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Abstract. This paper studies the dynamical behaviors of a diffusion epidemic SIRI system with distinct dispersal rates. The

overall solution of the system is derived by using Lp theory and the Young’s inequality. The uniformly boundedness of the
solution is obtained for the system. The asymptotic smoothness of the semi-flow and the existence of the global attractor
are discussed. Moreover, the basic reproduction number is defined in a spatially uniform environment and the threshold
dynamical behaviors are obtained for extinction or continuous persistence of disease. When the spread rate of the susceptible
individuals or the infected individuals is close to zero, the asymptotic profiles of the system are studied. This can help us to
better understand the dynamic characteristics of the model in a bounded space domain with zero flux boundary conditions.
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1. Introduction

In recent years, the epidemic systems have attracted more and more attention from mathematical biolo-
gists. The epidemic systems can not only describe phenomena in real life, but also help people understand
the natural world. Particularly, understanding of dynamic behavior can provide some guidance for some
control of infectious diseases, such as SARS in 2003, H1N1 in 2010, Ebola in 2016, and COVID-19 in 2019
[1]. The established epidemic mathematical systems have played a significant role in the prediction and
control of infectious diseases. Many control strategies have been developed for different control objectives,
including harvesting control [2–4], threshold control [5,6] and impulsive control [7,8]. It is known that the
disease transmission is often accompanied by a diffusion process in practical cases. According to different
routes of disease transmission and related characteristics of phytopathology, some different forms of sys-
tem have been established, such as hyper-infectivity diffusion epidemic system [9], age-structure diffusion
epidemic system [10,11], multiple infection stages diffusion epidemic system [12,13], spatial heterogeneity
diffusion epidemic system [14] and so on.

All the coefficients in most of the above-mentioned systems are constants. However, in real world,
the spread of diseases are significantly affected by various environmental factors, for example, spatial
position, water resource, temperature and so on. The host movement and spatial heterogeneity can also
affect the spatial spreading of disease, and this requires a hybrid dynamic system. These two factors
related to host–pathogen interactions seem to have received a little attention. Therefore, in recent years,
by considering the above factors, many scholars have investigated the dynamic behavior of a reaction
diffusion disease model with a environmental heterogeneity, to better control disease transmission.

Recently, by considering distinct dispersal rates of susceptible population and infected population, the
dynamics of infectious disease system has been studied to show some interesting results. For example,
Allen et al. [15] investigated the roles of diffusion system with spatial heterogeneity and the dynamics of
the disease system. The research work in [15] showed that if the spatial environmental factors in the model
need to be modified, low-risk locations can be selected, and further analysis can be achieved by limiting the

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-023-02002-z&domain=pdf
http://orcid.org/0000-0001-5575-6655


104 Page 2 of 28 W. Li et al. ZAMP

range of spatial activities of susceptible people to eliminate the spread of infectious diseases. Subsequently,
in [16,17], the asymptotic dynamical behaviors of the diffusion endemic system were studied. Especially,
the results of [16] indicate that artificial control of the area of activity of infected individuals cannot
effectively eradicate the spread of infectious diseases, and the diffusion rates of susceptible individuals and
infectious individuals play different roles in determining the disease dynamics. Furthermore, by assuming
that the disease transmission rate and recovery rate in the system are both spatiotemporal variables and
continuous functions of time periodicity, it was shown in [18] that the spatial heterogeneity in the system
and the temporal periodicity could improve the persistence of infectious diseases. Recently, Peng et al.
[17] studied a linear source diffusion model with spatially heterogeneous environment, indicating that a
varying total population can enhance persistence of infectious disease. Wu et al. [19] considered a diffusive
host–pathogen model with heterogeneous parameters and distinct dispersal rates for the susceptible and
infected hosts. Meanwhile, with considering the standard incidence infection mechanism, some diffusion
epidemic models have been also studied. For example, it was found that controlling the diffusion rate of
the susceptible individuals could help to control the disease, while controlling the diffusion rate of the
infectious individuals could not eliminate the disease [20]. When considering total population varying
in contrast, Li et al. [21] analyzed an spatial reaction diffusive SIS model under linear source. Zhu et
al. [22] studied a spontaneous infection reaction diffusive SIS epidemic model under logistic source. Zhu
et al. [23] discussed a spontaneous infection reaction diffusive SIS epidemic model with linear source in
spatially heterogeneous environment. The asymptotic profiles of endemic steady state were investigated
when the diffusion rate of susceptible population and infected population was small or large [21–23].
Recently, Li et al. [24] explored model in [21] to be one with logistic source. The main results in [21,24]
showed that varying total population can enhance the persistence of infectious disease if the diffusion rate
is large or small. When considering spontaneous social infection and disease transmission, Tong and Lei
[25] extended the diffusive SIS model in [15] by adding the effect of spontaneous infection and investigated
the asymptotic profiles of endemic steady state. Spontaneous social infection is an infection mechanism
that differs from other disease transmission. When considering spontaneous social infection with linear
source, a recent work [23] further investigated the effects of the movement and spatial heterogeneity on
disease transmission. Wang et al. [26] studied a reaction diffusion cholera model with distinct dispersal
rates in the human population. As far as we know, the research on a diffusion SIRI epidemic system
with the β2(x)SR

S+R+I function in heterogeneous environment and linear source has not been found in existing
works.

In real life, the rapid spread of the disease is mainly caused by the close contact with infected in-
dividuals and susceptible individuals, and by the large-scale flow of infected individuals and susceptible
individuals in society. However, it is noted that the recovered individuals are those who are undergoing
treatment or are still in the recovery phase, and their own vitality has been greatly reduced. At the same
time, to minimize the impact of disease transmission, the control measures are taken for the recovered
individuals, for example, centralized quarantine, home quarantine, etc. This implies the mobility of the
recovered individuals in the society almost is zero. Therefore, based on this practical measure, we let the
diffusion coefficient of the recovered individuals be zero.

Motivated by the above discussions, the main purpose of this paper is to perform the dynamic analysis
of a reaction–diffusion epidemic model with distinct dispersal rates. Currently, many forms of incidence
functions for reaction–diffusion epidemic model have been developed, including [27–43]. However, these
models did not include the class of recovered individuals and ignored the movement of recovered (latently
infected) individuals. For some epidemic diseases, the infected individuals can recover incubation before
showing symptoms. The track of the recovered individuals with no symptoms can spread the disease,
which makes the disease harder to be controlled. Therefore, it seems imperative to include the recovered
subclass and explore the influences of recovered individuals movement on disease spread. In addition, the
host movement is taken into consideration. Thus, in this paper, we design a reaction–diffusion epidemic
model (2.1) with linear source. The main contributions of this paper include three points:
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1. Using Lp theory and the Young’s inequality, we give the overall solution for the model and obtain the
uniformly boundedness of the solution. Using linear differential operator, we discuss the asymptotic
smoothness of the semi-flow and the existence of the global attractor.

2. We define the basic reproduction number R0 to spread the disease model in a spatially uniform
environment and obtain the threshold dynamics of epidemic system for extinction or continuous
persistence of disease.

3. If the susceptible diffusion rate or the infected diffusion rate is close to zero, we study the asymptotic
profiles of the system using the principle eigenvalue method. We show that the recovered individuals
can eliminate susceptible individuals by restricting movement, while limiting the mobility of infected
hosts.

This paper is organized as follows. In Sect. 3, the well-posedness of (2.1) is established, and the
existence of global compact attractor of (2.1) is discussed. The R0 of reaction–diffusion epidemic (2.1) is
given in Sect. 4. In Sect. 5, the threshold dynamics of (2.1) are investigated. The asymptotic profiles of
(2.1) are considered in Sect. 6, and the last section gives some discussions.

Notations: Denote X+ := C(Ω̄, R3
+) as a positive cone. For 1 < p < ∞, Lp(Ω) is the Banach

space of functions u, and the pth power of the absolution value is integrable on domain Ω. ||u||Lp =(∫
Ω

|u|pdu

) 1
p

, 1 < p < ∞; ||u||L∞ = ess sup |u|, p = +∞. Young’s inequality: ab < εap + ε
−q
p bq. In

addition, for convenience, we use the following notations throughout this paper

h = max
x∈Ω

h(x) and h = min
x∈Ω

h(x),

where h(x) = A(x), α(x), β1(x), β2(x), γ(x), c(x),m(x).

2. Model description

In this paper, we consider a reaction–diffusion epidemic model with distinct dispersal rates⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

St = dSΔS + A(x) − α(x)S − β1(x)SI
S+I+R − β2(x)SR

S+I+R , x ∈ Ω, t > 0,

It = dIΔI + β1(x)SI
S+I+R + β2(x)SR

S+I+R − γ(x)I, x ∈ Ω, t > 0,

Rt = c(x)I − m(x)R, x ∈ Ω, t > 0,

∂S
∂n = ∂I

∂n = 0, x ∈ ∂Ω,

S(x, 0) = S0(x), I(x, 0) = I0(x), R(x, 0) = R0(x), x ∈ Ω,

(2.1)

where S, I and R represent the density of the susceptible individuals, the infected individuals and the
recovered individuals, respectively. dS > 0 denotes measuring the mobility of the susceptible individuals.
dI > 0 is measuring the mobility of the infected individuals. A(x) represents the recruitment rate of
the susceptible individuals. α(x) and m(x) denote the natural death rate of the susceptible individuals
and recovered individuals, respectively. γ(x) denotes the remove rate of the infected individuals. c(x)
represents the shedding rate of the recovered individuals from infected individuals. β1(x)SI

S+I+R is the function

for indirect transmission between the susceptible individuals and infected individuals. β2(x)SR
S+R+I represents

the function for indirect transmission between the susceptible individuals and recovered individuals.
In addition, the positive coefficients A(x), α(x), β1(x), β2(x), γ(x), c(x) and m(x) in (2.1) are continu-

ous, strictly and uniformly bounded on Ω. For the smooth boundary ∂Ω, the habitat Ω ⊂ Rn represents a
bounded domain. ∂

∂n denotes the derivative along the outward normal n. (S0(x), I0(x), R0(x)) > 0, x ∈ Ω
represents the initial data of the system. More detailed explanations on the parameters can be found in
[26,44,45], and the references therein.
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3. Well-posedness of system (2.1).

In this section, a unique global positive solution of diffusion system (2.1) is given and a compact global
attractor of system (2.1) is also obtained.

3.1. Existence analysis of the global solution for (2.1)

Now, we will give the existence of the global solution of reaction–diffusion system (2.1) by using some
inequality techniques.

Lemma 3.1. Let the solution (S, I,R) ∈ Ω × [0,+∞) of system (2.1) start from any initial data u0 =
(S0(x), I0(x), R0(x)) ∈ X+. Then, system (2.1) has a unique positive global solution.

Proof. We prove the validity of Lemma 3.1 in the following three steps.
Step 1. We prove that S of system (2.1) is a unique positive global solution.
Take the solution (S, I,R) of reaction–diffusion system (2.1) starting from the initial data u0. From

the S equation of reaction–diffusion system (2.1), we know that ∂S
∂t < dSΔS + A(x) − α(x)S. Then, we

can rewrite it as the following system{
zt = dSΔz + A(x) − α(x)z, (x, t) ∈ Ω × (0,+∞),
∂z
∂n = 0, x ∈ ∂Ω.

(3.1)

Obviously, system (3.1) admits a unique globally asymptotically stable positive steady state. Using the
Comparison Theorem, and choosing U = lim sup

t→∞
z, we know that

lim sup
t→∞

S ≤ U, uniformly for x ∈ Ω.

Therefore, there exists D > 0 depending on initial data such that

||S|| < D , t > 0 (3.2)

holds, then, we know that S of reaction–diffusion system (2.1) is a unique positive global solution for
time t > 0.

Step 2. We prove that I of (2.1) is a unique positive global solution for t > 0.
By the second equation of (2.1), through analysis, it is difficult for us to directly find the solution I.

Then, we denote T2(t) as the semigroup generated by dIΔ−γ(x) in C(Ω). Using Lemma 7.1 in “Appendix
A”, we have

I = T2(t)I0(x) +

t∫
0

T2(t − μ)
[

β1(x)S(x, μ)I(x, μ)
S(x, μ) + I(x, μ) + R(x, μ)

+
β2(x)S(x, μ)R(x, μ)

R(x, μ) + S(x, μ) + I(x, μ)

]
dμ.

Taking norm computation, we know that there is a number β = max{β1, β2}, such that

||I|| ≤ e−λt||I0(x)|| + β

t∫
0

e−λ(t−μ)(||I(x, μ)|| + ||R(x, μ)||)dμ, (3.3)

where the positive number λ denotes the principal eigenvalue of −dIΔ + γ(x).
In addition, from (2.1), by Lemma 7.1 in “Appendix A”, we get

R = e−m(x)tR0(x) + c(x)

t∫
0

exp{−m(x)(t − μ)}I(x, μ)dμ.
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We set a positive number m = min
{

λ
3 ,m
}

to satisfy

||R|| ≤ e−mt||R0|| + c

t∫
0

e−m(t−μ)||I(x, μ)||dμ. (3.4)

It follows from (3.3) and (3.4) that

||I|| ≤ e−λt||I0|| + β

t∫
0

e−λ(t−μ)[||I(x, μ)|| + (e−mμ||R0|| + c

t∫
0

e−m(μ−θ)||I(x, θ)||dθ)]dμ

= e−λt||I0|| + β

t∫
0

e−λ(t−μ)||I(x, μ)||dμ

+ β||R0||
t∫

0

e−λ(t−μ)e−mμdμ + βc

t∫
0

e−λ(t−μ)

t∫
0

e−m(μ−θ)||I(x, θ)||dθdμ

≤ ||I0|| + β

t∫
0

e−λ(t−μ)||I(x, μ)||dμ + β||R0||
t∫

0

e−mμdμ

+ βce−λt

t∫
0

emθ||I(x, θ)||
t∫

0

e−μm+λμdμdθ.

Since
t∫

0

e−λ(t−μ)

t∫
0

e−m(μ−θ)||I(x, θ)||dθdμ = e−λt

t∫
0

emθ||I(x, θ)||
t∫

0

eλμ−mμdμdθ,

we have

||I|| ≤ ||I0|| + β

t∫
0

e−λ(t−μ)||I(x, μ)||dμ + β||R0||K +
βce−mt

t∫
0

emθ||I(x, θ)||dθ

λ − m

≤ ||I0|| + β

t∫
0

e−λ(t−μ)||I(x, μ)||dμ +
β||R0||

m
+

βc

λ − m

t∫
0

e−m(t−μ)||I(x, μ)||dμ

< C1 + C2

t∫
0

||I(x, μ)||dμ,

(3.5)

where K = 1−e−mt

m , C1 = ||I0|| + β||R0||
m and C2 = β + cβ

λ−m . Meanwhile, we know that λ > m holds.
Further, using Gronwall’s inequality, we obtain

||I|| < C1e
C2t, t > 0. (3.6)

Then, the solution I of (2.1) is a unique positive global solution for t > 0.
Step 3. We prove that the solution R of (2.1) is a unique positive global solution for t > 0.
From (3.4) and (3.5), we know that

||R|| ≤ e−mt||R0|| +
cC1e

C2t(1 − e−mt)
m

, t > 0. (3.7)
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Then, for t > 0, we can obtain that R is a unique positive global solution. Consequently, based on (3.2),
(3.6),(3.7) and Lemma 7.1 in “Appendix A”, let (S0(x), I0(x), R0(x)) ∈ X+ be any initial value of (2.1),
then the solution (S, I,R) ∈ Ω×[0,+∞) of (2.1) is a unique positive global solution. This proof is finished.

�

3.2. Uniform boundedness of solution

In order to better analyze the dynamics of system (2.1), we give the following Lemma.

Lemma 3.2. For any solution (S, I,R) ∈ X+ of reaction–diffusion system (2.1) starting from the initial
condition u0 = (S0(x), I0(x), R0(x)) ∈ X+, the following inequality

||S||L∞(Ω) + ||I||L∞(Ω) + ||R||L∞(Ω) ≤ M ∗∗ (3.8)

holds, where M ∗∗ > 0 is independent of u0 ∈ X+.

Proof. We will prove this Lemma in two steps.
Step 1. We prove that the solution of reaction–diffusion system (2.1) satisfies the L1 bounded estimate.

By using above Lemma 3.1, it is easy to know that there exists M0 = ||U(x)|| such that

||S||L1(Ω) ≤ M0, (3.9)

where M0 is a positive function independent of the initial condition (S0(x), I0(x), R0(x)) ∈ X+.
In addition, adding the first equation to the second equation of reaction–diffusion system (2.1), inte-

grating all equations, and using the divergence theorem, we can get
∂

∂t

∫
Ω

Ndx =
∫
Ω

A(x)dx −
∫
Ω

α(x)Sdx −
∫
Ω

γ(x)Idx ≤ |Ω|A − H

∫
Ω

Ndx,

where S + I = N , H denotes min{α(x), γ(x) : x ∈ Ω} and |Ω| denotes the volume of Ω. Then, we have

||S||L1(Ω) + ||I||L1(Ω) ≤ |Ω|A
H

+ e−H t

∫
Ω

N0dx,

where S0(x)+ I0(x) = N0. For the convenience of calculation, we set M11 = |Ω|A
H + e−H t

∫
Ω

N0dx, which

is a positive function independent of (S0(x), I0(x), R0(x)) ∈ X+. Thus, we know that (S, I) of (2.1) fulfills
the L1 bounded estimate.

Now, we will prove that R of (2.1) satisfies the L1 bounded estimate.
From the third equation of reaction–diffusion system (2.1), we can obtain

∂

∂t

∫
Ω

Rdx =
∫
Ω

[c(x)I − m(x)R]dx < cM11 − m

∫
Ω

Rdx.

Then, there exists a positive function M12 := cM11
m + e−mt

∫
Ω

R0dx such that

||R||L1(Ω) < M12. (3.10)

Hence, we set M1 = max{M11,M22}, which is a positive function independent of (S0(x), I0(x), R0(x)) ∈
X+, then we have

||S||L1(Ω) + ||I||L1(Ω) + ||R||L1(Ω) < M1,

thus, the solution of (2.1) satisfies the L1 bounded estimate.
Step 2. We prove that (S,R, I) of (2.1) fulfills the L2i

bounded estimate.
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For i > 0, there exists M2i > 0 such that the solution (S, I,R) satisfies

||I||L2i (Ω) + ||R||L2i (Ω) ≤ M2i ,∀t > T (3.11)

for T > 0, where M2i > 0 independent of (S0(x), I0(x), R0(x)) ∈ X+.
We will prove that (3.11) holds by using the method of Mathematical Induction.

(1). If i = 0, it is easy to know that (3.11) holds.
(2). If i = k − 1, (3.11) holds. Then, there are T and M2k−1 > 0 such that

||I||
L2k−1 (Ω)

+ ||R||
L2k−1 (Ω)

< M2k−1 ,∀t > T. (3.12)

Next, we need to verify (3.11) holds when i = k. Multiplying the second equation of reaction–
diffusion system (2.1) by I2k−1 and integrating over region Ω, we can get

1
2k

∂

∂t

∫
Ω

I2k

dx = dI

∫
Ω

I2k−1ΔIdx +
∫
Ω

β1(x)SI
I2k−1

S + I + R
dx

+
∫
Ω

β2(x)SR
I2k−1

R + S + I
dx −
∫
Ω

γ(x)I2k

dx.

In addition, based on Ref. [39], it is easy to show that

dI

∫
Ω

I2k−1ΔIdx = −dI

∫
Ω

(∇I)(∇I2k−1)dx = −(2k − 1)dI

∫
Ω

(∇I∇I)I2k−2dx

= −
(

2k − 1
22k−2

dI

)∫
Ω

|∇I2k−1|2dx.

Hence,
1
2k

∂

∂t

∫
Ω

I2k

dx = −Dk

∫
Ω

|∇I2k−1|2dx +
∫
Ω

β1(x)
S

S + I + R
I2k

dx

+
∫
Ω

β2(x)
S

S + R + I
RI2k−1dx −

∫
Ω

γ(x)I2k

dx,

(3.13)

where Dk = 2k−1

22k−2
dI .

By system (2.1), there exists time t0 > 0 such that∫
Ω

β1(x)
S

S + I + R
I2k

dx ≤ β1

∫
Ω

I2k

dx, for t > t0

and ∫
Ω

β2(x)
S

S + R + I
I2k−1Rdx ≤ β2

∫
Ω

RI2k−1dx, for t > t0. (3.14)

Using Young’s inequality: ab < εap + ε
−q
p bq, where a, b, ε > 0, 1

p + 1
q = 1. In this paper, we choose p = 2k

and q = 2k

2k−1
, then we have∫

Ω

RI2k−1dx < ε

∫
Ω

R2k

dx + Cε1

∫
Ω

I2k

dx, for t > t0,

where Cε1 := ε
−q
p = ε

− 1
2k−1 , we can estimate (3.14) by setting ε = m

4β2
.



104 Page 8 of 28 W. Li et al. ZAMP

Thus, (3.13) can be estimated by

1
2k

∂

∂t

∫
Ω

I2k

dx < −Dk

∫
Ω

|∇I2k−1|2dx +
m

4

∫
Ω

R2k

dx + Ck

∫
Ω

I2k

dx, (3.15)

where Ck = β1 + β2Cε1 .
Multiplying the R equation of reaction–diffusion model (2.1) by R2k−1 and integrating over Ω, we can

obtain
1
2k

∂

∂t

∫
Ω

R2k

dx =
∫
Ω

c(x)R2k−1Idx −
∫
Ω

m(x)R2k

dx < c

∫
Ω

R2k−1Idx − m

∫
Ω

R2k

dx. (3.16)

Again using Young’s inequality, we have∫
Ω

R2k−1Idx <
m

4c

∫
Ω

R2k

dx + Cε2

∫
Ω

I2k

dx,

where Cε2 := ε
−q
p = ε

− 1
2k−1 . We set ε2 = m

4c , p = 2k

2k−1
and q = 2k, then, (3.16) becomes

1
2k

∂

∂t

∫
Ω

R2k

dx <
m

4

∫
Ω

R2k

dx + cCε2

∫
Ω

I2k

dx − m

∫
Ω

R2k

dx. (3.17)

Combining (3.15) with (3.17) yields

1
2k

∂

∂t

∫
Ω

(I2k

+ R2k

)dx < −Dk

∫
Ω

|∇I2k−1|2dx + Ek

∫
Ω

I2k

dx − m

2

∫
Ω

R2k

dx (3.18)

for t > t0, where Ek = Ck + cCε2.
By using interpolation inequality, we know that for any ε > 0, there is a positive number Cε such that

||ξ||22 < ε||∇ξ||22 + Cε||ξ||21,

where ξ ∈ W 1,2(Ω). Let ε = Dk

2Ek
, ξ = I2k−1

, then

−Dk

∫
Ω

|∇I2k−1 |2dx < −2Ek

∫
Ω

I2k

dx + 2EkCε3

⎛
⎝∫

Ω

I2k−1dx

⎞
⎠

2

.

Thus, inequality (3.18) becomes

1
2k

∂

∂t

∫
Ω

(I2k

+ R2k

)dx < L

∫
Ω

(I2k

+ R2k

)dx + 2EkCε3

⎛
⎝∫

Ω

I2k−1dx

⎞
⎠

2

for t > t0,

where L = min{Ek, m
2 }.

From (3.12), we have

lim sup
t→∞

∫
Ω

I2k−1dx < M2k−1.

Then, we can further obtain

||I||
L2k (Ω)

+ ||R||
L2k (Ω)

≤ M2k ,

where M2k = 2k
√

2EkCε3M2k−1
L .
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According to the continuous embedding Lq(Ω) ⊂ Lp(Ω), q > p > 1, for p > 1, there exists Mp > 0
independent of the initial condition (S0(x), I0(x), R0(x)) ∈ X+, such that

||I||Lp(Ω) + ||R||Lp(Ω) ≤ Mp. (3.19)

By using Lemma 2.4 in [38], there exists M ∗ > 0 independent of (S0(x), I0(x), R0(x)) ∈ X+ such that
||I||L∞(Ω) < M ∗. Then, by (3.10), we have

||R||L∞(Ω) ≤ cM ∗

m
+ e−mtR0|Ω| (3.20)

and

||S||L∞(Ω) ≤ M0. (3.21)

From Eq. (3.19), Eq.(3.20) and Eq.(3.21), there exists M ∗∗ > 0 independent of (S0(x), I0(x), R0(x)) ∈
X+, for (S, I,R) of reaction–diffusion system (2.1), we can obtain the following inequality

||S||L∞(Ω) + ||I||L∞(Ω) + ||R||L∞(Ω) ≤ M ∗∗.

Thus, Lemma 3.2 holds. This proof is completed. �

3.3. Asymptotic smoothness of solution semiflow

Note that there is no diffusion term with the third equation in reaction–diffusion system (2.1). This means
that the solution map φ(t) is not compact. The compact nature of many solutions cannot be directly
applied to system (2.1). To overcome this problem, we here discuss the asymptotic smoothness of solution
semiflow of (2.1) in “Appendix B”. Similar to Lemma 2.5 in [38], we have the following Lemmas.

Lemma 3.3. [38] For time t > 0, any bounded set B belongs to X+, that is, B ⊂ X+ and set S :={∫ t

0
exp{−m(x)(t − μ)}c(x)I(x, μ;u0)dμ : u0 ∈ B

}
, then set S is precompact in C(Ω) where u0 =

(S0(x), I0(x), R0(x)).

Lemma 3.4. For t > 0, there is the semiflow generated φ(t) of the solution of reaction–diffusion system
(2.1) such that φ(t) : X+ → X+. Then, φ(t) is a κ-contraction.

Proof. For t > 0, we consider the following the semiflow generated φ(t):

φ(t) = φ1(t) + φ2(t),

where

φ1(t)u0 =

⎧⎨
⎩S(x, t;S0), I(x, t; I0),

t∫
0

e−m(x)(t−μ)c(x)I(x, μ; I0)dμ

⎫⎬
⎭

and

φ2(t)u0 = {0, 0, exp{−m(x)t}R0(x)} .

Then, using Lemma 3.3, for any t > 0, we can show that φ1(t)B is precompact. Hence, κ(φ1(t)B) = 0.
Moreover, we consider the following the operator norm of the semiflow generated φ2(t), which can be

estimated as

||φ2(t)|| = sup
ψ∈X+

||φ2(t)ψ||X+

||ψ||X+
< exp{−m(x)t} sup

ψ∈X+

||ψ||X+

||ψ||X+
< exp{−mt}.

For t > 0, we have

κ(φ(t)B) < exp{−mt}κ(B).
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Hence, the semi-flow generated φ(t) is a κ-contraction on the domain X+, which is the contraction
function exp{−mt}. This proof is completed. �

Similar to Lemma 2.7 in [38], we have

Lemma 3.5. System (2.1) admits a connected global attractor in the domain X+.

4. Steady state and R0 of (2.1)

Next, we derive R0 and the steady state of (2.1) with distinct dispersal rates. From (2.1), we know that
the steady state fulfills the following system⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dSΔS + A(x) − α(x)S − β1(x)SI
S+I+R − β2(x)SR

S+R+I = 0, x ∈ Ω, t > 0,

dIΔI + β1(x)SI
S+I+R + β2(x)SR

S+R+I − γ(x)I = 0, x ∈ Ω, t > 0,

c(x)I − m(x)R = 0, x ∈ Ω, t > 0,

∂S
∂n = ∂I

∂n = 0, x ∈ ∂Ω.

(4.1)

From (4.1), we can know that (2.1) has a unique positive disease-free steady state (DFSS)Q0 = (U, 0, 0).
In addition, (2.1) has a positive endemic steady state (PESS) Q1 = (S∗∗, I∗∗, R∗∗).

Based on Ref. [31], we linearize (2.1) at the disease free steady state Q0, then⎧⎪⎪⎨
⎪⎪⎩

St = dSΔS − α(x)S − β1(x)I − β2(x)R, x ∈ Ω, t > 0,
It = dIΔI + β1(x)I + β2(x)R − γ(x)I, x ∈ Ω, t > 0,
Rt = c(x)I − m(x)R, x ∈ Ω, t > 0,
∂S
∂n = ∂I

∂n = 0, x ∈ ∂Ω.

(4.2)

Observe that the second and third equations (4.2) do not contain variable S, then a system is considered
as follows ⎧⎨

⎩
It = dIΔI + β1(x)I + β2(x)R − γ(x)I, x ∈ Ω, t > 0,
Rt = c(x)I − m(x)R, x ∈ Ω, t > 0,
∂I
∂n = 0, x ∈ ∂Ω.

(4.3)

Now, denote T (t)φ = (I(x, t, ϕ), R(x, t, ϕ)) as the solution semiflow of (4.3) for ϕ ∈ C(Ω, R2). Since
(4.3) and Ref. [33], T (t) is a positive C0-semigroup with generator. Then, we choose a semigroup generated
T (t) in B, where

B :=
(

dIΔ + β1(x) − γ(x) β2(x)
c(x) −m(x)

)
=
(

dIΔ − γ(x) 0
c(x) −m(x)

)

+
(

β1(x) β2(x)
0 0

)
= B + F.

Let L := −FB−1 be the generation operator, we can obtain

Lφ(x) =

∞∫
0

F (x)Kdt = F (x)

∞∫
0

Kdt,

where K = T (t)φ(x), φ ∈ C(Ω, R2), x ∈ Ω. Then, the R0 of (2.1) is defined as

R0 := r(L),

where r(L) = sup{|λ|}, λ is a part of σ(L), σ(L) denotes the spectrum of L. Obviously, B is a resolvent-
positive operator. Using Refs. [33,36], we have the follow Lemmas.
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Lemma 4.1. Let s(B) = sup{Reλ} be the spectral bound of the operators B for λ ∈ σ(B). Then, R0 − 1
has the same sign as that of s(B).

Lemma 4.2. Let λ0 be the principal eigenvalue of the problem{
dIΔϕ − γ(x)ϕ + λ0

(
β1(x) + β2(x)c(x)

m(x)

)
ϕ = 0, x ∈ Ω,

∂ϕ
∂n = 0, x ∈ ∂Ω,

(4.4)

then R0 = 1
λ0

.

Proof. According to Theorem 3.3 in [36], express the following matrices

F :=
(

F11, F12

F21, F22

)
and V :=

(
V11, V12

V21, V22

)
,

where
F11 := β1(x),F12 := β2(x),F21 := 0,F22 := 0,

V11 := γ(x),V12 := 0,V21 := −c(x),V22 := m(x).

Due to F21 = 0,F22 = 0, based on Ref. [38], we can get that

R0 = r(−B−1F ) = r(−B−1
1 F2),

where

B1 := dIΔ − (V11 − V12V−1
22 V21) = dIΔ − γ(x)

and

F2 := F11 − F12V−1
22 V21 = β1(x) +

β2(x)c(x)
m(x)

.

Thus, for ∀ϕ ∈ C(Ω, R2), we can obtain

−B−1
1 F2ϕ = −[dIΔ − γ(x)]−1

(
β1(x) +

c(x)β2(x)
m(x)

)
ϕ

and

R0 := r(L) = r

(
−(dIΔ − γ(x))−1(β1(x) +

c(x)β2(x)
m(x)

)
)

.

Furthermore, R0 satisfies

−[dIΔ − γ(x)]−1

(
β1(x) +

c(x)β2(x)
m(x)

)
ϕ = R0ϕ,ϕ ∈ C(Ω, R2),

that is,

dIΔϕ − γ(x)ϕ +
(

β1(x)m(x) + c(x)β2(x)
m(x)

)
1

R0
ϕ = 0, ϕ ∈ C(Ω, R2).

Thus, Lemma 4.2 holds. �

From Lemma 4.2, based on Ref. [38], R0 is defined as

R0 =
1
λ0

= sup
ϕ∈H1(Ω),ϕ �=0

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω

(
β1(x) + c(x)β2(x)

m(x)

)
ϕ2dx

∫
Ω

dI |∇ϕ|2 + γϕ2dx

⎫⎪⎪⎬
⎪⎪⎭

. (4.5)

Equation (4.5) implies that R0 depends on the positive diffusion coefficient dI (see Theorem 2 in [15] and
[38]). Then, we are now ready to state the following main results.
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Theorem 4.1. Let Θ(x) = β1(x) + c(x)β2(x)
m(x) , the following properties are satisfied.

1. R0 is decreasing in measuring the mobility dI of the infected individuals with

lim
dI→0

R0 = max
{

β1(x)
γ(x)

+
c(x)β2(x)
γ(x)m(x)

: x ∈ Ω
}

and

lim
dI→+∞

R0 =

∫
Ω

Θ(x)ϕ2dx

∫
Ω

γ(x)ϕ2dx
.

2. If domain Ω is a favorable environment for the recovered individuals in the situation, that is,∫
Ω

Θ(x)ϕ2dx

∫
Ω

γ(x)ϕ2dx
> 1,

then R0 > 1 for all dI > 0.
3. If domain Ω is a non-favorable environment for the recovered individuals in the situation, that is,∫

Ω

Θ(x)ϕ2dx

∫
Ω

γ(x)ϕ2dx
< 1,

and the condition β1(x)
γ(x) + c(x)β2(x)

γ(x)m(x) > 1, then there is d∗
I such that R0 > 1 when dI < d∗

I , and R0 < 1
when dI > d∗

I .

Lemma 4.3. Let K0 be the principal eigenvalue of the eigenvalue problem{
dIΔφ − γ(x)φ + Θ(x)φ = ηφ, x ∈ Ω,
∂φ
∂n = 0, x ∈ ∂Ω,

(4.6)

then R0 − 1 and s(B) have the same sign as that of K0, where Θ(x) = β1(x) + β2(x)c(x)
m(x) .

Proof. To establish this Lemma 4.3, we can easily verify that there admits a least eigenvalue K0 of (4.6).
Its corresponding ϕ can be chosen in domain Ω, that is,

dIΔϕ − γ(x)ϕ + Θ(x)ϕ = K0ϕ, for all x ∈ Ω (4.7)

and the other condition ∂ϕ
∂n = 0 for all variable x ∈ ∂Ω, where Θ(x) = β1(x) + β2(x)c(x)

m(x) .
In the following, we consider

dIΔφ − γ(x)φ + Θ(x)
1

R0
φ = 0 (4.8)

for all variable x ∈ Ω and the condition ∂φ
∂n = 0 for all variable x ∈ ∂Ω.

Multiplying (4.7) by φ and (4.8) by ϕ, integrating by parts on Ω, and subtracting the equation, yields(
1 − 1

R0

)∫
Ω

Θ(x)φϕdx = K0

∫
Ω

φϕdx.

Observe that
∫
Ω

Θ(x)φϕdx and
∫
Ω

φϕdx are both positive, the condition (1 − 1
R0

) and K0 have the

same sign, which ensures that R0 > 1 if K0 > 0 and R0 < 1 if K0 < 0. The proof is completed. �
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Choosing I = eλtψ2, R = eλtψ3 and taking it into (4.2), we get the following equations⎧⎨
⎩

λψ2 = dIΔψ2 + β1(x)ψ2 + β2(x)ψ3 − γ(x)ψ2, x ∈ Ω,
λψ3 = c(x)ψ2 − m(x)ψ3, x ∈ Ω,
∂ψ2
∂n = 0, x ∈ ∂Ω.

(4.9)

Recall that when R0 > 1 and the characteristic value of the operators s(B), the principal eigenvalue of
B of (4.9) is discussed. From the above theorem, we obtain two important results for the existence of the
principal eigenvalue of (4.9).

Lemma 4.4. Suppose that R0 > 1, s(B) is the principal eigenvalue of system (4.9).

Proof. Let Lλ = dIΔ +
(
β1(x) + c(x)β2(x)

m(x)+λ

)
− γ(x) be a family of linear operators on domain C(Ω). We

know that s(Lλ) is decreasing continuously. Observe that λ is principal eigenvalue problem of Lλu = λu,
then we have

s(Lλ) = sup
ϕ∈H1(Ω),ϕ �=0

⎧⎪⎨
⎪⎩

∫
Ω

(β1(x) + c(x)β2(x)
m(x)+λ − dI |∇ϕ|2 − γ(x)ϕ2)dx

∫
Ω

ϕ2dx

⎫⎪⎬
⎪⎭ .

It is clear that s(Lλ) < 0 if λ is large. Indeed, by the condition R0 > 1 and using Lemma 4.3,
s(L0) = K0 > 0 ensures there exists a unique λ such that s(Lλ) = λ. Let ψ > 0 be an eigenvector
associated with s(Lλ), then we have Lλψ = λψ. By using Theorem 2.3 in [36], we have λ = s(B). The
proof is completed. �

5. Threshold dynamics of system (2.1)

Theorem 5.1. If R0 < 1, then the disease-free steady state (DFSS) Q0 of system (2.1) is globally asymp-
totically stable.

Proof. We prove Theorem 5.1 in two steps.
Step 1. We prove that the DFSS Q0 of (2.1) is locally stable.
Recall that Theorem 3.1 in [36] and Theorem 4.1 in [26], we can easily know that DFSS Q0 of system

(2.1) is locally stable.
Step 2. We prove that the point Q0 of system (2.1) is global attractive.
To establish Step 2, we fix the positive solution R0 of system (2.1). Since (3.1), there are a positive time

t1 and a positive function U such that the inequality 0 < S < U + ε0 for all t > t1. If (I,R) < (z1, z2) on
domain Ω×[t1,+∞), using Comparison Principle, we know that (z1, z2) satisfies the following cooperative
systems ⎧⎪⎪⎨

⎪⎪⎩

∂z1
∂t = dIΔz1 + β1(x)(U+ε0)z1

U+ε0+z1+z2
+ β2(x) (U+ε0)z2

U+ε0+z2+z1
− γ(x)z1, x ∈ Ω, t > t1,

∂z2
∂t = c(x)z1 − m(x)z2, x ∈ Ω, t > t1,

∂z1
∂n = 0, x ∈ ∂Ω.

(5.1)

Since U+ε0
U+ε0+z1+z2

< 1, by using Comparison Principle again, a new system is obtained as⎧⎨
⎩

∂u1
∂t = dIΔu1 + β1(x)u1 + β2(x)u2 − γ(x)u1 = 0, x ∈ Ω, t > t1,

∂u2
∂t = c(x)u1 − m(x)u2, x ∈ Ω, t > t1,

∂u1
∂n = 0, x ∈ ∂Ω.

(5.2)

In order to prove Step 2, represent the linear semigroup induced of (5.2) by Tε0(t), and the associated
generator with (5.2) by Bε0 . Indeed, we transform into prove that

||Tε0(t)|| ≤ C eωε0 t, for some C > 0,
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where ωε0 is defined as

ωε0 := lim
t→+∞ ln

||Tε0(t)||
t

.

We set

ωε0 = max{s(Bε0), ωess(Tε0(t))},

where

ωess(Tε0(t)) := lim
t→+∞

�(Tε0(t))
t

,

where �(·) is the measure of non-compactness.
Using Lemma 3.4, we know that ωess(Tε0) < −m. Then, there exists a sufficiently small number ε0

such that ωε0 < 0. Thus, ωε0 has the same sign as s(Bε0) if ωess(Tε0) < −m. Then, s(Bε0) has the same
sign as K 0

ε0 . To this end, we consider{
dIΔφ − γ(x)φ +

(
β1(x) + β2(x)c(x)

m(x)

)
φ = K 0φ, x ∈ Ω,

∂φ
∂n = 0, x ∈ ∂Ω.

(5.3)

From Lemma 4.1 and R0 < 1, we know that K 0
ε continuously depends on ε0, which implies that K 0

ε0 < 0
when ε0 is small. Thus, we have ωε0 < 0, that is,

(u1, u2) → (0, 0) uniformly for x ∈ Ω as t → +∞.

Moreover, there exists a point (0, 0) satisfying

(z1, z2) → (0, 0) uniformly for x ∈ Ω as t → +∞.

In other words, there exists a point (0, 0) such that

I → 0 and R → 0 uniformly for x ∈ Ω as t → +∞.

By Eq.(3.1), we know there is the function U(x) that fulfills

S → U(x) uniformly for x ∈ Ω as t → +∞.

Then, DFSS Q0 of system (2.1) is globally attractive.
From Step 1 and Step 2, we can get that the point Q0 of system (2.1) is globally asymptotically stable

if R0 < 1. The proof is completed. �

Theorem 5.2. For any u0 = (S0(x), I0(x), R0(x)) ∈ X+ with I0(x) 	= 0 or R0(x) 	= 0. If R0 > 1, then
there is a positive number δ such that the solution (S, I,R) of (2.1) uniformly fulfills

lim inf
t→+∞ S ≥ δ, lim inf

t→+∞ I ≥ δ, lim inf
t→+∞ R ≥ δ,

for variable x ∈ Ω. Namely, system (2.1) exists a positive endemic steady state (DFSS).

Proof. To establish Theorem 5.2, let

X0 := {ϕ = (ϕ1, ϕ2, ϕ3) ∈ X+ : ϕ2 	= 0 and ϕ3 	= 0}
and

∂X0 := X+ \ X0 = {ϕ = (ϕ1, ϕ2, ϕ3) ∈ X+ : ϕ2 = 0 or ϕ3 = 0}.

With these settings, X+ = X0 ∪ ∂X0 with X0 being relatively open in X+. Let M∂ := {ϕ ∈ ∂X0 :
Φ(t)ϕ ∈ ∂X0, t > 0}, where Φ(t) : X+ → X+ is the semi-flow generated. To establish Theorem 5.2, we
make the following three claims.
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Claim 1. We claim that X0 is positively invariant set with respect to Φ(t), that is, Φ(t)X0 ⊆ X0 for all
t > 0.

Let u0 ∈ X0, observe that I0(x) 	= 0 and R0(x) 	= 0, since the second equation of reaction–diffusion
epidemic system (2.1), then ∂I

∂t > dIΔI − γ(x)I. Further, we consider the solution I of the system is an
upper solution of the problem ⎧⎪⎨

⎪⎩
zt = dIΔz − γ(x)z, x ∈ Ω, t > 0,

∂z
∂n = 0, x ∈ ∂Ω, t > 0,

z(x, 0) = z0, x ∈ Ω.

(5.4)

By system (5.4), using Maximum principle, and I0(x) 	= 0, we have

z > 0 for all x ∈ Ω and t > 0.

Furthermore, employing Comparison Principle, we can obtain

I > z > 0 for all x ∈ Ω and t > 0.

According to the third equation of reaction–diffusion epidemic system (2.1), we have

R = exp{−m(x)t}R0(x) +

t∫
0

exp{−m(x)(t − s)}c(x)I(x, s)ds. (5.5)

From (5.5), we have R > 0 for all x ∈ Ω and t > 0. Hence, Φ(t)u0 ∈ X0.

Claim 2. We claim that the ω limit set ω(ϕ) is the singleton {Q0} for every ϕ ∈ M∂.
For convenience, set S(x, t;ϕ) = Sϕ, I(x, t;ϕ) = Iϕ, R(x, t;ϕ) = Rϕ. Suppose that Rϕ = 0, from the

third equation of reaction–diffusion epidemic system (2.1), we have Iϕ = 0. Furthermore, there exists a
function U(x) such that

Sϕ → U(x) uniformly for x ∈ Ω.

If the solution Iϕ = 0, we need to establish that the solution Rϕ = 0. If not, we can easily know that there
exists a time t0 > 0 such that the solution R(x, t0;ϕ) 	= 0. From (5.5), we have the solution Rϕ > 0 for
all time t > t0. By the second equation of reaction–diffusion epidemic system(2.1), we have that I is the
positive solution, which contradicts with ϕ ∈ M∂. Then, we know that Iϕ = 0 for all t > t0. Furthermore,
from the third equation of reaction–diffusion epidemic system(2.1), we have Rϕ → 0 for x ∈ Ω. Thus,
Sϕ → U(x) uniformly for x ∈ Ω.

Claim 3. We claim that Q0 of system (2.1) is a uniform weak repeller, that is, there exists a positive
constant δ such that lim sup

t→+∞
||Φ(t)φ − Q0|| > δ for all ϕ ∈ X0.

To the contrary, suppose that Claim 3 is not satisfied. Thus, for any positive constant δ, lim sup
t→+∞

||Φ(t)φ−

Q0|| < δ. In other words, there exists a positive number t2 that fulfills Sϕ > −δ for all time t > t2. Hence,
we consider the upper solution (Iϕ, Rϕ) of system (2.1) as follows⎧⎪⎪⎨

⎪⎪⎩

∂y1
∂t = dIΔy1 + β1(x)(U−δ)y1

U−δ+y1+y2
+ β2(x) (U−δ)y2

U−δ+y2+y1
− γ(x)y1, x ∈ Ω, t > t2,

∂y2
∂t = c(x)y1 − m(x)y2, x ∈ Ω, t > t2,

∂y1
∂n = 0, x ∈ ∂Ω,

(5.6)

and we have ⎧⎪⎪⎨
⎪⎪⎩

∂y1
∂t > dIΔy1 + β1(x)y1 + β2(x)y2 − γ(x)y1, x ∈ Ω, t > t2,

∂y2
∂t = c(x)y1 − m(x)y2, x ∈ Ω, t > t2,

∂y1
∂n = 0, x ∈ ∂Ω.

(5.7)
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Denote the principal eigenvalue by K 0
δ , and consider its the eigenvalue problem as follows{

dIΔφ − γ(x)φ +
(
β1(x) + β2(x)c(x)

m(x)

)
φ = K 0φ, x ∈ Ω, t > t2,

∂φ
∂n = 0, x ∈ ∂Ω.

(5.8)

Thus, it shows that K 0
δ is continuous. Then, choosing a positive number δ such that K 0

δ > 0 if R0 > 1.
Furthermore, using Lemma 4.4, for t > t2, we consider the eigenvalue problem as follows⎧⎪⎪⎨

⎪⎪⎩

λψ2 = dIΔψ2 + β1(x)ψ2 + β2(x)ψ3 − γ(x)ψ2, x ∈ Ω, t > t2,

λψ3 = c(x)ψ2 − m(x)ψ3, x ∈ Ω, t > t2,

∂ψ2
∂n = 0, x ∈ ∂Ω,

(5.9)

which implies that the principal eigenvalue K 0
δ associated with positive eigenvector (ϕδ2(x), ϕδ3(x)). To

this end, we choose α > 0 such that

α(ϕδ2(x), ϕδ3(x)) < (I(x, t2;ϕ), R(x, t2;ϕ)).

Let (I(x, t2), R(x, t2)) = α(ϕδ2(x), ϕδ3(x)) be the initial data of system (5.9). Then, the linear system
(5.8) exists a solution

(y1,ϕ, y2,ϕ) = α(ϕδ2(x), ϕδ3(x)))eK
0(t−t2).

Using Comparison Principle, we can obtain

(Iϕ, Rϕ) > (y1,ϕ, y2,ϕ) on Ω × [t2,+∞),

which implies that when t → +∞,

Iϕ → +∞ and Rϕ → +∞,

which is a contradiction to Lemma 3.2.
A function ρ : X+ → [0,+∞) is considered as

ρ(ϕ) = min{min
x∈Ω

ϕ2(x),min
x∈Ω

ϕ3(x)}, ϕ ∈ X+,

where ϕ2 = I and ϕ3 = R. Thus, ρ−1(0,+∞) ⊆ X0, and we have two cases: one case is ρ(ϕ) = 0 for
ϕ ∈ X0. The other case is ρ(ϕ) > 0, and then, ρ(Φ(t)ϕ) > 0. Thus, using the definition of semi-flow,
we know that the generalized distance function ρ is a semi-flow Φ(t) : X+ → X+. So far, it shows that
any forward orbit of Φ(t) in M∂ converges to Q0 of system (2.1), and then, there exists the stable subset
Ws(Q0) of Q0 such that Ws(Q0)

⋂
X0 = ∅.

Further, we consider that Q0 in domain X+ is an isolated invariant set, i.e., there is no set of Q0 in
∂X0. Using Theorem 3 in [31], we know that there has a positive number δ1 satisfies

min{ρ(ψ)} > δ1,

where ψ ∈ ω(ϕ) for any ψ ∈ X0. That is, for ∀ϕ ∈ X0, we have

lim inf
t→∞ Iϕ > δ1 and lim inf

t→+∞ Rϕ > δ1.

By Lemma 3.2, we can find that there are positive function M ∗∗ and time t3, then the inequality Iϕ < M∗∗

and the inequality Rϕ < M ∗∗ hold. From the first equation of system (2.1), for t > t3 and x ∈ Ω, we
can obtain

S′
t > dSΔS + A − (α + β1M ∗∗ + β2M ∗∗)S.

Further, by using Comparison Principle, we have

lim inf
t→+∞ Sϕ ≥ δ2 :=

A

α + β1M ∗∗ + β2M ∗∗ .
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Hence,

lim inf
t→+∞ S ≥ δ, lim inf

t→+∞ I ≥ δ, lim inf
t→+∞ R ≥ δ,

where δ = min{δ1, δ2}. Up to now, the uniform persistence is proved. Based on Theorem 4.7 in [29], we
know that (2.1) admits at least a DFSS in X0. The proof is completed. �

6. Asymptotic profiles of system (2.1)

In this section, we only consider that if one of the two positive diffusion rates dS and dI of system (2.1)
tends to zero. From (4.1), (S, I,R) is a DFSS of (2.1) if only if the point (S, I) satisfies⎧⎪⎨

⎪⎩
dSΔS + A − αS − β1SI

S+I+ c
m I − β2S c

m I

S+I+ c
m I = 0, x ∈ Ω, t > 0,

dIΔI + β1SI
S+I+ c

m I + β2S c
m I

S+ c
m I+I − γI = 0, x ∈ Ω, t > 0,

∂S
∂n = ∂I

∂n = 0, x ∈ ∂Ω

(6.1)

and the solution R = cI
m . We here denote the principal eigenvalue by K 0(D, ξ) and then, consider the

following system {
DΔϕ + ξϕ = K ϕ, x ∈ Ω,
∂ϕ
∂n = 0, x ∈ ∂Ω,

(6.2)

where D > 0 and ξ ∈ C(Ω). K 0(D, ξ) is continuous function with the two variables D and ξ. For
ϕ ∈ H1(Ω) with

∫
Ω

ϕ2dx = 1, we have

K 0(D, ξ) = − inf

⎧⎨
⎩
∫
Ω

(D|∇ϕ|2 − ξϕ2)dx

⎫⎬
⎭ . (6.3)

Then, from Eq. (6.3), we know that K 0(D, ξ) is decreasing on the variable D. In addition, for x ∈ Ω, we
denote that

lim
D→0

K 0(D, ξ) = max{ξ(x)},

and it is increasing on the variable ξ.

6.1. Profile as dS → 0

Lemma 6.1. Let P0 = K 0
(
dI , ((β1 + β2c

m )α(1+ c
m )+β1+β2

c
m

α − γ
)

and A−αŜ− β1Ŝϕ

Ŝ+(1+ c
m )ϕ

− β2Ŝ c
m ϕ

Ŝ+(1+ c
m )ϕ

= 0,
then the nonlinear problem⎧⎨

⎩
dIΔϕ +

((
β1 + β2c

m

)
A

α(Ŝ+(1+ c
m )ϕ)+(β1+

β2c
m )ϕ

− γ

)
ϕ = 0, x ∈ Ω,

∂ϕ
∂n = 0, x ∈ ∂Ω

(6.4)

has the following results:
1. If P0 < 0, there is no positive solution of system (6.4).
2. If P0 > 0, there is a unique positive solution of system (6.4).

Theorem 6.1. Let P0 = K 0
(
dI , ((β1 + β2c

m )α(1+ c
m )+β1+β2

c
m

α − γ)
)
, we have the following statements:

1. If P0 < 0, there is a positive number d∗∗
S such that (6.1) does not have the DFSS if dS < d∗∗

S .
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2. If P0 > 0, there exists a positive number d∗∗
S such that system (6.1) exists a DFSS (S, I) if dS < d∗∗

S .
Furthermore, S → S∗∗ and I → I∗∗ as dS → 0 uniformly on Ω. System (6.4) has a unique positive
solution (S∗∗, I∗∗).

6.2. Profile as dI → 0

We denote l̃ by the spatial average of l, that is, l̃ =
∫
Ω ldx

|Ω| , where l̃ ∈ C(Ω).

Lemma 6.2. Let P1 = K 0

(
dI , ((β1 + β2c

m ) α̃(1+ c̃
m )+β̃1+β̃2

c
m

α̃ − γ)
)

, then the nonlinear nonlocal problem

⎧⎪⎪⎨
⎪⎪⎩

dIΔϕ +

⎛
⎝(β1 + β2c

m

)
Ã

α̃Ŝ+α̃(1+ c̃
m )ϕ)+

(
β̃1+

β̃2c
m

)
ϕ

− γ

⎞
⎠ϕ = 0, x ∈ Ω,

∂ϕ
∂n = 0, x ∈ ∂Ω

(6.5)

has the following properties:
1. If P1 < 0, there is no positive solution of system (6.5).
2. If P1 > 0, there exists a unique positive solution of system (6.5).

Theorem 6.2. Let P1 = K 0

(
dI , (β1 + β2c

m ) α̃(1+ c̃
m )+β̃1+β̃2

c
m

α̃ − γ)
)

, we have the following statements:

1. If P1 < 0, there is a positive number d∗
S such that system (6.1) has not solution if the diffusion rate

dS > d∗
S.

2. If P1 > 0, there exists a positive number d∗
S such that system (6.1) exists (S, I) > 0 if dS > d∗

S.
Moreover, S → S∗∗ and I → I∗∗ uniformly on region Ω as dS → ∞, then system (6.4) exists a
unique (S∗∗, I∗∗) > 0.

Theorem 6.3. Assume that
(
β1 + β2c

m

)
( α̃(1+ c̃

m )+β̃1+β̃2
c
m

α̃ ) − γ > 0, let H be defined by (6.9), then there

exists a positive numbers d∗
I for some x ∈ Ω such that (6.4) has I > 0 if dI < d∗

I and α̃f1(I)I + α̃(1 +
c̃
m )Ĩ + (β̃1 + β̃2c

m )Ĩ → H as dI → 0.

6.3. The proof of main results

Proof. To establish Lemma 6.1, the first case of Lemma 6.1 is studied. To prove this by using the
reduction to absurdity, suppose that (6.4) has a solution ϕ > 0 if P0 < 0. Multiplying both sides of first
equation of system (6.4) by ϕ, and then integrating it over Ω, we can obtain

−dI

∫
Ω

|∇ϕ|2dx +
∫
Ω

⎛
⎝
(

β1 +
β2c

m

)
A

α
(
Ŝ +
(
1 + c

m

)
ϕ
)

+
(
β1 + β2c

m

)
ϕ

− γ

⎞
⎠ϕ2dx = 0.

From

0 = A − αŜ − β1Ŝϕ

Ŝ +
(
1 + c

m

)
ϕ

−
β2Ŝ

c
mϕ

Ŝ +
(
1 + c

m

)
ϕ

> A − αŜ − β1Ŝϕ(
1 + c

m

)
ϕ

−
β2Ŝ

c
mϕ(

1 + c
m

)
ϕ

,

we have
A

α
(
1 + c

m

)
+ β1 + β2

c
m

< Ŝ → A

α
.
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Then, we can conclude

− dI

∫
Ω

|∇ϕ|2dx +
∫
Ω

((
β1 +

β2c

m

)
A

αŜ
− γ

)
ϕ2dx > 0. (6.6)

From (6.6), we get

P0 >

−dI

∫
Ω

|∇ϕ|2dx +
∫
Ω

((
β1 + β2c

m

)
α(1+ c

m )+β1+β2
c
m

α − γ
)

ϕ2dx

∫
Ω

φ2dx
> 0,

which is a contradiction with P0 < 0. The proof of first case of Lemma 6.1 is completed.
In this second case of Lemma 6.1, we will prove it in two steps as follows:
Step 1. We prove that system (6.2) has a positive solution. To establish this by using the method of

upper/lower solution, we prove the positive eigenfunction of (6.2) by φ tending to P0. Next, we claim
that εφ and M are a pair of lower and upper solutions for ε > 0 and M > 0. f(ϕ) is given by

f(ϕ) = dIΔϕ +

((
β1 +

β2c

m

)
α
(
1 + c

m

)
+ β1 + β2

c
m

α
− γ

)
ϕ.

Then,

f(εφ) = ε

⎡
⎣(dIΔφ +

⎛
⎝
(

β1 +
β2c

m

)
A

α
(
Ŝ + ε
(
1 + c

m

)
φ
)

+ ε
(
β1 + β2c

m

)
φ

− γ

⎞
⎠φ

⎤
⎦

= ε

(
β1 +

β2c

m

)⎡
⎣ A

α
(
Ŝ + ε(1 + c

m )φ
)

+ ε
(
β1 + β2c

m

)
φ

− A(
αŜ +
(
1 + c

m

)
φ
)

+
(
β1 + β2c

m

)
φ

⎤
⎦φ

> 0.

If ε is a small positive number, P0 > 0, and M is a large positive number, we have f(M) < 0. Thus, there
is a positive solution of system (6.4) if P0 > 0.

Step 2. We prove that the positive solution of system (6.4) is unique.
On the contrary, suppose that (6.4) has two positive solutions ϕ1 and ϕ2 with ϕi ∈ [εφ,M ], i = 1, 2.

For a sufficiently small number ε, a sufficiently large number M , and m,M > 0, ϕm is the lower solution
and ϕM is the upper solution of (6.4), namely,

ϕm < ϕ1, ϕ2 < ϕM ,

where ϕm is a minimal solution of system (6.4) in interval [ϕm, ϕM ], ϕM is a maximal solution of system
(6.4) in interval [ϕm, ϕM ].

We first multiply both sides of system (6.4) with ϕ = ϕm by ϕM and with ϕ = ϕM by ϕm, and we
can obtain ∫

Ω

(
β1 +

β2c

m

)
ϕMϕm (G(m) − G(M)) dx = 0,

where G(j) := A

α(Ŝ+(1+ c
m )ϕj)+β1+

β2c
m )ϕj

, j = m,M . By implicit differentiation, we know that the function

Ŝ(ϕj) is monotonous, which in turn implies that ϕM = ϕm. This leads to a contradiction with ϕM > ϕm.
Thus, the positive solution of system (6.4) is unique. The proof of the second case of Lemma 6.1 is
completed. �
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Proof. To establish Theorem 6.1, notice that K 0
(
dI , (β1 + β2c

m )α(1+ c
m )+β1+β2

c
m

α − γ
)

is the principal

eigenvalue of system (4.6). From (3.1) that U → A
α as dS → 0, we have

K 0

⎛
⎝dI ,

⎛
⎝
(

β1 +
β2c

m

)
A

α
(
Ŝ +
(
1 + c

m

)
ϕ
)

+
(
β1 + β2c

m

)
ϕ

− γ

⎞
⎠
⎞
⎠→ K 0

(
dI ,

((
β1 +

β2c

m

)
− γ

))
.

Then,

K 0

(
dI ,

((
β1 +

β2c

m

)
− γ

))
< P0, as dS → 0, (6.7)

where A − αŜ − β1Ŝϕ

Ŝ+(1+ c
m )ϕ

− β2Ŝ c
m ϕ

Ŝ+(1+ c
m )ϕ

= 0. Based on Lemma 4.1 and Lemma 4.3, if P0 < 0, there is a
positive number d∗∗

S such that

R0 < 1 if dS < d∗∗
S .

Moreover, Q0 is globally stable for R0 < 1. Based on Theorem 5.1, (6.1) has no DFSS if dS < d∗∗
S . The

proof of the first case of Theorem 6.1 is completed.
Now, the second case of Theorem 6.1 is considered. From (6.7), we prove that when P0 > 0, there is

a positive number d∗∗
S such that R0 > 1 if dS < d∗∗

S . From Theorem 5.2, we know that (2.1) has a PESS,
which implies (S, I) > 0 if dS < d∗∗

S . Next, we prove that

S → S∗∗ and I → I∗∗ as dS → 0.

To establish this result, firstly, we prove that (S, I) of system (6.1) has a priori estimate.
For the first equation of (6.1), we know that dSΔS < A − αS. Thus, we have ||S|| < C1, where

C1 = max{A(x):x∈Ω}
min{α(x):x∈Ω} . From the first and second equations of (6.1), we have∫

Ω

γIdx =
∫
Ω

(A − αS)dx < ||A|||Ω|.

Hence,

||I||1 <
||A|||Ω|

min{γ(x) : x ∈ Ω} .

By the second equation of reaction–diffusion system (6.1), we know the variable I is uniform boundedness
and then, obtain the elliptic estimate of the variable I. Furthermore, similar to the above discussion, we
easy to know that for all positive number dS , there exists C2 > 0 fulfills ||I||2,p < C2, where p is a positive
number. Setting p > n, and based on ||S|| < C1, there is a sequence dSk

with dSk
→ 0 such that the

corresponding solution (Sk, Ik) of (6.1) that fulfills the estimate as follows

Sk → S∗∗ weakly in Lp(Ω).

When k → ∞, we know that I → I∗∗ weakly in domain W 2,p(Ω) and I → I∗∗ strongly in domain C(Ω)
such that Ik → I∗∗. Due to Ik → I∗∗ in domain C(Ω) and the first equation of reaction–diffusion system
(6.1), we obtain Sk → S∗∗ in C(Ω). Hence, we have I > 0. The proof of the second case of Theorem 6.1
is completed. �
Proof. To establish Lemma 6.2, the first case of Lemma 6.2 is now studied. To the contrary, if P1 < 0,
system (6.5) exists a positive solution ϕ, and then, we consider a principal eigenvector of (6.5) problem
as follows

K 0

⎛
⎜⎜⎝dI ,

⎛
⎜⎜⎝
(

β1 +
β2c

m

)
Ã

α̃Ŝ + α̃
(
1 + c̃

m

)
ϕ +
(

β̃1 + β̃2c
m

)
ϕ

− γ

⎞
⎟⎟⎠

⎞
⎟⎟⎠ = 0,
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where Ŝ satisfies A − αŜ − β1Ŝϕ

Ŝ+(1+ c
m )ϕ

− β2Ŝ c
m ϕ

Ŝ+(1+ c
m )ϕ

= 0. It is easy to know that

K 0

⎛
⎜⎜⎝dI ,

⎛
⎜⎜⎝
(

β1 +
β2c

m

)
Ã

α̃Ŝ + α̃
(
1 + c̃

m

)
ϕ +
(

β̃1 + β̃2c
m

)
ϕ

− γ

⎞
⎟⎟⎠

⎞
⎟⎟⎠ < K 0

(
dI , (β1 +

β2c

m
− γ)
)

.

Moreover,

K 0

(
dI ,

((
β1 +

β2c

m

)
− γ

))
< K 0

⎛
⎝dI ,

⎛
⎝
(

β1 +
β2c

m

) α̃
(
1 + c̃

m

)
+ β̃1 + β̃2

c
m

α̃
− γ

⎞
⎠
⎞
⎠ = P1.

Then, we have P1 > 0, which is a contradiction with P1 < 0. The proof of the first case of Lemma 6.2 is
completed.

Next, the second case of Lemma 6.2 is considered. By Ã − α̃Ŝ − β1Ŝϕ

Ŝ+(1+ c
m )ϕ

− β2Ŝ c
m ϕ

Ŝ+(1+ c
m )ϕ

= 0, we know

that Ŝ is monotonous. By using implicit function theorem, there is a compact map f1 : X+ → X+ such
that Ŝ = Ã

α̃ + ϕf1(ϕ). Define P1(ω) as follows

P1(ω) = K 0

(
dI ,

((
β1 +

β2c

m

)
Ã

Ã + ω
− γ

))
.

Again using K 0(D, ξ) is monotonous, P1(ω) is continuous and strictly decreasing, and then we have
P1(0) = P1 > 0 and P1(∞) = P1(dI ,−γ) < 0. To this end, there is a unique positive number ω∗∗ such
that P1(ω∗∗) = 0. Denote a eigenvector by ϕ > 0 corresponding to P1(ω∗∗) = 0, then we have{

dIΔϕ +
((

β1 + β2c
m

)
Ã

Ã+ω∗∗ − γ
)

ϕ = 0, x ∈ Ω,
∂ϕ
∂n = 0, x ∈ ∂Ω.

(6.8)

So for some positive number τ , we know that the solution τϕ > 0 of (6.5) and satisfies

ω∗∗ = τ

∫
Ω

(
αf1(ϕ) + α

(
1 +

c

m

)
+
(

β1 +
β2c

m

))
ϕdx.

Since ω∗∗ is uniqueness, it ensures system (6.5) exists at least a positive solution. The proof of the second
case of Lemma 6.2 is completed. �

Proof. To establish Theorem 6.2, now the first case of Theorem 6.2 is studied. Noticed that

K 0

⎛
⎜⎜⎝dI ,

⎛
⎜⎜⎝
(

β1 +
β2c

m

)
Ã

α̃Ŝ + α̃
(
1 + c̃

m

)
ϕ +
(

β̃1 + β̃2c
m

)
ϕ

− γ

⎞
⎟⎟⎠

⎞
⎟⎟⎠ = 0,

we have

K 0

⎛
⎜⎝dI ,

⎛
⎜⎝
(

β1 +
β2c

m

)
Ã

α̃Ŝ + α̃
(
1 + c̃

m

)
ϕ +
(
β̃1 + β2c

m

)
ϕ

− γ

⎞
⎟⎠
⎞
⎟⎠ < K 0

(
dI ,

(
β1 +

β2c

m
− γ

))
,

then

K 0

(
dI ,

(
β1 +

β2c

m
− γ

))
< P1, as dS → ∞,
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where Ŝ satisfies A − αŜ − β1Ŝϕ

Ŝ+(1+ c
m )ϕ

− β2Ŝ c
m ϕ

Ŝ+(1+ c
m )ϕ

= 0. If P1 < 0, then there exists a positive number

d∗
S , for dS > d∗

S such that K 0 < 0. Observe that K 0 and R0 − 1 have the same sign, it implies that for
dS > d∗

S , we have R0 < 1. Using Theorem 5.1, if dS > d∗
S , then system (6.1) does not have a positive

solution. The proof is completed.
Now, the second case of Theorem 6.2 is considered. If P1 > 0, from Theorem 5.2 that (2.1) has a

DFSS. In other words, there exists a positive numbers d∗
S , system (6.1) has (S, I) > 0 when dS > d∗

S .
Next, we will show that the convergence of the solution (S, I) when dS → ∞. Due to Theorem 6.1,

we get

{Sd>d∗∗} is uniformly bounded in C(Ω)

and for a positive number dS , we have

{Id>d∗∗} is uniformly bounded in W 2,p(Ω).

Thus, we can obtain

S and I are uniformly bounded in W 2,p(Ω).

Therefore, there exists a sequence dSk
such that the corresponding (Sk, Ik) > 0 of (6.1) when dSk

→ ∞,
namely,

(Sk, Ik) → (S∗∗, I∗∗) weakly in W 2,p(Ω) × W 2,p(Ω).

Since S∗∗ is constant, then ΔS∗∗ = 0. Then, (6.5) has a unique positive solution (S∗∗, I∗∗). The proof is
completed.

Now, we study the solution of (6.4) if dI is small. In what follows, we consider that there exists x ∈ Ω
such that

(
β1 +

β2c

m

) α̃
(
1 + c̃

m

)
+ β̃1 + β̃2

c
m

α̃
− γ > 0.

We need to find H such that

max

{(
β1 +

β2c

m

)
Ã

Ã + H
− γ

}
= 0. (6.9)

Clearly, for many points in region Ω, the above maximum can be fulfilled. Hence, let a nonempty set be

N =

{
x ∈ Ω :

(
β1 +

β2c

m

)
Ã

Ã + H
− γ = 0

}
,

then, we know that the set N includes all points if dI → 0. The proof of the second case of Theorem 6.2
is completed. �

Proof. To establish Theorem 6.3, as the rate dI → 0, we have

K 0

⎛
⎜⎜⎝dI ,

⎛
⎜⎜⎝
(

β1 +
β2c

m

)
Ã

αŜ + α̃(1 + c̃
m )ϕ +

(
β̃1 + β̃2c

m

)
ϕ

− γ

⎞
⎟⎟⎠

⎞
⎟⎟⎠ < K 0

(
dI ,

((
β1 +

β2c

m

)
− γ

))

< K 0

⎛
⎝dI ,

⎛
⎝
(

β1 +
β2c

m

) α̃
(
1 + c̃

m

)
+ β̃1 + β̃2

c
m

α̃
− γ

⎞
⎠
⎞
⎠

→ max

⎧⎨
⎩x ∈ Ω : K 0

⎛
⎝dI ,

⎛
⎝
(

β1 +
β2c

m

) α̃
(
1 + c̃

m

)
+ β̃1 + β̃2

c
m

α̃
− γ

⎞
⎠
⎞
⎠
⎫⎬
⎭ > 0,
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where Ŝ satisfies A−αŜ− β1Ŝϕ

Ŝ+(1+ c
m )ϕ

− β2Ŝ c
m ϕ

Ŝ+(1+ c
m )ϕ

= 0. Hence, there is a positive number d∗
I for all dI < d∗

I

such that P1 > 0. Using Lemma 6.2, system (6.5) exists a unique I > 0 if dI < d∗
I . From (6.2), we have

K 0

⎛
⎜⎜⎝dI ,

⎛
⎜⎜⎝
(

β1 +
β2c

m

)
Ã

Ã + α̃f1(I)I + α̃
(
1 + c̃

m

)
Ĩ +
(

β̃1 + β̃2c
m

)
I

− γ

⎞
⎟⎟⎠

⎞
⎟⎟⎠ = 0.

By the monotonicity of K 0(D, ξ), we can show that α̃f1(I)I + α̃(1 + c̃
m )Ĩ + (β̃1 + β̃2c

m )Ĩ is decreasing on
dI . Thus,

α̃f1(I)I +
(

1 +
c̃

m

)
Ĩ + α̃

(
β̃1 +

β̃2c

m

)
Ĩ → H0 for some H0 > 0 as dI → 0.

Further,

0 = lim
dI→0

K 0

⎛
⎜⎜⎝dI ,

⎛
⎜⎜⎝
(

β1 +
β2c

m

)
Ã

Ã + α̃f1(I)I + α̃
(
1 + c̃

m

)
Ĩ +
(

β̃1 + β̃2c
m

)
Ĩ

− γ

⎞
⎟⎟⎠

⎞
⎟⎟⎠

= max

{(
β1 +

β2c

m

)
Ã

Ã + H0

− γ

}
.

From (6.9), we have H0 = H. It follows that α̃f1(I)I + (1 + c̃
m )Ĩ + (β̃1 + β̃2c

m )Ĩ → H0 as dI → 0. The
proof is completed. �

7. Conclusion and discussion

This paper studied the dynamics of the reaction–diffusion epidemic system with distinct dispersal rates.
The overall solution for the diffusion epidemic system was given, and the uniformly boundedness of the
solution was obtained by using Lp theory and the Young’s inequality. Then, the asymptotic smoothness
of the semi-flow and the existence of the global attractor were discussed using linear differential operator.
In addition, the basic reproduction number, R0, was defined to spread the disease model in a spatially
uniform environment, and the asymptotic profiles of the system were studied when the spread rates of
the susceptible and the infected individuals were close to zero.

In this paper, by using the spectral radius of the next generation operator, the R0 was given. The
information on how system depends the parameters was investigated by employing variational formula.
In addition, Theorem 4.1 indicates that how the dispersal rate of the infected individuals affects R0. It
was shown when R0 > 1, the system is uniformly persistent and exists a positive steady state.

Furthermore, the asymptotic profiles of the DFSS were studied when the dispersal rate of susceptible
or infected hosts tends to zero. From Theorem 6.1, when P0 < 0, there exists a positive number d∗

S

such that R0 < 1 when dS < d∗
S . It was found that the recovered individuals could be eliminated by

limiting the movement of the susceptible individuals. We gave the local basic reproduction number as
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Rlocal(x) = (β1 + β2c
m )A

α − γ. It follows that

P0 = K 0

(
dI ,

((
β1 +

β2c

m

)
α
(
1 + c

m

)
+ β1 + β2

c
m

α
− γ

))

= sup

⎧⎨
⎩
∫
Ω

(
γ(Rlocal(x) − 1)ϕ2 − dI |∇ϕ|2

)
dx : ϕ ∈ H1(Ω) with

∫
Ω

ϕ2dx = 1

⎫⎬
⎭ .

(7.1)

Furthermore, the asymptotic profiles of the DFSS were studied when the dispersal rate of susceptible
or infected hosts tends to zero. From Theorem 6.1, when P0 < 0, there exists a positive number d∗

S

such that R0 < 1 when dS < d∗
S . It was found that the recovered individuals could be eliminated by

limiting the movement of the susceptible individuals. We gave the local basic reproduction number as
Rlocal(x) = (β1 + β2c

m )A
α − γ. It follows that

P0 = K 0

(
dI ,

((
β1 +

β2c

m

)
α
(
1 + c

m

)
+ β1 + β2

c
m

α
− γ

))

= sup

⎧⎨
⎩
∫
Ω

(γ(Rlocal(x) − 1)ϕ2 − dI |∇ϕ|2)dx : ϕ ∈ H1(Ω) with
∫
Ω

ϕ2dx = 1

⎫⎬
⎭ .

(7.2)

And hence, if Rlocal(x) < 1 for x ∈ Ω, then P0 < 0 regardless of the value of dI . Limiting dS can eradicate
the recovered individuals directly from Theorem 6.1.

Suppose that Rlocal(x) > 1 for x ∈ Ω, which implies the limiting case

β1 +
β2c

m
> γ (7.3)

for U → A/α as dS → 0, then (7.2) may be positive number or negative number. From (7.2), it is shown
that P0 is decreasing on dI . Then, we obtain

P0 → γ( ˜Rlocal(x) − 1) =
1

|Ω|

∫
Ω

γ(Rlocal(x) − 1)dx, dI → +∞.

Notice that γ( ˜Rlocal(x) − 1) < 0 is equivalent to

∫
Ω

(
β1 +

β2c

m

)
dx <

∫
Ω

γdx, (7.4)

it shows that it is the limiting case when U → A
α and dS → 0. Then, below we give biological explanation:

Suppose that the Ω itself is not favorable sites for the recovered individuals in the sense that (7.4), then
we know that the recovered individuals can be eliminated by limiting the movement of the susceptible
individuals, although there are pathogen favored sites in domain Ω exist in the sense that (7.3).

In addition, Theorem 6.2 and Theorem 6.3 indicate that limiting the mobility of the infected hosts,
the infected individuals concentrate on certain points, which are the recovered individuals’s most favored
sites. It is indeed the set of locations where infected individuals will stay in the sense that (1 + c

m )I +

(β1 + β2c
m )I → H as the diffusion rate dI → 0.
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Appendix A

Let X := C(Ω̄, R3) be a functional space and satisfy the following norm form:

||ϕ||X := max{sup
x∈Ω

|ϕ1|, sup
x∈Ω

|ϕ2|, sup
x∈Ω

|ϕ3|}, ϕ = (ϕ1, ϕ2, ϕ3) ∈ X .

For i = 1, 2, let Ai : D(Ai) → C(Ω, R) be the linear operator, which is described by

A1ϕ := dSΔϕ,A2ϕ := dIΔϕ,

where

D(Ai) := {ϕ ∈ ∩p>1W
2,p(Ω) :

∂ϕ

∂ν
= 0 on ∂Ω and Aiϕ ∈ C(Ω̄, R)},

which implies that Ai is the infinitesimal generator and it is a strong and continuous semigroup. Let
eAit > 0, i = 1, 2, in C(Ω, R), then the infinitesimal generator A : X → X is defined by

Aφ(x) :=

⎛
⎜⎝

A1φ1

A2φ2

0

⎞
⎟⎠ , φ = (φ1, φ2, φ3) ∈ D(A), (7.5)

then, the infinitesimal generator A is a strong and continuous semigroup. Let (etA)t>0 in X , D(A) :=
D(A1) × D(A2) × C(Ω̄, R) ⊂ X , the nonlinear operator F : X → X is defined by

F (φ)(x) :=

⎛
⎜⎜⎜⎜⎜⎝

A(x) − α(x)φ1 − β1(x)φ1φ2

φ1 + φ2 + φ3
− β2(x)φ1φ3

φ1 + φ2 + φ3

β1(x)φ1I

φ1 + φ2 + φ3
+

β2(x)φ1φ3

φ1 + φ2 + φ3
− γ(x)φ2

c(x)φ2 − m(x)φ3

⎞
⎟⎟⎟⎟⎟⎠

, (7.6)

where φ = (φ1, φ2, φ3) ∈ X+. Thus, the Cauchy problem of system (2.1) in X+ can be described by:

∂

∂t
u(x, t;u0) = Au(x, t;u0) + F (u(x, t;u0)), u(x, 0;u0) = u0. (7.7)

Some properties of system (2.1) on X+ are given below:
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Lemma 7.1. For u0 ∈ D(A) ⊂ X+, there exists Tmax > 0 such that the problem (3.20) has

u(x, t;u0) = etAu0 +

t∫
0

e(t−s)AF (u(x, s;u0))ds, t ∈ [0, Tmax)

with Tmax < +∞, where the variable A and the variable F are defined by Eqs. (7.5) and (7.6). Moreover,
when Tmax = +∞, lim

t→Tmax

||u(x, t, u0)|| = ∞, which implies that system has nonnegative solution.

For detailed explanation, please refer to Lemma 4.16 in Ref. [26].

Appendix B

Based on Refs. [26,38], for any initial condition u0 ∈ X+, we denote the solution u(x, t) of (2.1) as follows

u(x, t;u0) = (S(x, t;u0), I(x, t;u0), R(x, t;u0)).

In addition, based on Ref. [26], we denote the semiflow generated of (2.1) as φ(t) : X+ → X+, t > 0, that
is,

φ(t)u0 := u(x, t;u0) = (S(x, t;u0), I(x, t;u0), R(x, t;u0)),

and denote κ(·) as a Kuratowski measure of non-compactness. Then, we have κ(B) := inf{r}, the
Kuratowski measure B exists a finite cover of diameter less than r, where set B is bounded. Then, if
the Kuratowski measure κ(B) = 0, we know that B is pre-compact.

In other words, we need to claim that φ(t) is a κ-contraction. Its equivalent condition is as follows.
For any time t > 0, there exists the Kuratowski measure κ(t) : R+ → R+ and satisfies the inequality
0 < κ(t) < 1 such that set B is bounded, {φ(s)B, 0 < s < t} is bounded and the inequality κ((t)B) <
κ(t)κ(B).
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