non-
negativity of g ∈ L2((0, T ) × ∂Ω) and the weak lower semicontinuity of the L1((0, T ) × ∂Ω)-norm imply
that

τ∫

0

∫

∂Ω

g |u| dΓdt ≤ lim inf
n→∞

τ∫

0

∫

∂Ω

g |un| dΓdt ∀τ ∈ [0, T ].

This, in combination with the convergences (59)–(61), the identification (66) of the weak limit of the
convective term and the weak lower semicontinuity of norms, gives us all the ingredients required for
passing to the limit in both the momentum and energy inequality (52) and the alternative momentum
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equation (54). Due to the density of the Galerkin functions in W 1,p
n (Ω) and W 1,p

0 (Ω), 1 ≤ p < ∞ [c.f.
(19), (20)], we infer that

∫

Ω

1
2
ρ0|u0|2 + a

ργ
0

γ − 1
+

αρβ
0

β − 1
dx −

∫

Ω

1
2
ρ(τ)|u(τ)|2 + a

ργ(τ)
γ − 1

+
αρβ(τ)
β − 1

dx

+

τ∫

0

∫

Ω

−ρu · ∂tφ − (ρu ⊗ u) : ∇φ + 2νD (u) : D(φ − u) + λ(∇ · u)(∇ · (φ − u))

− aργ∇ · φ − αρβ∇ · φ − εβρβ−2 |∇ρ|2 + ε (∇u∇ρ) · φ − ρf · (φ − u) dxdt

+

τ∫

0

∫

∂Ω

g |φ| − g |u| dΓdt ≥ 0 (67)

holds true for almost all τ ∈ [0, T ] and all φ ∈ D((0, τ) × Ω) with φ · n|∂Ω = 0 and

−
T∫

0

∫

Ω

ρu · ∂tφ dxdt =

T∫

0

∫

Ω

(ρu ⊗ u) : ∇φ − 2νD (u) : D(φ) − λ(∇ · u)(∇ · φ) + aργ∇ · φ

+ αρβ∇ · φ + ρf · φ − ε (∇u∇ρ) · φ dxdt, (68)

for all φ ∈ D((0, T ) × Ω).

4.4. Limit passage with respect to ε → 0

In this section, we consider the limit passage with respect to ε → 0 in order to get rid of the artificial
regularization terms in the system. By setting φ = 0 in the momentum and energy inequality (67) and
a subsequent interpolation we infer, exactly as the corresponding bounds (55) and (57) in the previous
limit passage, the uniform bounds

∥
∥ρε|uε|2

∥
∥

L∞(0,T ;L1(Ω))
+ ‖ρε‖L∞(0,T ;Lβ(Ω)) + ‖uε‖L2(0,T ;H1(Ω)) ≤ c, (69)

‖ρεuε‖
L∞(0,T ;L

2β
β+1 (Ω))

+ ‖ρεuε ⊗ uε‖
L

6β
4β+3 ((0,T )×Ω)

≤ c (70)

for a constant c > 0 independent of ε. These bounds allow us to extract a subsequence and conclude the
existence of functions

0 ≤ ρ ∈ L∞ (
0, T ;Lβ(Ω)

)
, u ∈ L2

(
0, T ;H1

n(Ω)
)

(71)

such that

ρε
∗
⇀ ρ in L∞ (

0, T ;Lβ(Ω)
)
, uε ⇀ u in L2

(
0, T ;H1,2(Ω)

)
. (72)

Under exploitation of continuity equation (62), the first one of these convergences further leads to

ρε → ρ in Cweak

(
[0, T ];Lβ(Ω)

)
and hence ρεuε ⇀ ρu in L∞

(
0, T ;L

2β
β+1 (Ω)

)
. (73)

Moreover, we may test continuity equation (62) by ρε to infer that

ε
1
2 ‖∇ρε‖L2((0,T )×Ω) ≤ c and thus ε∇ρε → 0 in L2 ((0, T ) × Ω) . (74)

Convergences (72)–(74) allow us to pass to the limit in the continuity equation (27) and infer that ρ
and u satisfy the continuity equation (9) in D′((0, T ) × Ω). Due to the Lipschitz regularity of ∂Ω, u can
be extended continuously to a function u ∈ L2(0, T ;H1(R3)), see [3, Section 5.4, Theorem 1]. Extending
also ρ by 0 outside of Ω, we infer that the continuity equation in fact holds true in D′((0, T ) ×R

3). From
the regularization method by DiPerna and Lions (see [21, Theorem 6.9]), it follows that ρ and u also
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satisfy the renormalized continuity equation (10), (11). Similar to the convergence of the convective term
in the Galerkin limit [c.f. (61), (66)], we may deduce from the alternative momentum equation (68) that

ρεuε ⊗ uε ⇀ ρu ⊗ u in L
6β

4β+3 ((0, T ) × Ω) . (75)

In order to pass to the limit in the pressure terms, we need to find a uniform bound for the density in
Lq((0, T ) × Ω) for some q > β. Thanks to the alternative momentum equation (68) such bound can be
derived as in the case of the no-slip boundary condition, c.f. [6, Lemma 3.1]. Nameley, since the Bogovskii
operator BΩ on Ω (c.f. [21, Section 3.3.1.2]) maps zero-mean functions in Lp(Ω), 1 < p < ∞, into W 1,p

0 (Ω),
we can test the alternative momentum equation (68) by functions of the form

φε(t, x) := ψ(t)BΩ

⎡

⎣ρε(t) − 1
|Ω|

∫

Ω

ρε(t, y) dy

⎤

⎦ (x), 0 ≤ ψ ∈ D (0, T ) . (76)

As BΩ can be understood as an inverse to the divergence operator, this allows us to find a constant
c > 0 independent of ε such that

‖ρε‖Lγ+1((0,T )×Ω) + ‖ρε‖Lβ+1((0,T )×Ω) ≤ c. (77)

Thus, we find subsequences and functions ργ ∈ L
γ+1

γ ((0, T ) × Ω), ρβ ∈ L
β+1

β ((0, T ) × Ω) such that

ργ
ε ⇀ ργ in L

γ+1
γ ((0, T ) × Ω)) , ρβ

ε ⇀ ρβ in L
β+1

β ((0, T ) × Ω) . (78)

Our next goal is to identify the limit functions ργ and ρβ , for which we need the effective viscous flux
identity

lim
ε→0

T∫

0

∫

Ω

Φ(λ + 2ν) [ρε∇ · uε − ρ∇ · u] dxdt = lim
ε→0

T∫

0

∫

Ω

Φ
([

aργ
ε + αρβ

ε

]
ρε −

[
aργ + αρβ

]
ρ
)

dxdt (79)

for all 0 ≤ Φ ∈ D((0, T ) × Ω). This identity can be proved by applying the method from Feireisl et al. [6,
Lemma 3.2] to the alternative momentum equation (68). We test (68) and a corresponding limit identity,
obtained from the convergences (72), (73) and (78), by functions of the form

φε(t, x) := Φ(t, x)
(∇Δ−1

)
[ρε(t, ·)] (t, x), φ(t, x) := Φ(t, x)

(∇Δ−1
)
[ρ(t, ·)] (t, x), (80)

with 0 ≤ Φ ∈ D((0, T )×Ω), respectively. Subtracting the two resulting relations from each other we obtain
the effective viscous flux identity exactly as in [6, Lemma 3.2]. Following the procedure in [6, Sect. 3.5],
we consider—after a dominated convergence argument—both the renormalized continuity equation (63)
on the ε-level and the renormalized continuity equation (10) in the limit with the choice of the (strictly)
convex function ζ(ξ) := ξ ln(ξ) in. This results in two relations which we subtract from each other to
obtain the inequality

lim
ε→0

∫

Ω

ρ(τ) ln (ρ(τ)) − ρε(τ) ln (ρε(τ)) dx ≥ lim
ε→0

τ∫

0

∫

Ω

ρε∇ · uε − ρ∇ · u dxdt ∀τ ∈ [0, T ]. (81)

From the effective viscous flux identity (79) and the monotonicity of the (artificial) pressure function,
it follows that the right-hand side of this relation is nonnegative. Further, since the mapping ξ → ξ ln(ξ)
is convex, we know that ρ ln(ρ) ≤ ρ ln(ρ), where ρ ln(ρ) denotes a weak limit of ρε ln(ρε) in L1((0, T )×Ω).
Combining these two facts, we conclude that

ρ ln(ρ) = ρ ln(ρ) a.e. in (0, T ) × Ω.
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By the relations between weakly convergent sequences and (strictly) convex functions (c.f. [5, Theorem
10.20]), this equation implies pointwise convergence of ρε, which in turn implies that, as desired,

ργ = ργ a.e. in (0, T ) × Ω, ρβ = ρβ a.e. in (0, T ) × Ω. (82)

Combining convergences (72)–(75), (78), the identification (82) of the limits of the pressure terms and
the weak lower semicontinuity of norms, we can now pass to the limit in both the momentum and energy
inequality (67) and the alternative momentum equation (68) and infer that

∫

Ω

1
2
ρ0|u0|2 + a

ργ
0

γ − 1
+

αρβ
0

β − 1
dx −

∫

Ω

1
2
ρ(τ)|u(τ)|2 + a

ργ(τ)
γ − 1

+
αρβ(τ)
β − 1

dx

+

τ∫

0

∫

Ω

−ρu · ∂tφ − (ρu ⊗ u) : ∇φ + 2νD (u) : D(φ − u) + λ(∇ · u)(∇ · (φ − u))

− aργ∇ · φ − αρβ∇ · φ − ρf · (φ − u) dxdt +

τ∫

0

∫

∂Ω

g |φ| − g |u| dΓdt ≥ 0 (83)

holds true for almost all τ ∈ [0, T ] and all φ ∈ D((0, τ) × Ω) with φ · n|∂Ω = 0 and

−
T∫

0

∫

Ω

ρu · ∂tφ dxdt =

T∫

0

∫

Ω

(ρu ⊗ u) : ∇φ − 2νD (u) : D(φ) − λ(∇ · u)(∇ · φ) + aργ∇ · φ

+ αρβ∇ · φ + ρf · φdxdt, (84)

holds true for all φ ∈ D((0, T ) × Ω).

4.5. Limit passage with respect to α → 0

Finally, it remains to get rid of the artificial pressure term in the momentum equation, i.e., to let α tend
to zero. In addition, we return from the regularized initial data ρ0,α, qα in the approximate problem [c.f.
(31)] to the more general initial data ρ0, q from the main result Theorem 3.1. More precisely, as in [6,
Sect. 4], we choose ρ0,α, qα satisfying the relations (31) for any fixed α > 0 such that

ρ0,α → ρ0 in Lγ(Ω), αρβ
0,α → 0 in L1(Ω), (85)

qα → q in L1(Ω),
|qα|2
ρ0,α

→ |q|2
ρ0

in L1(Ω) (86)

for α → 0. As in the previous limit passages, we infer, from the choice φ = 0 in the momentum and
energy inequality (83) and an ensuing interpolation, the uniform bounds

∥
∥ρα|uα|2∥∥

L∞(0,T ;L1(Ω))
+ ‖ρα‖L∞(0,T ;Lγ(Ω)) + ‖uα‖L2(0,T ;H1(Ω)) ≤ c, (87)

‖ραuα‖
L∞(0,T ;L

2γ
γ+1 (Ω))

+ ‖ραuα ⊗ uα‖
L

6γ
4γ+3 ((0,T )×Ω)

≤ c (88)

for a constant c > 0 independent of α. This allows us to find a subsequence as well as functions

0 ≤ ρ ∈ L∞ (0, T ;Lγ(Ω)) , u ∈ L2
(
0, T ;H1

n(Ω)
)

(89)

such that

ρα
∗
⇀ ρ in L∞ (0, T ;Lγ(Ω)) , uα ⇀ u in L2

(
0, T ;H1,2(Ω)

)
(90)
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as well as, under exploitation of the continuity equation (9) and the alternative momentum equation (84),

ρα → ρ in Cweak ([0, T ];Lγ(Ω)) , ραuα → ρu in Cweak

(
[0, T ];L

2γ
γ+1 (Ω)

)
(91)

and consequently

ραuα ⊗ uα ⇀ ρu ⊗ u in L
6γ

4γ+3 ((0, T ) × Ω). (92)

Due to the convergences (91) and the continuity equation (9) on the α-level, the limit functions ρ and
u satisfy the same continuity equation (9) in D′((0, T )×Ω). For the limit passage in the pressure terms the
derivation of the improved uniform bounds (77) of the density on the ε-level needs to be modified. More
specifically, the derivation of these bounds relies on the fact that on the ε-level the density is bounded
uniformly in L∞(0, T ;Lβ(Ω)), which is not the case in our current situation. As a compensation, the
density in the test functions (76) needs to be replaced by a suitable smooth approximation of ρθ

α for some
sufficiently small value θ > 0. This procedure, which is described in detail in [6, Section 4.1], leads, by a
use of the resulting test functions in the alternative momentum equation (84), to the desired improved
pressure estimates

‖ρα‖Lγ+θ((0,T )×Ω) + α
1

β+θ ‖ρα‖Lβ+θ((0,T )×Ω) ≤ c

with a constant c > 0 independent of α. In particular, we may extract a subsequence and find a function
ργ ∈ L

γ+1
γ ((0, T ) × Ω) such that

ργ
α ⇀ ργ in L

γ+θ
γ ((0, T ) × Ω) , αρβ

α → 0 in L
β+θ

β ((0, T ) × Ω) . (93)

For the identification of the limit function ργ , we further follow the procedure in [6, Sect. 4.3] and
deduce the following modified version of the effective viscous flux identity (79) on the ε-level,

lim
α→0

T∫

0

∫

Ω

Φ(λ + 2ν)
[
Tk (ρα) ∇ · uα − Tk (ρ)∇ · u

]
dxdt

= lim
α→0

T∫

0

∫

Ω

Φ
(
aργ

αTk (ρα) − aργ Tk (ρ)
)

dxdt (94)

for all Φ ∈ D((0, T ) × Ω), where Tk ≤ 2k, k ∈ N, constitutes a suitable smooth and concave cut-off
version of the identity function on [0,∞) and Tk(ρ) denotes a weak limit of Tk(ρα) in L1((0, T ) × Ω).
In the derivation of this identity, we again have to make up for the lower integrability of the density as
compared to the density on the ε-level. This is achieved by replacing the test functions (80) used on the
ε-level by test functions of the form

φα(t, x) := Φ(x)
(∇Δ−1

)
[Tk (ρα) (t, ·)] (x), φ(t, x) := Φ(x)

(∇Δ−1
) [

Tk (ρ)(t, ·)
]
(x).

where Φ ∈ D((0, T ) × Ω). In our case, we use these test functions in the alternative momentum equation
(84) on the α-level and a corresponding limit identity, respectively. Comparing the resulting identities,
we arrive at the desired effective viscous flux identity (94), exactly as in the proof of [6, Lemma 4.2].
From this identity, the concavity of Tk and the convexity of ξ �→ ξγ we deduce, exactly as in the proof of
[6, Lemma 4.3], boundedness of the oscillation defect measure,

oscγ+1 [ρα → ρ]
(
(0, T ) × R

3
)

:= sup
k≥1

⎡

⎣lim sup
α→0

T∫

0

∫

R3

|Tk (ρα) − Tk (ρ)|γ+1
dxdt

⎤

⎦ < ∞. (95)

Next, we choose ζ = Tk in the renormalized continuity equation (10) on the α-level and pass to the limit
with respect to α. Since Tk(ρ) is bounded uniformly, the resulting limit identity can be renormalized under
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exploitation of the regularization technique by DiPerna and Lions, see [21, Lemma 6.9]. Subsequently,
using the bound (95) of the oscillation defect measure, we may let k tend to infinity to infer that ρ and
u also satisfy the renormalized continuity equation (10). For the details of this procedure, we refer to
the proof of [6, Lemma 4.4]. Under exploitation of the dominated convergence theorem, we may use the
choice

ζ(ξ) := ζk(ξ) := ξ

ξ∫

1

Tk(s)
s2

ds

in both the renormalized continuity equation (10) on the α-level and in the limit. Comparing the
resulting equations to each other and passing to the limit with respect to α → 0, we infer that

lim
α→0

∫

Ω

(ζk(ρα) − ζk(ρ)) (τ) dx + lim
α→0

τ∫

0

∫

Ω

Tk (ρα) ∇ · uα − Tk(ρ)∇ · u dxdt

=

τ∫

0

∫

Ω

Tk(ρ)∇ · u − Tk(ρ)∇ · u dxdt (96)

for all τ ∈ [0, T ]. Here, the second term on the left-hand side is nonnegative, which follows from the
effective viscous flux identity (94), the fact that both the mappings ξ �→ ξγ and ξ �→ Tk(ξ) are nonde-
creasing and the classical relations between weakly convergent sequences and monotone functions (c.f. [5,
Theorem 10.19]). Moreover, the right-hand side of the equation (96) vanishes for k → ∞ as can be seen
from the bound (95) of the oscillation defect measure. Consequently, letting k tend to infinity also on the
left-hand side of this identity, we infer that

lim
α→0

∫

Ω

ρ(τ) ln (ρ(τ)) − ρα(τ) ln (ρα(τ)) dx ≥ 0.

Exactly as in the limit passage with respect to ε → 0 [c.f. (82)], this estimate yields pointwise con-
vergence of ρα and consequently the identity ργ = ργ almost everywhere in (0, T ) × Ω. Therefore, using
the convergences (90)–(92) and (93) as well as the weak lower semicontinuity of norms we may pass to
the limit in the momentum and energy inequality (83) and infer that ρ and u satisfy the momentum
and energy inequality (12). Finally, we note that ρ, as a solution to the renormalized continuity equation
(10), is an element of the space C([0, T ];L1(Ω)), c.f. [4, Proposition 4.3]. Due to this continuity in the
time variable and the convergence (85) of the initial data it satisfies the initial condition ρ = ρ0 in the
classical sense. The initial condition stated for ρu in (13) follows from the convergences (86) and (91)
This concludes the proof of Theorem 3.1.
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(first version of paper) was supported by by the Czech Science Foundation (GAČR) through project
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Žitná 25
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