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Abstract. Curved channels with constant cross sections are constructed which support a trapped surface wave. Since corre-
sponding eigenvalues are embedded in the continuous spectrum of the water wave problem and therefore possess the natural
instability, the construction procedure requires “fine-tuning” of several parameters in the (small) curvature of the channel
as well as geometrical restrictions on the cross section. In particular, the mirror symmetry of the cross section with respect
to the vertical axis disrupts the procedure, but examples of suitable non-symmetric cross sections are provided.

Mathematics Subject Classification. Primary 35P25, Secondary 76B15.

Keywords. Trapped modes, Embedded eigenvalues, Waveguides, Water waves, Augmented scattering matrix, Asymptotic

analysis.

1. Introduction

1.1. The formulation of the problem

Let Ω = R × ω be a straight cylinder in the Euclidean space R
3 with a cross section ω ⊂ R

2 bounded
by the line segment γ = {x′ = (x2, x3) : x3 = 0, |x2| ≤ 1} and a piecewise smooth curve connecting
the points (±1, 0) inside the lower half plane R

2
− = {x′ : x3 < 0}, see Fig. 1. The rescaling has been

performed in order to reduce the length of γ to 2. Considering Ω as the water domain, the free surface is
denoted by Γ = R × γ and by Σ = ∂Ω\Γ the union of walls and bottom.

Let Υε be a slightly deformed mid-line Υ of Γ, the abscissa axis, where ε � 1 is a small positive
parameter. In the neighbourhood U of Υε on the plane {x : x3 = 0}, we introduce the local coordinate
system (n, ς), where n is the oriented distance to Υε and ς is the arc length on Υε. We assume that the
curvature κε(ς) of Υε satisfies the conditions

κε(ς) = εκ0(ς), κ0(ς) ∈ C∞(R), κ0(ς) = 0 for |ς| > l > 0. (1.1)

The curved channel with a constant cross section ω, in Fig. 2, is then

Ωε = {x : ς ∈ R, (n, z) ∈ ω}, (1.2)

where z = x3 is the vertical coordinate. According to (1.1), the channel (1.2) has the straight cylindrical
outlets to infinity Ωε

± = {x ∈ Ωε : ±ς > l} and the curved middle part Ωε
0 = {x ∈ Ωε : |ς| < l}, see Fig.

2.
In the channel, we consider the linearized water-wave problem, see, for example, [14], consisting of the

Laplace equation

− Δuε(x) = 0, x ∈ Ωε, (1.3)

together with the Neumann condition (no flow condition)

∂νuε(x) = 0, x ∈ ∂Ωε \ Γε, (1.4)
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Fig. 1. A straight channel and the cross section

Fig. 2. a Curved channel, b The cross section

and the (kinematic) spectral Steklov condition

∂zu
ε(x) = λεuε(x), x ∈ Γε, (1.5)

on the free surface Γε = {x : z = 0, |n| < 1}. Here, uε is the velocity potential and λε = 	2
ε g−1 is the

spectral parameter, where 	ε is the frequency of the time-harmonic oscillations and g > 0 the acceleration
due to gravity.

In the sequel, the problem (1.3)–(1.5) is referred to as problem Pε, while at ε = 0 we obtain the
problem P0 in the straight channel Ω0 = Ω.

1.2. Spectra of the problems

The continuous spectrum σ0
co of the problem is the closed real semi-axis R+ = [0,+∞) in the complex

plane C. The threshold values

0 = Λ0 < Λ1 ≤ Λ2 ≤ · · · ≤ Λj ≤ · · · → +∞ (1.6)

divide σ0
co into the intervals of constant multiplicity. In what follows, we consider the first interval (0,Λ1).

The entries of the sequence (1.6) are the eigenvalues of the model problem on the cross section

− Δ′U(x′) = 0, x′ ∈ ω,
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∂νU(x′) = 0, x′ ∈ ∂ω \ γ,

∂zU(x′) = ΛU(x′), x′ ∈ γ, (1.7)

where Δ′ is the Laplacian in the coordinates x′ = (x2, x3).
The spectrum of the problem P0 is absolutely continuous but, for ε > 0, the spectrum σε = R+ of

problem Pε may contain embedded eigenvalues forming the point spectrum σε
p. Our main goal is to find

out a domain ω and a curve Υε, that is, the curvature κε in (1.1), such that σε
p includes at least one

eigenvalue

λε = Λ1 − ε2μ2. (1.8)

Being embedded in the continuous spectrum, this eigenvalue possesses the intrinsic instability, i.e. a small
“wrong” perturbation of the appropriate curvature removes the eigenvalue out of the spectrum and turns
it into a point of complex resonance [1,15]. In other words, our choice of the desired channel must be
very precise and requires for “fine-tuning” of several parameters in the curvature (1.1), although many
geometrical characteristics of ω and Υε can be fixed rather arbitrarily so that we are able construct
infinitely many channels with the desired property.

1.3. Description of the paper

In the literature, there are many examples of local perturbations of three-dimensional channels which
support trapped surface water waves and the corresponding spectral parameter is an embedded eigenvalue,
see, for example, [2,4,6,9,14–16,18,20,22,23,33–37]. The original paper [6] introduces an elegant trick
which requires the mirror symmetry about the mid-plane {x : x2 = 0} of a channel Ξ ⊂ R

3. By imposing
the Dirichlet condition on the surface {x ∈ Ξ : x2 = 0}, one creates an artificially positive cut-off
value λ+

† . The obtained mixed spectral problem in the half-channel Ξ+ = {x ∈ Ξ : x2 > 0} may have
the discrete spectrum σ+

d ⊂ (0, λ+
† ), while the odd extensions of the corresponding eigenfunctions in

x2-variable become an eigenfunction of the original problem in the original waveguide Ξ. Hence, σ+
d is a

part of the point spectrum in Ξ. However, under various assumptions on the geometry, variational and
asymptotic methods have been applied to detect eigenvalues in σ+

d , see [2,6,23,39] and others.
The above-mentioned approach does not apply here since the channel Ωε, surely, does not possess the

mirror symmetry. Instead, we employ an asymptotic method based on a sufficient condition for the exis-
tence of trapped modes involving an artificial object, the augmented scattering matrix Sε, see [11,24,26]
and Theorem 1. The necessary definitions are provided in Sect. 2, while the asymptotics of Sε is con-
structed in Sect. 5. In Sect. 4, we implement the fine-tuning procedure and introduce the parametrization

κ0(ς) = κ0
0(ς) + τ+κ0

+(ς) + τ−κ0
−(ς) (1.9)

μ = μ0 + τ0 (1.10)

of the quantities in (1.1) and (1.8). Our asymptotic analysis allows us to reduce the sufficient condition
to the abstract fixed point equation

τ = T ε(τ). (1.11)

We will show that the operator T ε is a contraction in the ball

Bρ = {τ = (τ0, τ+, τ−) ∈ R
3 : |τ | ≤ ρ}

for small positive ε and ρ. Thus, the Banach fixed point theorem delivers a unique solution for (1.11)
which additionally satisfies the estimate

|τ | ≤ cε. (1.12)
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In this way, we obtain the curved channel with a constant cross section which has a trapped mode and
the embedded eigenvalue

λε(τ) = Λ1 − ε2(μ0 + τ0)2,

cf. (1.8) and (1.10). This result will be formulated in Theorem 2.
It is worth to mention that the components κ0

0 and κ0
± in (1.9) must satisfy the normalization and

orthogonality conditions (3.18), (4.5), (4.7) and (4.8) under the appropriate choice of the cross section ω,
see (3.21), (3.19) and (3.14), (3.17), while afterwards the coefficients τ± are defined uniquely from (1.11).
These conditions can be verified with quite arbitrary ingredients in the definition of the channel Ωε, so
that infinitely many channels supporting trapped surface waves are constructed by our procedure.

1.4. Motivation

In the frequently quoted paper [5], it was proved that the Dirichlet problem

−Δu1(x) = λ1u1(x), x ∈ Ω1,

u1(x) = 0, x ∈ Ω1,

which models the planar quantum waveguide of the unit width and a non-trivial curvature κ1 ∈ C∞
0 (R)

of the mid-line, has an eigenvalue λ1 below the continuous spectrum σ1
c = [π2,+∞). Notice that here

we put the superscript ε = 1 in order to point out that this result holds true without the smallness
assumption (1.1) on the curvature. The variational approach, proposed in [5], has been applied in many
works, cf. [22,25,31,32], in particular, for three-dimensional waveguides which in the case of a non-trivial
twisting of the waveguide axis may have an empty discrete spectrum; we refer to the monograph [7] for
the detailed survey about spectra in quantum waveguides.

With the reasons mentioned above, the fine-tuning procedure, as in [24], becomes quite limited. Hence,
to construct a trapped mode, we have to accept two restrictive conditions, see (3.21) and (3.17) in Sect. 3.3.
The latter condition forbids a cross section which is symmetric about the x3-axis. For this reason, we are
not able to prove the existence of a trapped mode in a curved channel with a rectangular cross section,
i.e. with vertical walls and horizontal bottom. Notice that in this case, by factoring out the dependence
on z = x3 variable, the problem reduces to the Neumann problem for the Helmholtz operator on a
curved strip of width 2, that is, on the free surface Γε. In this way, being an apparent modification of the
quantum waveguide in [5], an example of a curved two-dimensional acoustic waveguide of constant width
supporting a trapped mode is not known yet. In [28], several examples of curved acoustic waveguides in
dimension d ≥ 3 with constant cross section have been given that support a trapped mode.

We also point out that the criteria for the existence of trapped modes in [21] and [29] are adopted
mainly for computational simulations. Finally, we emphasize that Sect. 5.2 gives examples of asymmetric
cross sections ω such that both the introduced conditions (3.17) and (3.21) are satisfied.

2. Waves and scattering matrices

2.1. Asymptotic analysis of the model problem

In the sequel, we assume that the first positive eigenvalue in the sequence (1.6) is simple, that is

Λ1 < Λ2. (2.1)

This assumption is supported by our examples in Sect. 5.2.
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By the max–min principle, cf. [3, Thm. 10.2.2] or [40, Ch. 22], the non-positive part of the M -spectrum
of the problem

−Δ′V (x′) = MV (x′), x′ ∈ ω,

∂νV (x′) = 0, x′ ∈ ∂ω \ γ,

∂zV (x′) = Λ1V (x′), x′ ∈ γ, (2.2)

consists of two eigenvalues M0 < 0 and M1 = 0. The corresponding eigenfunctions are denoted by V0 and
V1 normalized in the Lebesgue space L2(ω):

‖V0;L2(ω)‖ = ‖V1;L2(ω)‖ = 1.

Notice that V1 = U1.
Let us construct the asymptotics of the eigenpairs {M ε, V ε} of the perturbed problem with the

parameter λε in (1.8)

−Δ′V ε(x′) = M εV ε(x′), x′ ∈ ω,

∂νV ε(x′) = 0, x′ ∈ ∂ω \ γ,

∂zV
ε(x′) = λεV ε(x′), x′ ∈ γ, (2.3)

The correction terms in the asymptotic ansätze with q = 0, 1

M ε
q = Mq + ε2M �

q + ˜M ε
q ,

V ε
q = Vq + ε2V �

q + ˜V ε
q (2.4)

must be deduced from the problem

−Δ′V �
q (x′) − MqV

�
q (x′) = M �

q(x′)Vq(x′) =: Fq(x′), x′ ∈ ω,

∂νV �
q (x′) = 0, x′ ∈ ∂ω \ γ,

∂zV
�
q (x′) − Λ1V

�
q (x′) = −μ2Vq(x′) =: Gq(x′), x′ ∈ γ. (2.5)

Notice that this problem is obtained directly by inserting (2.4) into (2.3) and extracting terms of order
ε2.

Since both eigenvalues M0 and M1 are simple, the only compatibility condition in the problem (2.5)
reads as

(Fq, Vq)ω + (Gq, Vq)γ = 0,

where (·, ·)ω is the natural scalar product in the Lebesgue space L2(ω). Thus, in view of the normalization
of the eigenfunctions Vq, we obtain

M �
q = μ2‖Vq;L2(γ)‖2 > 0. (2.6)

Now, the problem (2.5) has a solution which becomes unique under the orthogonality condition

(V �
q , Vq)ω = 0.

Since (2.3) is a spectral problem with a regular perturbation of coefficients in differential operators,
the error estimates

|˜M ε
q | + ‖˜V ε

q ;H1(ω)‖ ≤ cqε
4 for ε ∈ (0, εq], q = 0, 1,

are supported by the general results of the perturbation theory of linear operators, see, for example, [12,
Ch. 8]. Here, cq and εq are some positive numbers and H1(ω) is the Sobolev space.
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2.2. Waves

In the straight channel, there are two oscillatory and two exponential waves

wε
0±(x) = aε

0e
±imε

0x1V ε
0 (x′), (2.7)

vε
1±(x) = aε

1e
±mε

1x1V ε
1 (x′), (2.8)

where

mε
0 =

√

−M ε
0 = m0 + O(ε2), m0 =

√
−M0 > 0,

mε
1 =

√

M ε
1 = ε(m1 + O(ε2)), m1 = μ‖U1;L2(γ)‖ > 0

(2.9)

and {M ε
q , V ε

q } is the eigenpair of the problem (2.3) satisfying (2.4) and (2.6). Furthermore, aε
q is a

normalization factor:

aε
q = (2mε

q)
− 1

2 ‖V ε
q ;L2(ω)‖−1, q = 0, 1, (2.10)

aε
0 = a0

0 + O(ε2), a0
0 = (2

√

−M0)− 1
2 , (2.11)

aε
1 = ε− 1

2 a0
1(1 + O(ε2)), a0

1 = 2− 1
2 μ−1‖Vq;L2(γ)‖−1. (2.12)

For the further use, we define the symplectic (sesquilinear and anti-Hermitian) form

Q(v, w) =
∫

ω

(

w(R, x′)
∂v

∂x1
(R, x′) − v(R, x′)

∂w

∂x1
(R, x′)

)

dx′.

The form comes from Green’s formula in problem P0. Therefore, it is independent on the parameter
R ∈ R for the waves in (2.7), (2.8) and their linear combinations as well as for other solutions of the
problem in the unit strip. A direct calculation demonstrates that, owing to the normalization coefficients
(2.10)-(2.12), we have

Q(wε
0±, wε

0±) = ±i, Q(wε
0±, wε

0∓) = 0
Q(vε

1±, vε
1±) = 0, Q(vε

1±, vε
1∓) = 1.

(2.13)

Furthermore, since the exponents imε
0 and mε

1 in the waves (2.7) and (2.8) are different, we conclude by
the independence property of Q(·, ·) that

Q(wε
0±, vε

1θ) = −Q(vε
1θ, w

ε
0±) = 0, θ = ±. (2.14)

2.3. The scattering matrix

The oscillating waves (2.7) propagate along Ω0 without any distortion but in the curved channel (1.1)
they are scattered inside the middle part Ωε

0, so that problem Pε with ε > 0 gets the following solutions:

ζε
±(x) = χ±(ς)wε

0∓(ς, n, z) +
∑

θ=±
χθ(ς)sε

θ±wε
θ(ς, n, z) + ˜ζε

±(x). (2.15)

Here, the remainders ˜ζε
±(x) decay at rate O(e−με

1|ς|) as |ς| → ∞ in Ωε
± and χ± are smooth cut-off

functions:

χ±(ς) =

{

1 for ± ς > 2l,

0 for ± ς < l.

The transmission and reflection coefficients sε
θ ϑ in (2.15) form the scattering matrix sε. It is unitary

((sε)∗ = (sε)−1) and symmetric (sε
+− = sε

−+) due to the conditions (2.13) and the relation wε
0− = wε

0+,
see, for example, [24].
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2.4. The augmented scattering matrix

Following [11], see also [24], we introduce the exponential wave packets

wε
1±(x) = 2− 1

2 (vε
1+(x) ∓ ivε

1−(x)) (2.16)

and readily observe that, according to (2.13) and (2.14), we have

Q(wε
j±, wε

k±) = ±δj,k, Q(wε
j±, wε

k∓) = 0, j, k = 0, 1, (2.17)

where δj,k is the Kronecker symbol.
It is known, see, for example, [11,24,26], that the orthogonality and normalization conditions (2.17)

assure the existence of the following solutions to the problem Pε:

Zε
0±(x) = χ±(ς)wε

0∓(ς, n, z) +
∑

θ=±
χθ(ς)Sε

θ±wε
0,±(ς, n, z)

+ χ+(ς)Sε
1±wε

1−(ς, n, z) + χ−(ς)T ε
1±vε

1+(ς, n, z) + ˜Zε
0±(x) (2.18)

Zε
1(x) = χ+(ς)wε

1−(ς, n, z) +
∑

θ=±
χθ(ς)Sε

θ1w
ε
0,±(ς, n, z)

+ χ+(ς)Sε
11w

ε
1+(ς, n, z) + χ−(ς)T ε

11v
ε
1+(ς, n, z) + ˜Zε

1(x). (2.19)

Here, the remainders ˜Zε
0±(x) and ˜Zε

1(x) get the exponential decay o(e−δ|ς|), while the exponents δ > 0
are defined by the eigenvalues (2.1) and can be fixed independently on ε ∈ (0, ε0], ε0 > 0.

The coefficients in (2.18) and (2.19) form a 3 × 3-matrix Sε,

Sε =
[

Sε
•• Sε

•1

Sε
1• Sε

11

]

, Sε
•• =

[

Sε
++ Sε

+−
Sε

−+ Sε
−−

]

, Sε
•1 =

[

Sε
+1

Sε
−1,

]

which is called the augmented scattering matrix.
It should be mentioned that, following [26], we include the exponentially growing packets wε

1± in the
outlet Ωε

+ only, while the decompositions (2.18) and (2.19) contain the decaying wave vε
1+, see (2.8) and

(2.16). However, the proofs in [11,24] allow us to derive that the matrix Sε is unitary and symmetric due
to the equalities (2.17) and wε

1− = wε
1+.

2.5. The existence of a trapped mode

In contrast to the classical scattering matrix sε arising from the solutions (2.15) to the standard diffraction
problem, the augmented scattering matrix Sε is an artificial object, because (2.18) and (2.19) involve
exponentially growing waves and lose physical sense. However, the very reason to introduce such a matrix
can be explained by the following observation: in the case

Sε
11 = −1 (2.20)

, the solution (2.19) takes the form

Zε
1(x) = i

√
2χ+(ς)vε

1−(ς, n, z) + χ−(ς)T ε
11v

ε
1+(ς, n, z) + ˜Zε

1(x) (2.21)

and, therefore, becomes a trapped mode, since vε
1± decay in Ωε

∓, see (2.8). To derive (2.21), we have used
the relations (2.16) and the evident formula

|Sε
11| = 1 ⇔ Sε

•1 = 0 ∈ C
2 (2.22)

supported by the unitary property of Sε.
In other words, (2.20) is a sufficient condition for the existence of a trapped mode. The next theorem

assures that (2.20) also becomes necessary in our particular case and it will be proven at the end of
Sect. 4.2.
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Theorem 2.1. There exists a positive number q such that, in the case

N(κ0) = ‖κ0;C2(−l, l)‖ ≤ q,

the problem Pε admits a trapped mode if and only if the relation (2.20) is satisfied.

3. Asymptotics of the augmented scattering matrix

3.1. Differential operators in curvilinear coordinates

Since the equation Ψ(n, z) = 0 describing the surface ∂Ωε\Γε does not depend on the variable ς and the
gradient operator takes the form

∇(ς,n,z) = (Jε(ς, n)−1∂ς , ∂n, ∂z),

the normal ν(ς0, n, z) to this surface coincides with the normal of the cross section {x ∈ Ωε : ς = ς0}. Here,
Jε(ς, n) = 1 + nκε(ς) is the Jacobian. Furthermore, the Laplace operator in the curvilinear coordinates
reads as

Jε(ς, n)−1∂ςJ
ε(ς, n)−1∂ς + Jε(ς, n)−1∂nJε(ς, n)∂n + ∂2

z . (3.1)

Taking (1.1) into account and extracting from (3.1) the terms of order ε0 and ε1, we obtain

Δx = ∂2
ς + ∂2

n + ∂2
z + ε(κ0(ς)∂n − nκ0(ς)∂2

ς − n∂ςκ
0(ς)∂ς) + . . . , (3.2)

where the ellipsis stands for higher-order terms, which are inessential in our formal asymptotic analysis.

3.2. Asymptotic ansätze

Let us examine the asymptotics of the solution (2.19) to problem Pε as ε → +0. The factor ε− 1
2 in the

normalization coefficient aε
1 and the relation aε

0 = O(1), see (2.11) and (2.12), suggest the ansatz

Zε
1(x) = ε− 1

2 Z0
1 (x) + ε

1
2 Z�

1(ς, n, z) + . . . (3.3)

for the solution and the ansätze

Sε
11 = S0

11 + εS�
11 + . . . , T ε

11 = T 0
11 + εT �

11 + . . . , (3.4)

Sε
±1 = ε

1
2 S0

±1 + ε
3
2 S�

±1 + . . . (3.5)

for its coefficients.
We insert formulae (1.8), (3.2) and (3.3) into the problem (1.3)-(1.5) and extract terms of order ε− 1

2

and ε
1
2 . As a result, we obtain the following problems:

−Δ(ς,n,z)Z
0
1 (ς, n, z) = 0, (ς, n, z) ∈ R × ω,

∂ν(ς,n,z)Z
0
1 (ς, n, z) = 0, (ς, n, z) ∈ R × (∂ω \ γ),

∂zZ
0
1 (ς, n, z) = Λ1Z

0
1 (ς, n, z), (ς, n, z) ∈ R × γ, (3.6)

and

−Δ(ς,n,z)Z
�
1(ς, n, z) = κ0(ς)∂nZ0

1 (ς, n, z) + nκ0(ς)∂2
ς Z0

1 (ς, n, z)+

+ n∂ςκ
0(ς)∂ςZ

0
1 (ς, n, z), (ς, n, z) ∈ R × ω,

∂ν(n,z)Z
�
1(ς, n, z) = 0, (ς, n, z) ∈ R × (∂ω \ γ),

∂zZ
�
1(ς, n, z) = Λ1Z

�
1(ς, n, z), (ς, n, z) ∈ R × γ. (3.7)
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However, Eqs. (3.6) and (3.7) are not sufficient to determine the desired ingredients of the ansatz
(3.3), and it is necessary to prescribe the behaviour of Z0

1 and Z�
1 at infinity. To this end, we employ the

method of matched asymptotic expansion, cf. [10,38], in the interpretation of [24]. In this way, we regard
(3.3) as the inner expansion, which is valid near the middle part Ωε

0 of the channel. The outer expansions
in its outlets Ωε

± are again obtained by inserting the ansätze (3.4), (3.5) into (2.18) and (2.19) but using
the representations for the waves (2.7), (2.8)

wε
0±(ς, n, z) = w0

0±(ς, n, z) + O(ε2(1 + |ς|)),

vε
1±(ς, n, z) = ε− 1

2 a0
1

(

U1(n, z) ± εm1ςU1(n, z)
)

+ O
(

ε
3
2 (1 + ς2)

)

derived in Sect. 2 with m1 given in (2.9). Thus, we have

Zε
1(x) =

1√
ε

a0
1√
2

(

1 + S0
11 + i(1 − S0

11)
)

U1(n, z)+

+
√

ε
( a0

1√
2
(1 + S0

11 − i(1 − S0
11))m1ς +

a0
1√
2
(1 − i)S�

11

)

U1(n, z)

+
√

εS0
+1w

0
1(ς, n, z) + . . . , ς → +∞ in Ωε

+, (3.8)

Zε
1(x) =

1√
ε
a0
1T

0
11U1(n, z) +

√
ε
(

a0
1T

0
11m1ς + a0

1T
�
11

)

U1(n, z)

+
√

εS0
−1w

0
0−(ς, n, z) + . . . , ς → −∞ in Ωε

−. (3.9)

3.3. Computation of the coefficients

Extracting from (3.8) and (3.9) the terms of order ε− 1
2 yields the conditions

Z0
1 (ς, n, z) =

a0
1√
2

(

1 + S0
11 + i(1 − S0

11)
)

U1(n, z) + . . . , ς → +∞

Z0
1 (ς, n, z) = a0

1T
0
11U1(n, z), ς → −∞

in the problem (3.6). Hence, since U1(x′) is the only bounded solution of problem P0 in Ω0 with the
threshold spectral parameter λ0 = Λ1, we conclude that

Z0
1 (ς, n, z) =

a0
1√
2

(

1 + S0
11 + i(1 − S0

11)
)

U1(n, z), (3.10)
√

2T 0
11 = 1 + S0

11 + i(1 − S0
11). (3.11)

Notice that the function (3.10) does not depend on ς and, therefore, two last terms on the right-hand
side of the Poisson equation in (3.7) vanish.

Collecting the coefficients of
√

ε in (3.8) and (3.9) provides the following behaviour of the solution Z�
1

to the problem (3.7):

Z�
1 =

a0
1√
2

(

(1 + S0
11 − i(1 − S0

11))m1ς + (1 − i)S�
11

)

U1(n, z)+

+ S0
+1w

0
0+(ς, n, z) + . . . , ς → +∞,

Z�
1 = a0

1

(

T 0
11m1ς + T �

11

)

U1(n, z) + S0
−1w

0
0−(ς, n, z) + . . . , ς → −∞. (3.12)

Since the linear growth of this solution is allowed in (3.12) when ς → ±∞, the problem (3.7), (3.12)
with compactly supported right-hand side F �

0(ς, n, z) = κ0(ς)∂nZ0
1 (n, z) always has a solution which is

defined up to a function (c0 + c1ς)×U1(n, z) linear in ς-variable. Hence, some of the coefficients in (3.12)
cannot be determined. However, we can derive certain relations between them. To this end, we insert Z�

1
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and U1 into Green’s formula in the truncated straight cylinder ΩR = (−R,R)×ω and obtain in the limit
R → +∞

∫

Ω

U1(n, z)κ0(ς)∂nZ0
1 (ς, n, z) dςdndz

= − lim
R→∞

∫

ΩR

U1(n, z)Δ(ς,n,z)Z
0
1 (ς, n, z) dςdndz

= − lim
R→∞

∑

±
±

∫

ω

U1(n, z)∂ςZ
0
1 (±R,n, z) dndz

=
a0
1√
2
(1 + S0

11 + i(1 − S0
11))m1 − a0

1T
0
11m1. (3.13)

In the computation, we have used the formulae (2.7) and (3.12). Moreover, according to (3.10), the
left-hand side of (3.13) is equal to

a0
1√
2
(1 + S0

11 + i(1 − S0
11))K1J1(κ0),

where

J1(κ0) =

l
∫

−l

κ0(ς) dς, K1 =
∫

ω

U1(n, z)∂nU1(n, z) dndz. (3.14)

Hence, applying (3.11), we conclude from (3.13) the relation

S0
11 =

K1J1(κ0) + (1 + i)m1

iK1J1(κ0) + (1 + i)m1
. (3.15)

Notice that the equality S0
11 = −1 occurs at the point

μ0 = −1
2
‖U1;L2(γ)‖−1K1J1(κ0). (3.16)

To assure μ0 > 0, we must assume that

K1 �= 0 (3.17)

and

K1J1(κ0) < 0. (3.18)

For the calculation of S0
±1, we apply Green’s formula to the functions Z�

1 and w0
± as follows:

a0
1√
2
(1 + S0

11 + i(1 − S0
11))K0J±(κ0)

= − lim
R→∞

∫

ΩR

w0
0±(ς, n, z)Δ(ς,n,z)Z

�
1(ς, n, z) dςdndz

= − lim
R→∞

(

Q(S0
+1w

0
0+, w0

0+) − Q(S0
−1w

0
0−, w0

0±)
)

= −iS0
±1,

where

K0 =
∫

ω

V0(n, z)∂nU1(n, z) dndz, (3.19)
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J±(κ0) = a0
0

l
∫

−l

e∓im0ςκ0(ς)dς. (3.20)

In the rest of the paper, we will need the assumption

K0 �= 0. (3.21)

Finally, based on (3.15), we conclude that

S0
±1 = −(1 − i)

√
2a0

1m1
(1 − i)m1 − iK1J1(κ0)
m2

1 + (K1J1(κ0) + m1)2
K0J±(κ0). (3.22)

In Appendix A, we will verify the following estimates for the remainders in the asymptotic expansions
(3.4) and (3.5):

|Sε
11 − S0

11| ≤ c0ε, |T ε
11 − T 0

11| ≤ c0ε

|Sε
±1 −

√
εS0

±1| ≤ c0ε
3
2 for ε ∈ (0, ε0], (3.23)

where c0 and ε0 are positive constants depending on the cross section ω and C2-norm of the rescaled
curvature:

N(κ0) = ‖κ0;C2(−l, l)‖.

Analysing the solutions (2.18) in a similar manner yields the asymptotic formulae

Sε
•• = J + ˜Sε

••, J =
[

0 1
1 0

]

(3.24)

‖˜Sε
••;C

2×2‖ ≤ c0ε (3.25)

for the upper left corner of the augmented scattering matrix. Notice that the appearance of the involution
J in (3.24) has an evident reason: the waves w0

0± pass the straight channel without any distortion, so that
the reflection and transition coefficients are equal to 0 and 1, respectively.

We postpone the derivation of the estimates (3.23) and (3.25) to Appendix. The procedure is quite
standard and straightforward based on the technique of weighted spaces with detached asymptotics.

4. Identifying a trapped mode

4.1. Preparing for the fine-tuning

We accept the representation (1.9) for the rescaled curvature κ0 in (1.1) and (1.10) for the quantity μ
in (1.8). The small parameters τ ∈ Bρ will be fixed, cf. (1.12), and the functions κ0

0, κ0
± are assumed

to be smooth and supported in the closed interval [−l, l]. Thus, the asymptotic formulae (2.21), (3.5)
and (3.24) remain valid as well as the estimates (3.25). In the sequel, we refer to these formulae when
indicating the dependence on τ in Sε(τ) and κ0(ς; τ), J(κ0; τ).

Using (1.10), (2.9) and (3.15) gives

m1(τ) = −1
2
K1J1(κ0; τ) + ‖U1;L2(γ)‖2τ0, (4.1)

S0
11(τ) =

K1J1(κ0; τ) + 2i‖U1;L2(γ)‖τ0

−K1J1(κ0; τ) + 2i‖U1;L2(γ)‖τ0

= −1 − 4iτ0
‖U1;L2(γ)‖
K1J1(κ0; τ)

+ O(τ2
0 ) =: −1 − 4iτ0b1(τ) + O(τ2

0 ). (4.2)
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Observing that

Re S0
11(τ) = −1 + O(τ2

0 ), Im S0
11(τ) = −4iτ0b1(τ) + O(τ2

0 ),

we see that our one-term asymptotic formula (4.2) is not sufficient to obtain Re Sε
11(τ) = −1. For this

reason, it is not possible to apply the sufficient condition (2.20) directly.

4.2. Reformulation of the sufficient condition

In view of (2.22), it follows from (2.20) that

Im Sε
11(τ) = 0 (4.3)

Re (eiψSε
±1(τ)) = 0 (4.4)

with any phase ψ ∈ [0, 2π). To derive (2.20) from (4.3) and (4.4), we use the asymptotic formulae. Indeed,
recalling that Sε(τ) is unitary and symmetric, we have

0 = Sε
••(τ)

(

eiψSε
1•(τ)

)∗
+ Sε

•1(τ)(eiψSε
11(τ))

= Sε
••(τ)(eiψSε

•1(τ)) + e−iψSε
11(τ)Sε

•1(τ)

= −eiψ(Sε
••(τ)Sε

•1(τ) + e−iψSε
11(τ)Sε

•1(τ) = −eiψT ε
••(τ)Sε

•1(τ),

where

T ε
••(τ) = Sε

••(τ) − e−2iψ
I2Sε

11(τ) = J + e−2iψ
I2 + O(ε + |τ |)

and I2 is the 2 × 2 unit matrix. If −e−2iψ is not an eigenvalue of the matrix J, i.e. ψ �= 0, π, the matrix
T ε

••(τ) is non-singular for small ε and τ . Hence, one obtains

Sε
•1(τ) = 0, |Sε

11(τ)| = 1.

Then, the formula (4.3) implies that Sε
11(τ) = ±1. Finally, the condition (2.20) is met, since S1

11(τ) = 1
is impossible due to (4.2) for sufficiently small ε and τ . In the sequel, we choose ψ = π

4 , that is, eiψ =
2−1/2(1 + i).

For simplicity, we assume, in addition to (3.18), that

J1(κ0
±) = 0, (4.5)

i.e. the functions κ0
± are of mean value zero. Hence, J1(κ0; τ) = J1(κ0

0) is independent of τ . Setting

˜Sε
11(τ) = Sε

11(τ) − S0
11(τ), |˜Sε

11(τ)| ≤ c0ε

and using (4.2), we may rewrite (4.3) as a transcendental equation

τ0 = −K2
1J1(κ0

0)
2 + ‖U1;L2(γ)‖4τ2

0

4‖U1;L2(γ)‖2K1J1(κ0
0)

Im ˜Sε
11(τ). (4.6)

Notice that the denominator does not vanish due to (3.18), (1.9) and (4.5).
Now, we fix κ0

0 and κ0
± such that

Re
(

(1 + i)J±(κ0
0)

)

= 0, (4.7)

Re
(

(1 + i)J±(κ0
θ)

)

= δ±,θ, θ = ±, (4.8)

where the functionals J± are given by (3.20). Notice that kernels of the integral operators in (4.8) are

cos(m0ς) ± i sin(m0ς).

They are linearly independent, and hence, the requirements of (4.8) can be satisfied.
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Similarly, we set
˜Sε

±1(τ) = ε− 1
2 Sε

±1(τ) − S0
±1(τ), |˜Sε

±1(τ)| ≤ c0ε.

Now using (4.1) and (3.22), we rewrite the condition (4.4) as follows:

0 = Re
(

(1 + i)˜Sε
±1(τ)

)

+
√

2a0
1K1J(κ0

0)
K1J(κ0

0) − 2‖U1;L2‖2τ0

K2
1J(κ0

0)2 + 4‖U1;L2‖4τ2
0

K0Re
(

(1 + i)J±(κ0; τ)
)

− 2(1 − i)τ0
‖U1;L2(γ)‖2

K1J1(κ0
0)

J±(κ0; τ). (4.9)

According to (4.7) and (4.8) Re
(

(1 + i)J±(κ0; τ)
)

= τ±. Then, we can complete the system (1.11) by
augmenting (4.6) with two scalar equations derived from (4.9):

τ± = 2τ0
‖U1;L2(γ)‖2

K1J1(κ0
0)

Re
(

(1 − i)(τ+J±(κ0
+) + τ−J±(κ0

−))
)

− K2
1J(κ0

0)
2 + 4‖U1;L2‖4τ2

0

K1J(κ0
0) − 2‖U1;L2‖τ0

Re((1 + i)˜Sε
±1(τ))√

2a0
1K0K1J1(κ0)

. (4.10)

Since the coordinate change x �→ (ς, n, z) brings small perturbations into differential operators of the
water wave problem in Ω0, which smoothly depend on the parameters τ = (τo, τ+, τ−), the solution Zε

1 as
well as coefficients in its representation (3.8) has a similar dependence on τ . (For our purpose, Lipschitz
continuity would be enough.) Observing also that the first term on the right-hand side of (4.10) involves
the factors τ0, τ±, we conclude that the operator T ε in the equation (1.11), which is a short form of (4.6)
and (4.10), satisfies the inequalities

|T ε(τ)| ≤ c(ε + |τ |2),
|T ε(τ) − T ε(τ ′)| ≤ c(ε + |τ |)|τ − τ ′| ∀ τ, τ ′ ∈ Bρ.

Hence, it is a contraction in the ball Bρ provided the radius ρ > 0 is small enough. Thus, the Banach
fixed point theorem guarantees that there are positive ε and ρ, ρ0 such that the equation (1.11) has a
unique solution τ in the ball Bερ0 and the estimate (1.12) is valid.

Recall that the equation (1.11) is equivalent to the relations (4.3) and (4.4) (and also to the sufficient
condition (2.20) for the existence of a trapped mode). Therefore, formulae (1.1), (1.8), (1.9) and (1.10)
determine the curved channel which supports a trapped surface wave and the eigenvalue of the problem
(1.3)-(1.5) embedded in its continuous spectrum.

4.3. The main result

Theorem 4.1. Let the assumptions (2.1), (3.17), (3.18) and (3.21) be satisfied, and let the curvature κε

of the mid-curve Υε of the channel (1.2) with the constant cross-section ω take the form κ0(ς) = κ0
0(ς) +

τ+κ0
+(ς) + τ−κ0

−(ς), where the functions κ0
θ, θ ∈ {±, 0}, fulfil the condition (1.1) and the orthogonality

and normalization conditions (4.7) and (4.8).
Then, there exists ε0 such that for ε ∈ (0, ε0] the problem (1.3)-(1.5) in Ωε has an embedded eigenvalue

(1.13), where Λ1 is the first positive threshold value in (1.6) and μ0 is given in (3.16). The parameters
τ0 in (1.13) and τ± above solve the fixed point equation (1.11) and meet the estimate (1.12).

Since Theorem 4.1 makes the relation (2.20) a criterion for the existence of trapped modes, for ε ∈
(0, ε0), the interval

(Λ1 − c0ε
2,Λ1) (4.11)
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may contain at most one eigenvalue of problem Pε, where ε0 and c0 are some positive numbers. The
asymptotic technique applied in this paper does not allow us to control the point spectrum outside the
interval (4.11).

5. Final remarks

5.1. Straight walls and bottom

Let the cross section be a rectangle

ω = {x′ : |x2| < 1, x3 ∈ (−d, 0)}, d > 0.

In this case, the eigenvalues for the Steklov problem (1.7) can be computed explicitly by the separation
of variables:

Λk =
πk

2
tanh(

πkd

2
), k = 0, 1, 2, . . .

Uk(x2, x3) = cos(πk(x2 + 1)/2) cosh(πk(x3 + d)/2). (5.1)

Notice that all the eigenvalues in (5.1) are simple, fulfilling our assumption (2.1). Particularly, Λ0 = 0
and

Λ1 =
π

2
tanh(

πd

2
) (5.2)

with the eigenfunctions U0(x′) = 1 and

V1(x′) = U1(x′) = A1 cosh
(π(x3 + d)

2
)

cos
(π(x2 + 1)

2
)

, (5.3)

where A1 is the normalization constant. The negative eigenvalue M0 = −m2
0 of the problem (2.2) is

defined by the root m0 ∈ (0, π
2d ) of the transcendental equation

Λ1 = m0 tan(m0d)

, and the corresponding eigenfunction is

V0(x′) = cos(μ0(x3 + d)).

Then, by direct integration, we have
∫

ω

V0(x2, x3)∂x2V1(x2, x3)dx2dx3 �= 0. (5.4)

However,
∫

ω

V1(x2, x3)∂x2V1(x2, x3)dx2dx3 = 0 (5.5)

violating the condition (3.17).
The same phenomenon appears also in any cross section ω with the mirror symmetry about the x3-

axis, because all the modes of oscillations are either symmetric or anti-symmetric about the ordinate axis
x2 = 0, see [8,19]. In particular, V0 is symmetric and V1 anti-symmetric, and hence, the relations (5.4)
and (5.5) are valid, too. In view of (5.5), the result obtained in the previous section on the existence of
a trapped mode does not apply. Nevertheless, it could be possible that constructing higher-order terms
in the asymptotic expansion in Sect. 3 may help to satisfy the criterion (2.20). The authors do not know
whether this would lead to a success.

Another way to fulfil both conditions (3.21) and (3.17) simultaneously is to give a small perturbation
to the walls, see Fig. 3 and apply the asymptotic methods, as in [10,17], to compute J1(κ0), K0 and K1,
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Fig. 3. Local perturbations of the wall

Fig. 4. Cross section with a skewed wall

cf. (3.14) and (3.19). The relation K0 �= 0 remains valid because the perturbation is small. Moreover,
according to the general results in [12, Ch. 7] K1 is a real analytic function with respect to the perturbation
parameter. Hence, either K1 is zero only at the isolated parameter values or vanishes identically. To prove
that the last case is not possible, we have to solve explicitly at least two boundary value problems in
the original domain, to find out the change of K1 under a small regular or singular perturbation of the
boundary. This calculation is quite long and cumbersome. Instead, in the next section, we consider the
depth d as a small parameter and employ the traditional analysis of elliptic problems in thin domains
(see [17, Ch. 15, 16] and [4,27]) for which one needs to solve a system of ordinary differential equations
and to compute an integral of only one solution in a semi-infinite strip.

5.2. An example of a feasible cross section

Let us assume that the cross section has the shape of a thin trapezoid, in Fig. 4

ωd
θ = {(x, y) : y ∈ (−d, 0), cot(θ)y < x < 1} (5.6)

where the depth d > 0 is a small parameter and θ ∈ (0, π/2) is the sharp angle of ωd
θ . The skewed

part of the boundary is denoted by

Σd
θ = {(x, y) : x = cot(θ)y, y ∈ (−d, 0)}

By [4,27], we know that the eigenvalues (1.6) of the problem (1.7) in ωd
θ are small, of order d, and satisfy

the estimate

∣

∣Λd
k − π2k2d

∣

∣ ≤ cp(θ)d2 for d ∈ (0, dk(θ)] (5.7)

with some positive numbers cp(θ) and dp(θ) depending on the angle θ and the index k ∈ N. Clearly,
as before Λd

0 = 0 and the eigenfunction is a constant: Ud
0 = B, B ∈ R. Notice that the normalization of

eigenfunctions is not needed in this section.
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Following the general asymptotic analysis, the solution of the problem (1.7) has the following asymp-
totic representation

Ud
1 (x, y) = cos(πx) + d2Z(x, η) + d2W 1(ξ, η) + . . . , (5.8)

Λd
1 = π2d + μd2 + . . . . (5.9)

Here, the fast variables are denoted by (ξ, η) = d−1(x, y). The function Y (x) = cos(πx) is the solution of
the limit spectral problem, when d → 0+,

Y ′′(x) = −LY (x), 0 < x < 1,

Y ′(0) = Y ′(1) = 0

and L = π2 is the corresponding eigenvalue. The function

Z(x, η) =
π2

2
cos(πx)(η + 1)2

is the solution of the problem

∂2
ηZ(x, η) = π2 cos(πx), 0 < x < 1

∂ηZ(x, 0) = π2 cos(πx), ∂ηZ(x,−1) = 0.

Inserting (5.8) and (5.9) into the problem (1.7), we observe that the correction term W 1 satisfies on the
semi-infinite pointed strip

Pθ = {(ξ, η) : −1 < η < 0, cot(θ)η < ξ}
the boundary value problem

ΔW 1(ξ, η) = 0, (ξ, η) ∈ Pθ,

∂ηW 1(ξ, η) = 0, (ξ, η) ∈ ∂Pθ \ Σθ,

∂νW 1(ξ, η) = −π2
(

sin(θ)ξ + cos(θ)(η + 1)
)

=: G(ξ, η). (5.10)

Here, we have denoted by Σθ the sharp end of the strip Pθ:

Σθ = {(ξ, η) : ξ = cot(θ)η, −1 < η < 0}.

Since the integral
∫

Σθ

G(ξ, η)ds = 0, the problem (5.10) has a solution that decays at the rate O(e−πξ) as

ξ → +∞, cf. [30, Ch. 2].
Since for small d, we have x = dξ, y = dη, the asymptotic representation of the function Ud

1 (x, y) on
Σθ takes the form

Ud
1 (x, y) = cos(πx) + d2Z(x, η) + d2W 1(ξ, η) + Ũd

1 (x, y)

= 1 − π2

2
d2ξ2 +

π2

2
d2(η + 1)2 − π2

4
d4ξ2(η + 1)2

+ d2W 1(ξ, η) + Ũd
1 (dξ, dη).

According to the asymptotic analysis, the remainder satisfies the estimate

‖Ũd
1 ‖H1(ωd

θ ) ≤ Cθd
7
2 , d ∈ (0,Dθ) (5.11)

for some positive constants Cθ and Dθ.
As was mentioned in Sect. 5.1, the requirement (3.21) is met for a small d > 0 because the main term

cos(πx) in (5.8) is anti-symmetric with respect to the “middle line” {(x, y) : y ∈ (−d, 0), x = 1/2} of the
trapezoid ωd. It remains to evaluate the integral Kd

1 in (3.14).
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In view of the definition of the cross section (5.6), we have, using the Green formula,

Kd
1 =

1
2

∫

Σd
1

∣

∣Ud
1 (1, y)

∣

∣

2
dy − 1

2
sin(θ)

∫

Σd
θ

∣

∣Ud
1 (x, y)

∣

∣

2
ds, (5.12)

where Σd
θ is above and Σd

1 = {(x, y) : x = 1, y ∈ (−d, 0)}. Using the asymptotic expansion (5.8), the
exponential decay of the boundary layer term together with (5.11) yields

∫

Σd
1

|Ud
1 (1, z)|2dz = d + π2

3 d3 + O(d7/2). (5.13)

The boundary integral

sin(θ)
∫

Σd
θ

|Ud
1 (x, y)|2ds,

takes the form

sin(θ)
∫

Σd
θ

|Ud
1 (x, y)|2ds = sin(θ)

∫

Σd
θ

(

cos(πx) + d2Z(x, η)

+ d2W 1(ξ, η) + Ũd
1 (x, y)

)2

ds

= I1 + I2 + O(d4),

where

I1 =

0
∫

−d

(

cos(π cot(θ)y) +
π2d2

2
cos(π cot(θ)y)

(y

d
+ 1

)2)2

dy

and

I2 = 2d2 sin(θ)
∫

Σd
θ

W 1(ξ, η)ds + O(d4).

The first integral has the asymptotic representation

I1 = d +
π2

3
d3 − 2π2

3
cot(θ)2d3 + O(d4).

Since the normal derivative on Σd
θ is

∂ν = −sin(θ)∂ξ + cos(θ)∂η,

the integral I2 takes the form

I2 = 2d2

∫

Σd
θ

sin(θ)W 1(ξ, η)ds = −2d2

∫

Σd
θ

W 1(ξ, η)∂νξ ds

= −2d3

∫

Σd
θ

ξ∂νW 1(ξ, η) ds = d3π2

0
∫

−1

cot(θ)2η(2η + 1) dη

=
d3π2

3
cot(θ)2.
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Adding the previous results together, we finally obtain that

Kd
1 = −π2

6
cot(θ)2)d3 + O(d7/2).

In other words, at least for small values of the depth of the channel the coefficient K2
1 < 0 and the

condition (3.17) are valid. Therefore, with a suitable local distortion of the straight channel we can create
a trapped mode.

It is worth to repeat the fact that according to general results in [12, Ch.7] the function (0,+∞) �
d �→ Kd

1 is real analytic and therefore it can vanish only for isolated sequence of values of the parameter
d.

5.3. On multiple eigenvalues

In the previous sections, we have found the eigenvalue (1.8) near the first positive threshold Λ1. A similar
procedure can be applied to higher thresholds. However, searching for an eigenvalue λε near the threshold
Λn in (1.6), our procedure requires more assumptions about the spectral problem (2.2) with the new Robin
condition

∂zV
′(x′) = ΛnV ′(x′), x′ ∈ γ.

Namely, first the non-positive eigenvalues

M0, M1, . . . , Mn = 0 (5.14)

must be simple and, secondly, the corresponding eigenfunctions must satisfy

Kk :=
∫

ω

Vk(n, z)∂nVk(n, z) dndz �= 0, k = 0, . . . , n. (5.15)

Indeed, the conditions (5.15) are absolutely necessary because the equations similar to (4.6) and (4.10)
involve the multipliers K−1

k . Furthermore, if there is a multiple eigenvalue among (5.14), then it is not
possible to fulfil requirements of type (4.8), because several integral operators of type (3.20) have the
same kernels.

It may happen that our scheme works in the case of the eigenvalue Mn = 0 of multiplicity J > 1.
However, in this case the analysis becomes incomparably more complicated, since the sufficient condition
[11] deals with the right bottom J × J-block of the augmented scattering matrix and requires that this
block has the eigenvalue −1. Notice that also some results in Appendix A about the justification hold
true only for a simple eigenvalue Λ1.

Finally, we mention that the question of the existence of a curved waveguide supporting two different
trapped modes is fully open yet.
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6. Appendix A

The Kondratiev space W 1
β (Ωε), see [13] or [30, Ch. 5], is introduced by completing C∞

0 (Ωε) with respect
to the weighted Sobolev norm

‖u;W 1
β (Ωε)‖ = ‖eβ|ς|u;H1(Ωε)‖, (A.1)

where β ∈ R is a weight index. Clearly, W 1
0 (Ωε) = H1(Ωε) but, for β > 0, functions in W 1

β (Ωε) possess
exponential decay at infinity. The weak formulation of the inhomogeneous water wave problem in the
weighted space reads: find uε ∈ W 1

β (Ωε) such that

(∇uε,∇v)Ωε − λε(uε, v)γε = f(v) ∀v ∈ W 1
−β(Ωε), (A.2)

where f ∈ W 1
−β(Ωε)∗ is (anti)-linear functional acting in W 1

−β(Ωε).
The integral identity (A.2) defines a continuous mapping

Aε
β(λε) : W 1

β (Ωε) → W 1
−β(Ωε)∗ : Aε

β(λε)u = f.

The Kondratiev theory [13], see also [30, Ch. 3 and 5], provides for this mapping ancillary “nice” properties
under certain restrictions on the weight index. Particularly, by fixing β > 0 such that the interval [0, β]
contains only the eigenvalue M = 0 of the problem (2.2), the operator A0

β(Λ1) becomes a monomorphism.
In other words, the straight channel Ω0 cannot support a trapped mode, in particular, at a threshold
frequency. A standard perturbation argument gives us positive ε0 and δ0 such that, for any ε ∈ (0, ε0] and
δ ∈ [−δ0, δ0], the operator Aε

β(Λ1 +δ) is also a monomorphism. Since A1
−β(Λ1 +δ) is the adjoint operator

for A1
β(Λ1 + δ), it is an epimorphism, i.e. the problem (A.2), with changing β to −β and λε to Λ1 + δ,

has a solution uε ∈ W 1
−β(Ωε) for any f ∈ W 1

β (Ωε)∗. Finally, we mention that, by the index increment
theorem (see [30, Thm. 3.3.3] and our calculations in Sect. 2.1), we have

dim ker Aε
−β(Λ1 + δ) = 2 × 2 = 4. (A.3)

Here, we want to mention that the dimension (=4) is the product of the number of the outlets to infinity
(=2) and the number of linear solutions (=2) in the x1-variable to problem P0 at the threshold frequency.
The linear solutions V1(x′) and x1V1(x′) are given in section 2.1. Hence, the homogeneous problem (f = 0)
in the space W 1

−β(Ωε) has just four linearly independent solutions.
Let us return to the spectral parameter λε = Λ1−ε2μ2 introduced in (1.8). Since W 1

−β(Ωε)∗ ⊂ W 1
β (Ωε),

the problem (A.2) with the replacement β �→ −β has a solution uε ∈ W 1
−β(Ωε) which may have an

exponential growth at infinity. Then, according to Kondratiev’s theorem on asymptotics [13], see also [30,
Thm. 3.4.1], the solution uε of (A.2) admits the representation

uε(x) =
∑

±
χ±(x)

∑

p=±

(

cεp
± wε

0±(x) + bεp
± vε

1±(x)
)

+ ũε(x), (A.4)

http://creativecommons.org/licenses/by/4.0/
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where the coefficients cεp
± , bεp

± ∈ C and the remainder ũε satisfy the estimate
∑

±

∑

p=±

(

|cεp
± | +

√
ε|bεp

± |
)

+‖ũε;W 1
β (Ωε)‖

≤ c
(

‖f ;W 1
−β(Ωε)∗‖ + ‖uε;W 1

−β(Ωε)‖
)

.

Notice that the factor
√

ε compensates the normalization factor aε
1 = O(ε− 1

2 ) in (2.8) and (2.11), which
was absolutely necessary to yield the unitary property for the augmented scattering matrix Sε.

The space W1
−β(Ωε;λε) with detached asymptotics is composed of functions in the form (A.4). It is a

Banach space when equipped with the norm

‖uε;W1
−β(Ωε;λε)‖ =

∑

±

∑

p=±

(

|cεp
± | +

√
ε|bεp

± |
)

+ ‖ũε;W 1
β (Ωε)‖,

and it is a subspace of W 1
−β(Ωε). The restriction of Aε

−β(λε) onto W1
−β(Ωε;λε) is denoted by

Aε
−β(λε) : W1

−β(Ωε;λε) → W 1
−β(Ωε)∗

and, according to Kondratiev’s theorem on asymptotics, inherits all properties of the operator Aε
−β(λε).

Hence, Aε
−β(λε) is a Fredholm epimorphism with a 4-dimensional kernel. Next, we introduce the restric-

tions Aε
−β,out(λ

ε) and Aε
−β,art(λ

ε) of the operator Aε
−β(λε) onto the subspaces

W1
−β,out(Ω

ε;λε) = {uε ∈ W1
−β(Ωε;λε) : cε±

∓ = bε±
± = 0} and (A.5)

W1
−β,art(Ω

ε;λε) = {uε ∈ W1
−β(Ωε;λε) : cε±

∓ = bε−
− = 0, bε−

+ = −ibε+
+ }, (A.6)

respectively. Both of these subspace have co-dimension 4 and, therefore, Aε
−β,out(λ

ε) and Aε
−β,art(λ

ε) are
Fredholm operators of index zero.

Since the conditions in (A.5) eliminate two incoming waves and two exponentially growing waves
in the representation of the solutions in (A.4), Aε

−β,out(λ
ε) must be considered as the operator for the

diffraction problem in the channel Ωε with the Sommerfeld radiation conditions at infinity. This operator
gains all necessary properties, see the monograph [30, Ch. 5] for details.

The incoming waves χ±wε
0∓ do not belong to the subspace (A.6). The wave χ−wε

1− with the expo-
nential growth as x1 → −∞ is also absent in W1

−β,art(Ω
ε;λε) but the last relation in (A.6) allows for

the outgoing wave packet
√

2bε
+χ+wε

1−, see (2.16). Hence, the operator Aε
−β,art(λ

ε) realizes the artificial
radiation conditions which we used to introduce the solutions (2.18) and (2.19) initiated by the incoming
waves χ±wε

0∓ and the exponential packet χ+wε
1−.

The kernel of the operator Aε
−β,out(λ

ε) can be non-trivial, and we have constructed a channel sup-
porting a trapped mode

uε ∈ ker (Aε
−β,out(λ

ε)).

At the same time, the operator Aε
−β,art(λ

ε) is an isomorphism. This property gives an implicit assistance
in constructing the asymptotics of the solution Zε

1 as ε → +0.
Since Aε

−β,art(λ
ε) is a Fredholm operator of index zero, it becomes an isomorphism provided

dim kerAε
−β,art(λ

ε) = 0. (A.7)

Let then

uε =
∑

±
χ±cε

0±wε
0± + χ+cε

1+wε
1+ + χ+cε

1−vε
1+ + ũε

be a solution of the problem (1.3)–(1.5). Inserting it into Green’s formula at both positions yields

0 = lim
R→∞

(

QR(uε, uε) − Q−R(uε, uε)
)

= i|cε
0+|2 + i|cε

0−|2 + i|cε
1+|2
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according to the relations (2.13) and (2.17). Thus,

uε = χ−cε
1−vε

1+ + ũε, ũε ∈ W 1
β (Ωε), (A.8)

is a trapped mode with the slow decay rate as ς → −∞ and the fast decay rate as ς → +∞. To conclude
that the solution (A.8) is trivial, we again employ the Kondratiev theory and introduce the weighted
Sobolev space V 1

β (Ωε) as the completion of C∞
0 (Ωε) with respect to the norm

‖uε;V 1
β (Ωε)‖ = ‖eβςuε;H1(Ωε)‖. (A.9)

We emphasize here the difference between the exponents in the norms (A.9) and (A.1), so that for positive
β the functions in V 1

β (Ωε) decay as ς → ∞ but may grow as ς → −∞. In particular, we have the inclusion
W 1

β (Ωε) ⊂ V 1
β (Ωε). Therefore, the trapped mode (A.8) belongs to V 1

β (Ωε). According to [13], see also [30,
Thm. 3.1.1], the mapping

A0(Λ1) : V 1
β (Ω0) → V 1

−β(Ω0)∗

generated by the variational problem P0 at the threshold λ = Λ1 is an isomorphism. By a perturbation
argument, the solution operator from V 1

β (Ωε) onto V 1
−β(Ωε)∗ of the problem Pε with the parameter (1.8)

keeps the same property. Thus, we conclude that uε = 0.
Calculations in [11] and [24] for general elliptic problems and the Dirichlet problem for the Helmholtz

operator, respectively, turn into formulas (2.21) and (2.22) to prove that (2.20) is necessary and sufficient
condition for the existence of a trapped mode uε ∈ H1(Ωε) with a slow decay rate as ς → +∞. That is,
the coefficient bε

+ does not vanish in the representation

uε(x) =
∑

±
χ±(ς)bε

± vε
∓(ς, n, z) + ũε(x), (A.10)

where the remainder ũε ∈ W 1
β (Ωε). If bε

+ = 0, the trapped mode (A.10) falls into the space (A.6) and
becomes zero due to the formula (A.7). This concludes the proof of Theorem 2.1.
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