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Abstract. Incorporating humoral immunity, cell-to-cell transmission and degenerated diffusion into a virus infection model,
we investigate a viral dynamics model in heterogenous environments. The model is assumed that the uninfected and infected
cells do not diffuse and the virus and B cells have diffusion. Firstly, the well-posedness of the model is discussed. And then, we
calculated the reproduction number R0 account for virus infection, and some useful properties of R0 are obtained by means
of the Kuratowski measure of noncompactness and the principle eigenvalue. Further, when R0 < 1, the infection-free steady

state is proved to be globally asymptotically stable. Moreover, to discuss the antibody response reproduction number ˜R0 of
the model and the global dynamics of virus infection, including the global stability infection steady state and the uniform
persistence of infection, and to obtain the k-contraction of the model with the Kuratowski measure of noncompactness, a

special case of the model is considered. At the same time, when R0 > 1 and ˜R0 < 1 ( ˜R0 > 1), we obtained a sufficient
condition on the global asymptotic stability of the antibody-free infection steady state (the uniform persistence and global
asymptotic stability of infection with antibody response). Finally, the numerical examples are presented to illustrate the
theoretical results and verify the conjectures.
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1. Introduction

As we all know, every infectious disease has its specific pathogen caused, which can be virus, bacteria,
fungus, spirochete, protozoa and so on. Influenza, for example, is caused by a virus; tuberculosis is caused
by bacteria. In fact, viruses are closely related to human diseases and about 70%-80% of infectious diseases
in humans are caused by viruses. For example, the 1918 influenza pandemic was caused by an H1N1 virus
with genes of avian origin, which is the most severe pandemic in recent history, and the SARS outbreak
in 2003 and the ongoing pandemic of COVID-19 in the last three years are caused by coronaviruses. Of
course, there are still human immunodeficiency virus (HIV) and Hepatitis B virus (HBV) which has not
been eradicated are caused by the virus. Therefore, research on infectious diseases caused by viruses is
essential to protect the lives and property of people all over the world, which is why more and more
researchers are joining the ranks of research on infectious diseases caused by viruses and made a lot of
excellent results [6,7,9,19,20,22,27,32,38,39].

The virus body is in a static state outside the cell, basically similar to inanimate substances, and it
cannot replicate itself. However, once it invades susceptible host cells, the virus rely on the host cells
for its own reproduction and spread, and cell division produces more viruses and then infects more cells.
The pathogenic effect of the virus on the body mainly includes two aspects: (1) the virus causes the
structural or functional changes of the host cells, and then causes the pathological changes and functional
disorders of the tissues and organs of the body; (2) when the virus invades the host cells, it will trigger
the immune response of the body and then induce the immune pathological response of the body. For
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example, influenza virus has affinity to respiratory mucosa; smallpox virus has affinity to skin mucosal
cells; encephalitis virus and poliovirus have affinity to nerve tissue, while HIV mainly invades human
CD4+ T lymphocytes, resulting in a decrease in the number of CD4+ T lymphocytes, leading to immune
function defects, and finally can be secondary to the infection of various pathogenic microorganisms, as
well as secondary tumors, leading to death.

The human body mainly includes two immune mechanisms: cellular immunity and humoral immunity,
which need to be stimulated by antigens. Cellular immunity is that after being stimulated by antigen,
human T cells directly form memory T cells and effector T cells and then produce antibodies, which
are specifically combined with cells to play an immune response. Humoral immunity is that after being
stimulated by antigen, a kind of B cells in the body produces effective B cells and memory cells and then
produces antibodies to produce immune responses to corresponding antigens [9]. The dynamics models of
viral infection related to humoral and cellular immunity have attracted the attention of many researchers
(see [3,4,13,14,20,25,27,31,34,37]). For example, in [4] the authors investigated the dynamical behavior
of two nonlinear models for viral infection with humoral immune response, and formulated two threshold
parameters for each model and obtained some sufficient conditions for the global dynamics of the models,
and in [25], a generalized viral dynamics model with two nonlinear models and cellular immunity have
been studied.

Recently, a variety of reaction–diffusion models have been proposed to describe the viral dynamics
[7,15,19,22,27]. For instance, in [15], a reaction–diffusion viral infection model under comprehensive
consideration of humoral immunity, viral infection delay and logistic growth have been studied, and their
research shows that the stability of the equilibrium point can be altered by viral infection delay. Moreover,
by the methods of dynamical systems and the Lyapunov function, a nonlinear viral dynamics model which
integrates the influence of humoral immunity and spatial diffusion has been researched in [22]. However,
most of these studies have focused on the spread of virus to cell and assumed that the diffusion ability of
cells and viruses of in the body is constant, that is, their diffusion ability is independent of its location
in the body. In fact, related study [19] demonstrates that the diffusion ability of different cells or viruses
varies depending on the tissue or environment in which they are located. Moreover, recent data and
studies suggest that there exists cell-to-cell transmission of viruses in virus dynamics. For example, in
[5], the authors concluded that cell-to-cell transmission can prevent the spread of the HCV virus. Hence,
in order to investigate the combined effects of heterogeneous diffusion and cell-to-cell infection on viral
infection dynamics, Luo et al. [9] proposed the following viral dynamics model:
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∂u1

∂t
= ∇ · d1(x)∇u1 + A(x) − d(x)u1 − β1(x)f(u1, u3) − β2(x)g(u1, u2),

∂u2

∂t
= ∇ · d2(x)∇u2 + β1(x)f(u1, u3) + β2(x)g(u1, u2) − μ2(x)u2,

∂u3

∂t
= ∇ · d3(x)∇u3 + p(x)u2 − μ(x)u3 − q(x)u3u4,

∂u4

∂t
= ∇ · d4(x)∇u4 + r(x)u3u4 − c(x)u4,

t ≥ 0, x ∈ Ω (1)

They calculated two reproduction number R0 (the virus infection ) and R1 (the antibody response) and
obtained the threshold dynamics in terms of R0 and R1.

However, in [2] showed that due to non-homogeneous initial distribution of the virus and the spatio-
temporal patterns of virus reproduction, the virus will appear distribution heterogeneity after invasion,
that is to say, the spread of the virus is heterogeneous. In fact, in the human body, most healthy cells
are fixed in various tissues and organs, and only the virus invades the body and parasitize the host cells
for reproduction and diffusion, thus stimulating the immune mechanism of the human body, producing
effective B cells and memory cells to inhibit the virus cells. Hence, just consider the diffusion of virus
and effective B cells is reasonable, which leads to the model degenerate into a hybrid system with ODEs
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and PDEs. In recent years, there have been many studies on degenerated reaction–diffusion virus infec-
tion models and epidemic models (see [1,8,17,28,29,33]). Regrettably, there is no viral dynamics model
incorporating humoral immunity and the transmission between cells and virus to cell in the existing
degenerated diffusion virus infection dynamics models.

In this paper, we modified the model proposed by Luo et al. [9] to a degenerated diffusion viral
dynamics model, which leads to the lack of compactness for solution maps of the model and makes the
theoretical analysis of the model more difficult by incorporating humoral immunity and the transmission
between cells and virus to cell. The details can be found in the following sections. In the following part,
we describe the organization of this paper. In Sect. 2, we present the formulation of the model and give
some basic preliminaries. Section 3 is devoted to defining the basic reproduction number of the model.
Further, we study the extinction of disease in Sect. 4. Sections 5 and 6 investigate a special case of the
model. In Sect. 7, the theoretical results and conjectures are illustrated by some numerical examples.
Finally, a short discussion ends the paper.

2. Model description and preliminaries

In the spirit of the above discussion, in this section, we study the following degenerated diffusion viral
dynamics model, which is divided into four compartments, namely the uninfected cells(u1), infected
cells(u2), virus(u3) and B cells(u4),
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∂u1

∂t
= Λ(x) − μ1(x)u1 − σ(x)f(u1, u2) − α(x)g(u1, u3),

∂u2

∂t
= σ(x)f(u1, u2) + α(x)g(u1, u3) − μ2(x)u2,

∂u3

∂t
= ∇ · d3(x)∇u3 + ξ(x)u2 − μ3(x)u3 − γ(x)u3u4, t ≥ 0, x ∈ Ω,

∂u4

∂t
= ∇ · d4(x)∇u4 + θ(x)u3u4 − μ4(x)u4,

ui(0, x) = φi(x),

(2)

with boundary conditions
∂u3

∂ν
=

∂u4

∂ν
= 0, t ≥ 0, x ∈ ∂Ω. (3)

Here, Ω ⊂ Rn(n ≥ 1) is a bounded domain with the smooth boundary ∂Ω, ∇ = ( ∂
∂x1

, ∂
∂x2

, · · · , ∂
∂xn

)
denotes the gradient operator, and φi(x) are the nonnegative Hölder continuous functions. The specific
biological significance of each variable and parameter is summarized in Table 1. For each coefficient, we
assume that Λ(x), μi(x) (i = 1, 2, 3, 4), α(x), σ(x), ξ(x), γ(x), θ(x) and di(x) (i = 3, 4) are all positive,
continuous and bounded functions on Ω. Moreover, the incidence functions f(u1, u2) and g(u1, u3) are
assumed to satisfy the following assumption:

(H1) Functions f, g : R2
+ → R+ are continuously differentiable; f(u1, 0) ≡ 0, f(0, u3) ≡ 0, g(u2, 0) ≡ 0

and g(0, u3) ≡ 0; fu1(u1, u2) > 0, gu1(u1, u3) > 0 for all u1 > 0, u2 > 0 and u3 > 0, where fu1(u1, u2) =
∂fu1 (u1,u2)

∂u1
and gu1(u1, u3) = ∂gu1 (u1,u3)

∂u1
.

Let C(Ω, Rn) denote the Banach space of continuous functions, equipped with supremum norm ‖ · ‖,
and its positive cone is denoted by C(Ω, Rn

+). To simplify notation, we denote X = C(Ω, R4), Y =
C(Ω, R), X+ = C(Ω, R4

+) and Y+ = C(Ω, R+). Moreover, for any function f(x) defined on set D, let
fs = supx∈D f(x) and f i = infx∈D f(x).

For any t ≥ 0, define the operators Oi(t) : Y → Y (i = 1, 2) as follows.

O1(t)φ(x) =e−μ1(x)tφ(x), O2(t)φ(x) = e−μ2(x)tφ(x), φ ∈ Y.
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Table 1. Definition of variables and parameters for model (2)

Param. Description

u1(t, x) Density of uninfected cells at location x and time t.
u2(t, x) Density of infected cells at location x and time t.
u3(t, x) Density of virus at location x and time t.
u4(t, x) Density of B cells at location x and time t.
Λ(x) Recruitment rate of uninfected cells at location x.
μi(x), i = 1, 2, 3, 4 Death rate of the class ui at location x.
α(x)/σ(x) Virus infection rate/ Cell-to-cell infection rate at location x.
ξ(x)/θ(x) Birth rate of virus/B cells at location x.
γ(x) Neutralize rate of B cells at location x.
d3(x)/d4(x) Diffusion rate of virus/B cells at location x.

Let Oi(t) (i = 3, 4) be the C0-semigroup generated by the operators ∇· (di(x)∇)−μi(x) under condition
(3). From [19], we have

(Oi(t)φ)(x) =
∫

Ω

Gi(t, x, y)φ(y)dy, i = 3, 4, φ ∈ Y, (4)

where Gi(t, x, y) (i = 3, 4) are the Green function associated with ∇ · (di(x)∇) − μi(x) under condition
(3). Moreover, the compactness and strongly positiveness of Oi(t) (i = 3, 4) can be obtained by Corollary
7.2.3 in [21].

Let O(t) = diag{O1(t),O2(t),O3(t),O4(t)}, then O(t) is a strongly continuous semigroup of bounded
linear operators on X to itself. For φ = (φ1, φ2, φ3, φ4)T ∈ X and t ≥ 0, model (2) can be written as the
following integral equation

u(t) = O(t)φ +

t
∫

0

O(t − s)N (u(·, s))ds, u(0) = φ ∈ X, (5)

where N : X → X is defined by

N (φ) :=

⎛

⎜

⎜

⎝

N1(φ)
N2(φ)
N3(φ)
N4(φ)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

Λ(·) − σ(·)f(φ1, φ2) − α(·)g(φ1, φ3)
σ(·)f(φ1, φ2) + α(·)g(φ1, φ3)

ξ(·)φ2 − γ(·)φ3φ4

θ(·)φ3φ4

⎞

⎟

⎟

⎠

.

From the expression of N , we see that N is locally Lipschitz continuous. For any φ ∈ X+ and r ≥ 0, by
the similar argument as in the proof of [10, Lemma 3.2], we have that limr→0+

1
r dist(φ+ rN (φ), X+) = 0

for any φ ∈ X+. Therefore, by [21, Theorem 3.1 in Chapter 7] and [12, Corollary 4], we have the following
result.

Lemma 1. For any initial function φ ∈ X+, there exists a τm = τm(φ) such that model (2) has a unique
noncontinuable mild solution u(t, ·) = u(t, ·;φ) defined on [0, τm) with u(0, ·;φ) = φ. Moreover, u(t, ·;φ) ∈
X+ is a classical solution on [0, τm).

Further, by the arguments similar to [38, Theorem 1] and [9, Theorem 1], we can obtain the following
result.

Theorem 1. For any initial value function φ ∈ X+, model (2) has a unique solution u(t, ·;φ) = (u1(t, ·;φ),
u2(t, ·;φ), u3(t, ·;φ), u4(t, ·;φ)) ∈ X+ defined on [0,+∞), and solutions are ultimately bounded and uni-
formly bounded.

Remark 1. Based on Theorem 1, we further obtain that model (2) generates a solution semiflow Φ(t) :
X+ → X+ such that for any initial value φ ∈ X+, Φ(t)φ = u(t, ·, φ).
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3. The basic reproduction number

In this section, we first define and calculate the virus infection basic reproduction number of model (2) and
then establish some properties of it. However, since the first two equations in model (2) have no diffusion
term, the compactness of solution semiflows of model (2) and corresponding linearized system at the virus-
free steady state can not be ensured. This will give rise to that the Krein–Rutman theorem [16, corollary
2.2] cannot directly employed. To overcome this problem, we need to introduce the following definitions on
the Kuratowski measure of noncompactness of a bounded set and k-contraction of a continuous mapping.

Definition 1. (see [36]) Let H be a metric space and B ⊂ H be a bounded set, the Kuratowski measure
of noncompactness of B is defined by

κ(B) := inf{r : B has a finite open cover of diameter ≤ r}.

We set κ(B) = ∞ whenever B is unbounded. It is easy to see that B is precompact if and only if
κ(B) = 0.

Definition 2. (see [36]) Let g : R+ × H → H be a continuous mapping. If there is a continuous function
k : R+ → R+ satisfying 0 ≤ k(t) < 1 for all t ∈ R+ such that for any t > 0 and bounded set B ⊂ H, the
set {g(s, B) : 0 ≤ s ≤ t} is bounded in space H and κ(g(t, B)) ≤ k(t)κ(B), where for any t ≥ 0 the set
g(t, B) = {g(t, φ) : φ ∈ B}, then we say that the mapping g is k-contraction with order k(t).

For an operator L, we denote by σ(L) the spectrum of L, spectral radius r(L) = sup{|λ| : λ ∈ σ(L)}
and spectral bound s(L) = sup{Reλ : λ ∈ σ(L)}.

Obviously, model (2) admits a unique virus-free steady state E0 = (u∗
1(x), 0, 0, 0), where u∗

1(x) = Λ(x)
μ1(x) .

Linearizing model (2) at E0, we have the linear system as follows:
⎧
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∂u1

∂t
= −μ1(x)u1 − σ(x)fu2(u

∗
1(x), 0)u2 − α(x)gu3(u

∗
1(x), 0)u3,

∂u2

∂t
= σ(x)fu2(u

∗
1(x), 0)u2 + α(x)gu3(u

∗
1(x), 0)u3 − μ2(x)u2,

∂u3

∂t
= ∇ · d3(x)∇u3 + ξ(x)u2 − μ3(x)u3, x ∈ Ω, t ≥ 0,

∂u4

∂t
= ∇ · d4(x)∇u4 − μ4(x)u4,

∂u3

∂ν
=

∂u4

∂ν
= 0, x ∈ ∂Ω, t ≥ 0.

Define the linear operators B, F : Z → Z (Z := C(Ω, R2)) as follows

B =
(−μ2(·) 0

ξ(·) ∇ · d3(x)∇ − μ3(·)
)

, F =
(

σ(·)fu2(u
∗
1(·), 0) α(·)gu3(u

∗
1(·), 0)

0 0

)

and the linear operator A := B + F .
Since u1 and u4 do not appear in the middle two equations, we just consider the subsystem:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂

∂t

(

u2

u3

)

= A
(

u2

u3

)

, x ∈ Ω, t ≥ 0,

∂u3

∂ν
= 0, x ∈ ∂Ω, t ≥ 0.

(6)

Denote Φ̄(t) be the C0-semigroup generated by B. Note that B can be decomposed as

B = diag(0,∇ · d3(x)∇) − V, V =
(

μ2(·) 0
−ξ(·) μ3(·)

)

.
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Thanks to the fact that B and −V are cooperative, we know that Φ̄(t) is a positive C0-semigroup. Thus,
we can define the positive operator on Z as follows

L (φ)(x) :=

∞
∫

0

F(x)Φ̄(t)φ(x)dt = F(x)

∞
∫

0

Φ̄(t)φ(x)dt, φ ∈ Z,

which is called the next generation operator. Then, the basic reproduction number R0 for model (2) is
defined by R0 := r(L ).

In what follows, we consider a eigenvalue problem associated with system (6). Substituting u2(t, x) =
eλtψ2(x) and u3(t, x) = eλtψ3(x) into system (6), we have the following eigenvalue problem,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

λ

(

ψ2

ψ3

)

= A
(

ψ2

ψ3

)

, x ∈ Ω,

∂ψ3

∂ν
= 0, x ∈ ∂Ω.

(7)

Denote the function R01(x) = σ(x)fu2 (u∗
1(x),0)

μ2(x) . On the existence of principle eigenvalue with a strictly
positive eigenfunction for the eigenvalue problem (7), we have the following conclusion.

Lemma 2. Assume maxx∈Ω R01(x) < 1. Then, the eigenvalue problem (7) has a principle eigenvalue,
denoted by λ0, with a strictly positive eigenfunction ψ∗ = (ψ∗

2 , ψ∗
3).

Proof. Let Q(t) : Z+ → Z+ (Z+ := C(Ω, R2
+) be the solution semiflow of subsystem (6). We now need

to prove that Q(t) is k-contraction. For any initial value ψ = (ψ2, ψ3) ∈ Z+, we have the solution
Q(t)ψ = (u2(t, x, ψ), u3(t, x, ψ)) of subsystem (6). Solve u2(t, x, ψ) directly from subsystem (6), we get

u2(t, x, ψ) = e−(μ2(x)−σ(x)fu2 (u∗
1(x),0))tψ2 +

t
∫

0

α(x)gu3(u
∗
1(x), 0)u3(s, x, ψ)e−(μ2(x)−σ(x)fu2 (u∗

1(x),0))(t−s)ds.

We divide Q(t) = Q1(t) + Q2(t), where

Q1(t)ψ = (S1(t, x, ψ), u3(t, x, ψ)), Q2(t)ψ = (e−(μ2(x)−σ(x)fu2 (u∗
1(x),0))tψ2, 0),

where S1(t, x, ψ) =
t
∫

0

α(x)gu3(u
∗
1(x), 0)u3(s, x, ψ)e−(μ2(x)−σ(x)fu2 (u∗

1(x),0))(t−s)ds. Let B ⊂ Z+ be any

bounded set. Since the second equation of subsystem (6) has the diffusion term with the diffusive rate
d3(x) ≥ infx∈Ω d3(x) > 0, we obtain that the set {u3(t, x, ψ) : ψ ∈ B} is precompact in space Y.
Consequently, the set {S1(t, x, ψ) : ψ ∈ B} is also precompact in Y. Therefore, the Kuratowski measure

of noncompactness κ(Q1(t)B) = 0. In addition, we have ‖Q2(t)‖ = supψ∈Z+

‖Q2(t)ψ‖Z+
‖ψ‖Z+

≤ e−δt for any

t > 0, where δ = infx∈Ω{μ2(x) − σ(x)fu2(u
∗
1(x), 0)}. Obviously, we have δ > 0 from maxx∈Ω R01(x) < 1.

Thus, we further obtain κ(Q2(t)B) ≤ ‖Q2(t)‖κ(B) ≤ e−δtκ(B) for all t ≥ 0. Therefore, we finally have
κ(Q(t)B) ≤ κ(Q1(t)B) + κ(Q2(t)B) ≤ e−δtκ(B) for all t ≥ 0, which shows that Q(t) is k-contraction with
order k(t) = e−δt. Thus, by [16, Corollary 2.2], the eigenvalue problem (7) has a principle eigenvalue λ0

with a strictly positive eigenfunction ψ∗ = (ψ∗
2 , ψ∗

3). This completes the proof. �

Calculating the inverse operator of B(x), we have

B−1(x) =
(−μ−1

2 (x) 0
B21(x) (∇ · d3(x)∇ − μ3(x))−1

)

,

where B21(x) = ξ(x)
μ2(x) (∇ · d3(x)∇ − μ3(x))−1. Furthermore,

F(x)B−1(x) =
(

F11(x) F12(x)
0 0

)

,
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where

F11(x) = −σ(x)fu2(u
∗
1(x), 0)

μ2(x)
+ B21(x)α(x)gu3(u

∗
1(x), 0),

F12(x) = (∇ · d3(x)∇ − μ3(x))−1α(x)gu3(u
∗
1(x), 0).

From the result in [24, Theorem 3.12], we know that the operator B(x) is resolvent positive. That is,

(λI − B(x))−1φ =
∞
∫

0

e−λtΦ̄(t)φdt for all λ > s(B) and φ ∈ Z. Since s(B) < 0, we can take λ = 0 in the

above equality to deduce −F(x)B−1φ = F
∞
∫

0

Φ̄(t)φdt = L (φ). We also have the next generation operator

L = −F(x)B−1(x). Therefore, R0 = r(L ) = r(−F11(x)).
On the other hand, A = B + F is a positive perturbation of B and hence is also resolvent positive.

Therefore, according to Theorem 3.5 in [24], we finally have the following conclusions.

Lemma 3. Assume maxx∈Ω R01(x) < 1. Then, the following conclusions hold.
(1) Sign(R0 − 1)=Sign(s(A)).
(2) If R0 < 1, then E0(x) is locally asymptotically stable.
(3) If R0 > 1, then E0(x) is unstable.

Furthermore, combining Lemma 2, we can obtain the following conclusion.

Lemma 4. Assume maxx∈Ω R01(x) < 1, and λ0 be the principle eigenvalue of eigenvalue problem (7). If
R0 ≥ 1, then λ0 = s(A).

Proof. From the proof of Lemma 2, we further obtain that the essential growth bound wess(Q(t)) of Q(t)
satisfies wess(Q(t)) ≤ −δ. Hence, the essential spectrum radius of Q(t) satisfies re(Q(t)) ≤ e−δt < 1 for
all t > 0.

On the other hand, due to R0 ≥ 1, from Lemma 3 then s(A) ≥ 0. From Lemma 3.1 in [17], we
further obtain that the spectrum radius of Q(t) satisfies r(Q(t)) = es(A)t ≥ 1 for all t > 0. Therefore,
re(Q(t)) < r(Q(t)) for all t > 0. This shows that the principle eigenvalue λ0 = s(A) from the generalized
Krein–Rutman theorem [16]. This completes the proof. �

We know that R0 is the principle eigenvalue of the following eigenvalue problem
⎧

⎨

⎩

− F11(x)φ = λφ, x ∈ Ω,

∂

∂ν
φ(x) = 0, x ∈ ∂Ω.

Therefore, there is a strictly positive eigenfunction φ∗ such that
⎧

⎨

⎩

− F11(x)φ∗ = R0φ∗, x ∈ Ω,

∂φ∗(x)
∂ν

= 0, x ∈ ∂Ω,

which is equivalent to
⎧

⎪

⎪

⎨

⎪

⎪

⎩

σ(x)fu2(u
∗
1(x), 0)

μ2(x)
φ∗ − ξ(x)

μ2(x)
(∇ · d3(x)∇ − μ3(x))−1α(x)gu3(u

∗
1(x), 0)φ∗ = R0φ∗, x ∈ Ω,

∂φ∗(x)
∂ν

= 0, x ∈ ∂Ω,

(8)

On the other hand, we consider the following eigenvalue problem
⎧

⎨

⎩

(∇ · d3(x)∇ − μ3(x))−1α(x)gu3(u
∗
1(x), 0)ψ = λψ, x ∈ Ω,

∂ψ(x)
∂ν

= 0, x ∈ ∂Ω,
(9)
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where λ is the eigenvalue and ψ is the corresponding eigenfunction. Obviously, it is equivalent to
⎧

⎨

⎩

α(x)gu3(u
∗
1(x), 0)ψ = λ(∇ · d3(x)∇ − μ3(x))ψ, x ∈ Ω,

∂ψ(x)
∂ν

= 0, x ∈ ∂Ω.
(10)

From Lemma 3.3 in [28], it follows that the eigenvalue problem (10) has a positive principle eigenvalue
λ∗ associated with the strictly positive eigenfunction ψ∗(x) such that

⎧

⎨

⎩

α(x)gu3(u
∗
1(x), 0)ψ∗ = λ∗(∇ · d3(x)∇ − μ3(x))ψ∗, x ∈ Ω,

∂ψ∗(x)
∂ν

= 0, x ∈ ∂Ω.

Hence, we further have
∫

Ω

α(x)gu3(u
∗
1(x), 0)ψ2

∗(x)dx = −λ∗ ∫

Ω

(d3(x)|∇ψ∗(x)|2 + μ3(x)ψ2
∗(x))dx. That is,

λ∗ = −

∫

Ω

α(x)gu3(u
∗
1(x), 0)ψ2

∗(x)dx

∫

Ω

(d3(x)|∇ψ∗(x)|2 + μ3(x)ψ2∗(x))dx
, (11)

and from (9), we also have

(∇ · d3(x)∇ − μ3(x))−1α(x)gu3(u
∗
1(x), 0)ψ∗ = λ∗ψ∗, x ∈ Ω. (12)

From (8), we obtain

σ(x)fu2(u
∗
1(x), 0)

μ2(x)
φ∗ψ∗ − ξ(x)

μ2(x)
(∇ · d3(x)∇ − μ3(x))−1α(x)gu3(u

∗
1(x), 0)φ∗ψ∗ = R0φ∗ψ∗, x ∈ Ω.

Then, from (12) we further obtain

σ(x)fu2(u
∗
1(x), 0)

μ2(x)
φ∗ψ∗ − ξ(x)

μ2(x)
λ∗ψ∗φ∗ = R0φ∗ψ∗, x ∈ Ω.

Integrating on Ω, it follows that
∫

Ω

σ(x)fu2(u
∗
1(x), 0)

μ2(x)
φ∗ψ∗dx − λ∗

∫

Ω

ξ(x)
μ2(x)

ψ∗φ∗dx = R0

∫

Ω

φ∗ψ∗dx. (13)

We can choose that eigenfunctions φ∗ and ψ∗(x) satisfy
∫

Ω

φ∗ψ∗dx = 1. Thus, from (13) we further obtain

R0 =
∫

Ω

σ(x)fu2(u
∗
1(x), 0)

μ2(x)
φ∗ψ∗dx +

∫

Ω

ξ(x)
μ2(x)

φ∗ψ∗dx

∫

Ω

α(x)gu3(u
∗
1(x), 0)ψ2

∗dx

∫

Ω

(d3(x)|∇ψ∗|2 + μ3(x)ψ2∗)dx
.

Therefore, we finally obtain

R0 = sup
φ,ψ∈H1(Ω),

∫

Ω
φψdx=1

{∫

Ω

σ(x)fu2(u
∗
1(x), 0)

μ2(x)
φψdx +

∫

Ω

ξ(x)
μ2(x)

φψdx

∫

Ω

α(x)gu3(u
∗
1(x), 0)ψ2dx

∫

Ω

(d3(x)|∇ψ|2 + μ3(x)ψ2)dx

}

.

When model (2) degenerates into the spatial homogeneous case, that is, all parameters are constants,
then from the above expression of R0 we can directly obtain

R0 =
σfu2(u

∗
1, 0)

μ2
+

ξαgu3(u
∗
1, 0)

μ2μ3
,

where u∗
1 = Λ

μ1
.
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On the other hand, at any fixed position x ∈ Ω when we do not consider the spatial diffusion, then
model (2) at position x degenerates into the following form of ordinary differential equations

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

du1

dt
=Λ(x) − μ1(x)u1 − σ(x)f(u1, u2) − α(x)g(u1, u3),

du2

dt
=σ(x)f(u1, u2) + α(x)g(u1, u3) − μ2(x)u2,

du3

dt
=ξ(x)u2 − μ3(x)u3 − γ(x)u3u4,

du4

dt
=θ(x)u3u4 − μ4(x)u4.

(14)

Model (14) has a unique infection-free equilibrium E0 = (u∗
1(x), 0, 0, 0). Using the next-generation matrix

method, we can directly calculate the virus infection basic reproduction number of model (14) as follows

R0(x) = r(F(x)V−1(x)) =
σ(x)fu2(u

∗
1(x), 0)

μ2(x)
+

ξ(x)α(x)gu3(u
∗
1(x), 0)

μ2(x)μ3(x)
,

where

F(x) =
(

σ(x)fu2(u
∗
1(x), 0) α(x)gu3(u

∗
1(x), 0)

0 0

)

, V(x) =
(

μ2(x) 0
−ξ(x) μ3(x)

)

.

Obviously, when all parameters in model (14) are constants, we have R0(x) ≡ σfu2 (u∗
1 ,0)

μ2
+ ξαgu3 (u∗

1 ,0)

μ2μ3
=

R0. On this account, we call that R0(x) is the local basic reproduction number of model (2) in spatial
location x ∈ Ω.

Denote R02(x) = ξ(x)α(x)gu3 (u∗
1(x),0)

μ2(x)μ3(x) , then R0(x) = R01(x) + R02(x), where R01(x) has been defined
in the above. It is clear that R01(x) represents the local reproduction number of cell-to-cell infection in
location x and R02(x) represents the local reproduction number of virus to cells infection in location x.

On the other hand, we consider the following eigenvalue problem
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

0
0

)

=
(−μ2(x) + σ(x)fu2(u

∗
1(x), 0) α(x)gu3(u

∗
1(x), 0)

ηξ(x) ∇ · d3(x)∇ − μ3(x)

)(

ϕ1(x)
ϕ2(x)

)

, x ∈ Ω,

∂

∂ν
ϕ2(x) = 0, x ∈ ∂Ω,

(15)

where η is the eigenvalue and ϕ = (ϕ1(x), ϕ2(x))T is the corresponding eigenfunction. Then, we have the
following conclusion.

Lemma 5. Assume maxx∈Ω R01(x) < 1. Then, the eigenvalue problem (15) has a positive principle eigen-
value η∗ with the strictly positive eigenfunction ϕ∗ = (ϕ∗

1, ϕ
∗
2)

T ∈ Z.

Proof. The problem (15) is equivalent to
⎧

⎪

⎪

⎨

⎪

⎪

⎩

− (μ2(x) − σ(x)fu2(u
∗
1(x), 0))ϕ1(x) + α(x)gu3(u

∗
1(x), 0)ϕ2(x) = 0,

ηξ(x)ϕ1(x) + (∇ · d3(x)∇ − μ3(x))ϕ2(x) = 0,
x ∈ Ω,

∂

∂ν
ϕ2(x) = 0, x ∈ ∂Ω.

(16)

From the first equation of (16), we obtain ϕ1(x) = α(x)gu3 (u∗
1(x),0)

μ2(x)−σ(x)fu2 (u∗
1(x),0)ϕ2(x). Substituting it into second

equation of (16), we further obtain
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(∇ · d3(x)∇ − μ3(x))ϕ2(x) + ηξ(x)
α(x)gu3(u

∗
1(x), 0)

μ2(x) − σ(x)fu2(u∗
1(x), 0)

ϕ2(x) = 0, x ∈ Ω,

∂

∂ν
ϕ2(x) = 0, x ∈ ∂Ω.

(17)
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Then, from Lemma 3.3 in [28], it follows that the eigenvalue problem (17) has a positive principle eigen-
value η∗ associated with the strictly positive eigenfunction ϕ∗

2(x). Let ϕ∗
1(x) = α(x)gu3 (u∗

1(x),0)

μ2(x)−σ(x)fu2 (u∗
1(x),0)ϕ

∗
2(x),

then it is clear that the eigenvalue problem (15) has a positive principle eigenvalue η∗ with the strictly
positive eigenfunction ϕ∗ = (ϕ∗

1, ϕ
∗
2)

T ∈ Z. This completes the proof. �
Denote R̄0 = 1

η∗ , then we can get some interesting conclusion as follows.

Lemma 6. Assume maxx∈Ω R01(x) < 1. Then, we have:
(1) If R̄0 > 1, then s(A) > 0 and R0 > 1;
(2) If R0 < 1, then s(A) < 0 and R̄0 < 1.

Proof. Consider conclusion (1). Let

A(x) =

⎛

⎝

−μ2(x) + σ(x)fu2(u
∗
1(x), 0) α(x)gu3(u

∗
1(x), 0)

1
R̄0

ξ(x) ∇ · d3(x)∇ − μ3(x)

⎞

⎠ .

If R̄0 > 1, then from Lemma 5 we obtain s(A(x)) > 0. Since

A(x) =
(−μ2(x) + σ(x)fu2(u

∗
1(x), 0) α(x)gu3(u

∗
1(x), 0)

ξ(x) ∇ · d3(x)∇ − μ3(x)

)

≥ A(x), x ∈ Ω,

we can obtain s(A(x)) > s(A(x)). Therefore, by Lemma 3 it follows that R0 > 1.
Consider conclusion (2). If R0 < 1, then from Lemma 3 we have s(A(x)) < 0. Hence, it is clear that

R̄0 < 1. This completes the proof. �
Remark 2. From Lemma 6, we can propose the following conjecture:

Let maxx∈Ω R01(x) < 1, then R0 > 1 (= 1, < 1) ⇔ R̄0 > 1 (= 1, < 1).

From (17), we get
⎧

⎪

⎪

⎨

⎪

⎪

⎩

R̄0(∇ · d3(x)∇ − μ3(x))ϕ∗
2(x) = − ξ(x)α(x)gu3(u

∗
1(x), 0)

μ2(x) − σ(x)fu2(u∗
1(x), 0)

ϕ∗
2(x), x ∈ Ω,

∂

∂ν
ϕ∗

2(x) = 0, x ∈ ∂Ω.

(18)

Hence, R̄0 has the following expression

R̄0 =

∫

Ω

ξ(x)α(x)gu3 (u∗
1(x),0)

μ2(x)−σ(x)fu2 (u∗
1(x),0)ϕ

∗2
2 (x)dx

∫

Ω

(d3(x)|∇ϕ∗
2(x)|2 + μ3(x)ϕ∗2

2 (x))dx
.

Thus, we finally obtain

R̄0 = sup
ϕ∈H1(Ω)

⎧

⎪

⎨

⎪

⎩

∫

Ω

ξ(x)α(x)gu3 (u∗
1(x),0)

μ2(x)−σ(x)fu2 (u∗
1(x),0)ϕ

2(x)dx

∫

Ω

(d3(x)|∇ϕ(x)|2 + μ3(x)ϕ2(x))dx

⎫

⎪

⎬

⎪

⎭

.

From this expression of R̄0, the following conclusion follows from a similar argument as in [33, Theorem
3.3].

Lemma 7. Assume maxx∈Ω R01(x) < 1 and d3(x) = d3 > 0 is a constant. Then, we have:
(1) R̄0 is decreasing along with the increase of d3.
(2) If d3 → 0, then R̄0 → maxx∈Ω{ ξ(x)α(x)gu3 (u∗

1(x),0)

μ3(x)(μ2(x)−σ(x)fu2 (u∗
1(x),0))}.

(3) If d3 → ∞, then R̄0 →
∫

Ω

ξ(x)α(x)gu3 (u∗
1(x),0)

μ2(x)−σ(x)fu2 (u∗
1(x),0)dx

∫

Ω
μ3(x)dx

.
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(4) If
∫

Ω

ξ(x)α(x)gu3 (u∗
1(x),0)

μ2(x)−σ(x)fu2 (u∗
1(x),0)dx >

∫

Ω

μ3(x)dx, then R̄0 > 1 for all d3 > 0.

(5) If
∫

Ω

ξ(x)α(x)gu3 (u∗
1(x),0)

μ2(x)−σ(x)fu2 (u∗
1(x),0)dx <

∫

Ω

μ3(x)dx and there is a x ∈ Ω such that ξ(x)α(x)gu3 (u∗
1(x),0)

μ2(x)−σ(x)fu2 (u∗
1(x),0) >

μ3(x), then there is a d∗
3 > 0 such that R̄0 > 1 when 0 < d3 < d∗

3, and R̄0 < 1 when d3 > d∗
3.

Particularly, when model (2) degenerates into the spatial homogeneous case, from the above expression
of R̄0 we can directly obtain

R̄0 =
ξαgu3(u

∗
1, 0)

μ3(μ2 − σfu2(u∗
1, 0))

.

We can directly obtain that when μ2 − σfu2(u
∗
1, 0) > 0 then

R̄0 > (=, <) 1 ⇔ ξαgu3(u
∗
1, 0) > (=, <) μ2μ3 − σfu2(u

∗
1, 0)μ3

⇔ ξαgu3(u
∗
1, 0) + σfu2(u

∗
1, 0)μ3 > (=, <) μ2μ3

⇔ R0 =
ξαgu3(u

∗
1, 0)

μ2μ3
+

σfu2(u
∗
1, 0)

μ2
> (=, <) 1.

This shows that the above conjecture given in Remark 2 is right when model (2) degenerates into the
spatial homogeneous case.

Lemma 8. Assume maxx∈Ω R01(x) < 1. Then, R̄0 − 1 has the same sign as η0, where η0 is the principle
eigenvalue of the following eigenvalue problem

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(∇ · d3(x)∇ − μ3(x))ψ +
ξ(x)α(x)gu3(u

∗
1(x), 0)

μ2(x) − σ(x)fu2(u∗
1(x), 0)

ψ = ηψ, x ∈ Ω,

∂ψ

∂ν
= 0, x ∈ ∂Ω.

(19)

Proof. In fact, from Lemma 3.3 in [28], it follows that problem (19) has a principle eigenvalue η0 corre-
sponding to a positive eigenfunction ψ∗(x) such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(∇ · d3(x)∇ − μ3(x))ψ∗ +
ξ(x)α(x)gu3(u

∗
1(x), 0)

μ2(x) − σ(x)fu2(u∗
1(x), 0)

ψ∗ = η0ψ∗, x ∈ Ω,

∂ψ∗

∂ν
= 0, x ∈ ∂Ω.

(20)

Multiplying (18) by ψ∗ and (20) by ϕ∗
2, we can obtain

(1 − 1
R̄0

)
∫

Ω

ξ(x)α(x)gu3(u
∗
1(x), 0)

μ2(x) − σ(x)fu2(u∗
1(x), 0)

ψ∗ϕ∗
2dx = η0

∫

Ω

ψ∗ϕ∗
2dx.

This implies that (1 − 1
R̄0

) and η0 have the same sign. Therefore, the conclusions of Lemma 8 hold. This
completes the proof. �

Remark 3. In the above discussions of this section, we always assume maxx∈Ω R01(x) < 1. This means
that in model (2) the virus infection cannot be endemic only by relying on the cell-to-cell transmission.
Therefore, an important open problem is to study model (2) when condition maxx∈Ω R01(x) < 1 does
not hold.

4. Extinction of disease

In this section, we mainly focus on the stability of infection-free steady state E0, and the details can be
found in the following results.
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Theorem 2. Assume maxx∈Ω R01(x) < 1. When R0 < 1, E0 is globally asymptotically stable.

Proof. The local stability of E0 directly follows from the conclusion (2) of Lemma 3. We next show the
global attractivity of E0. Let g = (g1, g2, g3, g4) be defined as

g1(x, u1, u2, u3, u4) = Λ(x) − μ1(x)u1 − σ(x)f(u1, u2) − α(x)g(u1, u3),

g2(x, u1, u2, u3, u4) = σ(x)f(u1, u2) + α(x)g(u1, u3 − μ2(x)u2,

g3(x, u1, u2, u3, u4) = ξ(x)u2 − μ3(x)u3 − γ(x)u3u4,

g4(x, u1, u2, u3, u4) = θ(x)u3u4 − μ4(x)u4.

(21)

Obviously, the Jacobian matrix of g(x, u1, u2, u3, u4) with respect to (u1, u2, u3, u4) is cooperative and
irreducible at any point (x, u1, u2, u3, u4) ∈ Ω × X+. Define an operator P on X+ by

[P(ϕ)](x) = g(x, ϕ1(x), ϕ2(x), ϕ3(x), ϕ4(x)), x ∈ Ω, ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ X+.

It is evident that P is strictly subhomogeneous on X+, i.e., P(sϕ) > sP(ϕ) for any 0 < s < 1 and
ϕ ∈ X+ with ϕ � 0. Furthermore, it easily follows that map Φ(t) is strongly monotone and strictly
subhomogeneous using the similar arguments in the proof of [21, Theorem 7.4.1] with τ = 0.

From model (2), we have ∂u1
∂t ≤ Λ(x) − μ1(x)u1. Thus, we can get lim supt→∞ u1(t, x) ≤ u∗

1(x)
uniformly for x ∈ Ω. There is no loss of generality in assuming u1(t, x) ≤ u∗

1(x) for all t ≥ 0 and x ∈ Ω.
Therefore, we have

⎧

⎪

⎨

⎪

⎩

∂u2

∂t
≤ σ(x)fu2(u

∗
1(x), 0)u2 + α(x)gu3(u

∗
1(x), 0)u3 − μ2(x)u2,

∂u3

∂t
≤ ∇ · d3(x)∇u3 + ξ(x)u2 − μ3(x)u3.

(22)

The corresponding comparison system is
⎧

⎪

⎨

⎪

⎩

∂w2

∂t
= σ(x)fu2(u

∗
1(x), 0)w2 + α(x)gu3(u

∗
1(x), 0)w3 − μ2(x)w2,

∂w3

∂t
= ∇ · d3(x)∇w3 + ξ(x)w2 − μ3(x)w3.

(23)

Obviously, system (23) is equivalent to subsystem (6). If R0 < 1, then s(A) < 0 by Lemma 3. Denote
ω(Q) as the exponential growth bound of Q(t). It easily follows that ω(Q) = s(A) < 0 from [24, Theorem
3.14]. Based on the definition of ω(Q), we have limt→∞ ‖Q(t)‖ = 0, and hence, limt→∞ Q(t)ψ = 0 for
all ψ ∈ Z+. Therefore, we obtain that (w2(t, x), w3(t, x)) → (0, 0) uniformly for x ∈ Ω as t → ∞,
where (w2(t, x), w3(t, x)) is the solution of model (23) with initial value in Z+. Furthermore, we obtain
that (u2(t, x), u3(t, x)) ≤ (w2(t, x), w3(t, x)) for all x ∈ Ω and t ≥ 0. Therefore, (u2(t, x), u3(t, x)) →
(0, 0) uniformly for x ∈ Ω as t → ∞. In this case, we have the limit equations from model (2),

⎧

⎪

⎨

⎪

⎩

∂u1

∂t
= Λ(x) − μ1(x)u1,

∂u4

∂t
= ∇ · d4(x)∇u4 − μ4(x)u4.

From Corollary 4.3 in [23], we further obtain that u4(t, x) → 0 and u1(t, x) → u∗
1(x) uniformly for x ∈ Ω

as t → ∞. To sum up, the theorem is proved. �

In particular, we can get the global stability of E0 using Lyapunov function.

Theorem 3. Assume that maxx∈Ω R0(x) < 1, then infection-free steady state E0 of model (2) is globally
asymptotically stable.



ZAMP Spatial dynamics of a viral infection Page 13 of 32 124

Proof. It is clear that we only need to prove that the zero solution (w2, w3) = (0, 0) of corresponding
comparison system (23) is globally attractive. Define the Lyapunov function: L = c1

∫

Ω

w2dx + c2

∫

Ω

w3dx,

where c1 and c2 are positive undetermined constants. By simple calculation, we have

dL

dt
=
∫

Ω

[c1(α(x)gu3(u
∗
1(x), 0)w3 + σ(x)fu2(u

∗
1(x), 0)w2 − μ2(x)w2) + c2(ξ(x)w2 − μ3(x)w3)]dx.

Since functions μ2(x), ξ(x), σ(x) and u∗
1(x) are positive, continuous and bounded on Ω, and

max
x∈Ω

R0(x) < 1 ⇒ max
x∈Ω

{

σ(x)fu2(u
∗
1(x), 0)

μ2(x)

}

< 1, max
x∈Ω

{

ξ(x)α(x)gu3(u
∗
1(x), 0)

μ2(x)μ3(x)

}

< 1,

we can obtain that c1μ2(x) ≥ c2ξ(x) + c1σ(x)fu2(u
∗
1(x), 0) and c2μ3(x) ≥ c1α(x)gu3(u

∗
1(x), 0), where c1

and c2 are positive constants. Hence, we further obtain dL
dt ≤ ∫

Ω

[c1α(x)gu3(u
∗
1(x), 0) − c2μ3(x)] w3dx ≤ 0.

Furthermore, it is clear that dL
dt = 0 implies w3(t, x) ≡ 0. And then, we can get w2(t, x) ≡ 0 from system

(23). Thus, by the LaSalle’s invariance principle (see [26, Theorem 4.2]), we finally obtain that the zero
solution (w2, w3) = (0, 0) of system (23) is globally attractive. This completes the proof. �

Remark 4. Combining Theorems 2 and 3, an interesting problem is to discuss the relationship between
total basic reproduction number R0 and local basic reproduction number R0(x). Particularly, whether
we may obtain that maxx∈Ω R0(x) < 1 ⇒ R0 < 1.

5. Virus infective dynamics without antibody response

In this section, we will be concerned with the virus infective dynamics when model (2) without antibody
response. Since the first two equations in model (2) have no diffusion term, in order to obtain the existence
of antibody-free steady state of model (2), we need to prove Φ(t) : X+ → X+ is k-contraction. However,
it is regrettable that here we only can prove the k-contraction for the following special case of model (2)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂u1

∂t
= Λ(x) − μ1(x)u1 − α(x)u1h(u3),

∂u2

∂t
= α(x)u1h(u3) − μ2(x)u2,

∂u3

∂t
= ∇ · d3(x)∇u3 + ξ(x)u2 − μ3(x)u3 − γ(x)u3u4,

∂u4

∂t
= ∇ · d4(x)∇u4 + θ(x)u3u4 − μ4(x)u4.

(24)

That is, in model (2) we assume σ(x) ≡ 0, which means that there is no transmission between cells, and
g(u1, u3) = u1h(u3). Further, for model (24) we assume μ1(x) ≡ μ2(x). This shows that the infected cell
individual does not have the death due to infection. In model (24), the functions h(u3) are assumed to
satisfy the following assumption:

(H2) Function h : R+ → R+ is continuously differentiable; h(0) ≡ 0, h(u3) ≤ hu3(0)u3.

Let N(t, x) = u1(t, x) + u2(t, x), then ∂N
∂t = Λ(x) − μ1(x)N. We have limt→∞ N(t, x) = Λ(x)

μ1(x) for all

x ∈ Ω. Therefore, there is no loss of generality in assuming N(t, x) ≡ N∗(x) := Λ(x)
μ1(x) . From this, model
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(24) can be equivalently simplified into the following form
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂u2

∂t
= α(x)(N∗(x) − u2)h(u3) − μ1(x)u2,

∂u3

∂t
= ∇ · d3(x)∇u3 + ξ(x)u2 − μ3(x)u3 − γ(x)u3u4,

∂u4

∂t
= ∇ · d4(x)∇u4 + θ(x)u3u4 − μ4(x)u4.

(25)

Let W := C(Ω, R3) and W+ := C(Ω, R3
+). For model (25), we can first obtain a similar conclusion to

Theorem 1 given in Sect. 2.

Theorem 4. For any initial value function φ ∈ W+, model (25) has a unique solution u(t, ·, φ) =
(u2(t, ·, φ), u3(t, ·, φ), u4(t, ·, φ)) defined on [0,+∞), and the solution is also nonnegative, ultimately bounded
and uniformly bounded.

Furthermore, we next claim the following result.

Lemma 9. The solution semiflow Ψ(t) := u(t, ·) : W+ → W+ of model (25) is k-contracting with the
Kuratowski measure κ of noncompactness on W+.

Proof. For any initial value φ ∈ W+, throughout the proof, u(t, ·, φ) = Ψ(t)φ = (u2(t, ·, φ), u3(t, ·, φ),
u4(t, ·, φ)) denotes the solution of model (25). From the first equations of model (25), solving u2(t, ·, φ)
yields

u2(t, ·, φ) = e
−

t
∫

0
(μ1(·)+α(·)h(u3(s,·,φ)))ds

φ2 + S2(t, ·, φ), (26)

where S2(t, ·, φ) =
t
∫

0

α(·)N∗(·)h(u3(s, ·, φ))e
−

t
∫

s

(μ1(·)+α(·)h(u3(r,·,φ)))dr
ds. Based on (26), set Ψ(t) = Ψ1(t)+

Ψ2(t) for any t ≥ 0, where

Ψ1(t)φ = (S2(t, ·, φ), u3(t, ·, φ), u4(t, ·, φ)), Ψ2(t)φ = (e
−

t
∫

0
(μ1(·)+α(·)h(u3(s,·,φ)))ds

φ2, 0, 0), t ≥ 0.

For any bounded set B ⊂ W+, since the last two equations of model (25) have the diffusion terms,
we directly obtain that the sets {u3(t, ·, φ) : φ ∈ B, t > 0} and {u4(t, ·, φ) : φ ∈ B, t > 0} are precompact
in Y+. And then, we further obtain that the set {S2(t, ·, φ) : φ ∈ B, t > 0} is also precompact in Y+.
Therefore, we have κ(Ψ1(t)B) = 0.

It is clear that ‖Ψ2(t)‖ = supφ∈Z

‖Ψ2(t)φ‖Z

‖φ‖Z

≤ e−δt supφ∈Z

‖φ‖Z

‖φ‖Z

= e−δt, where δ = minx∈Ω{μ1(x)}.
Therefore, we further have κ(Ψ(t)B) ≤ κ(Ψ1(t)B)+κ(Ψ2(t)B) ≤ ‖Ψ2(t)‖κ(B) ≤ e−δtκ(B). This completes
the proof. �
Remark 5. If μ1(x) �≡ μ2(x), then model (24) cannot transform to model (25). Unfortunately, here we
have not been able to prove the k-contraction for model (24). This will be an interesting open problem.

Remark 6. Unfortunately, if g(u1, u3) �= u1h(u3) in model (25), we cannot solve u2 like (26) and thus
cannot further prove the k-contraction for model (24). We will try to find a suitable method to overcome
this problem in the future.

Based on Theorem 4 and Lemma 9, we have the following result from [11, Theorem 2.6].

Theorem 5. The solution semiflow Ψ(t) of model (25) admits a compact global attractor in W+.

Next, a same argument as in Sect. 3 we can define the next generation operator for model (24) by

̂L (φ)(x) :=

∞
∫

0

̂F(x)̂Φ(t)φ(x)dt = ̂F(x)

∞
∫

0

̂Φ(t)φ(x)dt, φ ∈ Z,
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where

̂B =
(−μ1(·) 0

ξ(·) ∇ · d3(x)∇ − μ3(·)
)

, ̂F =
(

0 α(·)N∗(·)hu3(0)
0 0

)

.

and ̂Φ(t) is the C0-semigroup generated by ̂B. The basic reproduction number ̂R0 for model (25) is defined
by ̂R0 := r( ̂L ). In addition, a similar calculation as in Sect. 3 we also can obtain

̂R0 = sup
φ,ψ∈H1(Ω),

∫

Ω
φψdx=1

{∫

Ω

ξ(x)
μ1(x)

φψdx

∫

Ω

α(x)N∗(x)hu3(0)ψ2dx

∫

Ω

(d3(x)|∇ψ|2 + μ3(x)ψ2)dx

}

.

Remark 7. Obviously, ̂R0 is a special case of R0 defined in the above for the general case. That is, when
σ(x) ≡ 0, μ1(x) ≡ μ2(x) and g(u1, u3) = u1h(u3), then R0 = ̂R0.

Consider the following eigenvalue problem,
⎧

⎪

⎪

⎨

⎪

⎪

⎩

λ

(

ψ2

ψ3

)

= ̂A
(

ψ2

ψ3

)

, x ∈ Ω,

∂ψ3

∂ν
= 0, x ∈ ∂Ω,

(27)

where ̂A = ̂B + ̂F . By the similar argument of Lemmas 2 and 4, the following result is valid.

Lemma 10. If ̂R0 ≥ 1, then s( ̂A) is the principle eigenvalue of eigenvalue problem (27) with a strictly
positive eigenfunction.

Clearly, model (25) always has an infection-free steady state E∗
0 = (0, 0, 0). When ̂R0 > 1, we inves-

tigate the existence of the antibody-free steady state E∗
1 = (ũ2(x), ũ3(x), 0) of model (25) which satisfies

the following equations:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

α(x)(N∗(x) − ũ2(x))h(ũ3(x)) − μ1(x)ũ2(x) = 0, x ∈ Ω,

∇ · d3(x)∇ũ3(x) + ξ(x)ũ2(x) − μ3(x)ũ3(x) = 0, x ∈ Ω,

∂ũ3(x)
∂ν

= 0, x ∈ ∂Ω,

(28)

On this basis, model (24) has an antibody-free steady state, denoted by E1 = (ũ1(x), ũ2(x), ũ3(x), 0)
where ũ1(x) = N∗(x) − ũ2(x).

Theorem 6. When ̂R0 > 1, model (25) admits an antibody-free steady state E∗
1 = (ũ2(x), ũ3(x), 0).

Proof. It is easily seen that ũ2(x) = α(x)N∗(x)h(ũ3(x))
α(x)h(ũ3(x))+μ1(x) from the first equation of (28). Substituting it into

the second equation of (28), we further have
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇ · d3(x)∇ũ3(x) + ξ(x)
α(x)N∗(x)

α(x)h(ũ3(x)) + μ1(x)
h(ũ3(x)) − μ3(x)ũ3(x) = 0, x ∈ Ω,

∂ũ3(x)(x)
∂ν

= 0, x ∈ ∂Ω.

Obviously, we only need to prove that when ̂R0 > 1,
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇ · d3(x)∇u3(x) + ξ(x)
α(x)N∗(x)

α(x)h(u3(x)) + μ1(x)
h(u3(x)) − μ3(x)u3(x) = 0, x ∈ Ω,

∂u3(x)(x)
∂ν

= 0, x ∈ ∂Ω.

(29)

has a positive solution ũ3(x).
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Firstly, from assumption (H2), we can obtain

α(x)N∗(x)
α(x)h(u3(x)) + μ1(x)

h(u3(x)) ≤ α(x)N∗(x)
α(x)h(u3(x)) + μ1(x)

hu3(0)u3(x).

Further, choose an enough large constant M > 0 such that h(M) enough large, and then, we have
ξ(x)α(x)N∗(x)

α(x)h(M)+μ1(x)hu3(0) − μ3(x) < 0 for all x ∈ Ω, which means that u3(x) = M is a super-solution of
equation (29).

Consider the following eigenvalue problem
⎧

⎪

⎪

⎨

⎪

⎪

⎩

λψ(x) = (∇ · d3(x)∇ − μ3(x))ψ(x) +
ξ(x)α(x)N∗(x)hu3(0)

μ1(x)
ψ(x), x ∈ Ω,

∂

∂ν
ψ(x) = 0, x ∈ ∂Ω.

(30)

From Lemma 3.3 in [28], we obtain that the problem (30) has a principle eigenvalue λ = λ∗ associated
with the strictly positive eigenfunction ψ(x) = ψ∗(x). Moreover, by Lemma 4 and Lemma 5, we can
obtain that when ̂R0 > 1, then λ∗ > 0. Since

λ∗ψ∗(x) = (∇ · d3(x)∇ − μ3(x))ψ∗(x) +
ξ(x)α(x)N∗(x)hu3(0)

μ1(x)
ψ∗(x), x ∈ Ω,

then for any constant k > 0 we also have

λ∗(kψ∗(x)) = (∇ · d3(x)∇ − μ3(x))(kψ∗(x)) +
ξ(x)α(x)N∗(x)hu3(0)

μ1(x)
(kψ∗(x)), x ∈ Ω,

We have

(∇ · d3(x)∇ − μ3(x))(kψ∗(x)) +
ξ(x)α(x)N∗(x)

α(x)h(kψ∗(x)) + μ1(x)
h(kψ∗(x))

= λ∗(kψ∗(x)) +
ξ(x)α(x)N∗(x)

α(x)(kψ∗(x)) + μ1(x)
(kψ∗(x)) − ξ(x)α(x)N∗(x)

μ1(x)
(kψ∗(x))

=

⎛

⎝λ∗ −
ξ(x)α2(x)N∗(x)hu3(0)h(kψ∗(x) + ξ(x)α(x)N∗(x)μ1(x)

(

hu3(0) − h(kψ∗(x)
(kψ∗(x)

)

(α(x)h(kψ∗(x)) + μ1(x))μ1(x)

⎞

⎠ (kψ∗(x)).

Obviously, we can choose an enough small constant k = k∗ > 0 such that

λ∗ −
ξ(x)α2(x)N∗(x)hu3(0)h(kψ∗(x) + ξ(x)α(x)N∗(x)μ1(x)

(

hu3(0) − h(kψ∗(x)
(kψ∗(x)

)

(α(x)h(kψ∗(x)) + μ1(x))μ1(x)
> 0, x ∈ Ω.

Therefore, we have

(∇ · d3(x)∇ − μ3(x))(k∗ψ∗(x)) +
ξ(x)α(x)N∗(x)

α(x)h(k∗ψ∗(x)) + μ1(x)
h(k∗ψ∗(x)) > 0, x ∈ Ω.

This shows that u3(x) = k∗ψ∗(x) is a lower solution of equation (29). From Theorem 2.3.2 in [35], we can
conclude that when ̂R0 > 1, equation (29) at least has a positive solution ũ3(x). Therefore, we finally
obtain that when ̂R0 > 1 model (25) has an antibody-free steady state E∗

1 = (ũ2(x), ũ3(x), 0). This
completes the proof. �

When u4 = 0, then model (25) becomes to
⎧

⎪

⎨

⎪

⎩

∂u2

∂t
= α(x)(N∗(x) − u2)h(u3) − μ1(x)u2,

∂u3

∂t
= ∇ · d3(x)∇u3 + ξ(x)u2 − μ3(x)u3.

(31)
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We have the following result on the global stability of steady state ˜E1 = (ũ2(x), ũ3(x)) for model (31).

Theorem 7. Assume ̂R0 > 1 and
(

1 − ũ2

u2

)(

(N∗(x) − u2)h(u3)
(N∗(x) − ũ2)h(ũ3)

− u3

ũ3

)

≤ 0, (32)

then steady state ˜E1 = (ũ2(x), ũ3(x)) of model (31) is globally asymptotically stable.

Proof. Define a Lyapunov function: L = L1 + L2, where

L1 =
∫

Ω

ξ(x)ũ2ũ3

α(x)(N∗(x) − ũ2)h(ũ3)
(

u2 − ũ2 − ũ2 ln
u2

ũ2

)

dx, L2 =
∫

Ω

ũ3

(

u3 − ũ3 − ũ3 ln
u3

ũ3

)

dx

Further, we have

dL1

dt
=
∫

Ω

ξ(x)ũ2ũ3

α(x)(N∗(x) − ũ2)h(ũ3)

(

1 − ũ2

u2

)

du2

dt
dx

=
∫

Ω

ξ(x)ũ2ũ3

α(x)(N∗(x) − ũ2)h(ũ3)
[

α(x)(N∗(x) − u2)h(u3) − α(x)(N∗(x) − ũ2)h(ũ3)
u2

ũ2

− α(x)(N∗(x) − u2)h(u3)
ũ2

u2
+ α(x)(N∗(x) − ũ2)h(ũ3)

]

dx

=
∫

Ω

ξ(x)ũ2ũ3

[

(N∗(x) − u2)h(u3)
(N∗(x) − ũ2)h(ũ3)

− u2

ũ2
− (N∗(x) − u2)h(u3)ũ2

(N∗(x) − ũ2)h(ũ3)u2
+ 1
]

dx

dL2

dt
=
∫

Ω

ũ3

(

1 − ũ3

u3

)

du3

dt
dx

=
∫

Ω

ũ3

(

1 − ũ3

u3

)

∇ · d3(x)∇u3 +
∫

Ω

ũ3

(

1 − u3

ũ3

)

∇ · d3(x)∇ũ3dx

+
∫

Ω

ξ(x)ũ2ũ3

(

u2

ũ2
− u3

ũ3
− ũ3u2

u3ũ2
+ 1
)

dx

Furthermore, we have

dL

dt
=
∫

Ω

ũ3

(

1 − ũ3

u3

)

∇ · d3(x)∇u3 +
∫

Ω

ũ3

(

1 − u3

ũ3

)

∇ · d3(x)∇ũ3dx

+
∫

Ω

ξ(x)ũ2ũ3

(

(N∗(x) − u2)h(u3)
(N∗(x) − ũ2)h(ũ3)

− (N∗(x) − u2)h(u3)ũ2

(N∗(x) − ũ2)h(ũ3)u2
− u3

ũ3
− ũ3u2

u3ũ2
+ 2
)

dx

=
∫

Ω

ũ3

(

1 − ũ3

u3

)

∇ · d3(x)∇u3 +
∫

Ω

ũ3

(

1 − u3

ũ3

)

∇ · d3(x)∇ũ3dx

+
∫

Ω

ξ(x)ũ2ũ3

[(

2 − ũ3u2

u3ũ2
− u3ũ2

ũ3u2

)

+
(

1 − ũ2

u2

)(

(N∗(x) − u2)h(u3)
(N∗(x) − ũ2)h(ũ3)

− u3

ũ3

)]

dx

≤
∫

Ω

ũ3

(

1 − ũ3

u3

)

∇ · d3(x)∇u3 +
∫

Ω

ũ3

(

1 − u3

ũ3

)

∇ · d3(x)∇ũ3dx
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= −
∫

Ω

d3(x)∇
(

ũ3

(

1 − ũ3

u3

))

∇u3dx −
∫

Ω

d3(x)∇
(

ũ3 − u3

)

∇ũ3dx

= −
∫

Ω

d3(x)
n
∑

j=1

(

∂ũ3

∂xj
− 1

u2
3

(

2u3ũ3
∂ũ3

∂xj
− ũ2

3

∂u3

∂xj

))

∂u3

∂xj
dx −
∫

Ω

d3(x)
n
∑

j=1

(

∂ũ3

∂xj
− ∂u3

∂xj

)

∂ũ3

∂xj
dx

= −
∫

Ω

d3(x)
n
∑

j=1

((

∂ũ3

∂xj

)2

− 2
ũ3

u3

∂u3∂ũ3

∂xj∂xj
+
(

ũ3

u3

∂u3

∂xj

)2)

dx

= −
∫

Ω

d3(x)
n
∑

j=1

(

∂ũ3

∂xj
− ũ3

u3

∂u3

∂xj

)2

dx ≤ 0.

Furthermore, from dL
dt = 0 we can obtain u2 = ũ2 and u3 = ũ3. Thus, by the LaSalle’s invariance

principle (see [26, Theorem 4.2]), the global attractivity of steady state ˜E1 = (ũ2(x), ũ3(x)) of model
(31) is obtained. Then, by [36, Lemma 2.2.1], we obtain the global asymptotic stability of steady state
˜E1 = (ũ2(x), ũ3(x)). This completes the proof. �

From Theorems 6 and 7, we have the following result.

Corollary 1. If ̂R0 > 1 and inequality (32) holds, then model (25) has an unique antibody-free steady
state E∗

1 = (ũ2(x), ũ3(x), 0).

We linearize model (25) at antibody-free steady state E∗
1 to obtain

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂u2

∂t
= α(x)(N∗(x) − ũ2)hu3(ũ3)u3 − (α(x)h(ũ3) + μ1(x))u2,

∂u3

∂t
= ∇ · d3(x)∇u3 + ξ(x)u2 − μ3(x)u3 − γ(x)ũ3u4, t ≥ 0, x ∈ Ω,

∂u4

∂t
= ∇ · d4(x)∇u4 + θ(x)ũ3u4 − μ4(x)u4,

∂u3

∂ν
=

∂u4

∂ν
= 0, t ≥ 0, x ∈ ∂Ω.

(33)

Consider the isolated equation
⎧

⎪

⎨

⎪

⎩

∂u4

∂t
= ∇ · d4(x)∇u4 + θ(x)ũ3u4 − μ4(x)u4, t ≥ 0, x ∈ Ω,

∂u4

∂ν
= 0, t ≥ 0, x ∈ ∂Ω.

Substituting u4 = eλtφ(x) yields the following eigenvalue problem
⎧

⎨

⎩

λφ(x) = ∇ · d4(x)∇φ(x) + (θ(x)ũ3 − μ4(x))φ(x), x ∈ Ω,

∂φ(x)
∂ν

= 0, x ∈ ∂Ω.
(34)

Therefore, we have the following result.

Lemma 11. The eigenvalue problem (34) has a principle eigenvalue λ1 with a strictly positive eigenfunc-
tion φ∗(x).

Let F (x) = θ(x)ũ3(x), K(x) = ∇·d4(x)∇−μ4(x). We have inverse operator K−1(x) = (∇·d4(x)∇−
μ4(x))−1. Define the operator

L1 = −F (x)K−1(x) = −(∇ · d4(x)∇ − μ4(x))−1θ(x)ũ3(x).
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The antibody response basic reproduction number ˜R0 is defined by ˜R0 = r(L1). Generally, ˜R0 is called
the total antibody response reproduction number of model (25).

Furthermore, we prove the following lemma.

Lemma 12. Assume ̂R0 > 1 and inequality (32) holds. Then, we have

(i) Sign( ˜R0 − 1) = Sign(λ1).
(ii) If ˜R0 < 1, then E∗

1 is locally asymptotically stable.
(iii) If ˜R0 > 1, then E∗

1 is unstable.

Proof. Consider (i). The proof is similar to Lemma 8, and hence, we omit it here.
Consider (ii). From conclusion (i), we have λ1 < 0. Substituting (u2, u3, u4) = eηt(ψ2(x), ψ3(x), ψ4(x))

into system (33) yields
⎧

⎪

⎨

⎪

⎩

ηψ2 = α(x)(N∗(x) − ũ2)hu3(ũ3)ψ3 − (α(x)h(ũ3) + μ1(x))ψ2,

ηψ3 = ∇ · d3(x)∇ψ3 + ξ(x)ψ2 − μ3(x)ψ3 − γ(x)ũ3ψ4

ηψ4 = ∇ · d4(x)∇ψ4 + θ(x)ũ3ψ4 − μ4(x)ψ4.

(35)

Let η = η1 is a eigenvalue of eigenvalue problem (35). Then, from third equation of problem (35) we see
that η1 is also the eigenvalue of problem (34). Since λ1 is the principle eigenvalue of problem (34), we
have Re(η1) ≤ λ1 < 0. Thereout, we obtain that all eigenvalues of problem (35) have the negative real
parts. Therefore, E∗

1 is locally asymptotically stable.
Consider (iii). In fact, from ˜R0 > 1 we have λ1 > 0. Let φ∗(x) is the corresponding strictly pos-

itive eigenfunction of λ1. For any solution (u2(t, x), u3(t, x), u4(t, x)) of system (33) with initial func-
tion (ψ2(x), ψ3(x), ψ4(x)) satisfying ψ4(x) > 0 for all x ∈ Ω. Choose a constant α > 0 such that
ψ4(x) > αφ∗(x) for all x ∈ Ω, then from third equation of system (33) we have u4(t, x) ≥ αeλ1tφ∗(x) for
all t ≥ 0 and x ∈ Ω. It follows that u4(t, x) is unbounded as t → ∞. This shows that the zero solution
(0, 0, 0) of system (33) is unstable. Thereout, antibody-free steady state E∗

1 is unstable for model (25).
This completes the proof. �

We further have that ˜R0 is the principle eigenvalue of the following eigenvalue problem
⎧

⎨

⎩

− (∇ · d4(x)∇ − μ4(x))−1θ(x)ũ3(x)ψ = λψ, x ∈ Ω,

∂

∂ν
ψ(x) = 0, x ∈ ∂Ω.

Therefore, there is a strictly positive eigenfunction ψ∗ such that

−(∇ · d4(x)∇ − μ4(x))−1θ(x)ũ3(x)ψ∗ = ˜R0ψ∗, x ∈ Ω

and ∂ψ∗(x)
∂ν = 0 for x ∈ ∂Ω. Then, we obtain

⎧

⎨

⎩

− θ(x)ũ3(x)ψ∗ = ˜R0(∇ · d4(x)∇ − μ4(x))ψ∗, x ∈ Ω,

∂ψ∗(x)
∂ν

= 0, x ∈ ∂Ω.

Hence, we further can get

˜R0 =

∫

Ω

θ(x)ũ3(x)ψ2
∗dx

∫

Ω

[d4(x)|∇ψ∗|2 + μ4(x)ψ2∗]dx
.

Thus, we finally obtain

˜R0 = sup
ϕ∈H1(Ω)

⎧

⎪

⎨

⎪

⎩

∫

Ω

θ(x)ũ3(x)ψ2dx

∫

Ω

[d4(x)|∇ψ|2 + μ4(x)ψ2]dx

⎫

⎪

⎬

⎪

⎭

.
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We easily see that ˜R0 is increasing with respect to θ(x) and ũ3(x), and decreasing with respect to
μ4(x) and d4(x). Particularly, when model (25) degenerates into the spatial homogeneous model, then
we further have

˜R0 =
θũ3

μ4
.

We define the local antibody response basic reproduction number in location x by

˜R∗
0(x) =

ũ3(x)θ(x)
μ4(x)

.

We have the following conjecture: maxx∈Ω
˜R∗

0(x) < 1 ⇒ ˜R0 < 1, minx∈Ω
˜R∗

0(x) > 1 ⇒ ˜R0 > 1.
Furthermore, we can obtain the similar results to Theorem 7 by using Lyapunov function method.

Theorem 8. If ̂R0 > 1 and inequality (32) holds, and

max
x∈Ω

{

ũ2
3(x)γ(x)
μ4(x)

}

≤ min
x∈Ω

{

ũ3(x)γ(x)
θ(x)

}

, (36)

then E∗
1 is globally asymptotically stable.

Proof. Define the Lyapunov function: V = L+c2

∫

Ω

u4dx, where function L define in the proof of Theorem

6 and c2 > 0 is a constant satisfying ũ3(x)γ(x)
θ(x) ≥ c2 ≥ ũ2

3(x)γ(x)
μ4(x) for all x ∈ Ω by the condition (36). Then,

dV

dt
= −
∫

Ω

d3(x)∇
(

ũ3

(

1 − ũ3

u3

))

∇u3dx −
∫

Ω

d3(x)∇
(

ũ3 − u3

)

∇ũ3dx

+
∫

Ω

ξ(x)ũ2ũ3

[(

2 − ũ3u2

u3ũ2
− u3ũ2

ũ3u2

)

+
(

1 − ũ2

u2

)(

(N∗(x) − u2)h(u3)
(N∗(x) − ũ2)h(ũ3)

− u3

ũ3

)]

dx

+
∫

Ω

(

c2 − ũ3q

r

)

u3u4dx +
∫

Ω

(

ũ2
3q

c
− c2

)

cu4dx ≤ 0.

Furthermore, from dV
dt = 0, we can obtain u2 = ũ2 and u3 = ũ3. Then, from the second equation of model

(25) we further obtain u4 = 0. Therefore, by the LaSalle’s invariable principle (see [26, Theorem 4.2])
and Lemma 2.2.1 in [36], E∗

1 is globally asymptotically stable. �

Furthermore, we can easily prove that the condition (36) implies maxx∈Ω
˜R∗

0(x) ≤ 1. Based on the
discussion above, we propose a conjecture as follows.

Conjecture 1. If ̂R0 > 1, ˜R0 < 1 and inequality (32) holds, then E∗
1 is global asymptotically stable.

6. Infection with antibody response

In this section, we study the uniformly persistence of positive solutions for model (25).

Lemma 13. If ̂R0 > 1, then there is a constant δ > 0 such that lim supt→∞ ‖u(t, ·) − E∗
0‖W+ ≥ δ for any

solution u(t, ·) of model (25) satisfies initial value φ = (φ1, φ2, φ3) ∈ W+ with φ1 �= 0 and φ2 �= 0.

Proof. For any initial value φ ∈ W+ with φ1 �= 0 and φ2 �= 0, the parabolic maximum principle (see
[18]) implies u2(t, x) > 0 and u3(t, x) > 0 for all t > 0 and x ∈ Ω. Suppose, contrary to our claim, that
lim supt→∞ ‖u(t, ·)−E∗

0‖W+ < δ for the fixed δ > 0. Thus, there exists a t1 > 0 such that 0 < u2(t, x) < δ,
0 < u3(t, x) < δ and 0 < u4(t, x) < δ for all x ∈ Ω and t ≥ t1.
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By ̂R0 > 1 and Lemma 10, one knows that s( ̂A) > 0. Therefore, there is a sufficiently small δ > 0
such that s( ̂Aδ) > 0, where

̂Aδ =
(−μ2(·) α(·)(N∗(·) − δ)hu3(0)

ξ(·) ∇ · d3(x)∇ − μ3(·)
)

.

Consider the following eigenvalue problem:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

λ

(

ψ1

ψ2

)

= ̂Aδ

(

ψ1

ψ2

)

, x ∈ Ω,

∂ψ2

∂ν
= 0, x ∈ ∂Ω.

(37)

By the same argument as in the proofs of Lemmas 2-4, it then follows that if s( ̂Aδ) > 0, then s( ̂Aδ) is
the principle eigenvalue of problem (37). Let (φδ

1(·), φδ
2(·)) be the positive eigenvector corresponding to

s( ̂Aδ) in (37). Hence, there exists a constant c > 0 such that c(φδ
1(·), φδ

2(·)) ≤ (u2(t1, ·, φ);u3(t1, ·, φ)).
Consequently, (u2(t, x), u3(t, x)) is the upper solution of

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂

∂t

(

w2

w3

)

= ̂Aδ

(

w2

w3

)

, (x, t) ∈ Ω × (t1,∞),

∂w3

∂ν
= 0, (x, t) ∈ ∂Ω × (t1,∞),

(w2(·, t1), w3(·, t1)) = c(φδ
1(·), φδ

2(·)), x ∈ Ω.

(38)

Note that (w2(t, x), w3(t, x)) = ces( ̂Aδ)(t−t1)(φδ
1(x), φδ

2(x)) is the unique solution to (38). Since s( ̂Aδ) >
0, we have limt→∞ w2(t, x) = ∞ and limt→∞ w3(t, x) = ∞. An application of the comparison principle
obtains (u2(t, x), u3(t, x)) ≥ (w2(t, x), w3(t, x)). Since Consequently, u2 → ∞ and u3 → ∞ as t → ∞, a
contradiction against with the boundedness of (u2(t, x), u3(t, x)) by Theorem 4. �

Lemma 14. If ̂R0 > 1, ˜R0 > 1 and inequality (32) holds, then there is a constant δ1 > 0 such that
lim supt→∞ ‖u(t, ·) − E∗

1‖W+ ≥ δ1 for any solution u(t, ·) of model (25) satisfies initial value φ =
(φ1, φ2, φ3) ∈ W+ with φ1 �= 0 and φ3 �= 0.

Proof. From ˜R0 > 1, we can obtain that ri(ũi
3 − δ1) − μs

4 > 0, where δ1 is an enough small constant.
Suppose the conclusion doesn’t hold, then for an enough large t2, we have ũi

3 − δ1 < u3(t, ·) < ũs
3 +

δ1, and u4(t, ·) < δ1 for all t ≥ t2. Therefore, from model (25) one has

∂u4

∂t
≥ ∇ · d4(x)∇u4 + [ri(ũi

3 − δ1) − μs
4]u4.

Then, use the similar arguments in [9, Lemma 5]; we can finally get limt→∞ u4(t, x) = ∞, which contra-
dicts the result of Theorem 1. This completes the proof. �

Define

X0 = {φ ∈ W+ : φ1 �= 0, φ2 �= 0, φ3 �= 0}
and

∂X0 := W+ \ X0 = {φ ∈ W+ : φ1 = 0 or φ2 = 0 or φ3 = 0}.

Furthermore, set

M∂ := {φ ∈ W+ : Ψ(t)φ ∈ ∂X0 for all t ≥ 0}.

Lemma 15. Let ω(φ) be the omega limit set of solution Ψ(t)φ and set M1 = {E∗
0 , E∗

1}. Then, ∪φ∈M∂
ω(φ) =

M1.
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Proof. This clearly forces M1 ⊂ ∪φ∈M∂
ω(φ), because Ψ(t)E∗

0 = E∗
0 and Ψ(t)E∗

1 = E∗
1 for all t ≥ 0.

Therefore, the proof is completed by showing that ∪φ∈M∂
ω(φ) ⊂ M1. In fact, the details of the proof

∪φ∈M∂
ω(φ) ⊂ M1 can use the similar arguments in [9, Lemma 6]; here we omit it. �

Theorem 9. Assume ̂R0 > 1, ˜R0 > 1 and inequality (32) holds, then there exists a constant ε > 0 such
that for any solution U(t, x, φ) = (u2(t, x), u3(t, x), u4(t, x)) of model (25) with φ1 �= 0, φ2 �= 0 and φ3 �= 0
one has

lim inf
t→∞ Ui(t, x) ≥ ε, Ui(t, x) = (u2(t, x), u3(t, x), u4(t, x))

uniformly for x ∈ Ω.

Proof. Define a continuous function p : W+ → [0,+∞) by

p(φ) = min{min
x∈Ω

φ1(x),min
x∈Ω

φ2(x),min
x∈Ω

φ3(x)}, φ ∈ W+.

Hence, it is easy to get p is a generalized distance function for semiflow Ψ(t) : W+ → W+(see Theorem
3 in [36]). By Lemmas 13 and 14 and similar arguments in [9, Theorem 5], we can prove that there is no
subset of M1 forms a cycle in ∂X0. Further, combining Theorem 5 and [36, Theorem 3], we can finally
complete the proof. �

As a consequence of Theorem 9, we have the following conclusion.

Corollary 2. Assume ̂R0 > 1, ˜R0 > 1 and inequality (32) holds. Then, model (25) has at least one an
antibody response infection steady state E∗

2 = (û2(x), û3(x), û4(x)).

Remark 8. It is regrettable that in the following we only can obtain the global asymptotic stability of
steady state E∗

2 = (û2(x), û3(x), û4(x)) in the spatial homogeneous case. For the spatial heterogeneous
case, it will still be an interesting open problem.

When model (25) degenerates into the spatial homogeneous case, that is, all parameters are constants,
except for the diffusion coefficients. By the next-generation matrix method, we obtain, respectively, the
virus infection and antibody response basic reproduction numbers

̂R0 =
ξαN∗hu3(0)

μ1μ3
, ˜R0 =

ξαθN∗h(μ4
θ )

μ3μ4[αh(μ4
θ ) + μ1]

,

where N∗ = Λ
μ1

. We have the following conclusion.

Theorem 10. Assume that ̂R0 > 1, ˜R0 > 1 and
(

1 − û2

u2

)(

(N∗ − u2)h(u3)
(N∗ − û2)h(û3)

− u3

û3

)

≤ 0.

Then, model (25) has a unique antibody response infection equilibrium E∗
2 = (û2, û3, û4) which is globally

asymptotically stable.

Proof. Directly calculating implies that model (25) has the antibody response infection equilibrium E∗
2 =

(û2, û3, û4) when ˜R0 > 1 as follows

û2 =
αN∗h(μ4

θ )
αh(μ4

θ ) + μ1
, û3 =

μ4

θ
, û4 =

ξαθN∗h(μ4
θ ) − μ3μ4[αh(μ4

θ ) + μ1]
γμ4[αh(μ4

θ ) + μ1]
.

Define a Lyapunov function: J = J1 + J2 + J3, where

J1 =
ξû2

α(N∗ − û2)h(û3)

∫

Ω

(

u2 − û2 − û2 ln
u2

û2

)

dx, J2 =
∫

Ω

(

u3 − û3 − û3 ln
u3

û3

)

dx

J3 =
γ

θ

∫

Ω

(

u4 − û4 − û4 ln
u4

û4

)

dx
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Therefore, we have

dJ1

dt
=ξû2

∫

Ω

[

(N∗ − u2)h(u3)
(N∗ − û2)h(û3)

− u2

û2
− (N∗ − u2)h(u3)û2

(N∗ − û2)h(û3)u2
+ 1
]

dx

and
dJ2

dt
=
∫

Ω

(

1 − û3

u3

)

du3

dt
dx

=
∫

Ω

(1 − û3

u3
)∇ · d3(x)∇u3dx +

∫

Ω

(

ξu2 − ξû2
u3

û3
− û3

u3
ξu2 + ξû2

)

dx

+
∫

Ω

(

γû4u3 − γu3u4 + γu4û3 − γû4û3

)

dx

= −
∫

Ω

û3

u2
3

d3(x)‖∇u3‖2dx + ξû2

∫

Ω

(

u2

û2
− u3

û3
− û3u2

u3û2
+ 1
)

dx

+ γû4û3

∫

Ω

(

u3

û3
+

u4

û4
− u3u4

û4û3
− 1
)

dx.

Similarly, we have

dJ3

dt
=

γ

θ

∫

Ω

(

1 − û4

u4

)

du4

dt
dx

=
∫

Ω

(

1 − û4

u4

)

∇ · d4(x)∇u4dx + γû4û3

∫

Ω

(

u3u4

û4û3
− u4

û4
− u3

û3
+ 1
)

dx

= −
∫

Ω

û4

u2
4

d4(x)‖∇u4‖2dx + γû4û3

∫

Ω

(

u3u4

û4û3
− u4

û4
− u3

û3
+ 1
)

dx.

Furthermore, we have
dJ

dt
= −
∫

Ω

û3

u2
3

d3(x)‖∇u3‖2dx −
∫

Ω

û4

u2
4

d4(x)‖∇u4‖2dx

+ ξû2

∫

Ω

(

(N∗ − u2)h(u3)
(N∗ − û2)h(û3)

− (N∗ − u2)h(u3)û2

(N∗ − û2)h(û3)u2
− u3

û3
− û3u2

u3û2
+ 2
)

dx

≤ξû2

∫

Ω

[(

2 − û3u2

u3û2
− u3û2

û3u2

)

+
(

1 − û2

u2

)(

(N∗ − u2)h(u3)
(N∗ − û2)h(û3)

− u3

û3

)]

dx ≤ 0.

(39)

Furthermore, from dJ
dt = 0 we can obtain u2 = û2 and u3 = û3. Then, from the second equation of model

(25) we further obtain u4 = û4. Thus, by the LaSalle’s invariance principle (see [26, Theorem 4.2]), the
global asymptotic stability of equilibrium E∗

2 = (û2, û3, û4) of model (25) is obtained. �

7. Numerical examples

In this section, we mainly give three examples to illustrate our theoretical analysis results. For convenience,
we assume f(u1, u2) = u1u2, g(u1, u3) = u1u3, h(u3) = u3.
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Fig. 1. Global asymptotically stability of the infection-free steady state E0 of model (2)

Example 1. To illustrate Theorem 3, we choose the parameter values of model (2) shown in Table 2.

By numerical calculation, we obtain R0 = 0.7065 < 1 and maxx∈Ω R0(x) = 0.6751 < 1. The numerical
simulations are given in Fig. 1. From Fig. 1, it is easy to see that the density of uninfected cells u1(t, x)
converges to positive state (Fig. 1a), and the density of infected cells u2(t, x), virus u3(t, x) and B cells
u4(t, x) converges to zero (Fig. 1b–d) as time evolves, which implies the infection-free steady state E0 is
globally asymptotically stable.

Example 2. In order to verify Conjecture 1, we choose the parameter values of model (24) shown in
Table 3.

By numerical calculation, we obtain ̂R0 ≈ 1.2034 > 1 and ˜R0 ≈ 0.415 < 1. The numerical simula-
tions are given in Fig. 2. Obviously, the plots in Fig. 2 show that the density of uninfected cells u1(t, x),
infected cells u2(t, x) and virus u3(t, x) converges to positive state (Fig. 2a–c), and the density of B
cells u4(t, x) converges to zero (Fig. 2d) as time evolves, which implies the antibody-free steady state
(ũ1(x), ũ2(x), ũ3(x), 0) is globally asymptotically stable.

Example 3. In order to verify Theorem 10, we choose the parameter values of model (24) shown in
Table 4.
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Fig. 2. Global asymptotically stability of the antibody-free steady state (ũ1(x),ũ2(x),ũ3(x),0)

By numerical calculation, we obtain ̂R0 ≈ 3.2656 > 1 and ˜R0 ≈ 3.213 > 1. The numerical simulations
are given in Fig. 2. As we can see, Fig. 3 shows that the density of uninfected cells u1(t, x), infected cells
u2(t, x), virus u3(t, x) and B cells u4(t, x) converges to positive state as time evolves, which implies the
antibody response infection steady state (û1(x), û2(x), û3(x), û4(x)) is globally asymptotically stable.

8. Conclusions

In this paper, since the virus invade the body and parasitize the host cells for reproduction and diffusion,
thus producing effective B cells and memory cells to inhibit the virus cells, we investigate a degenerated
diffusion virus infection model which incorporates virus and B cells diffusion. Firstly, we establish the
global existence, uniform boundedness and ultimate boundedness of the solutions in Sect. 2. In Sect. 3, for
model (2), we define the virus infection reproduction number as the spectral radius of the next-generation
operator, and then by the method given in [30], we calculate the variational formula of R0. Since the first
equation of system (6) has no diffusion term, the solution semiflow of system (6), Q(t), is not compact.
Therefore, we introduce a condition, maxx∈Ω R01(x) < 1, to ensure the κ-contraction condition of Q(t),
where R01(x) represent the local reproduction number of cells to cells infection in location x. Based
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Fig. 3. Global asymptotically stability of the antibody-free steady state (û1(x), û2(x), û3(x), û4(x))

on this, we obtain some results about R0 (see Lemmas 4–9) under the condition maxx∈Ω R01(x) < 1.
Further, we obtain the global stability of E0 when R0 < 1, which implies that the virus will be die out
when R0 < 1 (see Sect. 4).

Since some equations of model (2) have no diffusion terms, the solution semiflow Φ(t) of model (2) is
not compact. In order to discuss the existence of E1 = (ũ1(x), ũ2(x), ũ3(x), 0) of model (2), we need to
prove that the solution semiflow Φ(t) : X+ → X+ of model (2) is k-contraction. However, it is regrettable
that we only prove the k-contraction for a special case of model (2), that is, there is not cell-to-cell
transmission (σ(x) ≡ 0) and the infected cell does not have the death due to infection (μ1(x) = μ2(x)).
For this special model (25), we calculate reproduction number ̂R0 and the antibody response reproduction
number ˜R0, and study the virus infective dynamics when the antibody does not produce responses and the
antibody produce response in terms of ̂R0 and ˜R0. Theorem 6 shows that model (25) has an antibody-free
steady state E∗

1 under ̂R0 > 1. Moreover, if ̂R0 > 1 and ˜R0 < 1, then E∗
1 is locally asymptotically stable.

Theorem 8 indicates that E∗
1 is globally asymptotically stable under ̂R0 > 1 and a additional condition.

Furthermore, a conjecture is given, that is, if ̂R0 > 1 and ˜R0 < 1 then E∗
1 is globally asymptotically

stable. For the virus infection with antibody response, we prove the uniform persistence of virus, infected
cells and B cells by Lemmas 13-15 and Theorem 9 and then obtain the existence of antibody-present
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infection steady state E∗
2 under ̂R0 > 1 and ˜R0 > 1. Unfortunately, we only can obtain the global

asymptotic stability of E∗
2 = (û2(x), û3(x), û4(x)) in the spatial homogeneous case. Biologically, the virus

and infected cells will not be killed and will still exist in human’s body through the antibody response
when ̂R0 > 1 and ˜R0 > 1. Finally, we give three numerical examples to illustrate the theoretical results.

However, there are still some interesting open problems. For example, in Remark 3 we have pointed
out an important open problem, that is, to study model (2) when condition maxx∈Ω R01(x) < 1 does
not hold. This means in model (2) that the cell-to-cell transmission will also be important in the virus
infection. Moreover, if there is cell-to-cell transmission (i.e., σ(x) �≡ 0) and the infected cells do have the
death due to infection (i.e., μ2(x) ≥ μ1(x)) for model (2), in this paper, we have not proved that the
solution semiflow Φ(t) of model (2) is κ−contraction, and we will try to find appropriate methods to
solve it in the future. Based on the κ−contraction of the solution semiflow Φ(t), we can further study
the dynamics of the solutions in the cases of infections with antibody-free response and occurrence of
antibody response. Therefore, we will try our best to study these open problems in our future works. Of
course, in contrast with the model proposed in Luo et al. [9], the incidence rate function in model (2) is
simple. Therefore, in the future, we will also consider incorporate the nonlinear incidence rate function,
such as saturation incidence, Beddington–DeAngelis incidence and so on.
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