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Abstract. This paper is devoted to the singular limit of a model for the regulation of growth and patterning in developing
tissues by diffusing morphogens. The model is governed by a system of nonlinear PDEs. The arguments are based on energy
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1. Introduction

The differentiation and growth of embryonic cells are mainly regulated by morphogens (see [1,8,9,12]).
Experimental evidences show that morphogens develop from a localized source spreading in concentration
gradients that control the behavior of surrounding cells as a function of their distance from the source,
see Wartlick, Mumcu, Kicheva, Bitting, Seum, Jülicher, and González-Gaitán in [10,11].

The experimental observations mentioned in [10,11] have been implemented in the mathematical
model proposed by Averbukh, Ben-Zvi, Mishra and Barkai in [2], in which a growth law based on a
parameter θ is formulated. It takes into account the fact that a cell divides when it detects that the
relative morphogens concentration increases by a factor of 1 + θ.

The model developed in [2] is the following one
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tM + ∂x(uM) + αM = D∂2
xxM, t > 0, 0 < x < L(t),

∂tM + u∂xM − θ

log 2
M∂xu = 0, t > 0, 0 < x < L(t),

∂xM(t, 0) = − η

D
, ∂xM(t, L(t)) = 0, t > 0,

M(0, x) = M0(x), 0 < x < L0,

u(t, 0) = 0, t > 0,

L′(t) = u(t, L(t)), t > 0,

L(0) = L0,

(1.1)

where the unknowns are

M = Mθ(t, x), u = uθ(t, x), L = Lθ(t),

and

L0 > 0; 0 < c∗ ≤ M0(x) ≤ c∗, 0 ≤ x ≤ L0.
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Here Mθ(t, x) is the morphogen concentration in the one-dimensional growing tissue [0, Lθ(t)], Lθ(t) is
the length of the tissue, uθ(t, x) is the (local) flow rate of the growing tissue with ∂xuθ(t, x) being the
cell proliferation rate, and α, D, η are positive parameters that correspond to the morphogen degradation
rate, diffusion rate and incoming morphogen flux rate, respectively. The evolution of the morphogens
concentration in (1.1) is described by the first equation, which is a nonlinear advection–reaction–diffusion
PDE. The second equation gives the expression of the cell division rule due to morphogens proliferation
and flow rates. Finally, the tissue length L(t) obeys an ODE flow type. The two PDEs are augmented
with suitable initial data and non-homogeneous Neumann-type boundary conditions.

Here we are interested in the analysis of (Mθ(t, x), uθ(t, x), Lθ(t)) as

θ → 0+,

as a consequence in the following we will always assume

0 < θ < log 2.

Under this condition we have established in [4] the well-posedness (existence, uniqueness, and stability)
and in [6] the asymptotic behavior as t → ∞ of (Mθ(t, x), uθ(t, x), Lθ(t)). We will often recall some
results of these papers, and therefore, we will assume that the hypotheses assumed therein are satisfied,
also here. Before stating them explicitly, we point out that the hypothesis in [6]:

DM ′′
0 (x) − αM0(x), 0 ≤ x ≤ L0,has constant sign,

in this paper it is assumed by formulating two alternative conditions:

DM ′′
0 (x) − αM0(x) ≥ 0 or DM ′′

0 (x) − αM0(x) ≤ 0.

The results in the two cases are different while retaining a certain “symmetry”. Having said that, in
this paper we assume that the following hypotheses are satisfied

0 < c∗ ≤ M0(x) ≤ c∗, 0 ≤ x ≤ L0; M0 ∈ H2(0, L0), (1.2)

and one within the following

M ′
0(x) ≤ 0; DM ′′

0 (x) − αM0(x) ≥ 0, 0 ≤ x ≤ L0, (1.3)

M ′
0(x) ≤ 0; DM ′′

0 (x) − αM0(x) ≤ 0, 0 ≤ x ≤ L0. (1.4)

The difference between the two cases is further highlighted by the different initial mean morphogens
concentrations, indeed

DM ′′
0 (x) − αM0(x) ≥ 0, 0 ≤ x ≤ L0 ⇒ ‖M0‖L1(0,L0)

≤ η

α
,

DM ′′
0 (x) − αM0(x) ≤ 0, 0 ≤ x ≤ L0 ⇒ ‖M0‖L1(0,L0)

≥ η

α
.

Key tool for the analysis of the well-posedness (see [3,4,7]) and of the asymptotic behavior as t → ∞
(see [5,6]) is the definition of a suitable family of “characteristic” curves which start at the points of
[0, L0] and “cover” {(t, x) | t ≥ 0, 0 ≤ x ≤ Lθ(t)}. Let us briefly recall them because they are also useful
in this paper.

Let (Mθ(t, x), uθ(t, x), Lθ(t)) be the solution of (1.1), for every y ∈ [0, L0], let Xθ(t, y) be the solution
of

⎧
⎨

⎩

d

dt
Xθ(t, y) = uθ(t,Xθ(t, y)),

Xθ(0, y) = y.
(1.5)

Thanks to (1.1), it is clear that 0 solves (1.5) in correspondence of y = 0 and Lθ(t) solves (1.5) in
correspondence of y = L0. The image of Xθ(t, ·) is [0, Lθ(t)]. Xθ(t, ·) is invertible; its inverse Yθ(t, ·) is
defined on [0, Lθ(t)] and its image is [0, L0] (see [3,4,7]).

The main results of this paper are the following.
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Theorem 1.1. If ‖M0‖L1(0,L0)
≤ η

α
and the assumptions (1.2), (1.3) hold, we have that

i) lim
θ→0

L0∫

0

|Mθ(t,Xθ(t, y)) − M0(y)|rdy = 0, 1 ≤ r < ∞,

uniformly with respect to t on every compact set [0, T ];

ii) 0 ≤ uθ(t, x); lim sup
θ→0

uθ(t, x) ≤ e−αt
η − α ‖M0‖L1(0,L0)

M0(L0)
;

iii) L0e
−αt +

√
αD tanh

(
L0

√
α

D

)1 − e−αt

α
≤ lim inf

θ→0
Lθ(t)

≤ lim sup
θ→0

Lθ(t) ≤ L0e
−αt +

η

M0(L0)
1 − e−αt

α
.

Theorem 1.2. If ‖M0‖L1(0,L0)
≥ η

α
and the assumptions (1.2), (1.4) hold, we have that

i) lim
θ→0

L(t)∫

0

|Mθ(t, x) − M0(Yθ(t, x)|rdy = 0, 1 ≤ r < ∞,

uniformly with respect to t on every compact set [0, T ];

ii) −e−αt
α ‖M0‖L1(0,L0)

− η

M0(L0)
0 ≤ lim inf

θ→0
uθ(t, x); uθ(t, x) ≤ 0;

iii) L0e
−αt +

η

M0(0)
1 − e−αt

α
≤ lim inf

θ→0
Lθ(t) ≤ lim sup

θ→0
Lθ(t) ≤ ≤ L0e

−αt +
η

M0(0)
1 − e−αt

α
+

√
αD
(

log
M0(0)
M0(L0)

)1 − e−αt

α
.

The paper is organized as follows. In Sect. 2 we recall some preliminary results. Section 3 is devoted to
some a priori estimates on the sign of the derivatives of the unknowns. Theorems 1.1 and 1.2 are proved
in Sects. 4 and 5, respectively.

2. Preliminary results

We transform (1.1) into a problem equivalent to it, in the sense that the well-posedness of one of them
implies the well-posedness of the other one and from the solution of one of them we obtain at the solution
of the other one. Defining

β :=
log 2

θ
, Nβ(t, y) := Mθ(t,Xθ(t, y)),

(1.1) is equivalent to the following problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tNβ + aNβ = d
(M0(y)

|Nβ |
)β

∂y

((M0(y)
|Nβ |

)β

∂yNβ

)
, t > 0, 0 < y < L0,

( M0(0)
|Nβ(t, 0)|

)β

∂yNβ(t, 0) = − η

D
,
( M0(L0)

|Nβ(t, L0)|
)β

∂yNβ(t, L0) = 0, t > 0,

Nβ(0, y) = M0(y), 0 < y < L0,

(2.1)

where

a :=
α

β + 1
; d :=

D

β + 1
. (2.2)
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For every 0 ≤ T < ∞ we will use the following notation

ET :=]0, T [×]0, L0[; ET := closure of ET .

We define in an analogous way E∞ and E∞.

Let us recall some properties of Nβ(t, y) useful in the next sections.

Theorem 2.1. (Existence, uniqueness, and regularity of Nβ(t, y) [4, Theorem 2.1], [6, Theorem 2.3]) If
(1.2) holds, then, for every β and T > 0, (2.1) admits a unique solution Nβ(t, y) such that

i) c∗e− α
β+1 t ≤ Nβ(t, y), t ≥ 0, 0 ≤ y ≤ L0 and Nβ ∈ L∞(E∞);

ii) ∂tNβ , ∂yNβ , ∂y

(
Mβ

0

Nβ
β

∂yNβ

)

∈ L2(ET ), ∂2
yyN ∈ L1(ET );

iii) here exists c(T ) > 0 such that for every (t1, y1), (t2, y2) ∈ ET |Nβ(t1, y1) − Nβ(t2, y2)|
≤ c(T )

(√|t1 − t2| + |y1 − y2|
) 1

4 ;
iv) ∂yNβ ∈ C(]0,∞[×[0, L0]); ∂tNβ , ∂2

yyNβ ∈ C(E∞).

Let us show how to pass from Nβ(t, y) to (Mθ(t, x), uθ(t, x), Lθ(t)) and vice versa. Thanks to the

properties of Nβ(t, y), the function (t, y) 
→
(

M0(y)
Nβ(t,y)

)β

is positive and Hölder continuous in every ET

(see [7, Theorem 2.1], [3, Theorem 2.1], and [6, Theorem 2.3]). As a consequence

dYθ

dx
=
( M0(Y )

Nβ(t, Y )

)β

, Yθ(t, 0) = 0

(1) admits a unique (maximal) solution Yθ(t, ·).
Let [0, Lθ(t)] be the (maximal) existence interval of Yθ(t, ·). We have Yθ(t, Lθ(t)) = L0, and defining

Mθ(t, x) = Nβ(t, Y (t, x));

uθ(t, x) = β

Yθ(t,x)∫

0

Nβ(t, y)β−1∂tNβ(t, y)
M0(y)β

dy;

Lθ(t) =

L0∫

0

(Nβ(t, y)
M0(y)

)βdy,

(Mθ(t, x), uθ(t, x)Lθ(t)) is a solution of (1.1). (2) As a first step in our analysis, we begin by studying
the behavior of Nβ(t, y) as

β → ∞,

from now on we assume that
β > 1 (3).
Let us also briefly recall the results on the asymptotic behavior for t → ∞ of Nβ(t, y) (see [6, Theorem

2.1]) and of (Mθ(t, x), uθ(t, x), Lθ(t)) (see [6, Theorem1.1]). If the assumptions (1.2) and (1.3) or (1.2)
and (1.4) hold, then the function Nβ(·, y) is monotone and its limit

Nβ(y) := lim
t→∞ Nβ(t, y)

1 t is a parameter.
2 Yθ(t, ·) is the inverse of Xθ(t, ·) for every t ≥ 0.
3 The assumption θ < log(2) is equivalent to β > 1.
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belongs to C2([0, L0]), is positive, decreasing and solves the stationary problem
⎧
⎪⎪⎨

⎪⎪⎩

αNβ = D
(M0(y)

Nβ

)β[(M0(y)
Nβ

)β

N
′
β

]′
, 0 ≤ y ≤ L0,

(M0(0)
Nβ(0)

)β

N
′
β(0) = − η

D
;
(M0(L0)

Nβ(L0)

)β

N
′
β(L0) = 0.

(2.3)

Moreover, y 
→ Nβ(t, y) converges to Nβ(y) uniformly with respect to y as t → ∞.
The triplet (Mθ(t, x), uθ(t, x), Lθ(t)) satisfies the following statements.

i) Lθ(t) converges to Lθ as t → ∞, and

|Lθ(t) − Lθ| ≤ ce−αt,

for some constant c independent on t.
ii) lim

t→∞ uθ(t, x) = 0 uniformly with respect to x.

iii) Mθ(t, x) converges to Mθ ∈ C2([0, Lθ]) as t → ∞, Mθ(t, ξLθ(t)) converges to Mθ(ξLθ) uniformly
with respect to 0 ≤ ξ ≤ 1. Moreover, Mθ(x) satisfies

{
αMθ = DM

′′
θ , in [0, Lθ],

M
′
θ(0) = − η

D
; M

′
θ(Lθ) = 0,

and its explicit expression is

Mθ(x) =
η√
αD

cosh
[
(x − Lθ)

√
α
D

]

sinh
[
Lθ

√
α
D

] , 0 ≤ x ≤ Lθ.

We conclude this section recalling that

Nβ(0) = Mθ(0) =
η√
αD

coth
(
Lθ

√
α

D

)
.

3. On the signs of ∂tNβ(t, y) and ∂yNβ(t, y)

On the sign of ∂tNβ(t, y), we proved the following result.

Theorem 3.1. (Sign of ∂tNβ(t, y) [6, Theorem 2.5]) For every t > 0, 0 ≤ y ≤ L0, we have that

i) DM
′′
0 (y) − αM0(y) ≥ 0 ⇒ ∂tNβ(t, y) ≥ 0,

ii) DM
′′
0 (y) − αM0(y) ≤ 0 ⇒ ∂tNβ(t, y) ≤ 0.

To clarify the link between the hypotheses (1.3), (1.4) and the initial mean morphogens concentration,
i.e., ‖M0‖L1(0,L0)

, the following lemma is needed.

Lemma 3.1. ([6, Theorem 2.1. ii]) For every β ≥ 1 and t ≥ 0, we have that
L0∫

0

Nβ(t, y)β+1

M0(y)β
dy =

η

α
+ e−αt

(
‖M0‖L1(0,L0)

− η

α

)
.

Proof. Let us quickly sketch the proof of [6, Theorem2.1.ii)]. It is not difficult to rewrite the equation of
(2.1) as follows

∂t

(
eαt Nβ(t, y)β+1

M0(y)β

)
= D∂y

[
eαt
( M0(y)

Nβ(t, y)

)β

∂yNβ(t, y)
]
.
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We integrate both sides in y on [0, L0], thanks to the boundary and initial data in (2.1),

∂t

(
eαt

L0∫

0

Nβ(t, y)β+1

M0(y)β
dy
)

= Deαt η

D

and then

eαt

L0∫

0

Nβ(t, y)β+1

M0(y)β
dy =

L0∫

0

M0(y)dy +
η

α
(eαt − 1),

that gives the claim. �

The relation between the assumptions (1.3), (1.4) and ‖M0‖L1(0,L0)
is clarified in the next statements

1.3 ⇒ DM
′′
0 (·) − αM0(·) ≥ 0 ⇒ ‖M0‖L1(0,L0)

≤ η

α
, (3.1)

1.4 ⇒ DM
′′
0 (·) − αM0(·) ≤ 0 ⇒ ‖M0‖L1(0,L0)

≥ η

α
. (3.2)

We prove only (3.1), because the same argument works also for (3.2)

DM
′′
0 (y) − αM0(y) ≥ 0 ⇒ ∂tNβ(t, y) ≥ 0 ⇒ ∂t

L0∫

0

Nβ(t, y)β+1

M0(y)β
dy ≥ 0 ⇔

⇔ ∂t

{ η

α
+ e−αt

(
‖M0‖L1(0,L0)

− η

α

)}
≥ 0 ⇔

⇔ αe−αt
( η

α
− ‖M0‖L1(0,L0)

)
≥ 0 ⇔ ‖M0‖L1(0,L0)

≤ η

α
.

To determine the sign of ∂yNβ(t, y), it is convenient to consider a reformulation of (2.1) useful for
partially camouflaging the cumbersome initial datum M0(y). We will use the following notations, given
0 ≤ T < ∞,

QT :=]0, T [×]0, 1[; QT := closure QT .

Similarly, we define Q∞ and Q∞.
Due to the assumptions on M0, we can consider the function

z = Z0(y) :=
1
μ0

y∫

0

M0(ξ)−βdξ, 0 ≤ y ≤ L0,

where

μ0 =
∥
∥
∥M

−β
0

∥
∥
∥

L1(0,L0)
.

If Y0(z) is the inverse of Z0(y), we define

nβ(t, z) := Nβ(t, Y0(z)).

Passing from the unknown Nβ(t, y) to nβ(t, z), we simplify (2.1) in the following way
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tn + an =
A

|n|β ∂z

( ∂zn

|n|β
)
, (t, z) ∈ Q∞,

∂zn(t, 0)
|n(t, 0)|β = −B,

∂zn(t, 1)
|n(t, 1)|β = 0, t > 0,

n(0, z) = M0(Y0(z)), 0 < z < 1,

(3.3)
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where

A :=
d

μ2
0

=
D

(β + 1)μ2
0

; B :=
ημ0

D
. (3.4)

Theorem 3.2. (Sign of ∂yNβ(t, y)) Let β > 0 be given. If

M ′
0(y) ≤ 0, 0 ≤ y ≤ L0,

then

∂yNβ(t, y) ≤ 0, t > 0, 0 ≤ y ≤ L0.

Proof. In order to keep the presentation simple and clear, we start considering (3.3) and proving

∂znβ(t, z) ≤ 0, t > 0, 0 < z < 1. (3.5)

(4) We begin by assuming β �= 1. Consider the functions

v(t, z) = nβ(t, z)1−β , ω = ∂zvβ ,

ω satisfies in the weak sense the following identity

A∂z(vm∂zω) + a(β − 1)ω = ∂tω in Q∞, (3.6)

with

m =
2β

β − 1

|vm∂zω| =|(n1−β)
2β

β−1 ∂2
zzv| =

∣
∣ 1
n2β

∂z

(
(1 − β)

∂zn

nβ

)∣
∣ ≤

≤|β − 1|
c

αβt
β+1∗

∣
∣ 1
nβ

∂z

(∂zn

nβ

)∣
∣ ∈ L2(Qt), ∀t > 0;

|ω| =|∂zv| = |∂zn
1−β | = |(1 − β)

∂zn

nβ
| ≤ |β − 1|

c
αβt
β+1∗

|∂zn| ∈ L2(Qt);

|vm∂zω∂zω| =(v
m
2 ∂zω)2 =

( 1
nβ

(1 − β)∂z

(∂zn

nβ

))2 ∈ L1(Qt).

.
(5) Moreover, the following are satisfied in the sense of traces

ω(t, 0) = B(β − 1); ω(t, 1) = 0, t > 0,

ω(0, z) = μ0(1 − β)M ′
0(Y0(z)), 0 < z < 1.

Let us distinguish two cases 0 < β < 1, 1 < β.
0 < β < 1. We multiply (3.6) by

ω(t, z)+eλt, whit λ = −2aβ, ω+ :=
1
2
(|ω| + ω),

and integrate over Qt, t > 0. Being

ω(t, 0)+ = ω(t, 1)+ = 0,

we have

−A

∫

Qt

vm(∂zω)2
sign (ω) + 1

2
eλτdτdz + a(β − 1)

∫

Qt

ωω+eλτdτdz =
∫

Qt

∂τωω+eλτdτdz. (3.7)

4 n(t, z) ed Nβ(t, y) share the same regularity (see [4, Theorem 2.1] and [6, Theorem2.3]).
5 The differentiation in the weak sense of the function vm∂zω and the role of the test function ω− can be justified by

the following observations
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Since

∂τω · ω+eλτ = ∂τ (ωω+eλτ ) − ωeλτ
(
∂τω

sign (ω) + 1
2

+ λω+
)

= ∂τ (ωω+eλτ ) − ∂τω · ω+eλτ − λωω+eλτ ,

we have

∂τω · ω+eλτ =
1
2
∂τ (ωω+eλτ ) − λ

2
ωω+eλτ ,

and using (3.7)

−A

∫

Qt

vm(∂zω)2
sign (ω) + 1

2
eλτdτdz + a(β − 1)

∫

Qt

ωω+eλτdτdz

=
1
2

1∫

0

ω(t, z)ω(t, z)+eλtdz − 1
2

1∫

0

ω(0, z)ω(0, z)+dz − λ

2

∫

Qt

ωω+eλτdτdz.

Being β < 1

ω(0, z)+ =
(
μ0(1 − β)M ′

0(Y0(z))
)+

= 0, λ = −2aβ,

and then

−A

∫

Qt

vm(∂zω)2
sign (ω) + 1

2
eλτdτdz − a

∫

Qt

ωω+eλτdτdz =
1
2

1∫

0

ω(t, z)ω(t, z)+eλtdz.

Since ωω+ ≥ 0 the two sides of the identity have different sings. As a consequence, they must vanish and
1∫

0

ω(t, z)ω(t, z)+eλtdz = 0, t > 0,

that gives ω(t, z)+ = 0, namely ω(t, z) ≤ 0. In light of the definition of ω(t, z) we have

∂zv(t, z) = ω(t, z) ≤ 0 ⇔ (1 − β)n(t, z)−β∂zn(t, z) ≤ 0 ⇔ ∂zn(t, z) ≤ 0.

β > 1. We argue as before and multiply (3.6) by

ω(t, z)−eλt, with λ = −2aβ.

Being β > 1 we have

ω(t, 0)− = ω(t, 1)− = 0, ω(0, z)− =
(
μ0(1 − β)M ′

0(Y0(z))
)−

= 0,

and then

−A

∫

Qt

vm(∂zω)2
sign (ω) − 1

2
eλτdτdz − a

∫

Qt

ωω−eλτdτdz =
1
2

1∫

0

ω(t, z)ω(t, z)−eλtdz.

Since ωω− ≤ 0, the two sides of the identity have different sings. As a consequence, they must vanish
and

1∫

0

(ωω−)(t, z)eλtdz = 0, t > 0,
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that gives ω(t, z)− = 0, namely ω(t, z) ≥ 0. As in the previous case

∂zv(t, z) = ω(t, z) ≥ 0 ⇔ (1 − β)nβ(t, z)−β∂znβ(t, z) ≥ 0 ⇔ ∂znβ(t, z) ≤ 0.

β = 1. Define

v = log nβ , ω = ∂zv,

ω satisfies in the weak sense the identity

A∂z

(
1
n2

β

∂zω

)

= ∂tω in Q∞ (3.8)

and in the sense of traces

ω(t, 0) = −B; ω(t, 1) = 0; ω(0, z) = μ0M
′
0(Y0(z)).

We multiply (3.8) by ω+ and integrate over Qt. Arguing as in the previous cases we obtain

−A

∫

Qt

1
n2

β

(∂zω)2
sign (ω) + 1

2
dτdz =

1
2

1∫

0

ω(t, z)ω(t, z)+dz,

that implies ω(t, z)+ = 0, namely ω(t, z) ≤ 0. Therefore,

∂zv(t, z) = ω(t, z) ≤ 0 ⇔ ∂znβ(t, z)
nβ(t, z)

≤ 0 ⇔ ∂znβ(t, z) ≤ 0.

In this way we have proved (3.5).
Finally, being Nβ(t, y) = nβ(t, Z0(y)), we have

∂yNβ(t, y) = ∂znβ(t, Z0(y))Z ′
0(y) =

∂znβ(t, Z0(y))
μ0M0(y)β

≤ 0,

that concludes the proof. �

4. Proof of Theorem 1.1

We begin this section by proving some a priori estimates on Nβ(t, y) and ∂yNβ(t, y) independent on β.

Lemma 4.1. We have that

M0(y) ≤ Nβ(t, y) ≤ η√
αD

coth
(
L0

√
α

D

)
, (t, y) ∈ E∞; (4.1)

− η

D
≤
( M0(y)

Nβ(t, y)

)β

∂yNβ(t, y) ≤ 0, (t, y) ∈]0,∞[×[0, L0]. (4.2)

Proof. We prove (4.1). The lower bound on Nβ(·, y) follows from the monotonicity of Nβ(·, y) (see (1.3)
and Theorem 3.1) and the identity Nβ(0, y) = M0(y). We have to prove the upper bound on Nβ(·, y).
Since

Nβ(t, y) ≤ lim
t→∞ Nβ(t, y) = Nβ(y),

the monotonicity of Nβ(y) (see [6, Theorem 2.1]) and (3.8) guarantee

Nβ(t, y) ≤ Nβ(0) = Mθ(0) =
η√
αD

coth
(
Lθ

√
α

D

)
.
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Moreover, by observing

Lθ(t) =

L0∫

0

(
Nβ(t, y)
M0(y)

)β

dy ≥
L0∫

0

(
Nβ(0, y)
M0(y)

)β

dy = L0,

we must have

Lθ ≥ L0, t ≥ 0.

Since coth is nonincreasing,

Nβ(t, y) ≤ η√
αD

coth
(
Lθ

√
α

D

)
≤ η√

αD
coth

(

L0

√
α

D

)

, (4.3)

that proves (4.1).
We have to prove (4.2). Thanks to the assumption (1.3) and Theorem 3.1, we know that ∂tNβ(t, y) ≥ 0.

Using the equation in (2.1) we have that
(

M0(y)
Nβ(t,y)

)β

∂yNβ(t, y) is nondecreasing with respect to y, for
every t > 0 and β > 1. Using the boundary conditions, we gain

− η

D
=
( M0(0)

Nβ(t, 0)

)β

∂yNβ(t, 0) ≤
( M0(y)

Nβ(t, y)

)β

∂yNβ(t, y) ≤
( M0(L0)

Nβ(t, L0)

)β

∂yNβ(t, L0) = 0.

Employing (1.2), Theorem 2.1 and the fact
( M0(y)

Nβ(t, y)

)β

> 0, t > 0, 0 ≤ y ≤ L0,

we conclude ∂yNβ(t, y) ≤ 0, (t, y) ∈]0,∞[×[0, L0], that proves (4.2). �

We continue with the following result on the limit of ∂tNβ(t, y) as β → ∞.

Theorem 4.1. We have that

lim
β→∞

∫

ET

(∂tNβ)2dtdy = 0.

The following lemma is needed

Lemma 4.2. For every T > 0

lim sup
β→∞

{ ∫

ET

(Nβ

M0

)β(∂tNβ)2dtdy +
Dβ

2(β + 1)

∫

ET

(M0

Nβ

)β(∂yNβ)2
∂tNβ

Nβ
dtdy

}

≤ 0.

Proof. We multiply the equation in (2.1) by
(Nβ

M0

)β
∂tNβ(t, y) :

(
Nβ

M0

)β

(∂tNβ(t, y))2 +
a

β + 2
∂t

Nβ+2
β

Mβ
0

= d∂y

[(
M0

Nβ

)β

∂yNβ

]

∂tNβ

and integrate over ET :

∫

ET

(
Nβ

M0

)β

(∂tNβ(t, y))2dtdy +
a

β + 2

L0∫

0

(
Nβ(T, y)β+2

M0(y)β
− M0(y)2

)

dy

= d

T∫

0

[(
M0

Nβ

)β

∂yNβ ∂tNβ

]L0

0

dt − d
∫

ET

(
M0

N

)β

∂yNβ ∂2
ytNβdtdy
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=
η

β + 1

T∫

0

∂tNβ(t, 0)dt − d

2

∫

ET

(
M0

Nβ

)β

∂t(∂yNβ)2dtdy

=
η

β + 1
(Nβ(T, 0) − M0(0))

− d

2

L0∫

0

[(
M0

Nβ

)β

(∂yNβ)2
]T

0

dy − d

2

∫

ET

β
Mβ

0

Nβ+1
β

∂tNβ (∂yNβ)2dtdy

=
η

β + 1
(Nβ(T, 0) − M0(0)) − D

2(β + 1)

L0∫

0

(
M0(y)

Nβ(T, y)

)β

(∂yNβ(y))2dy

+
D

2(β + 1)

L0∫

0

(M ′
0(y))2dy − Dβ

2(β + 1)

∫

ET

Mβ
0

Nβ+1
β

∂tNβ (∂yNβ)2dtdy.

Rearranging the terms in the following way
∫

ET

(
Nβ

M0

)β

(∂tNβ(t, y))2dtdy +
Dβ

2(β + 1)

∫

ET

Mβ
0

Nβ+1
β

∂tNβ (∂yNβ)2dtdy

+
α

(β + 1)(β + 2)

L0∫

0

Nβ(T, y)β+2

M0(y)β
dy +

D

2(β + 1)

L0∫

0

(
M0(y)

Nβ(T, y)

)β

(∂yNβ(T, y))2dy

=
α

(β + 1)(β + 2)
‖M0‖2L2(0,L0)

+
η

β + 1
(Nβ(T, 0) − M0(0)) +

D

2(β + 1)
‖M ′

0‖2L2(0,L0)
,

we get the claim. �

Proof. (Proof of Theorem 4.1) Since ∂tNβ(t, y) ≥ 0, by Lemma 4.2,

lim
β→∞

∫

ET

(
Nβ

M0

)β

(∂tNβ(t, y))2dtdy = 0.

Being M0(y) ≤ Nβ(t, y) (see (4.1))
∫

ET

(∂tNβ(t, y))2dtdy ≤
∫

ET

(
Nβ

M0

)β

(∂tNβ)2dtdy,

that proves the claim. �

We continue with the behavior of Nβ(t, y) as β → ∞.

Theorem 4.2. For every T > 0 and 1 ≤ r < ∞

lim
β→∞

L0∫

0

|Nβ(t, y) − M0(y)|rdy = 0,

uniformly with respect to t ∈]0, T [.
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Proof. Since

L0∫

0

|Nβ(t, y) − M0(y)|dy =

L0∫

0

|Nβ(t, y) − Nβ(0, y)|dy

=

L0∫

0

∣
∣
∣
∣
∣
∣

t∫

0

∂τNβ(τ, y)dτ

∣
∣
∣
∣
∣
∣
dy ≤

∫

Et

|∂τNβ(τ, y)| dτdy ≤
√

TL0 · ‖∂τNβ‖L2(ET ) ,

thanks to Theorem 4.1

lim
β→∞

L0∫

0

|Nβ(t, y) − M0(y)|dy = 0,

uniformly with respect to t ∈]0, T [.
The boundedness of (Nβ)β>1 in L∞(ET ) (see (4.1)) and the boundedness of M0(y) (see (1.2)) imply

the claim. �

We are finally ready for the proof of Theorem 1.1.

Proof. (Proof of Theorem 1.1) Since Mθ(t,Xθ(t, y)) = Nβ(t, y) and β = log 2
θ , for every 1 ≤ r < ∞, we

have

L0∫

0

|Mθ(t,Xθ(t, y)) − M0(y)|rdy =

L0∫

0

|Nβ(t, y) − M0(y)|rdy.

In light of Theorem 4.2, we have i).
Since ∂tNβ(t, y) ≥ 0, (t, y) ∈ ET , (see Theorem 3.1.i)) and β > 0,

uθ(t, x) = β

Yθ(t,x)∫

0

Nβ(t, y)β−1∂tNβ(t, y)
M0(y)β

dy ≥ 0.

The monotonicity of Nβ(t, y) with respect to t, 0 ≤ Yθ(t, x) ≤ L0, Nβ(0, y) = M0(y) and the definition
of uθ(t, x) guarantee

uθ(t, x) ≤β

L0∫

0

1
Nβ(t, y)

(
Nβ(t, y)
M0(y)

)β

∂tNβ(t, y)dy ≤

≤β

L0∫

0

1
M0(y)

(
Nβ(t, y)
M0(y)

)β

∂tNβ(t, y)dy.

The monotonicity assumption on M0(y) gives

uθ(t, x) ≤ β

M0(L0)

L0∫

0

(
Nβ(t, y)
M0(y)

)β

∂tNβ(t, y)dy,
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and using the equation in (2.1)

uθ(t, x) ≤ β

M0(L0)

L0∫

0

{

d∂y

((
Nβ(t, y)
M0(y)

)β

∂tNβ(t, y)

)

− a
Nβ(t, y)β+1

M0(y)β

}

dy

=
β

β + 1
1

M0(L0)

⎧
⎨

⎩

L0∫

0

D∂y

((
Nβ(t, y)
M0(y)

)β

∂yNβ(t, y)

)

dy − α

L0∫

0

Nβ(t, y)β+1

M0(y)β

⎫
⎬

⎭
dy.

The boundary conditions in (2.1) and Lemma 3.1:

uθ(t, x) ≤ β

β + 1
1

M0(L0)

{
D

η

D
− α

[ η

α
+ e−αt

(
‖M0‖L1(0,L0)

− η

α

)]}

=
β

β + 1
e−αt

M0(L0)

(
η − α ‖M0‖L1(0,L0)

)
.

As a consequence,

lim sup
θ→0

uθ(t, x) ≤ e−αt
η − α ‖M0‖L1(0,L0)

M0(L0)
,

that proves ii)
The equation in (2.1) gives

1
β

∂t

(
Nβ

M0

)β

+ a

(
Nβ

M0

)β

=
d

Nβ
∂y

((
M0

Nβ

)β

∂yNβ

)

(4.4)

and then

∂t

(

ea∗t

(
Nβ

M0

)β
)

=
d∗ea∗t

Nβ
∂y

((
M0

Nβ

)β

∂yNβ

)

,

where

a∗ = aβ =
αβ

β + 1
; d∗ = dβ =

Dβ

β + 1
.

Integrating with respect to y on [0, L0]

∂t

⎛

⎝ea∗t

L0∫

0

(
Nβ

M0

)β

dy

⎞

⎠ = d∗ea∗t

L0∫

0

1
Nβ

∂y

((
M0

Nβ

)β

∂yNβ

)

dy

= d∗ea∗t

⎧
⎨

⎩

[
1

Nβ

(
M0

Nβ

)β

∂yNβ

]L0

0

+

L0∫

0

(
M0

Nβ

)β (
∂yNβ

Nβ

)2

dy

⎫
⎬

⎭

= d∗ea∗t

⎧
⎨

⎩

1
Nβ(t, 0)

η

D
+

L0∫

0

(
M0

Nβ

)β (
∂yNβ

Nβ

)2

dy

⎫
⎬

⎭
.
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Integrating with respect to t on [0, T ]

ea∗T

L0∫

0

(
Nβ(T, y)
M0(y)

)β

dy − L0

=
ηβ

β + 1

T∫

0

ea∗t

Nβ(t, 0)
dt + d∗

T∫

0

ea∗tdt

L0∫

0

(
M0(y)

Nβ(t, y)

)β (
∂yNβ(t, y)
Nβ(t, y)

)2

dy

and then

Lθ(T ) = L0e
−a∗T +

ηβ

β + 1

T∫

0

e−a∗(T−t)

Nβ(t, 0)
dt+

+ d∗
T∫

0

e−a∗(T−t)dt

L0∫

0

(
M0(y)

Nβ(t, y)

)β (
∂yNβ(t, y)
Nβ(t, y)

)2

dy.

Thanks to Theorem 3.2

L0e
−a∗T +

ηβ

β + 1

T∫

0

e−a∗(T−t)

Nβ(t, 0)
dt ≤ Lθ(T )

≤ L0e
−a∗T +

ηβ

β + 1

T∫

0

e−a∗(T−t)

Nβ(t, 0)
dt + d∗

T∫

0

e−a∗(T−t)dt

L0∫

0

η

D

|∂yNβ(t, y)|
Nβ(t, y)2

dy.

(4.5)

Since ∂yNβ(t, y) ≤ 0, (t, y) ∈ E∞, (see Theorem 3.2), we observe

d∗
T∫

0

e−a∗(T−t)dt

L0∫

0

η

D

|∂yNβ(t, y)|
Nβ(t, y)2

dy = − ηβ

β + 1

T∫

0

e−a∗(T−t)dt

L0∫

0

∂yNβ(t, y)
Nβ(t, y)2

dy

=
ηβ

β + 1

T∫

0

e−a∗(T−t)

[
1

Nβ(t, y)

]L0

0

dt

=
ηβ

β + 1

T∫

0

e−a∗(T−t)

(
1

Nβ(t, L0)
− 1

Nβ(t, 0)

)

dt.

Using (4.5)

L0e
−a∗T +

ηβ

β + 1

T∫

0

e−a∗(T−t)

Nβ(t, 0)
dt ≤ Lθ(T ) ≤ L0e

−a∗T +
ηβ

β + 1

T∫

0

e−a∗(T−t)

Nβ(t, L0)
dt.

Thanks to (4.1)

ηβ

β + 1

T∫

0

e−a∗(T−t)

Nβ(t, 0)
dt ≥ ηβ

β + 1

T∫

0

e−a∗(T−t)
√

αD

η coth(L0

√
α
D )

dt

=
ηβ

β + 1

√
αD

η
tanh

(
L0

√
α

D

)1 − e−a∗T

a∗ .
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Since a∗ = αβ
β+1

√
αD tanh

(
L0

√
α

D

)1 − e− αβ
β+1

α
≤ ηβ

β + 1

T∫

0

e−a∗(T−t)

Nβ(t, 0)
dt

≤ Lθ(T ) − L0e
a∗T ≤ ηβ

β + 1

T∫

0

e−a∗(T−t)

Nβ(t, L0)
dt

≤ ηβ

β + 1

T∫

0

e−a∗(T−t)

M0(L0)
dt =

η

M0(L0)
1 − e− αβ

β+1

α
.

Sending θ → 0+, namely β → ∞, we obtain iii). �

5. Proof of Theorem 1.2

We begin by proving some a priori estimates on Nβ(t, y) and ∂yNβ(t, y) independent on β.

Lemma 5.1. We have that

c∗e− α
β+1 t ≤ Nβ(t, y) ≤ M0(0), (t, y) ∈ E∞; (5.1)

−M0(y)
√

α

D
≤
( M0(y)

Nβ(t, y)

)β

∂yNβ(t, y) ≤ 0; (t, y) ∈]0,∞[×[0, L0].

(5.2)

Proof. The lower bound in (5.1) follows from Theorem 2.1.i). For the upper bound in (5.1), we observe
that Nβ(·, y) and M0(y) are nonincreasing (see (1.4) and Theorem 3.1); therefore,

Nβ(t, y) ≤ M0(y) ≤ M0(0).

We multiply the equation in (2.1) by ∂yNβ(t, y)

∂tNβ(t, y)∂yNβ(t, y) =
d

2
∂y

(( M0(y)
Nβ(t, y)

)2β

(∂yNβ(t, y))2
)

− a

2
∂yNβ(t, y)2. (5.3)

Since ∂yNβ(t, y) ≤ 0 (see Theorem 3.2) and ∂tNβ(t, y) ≤ 0 (see Theorem 3.1), thanks to (5.3),

d∂y

(( M0(y)
Nβ(t, y)

)2β

(∂yNβ(t, y))2
)

≥ a∂yNβ(t, y)2.

Integrating with respect to y over [ξ, L0], 0 ≤ ξ ≤ L0,

d

L0∫

ξ

∂y

(( M0(y)
Nβ(t, y)

)2β

(∂yNβ(t, y))2
)

dy ≥ a

L0∫

ξ

∂yNβ(t, y)2dy,

and using the boundary conditions in (2.1) and (2.2)

−
(( M0(ξ)

Nβ(t, ξ)

)2β

(∂ξNβ(t, ξ))2
)

≥ α

D
(Nβ(t, L0)2 − Nβ(t, ξ)2),

namely
(( M0(ξ)

Nβ(t, ξ)

)2β

(∂ξNβ(t, ξ))2
)

≤ α

D
(Nβ(t, ξ)2 − Nβ(t, L0)2) ≤ α

D
Nβ(t, ξ)2.
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Since Nβ(·, ξ) is nonincreasing

( M0(ξ)
Nβ(t, ξ)

)β

|∂ξNβ(t, ξ)| ≤
√

α

D
Nβ(t, ξ) ≤

√
α

D
Nβ(0, ξ) =

√
α

D
M0(ξ),

using ∂yNβ(t, ξ) ≤ 0, we have (5.2). �

We continue with the analysis of the behavior of ∂tNβ(t, y) as β → ∞.

Theorem 5.1. For every T > 0

lim
β→∞

∫

ET

(Nβ(t, y)
M0(y)

)β

|∂tNβ(t, y)|dtdy = 0.

The following lemma is needed.

Lemma 5.2. We have that

lim
β→∞

L0∫

0

∂tNβ(t, y)∂yNβ(t, y)dy = 0, uniformly with respecttot ∈ [0,∞[; (5.4)

lim
β→∞

∫

ET

(Nβ(t, y)
M0(y)

)β

(∂tNβ(t, y))2dtdy = 0, T > 0. (5.5)

Proof. We multiply the equation in (2.1) by ∂yNβ(t, y)

∂tNβ(t, y)∂yNβ(t, y) +
a

2
∂yNβ(t, y)2 =

d

2
∂y

(( M0(y)
Nβ(t, y)

)2β

(∂yNβ(t, y))2
)

,

Integrating with respect to y on [0, L0] and using Theorem 2.1 and the boundary conditions in (2.1)

L0∫

0

∂tNβ(t, y)∂yNβ(t, y)dy +
α

2(β + 1)
(Nβ(t, L0)2 − Nβ(t, 0)2) =

D

2(β + 1)
(− η2

D2

)
.

Thanks to (5.1)
∣
∣
∣
∣
∣
∣

L0∫

0

∂tNβ(t, y)∂yNβ(t, y)dy

∣
∣
∣
∣
∣
∣
≤ 1

2(β + 1)
(
αM0(0)2 +

η2

D

)
,

and the (5.4).
Lemma 4.2 holds independently on the sign of DM ′′

0 (y) − αM(y), (1.3) and (1.4). Indeed, its proof
uses only (1.2) and Theorem 2.1. Therefore

lim sup
β→∞

{ ∫

ET

(Nβ(t, y)
M0(y)

)β(∂tNβ(t, y))2dtdy+

+
Dβ

2(β + 1)

∫

ET

( M0(y)
Nβ(t, y)

)β(∂yNβ(t, y))2
∂tNβ(t, y)
Nβ(t, y)

dtdy
}

≤ 0. (5.6)

Since Nβ(·, y) is nonincreasing, the second term is negative; as a consequence in order to prove (5.5), it
is enough to prove that the second term vanishes as β → ∞.
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Thanks to Lemma 5.1

Iβ :=

∣
∣
∣
∣
∣
∣

∫

ET

( M0(y)
Nβ(t, y)

)β(∂yNβ(t, y))2
∂tNβ(t, y)
Nβ(t, y)

dtdy

∣
∣
∣
∣
∣
∣

=
∫

ET

( M0(y)
Nβ(t, y)

)β |∂yNβ(t, y)| |∂tNβ(t, y)∂yNβ(t, y)|
Nβ(t, y)

dtdy

≤
√

α

D

∫

ET

M0(y)
Nβ(t, y)

|∂tNβ(t, y)∂yNβ(t, y)|dtdy.

Using (1.2) and Lemma 5.1

Iβ ≤
√

α

D

c∗

c∗e− α
β+1T

∫

ET

|∂tNβ(t, y)∂yNβ(t, y)|dtdy,

since ∂yNβ(t, y) ≤ 0 (see Theorem 3.2) and ∂tNβ(t, y) ≤ 0 (see Theorem 3.1)

Iβ ≤
√

α

D

c∗

c∗e− α
β+1T

∫

ET

∂tNβ(t, y)∂yNβ(t, y)dtdy.

By (5.4)

lim
β→∞

Iβ = 0,

that gives (5.5). �

Proof of Theorem 5.1. Since Nβ(·, y) in nonincreasing

Nβ(t, y)
M0(y)

≤ 1, (t, y) ∈ E∞,

and then
∫

ET

(Nβ(t, y)
M0(y)

)β |∂tNβ(t, y)|dtdy ≤
∫

ET

(Nβ(t, y)
M0(y)

) β
2 |∂tNβ(t, y)|dtdy ≤

≤
√

TL0

√
√
√
√

∫

ET

(Nβ(t, y)
M0(y)

)β(∂tNβ(t, y))2dtdy.

The claim follows from (5.5). �

We study the behavior of Nβ(t, y) as β → ∞.

Theorem 5.2. For every 0 ≤ T < ∞

lim
β→∞

L0∫

0

(Nβ(t, y)
M0(y)

)β

|Nβ(t, y) − M0(y)|rdy = 0, 1 ≤ r < ∞,

uniformly with respect to t ∈ [0, T ].
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Proof. Consider

Iβ(t) :=

L0∫

0

(Nβ(t, y)
M0(y)

)β

|Nβ(t, y) − M0(y)|dy

=

L0∫

0

(Nβ(t, y)
M0(y)

)β∣∣
∣

t∫

0

∂τNβ(τ, y)dτ
∣
∣
∣dy.

Since
(

Nβ(·,y)
M0(y)

)β

is nonincreasing, for every 0 ≤ τ ≤ t

(Nβ(t, y)
M0(y)

)β

≤
(Nβ(τ, y)

M0(y)

)β

and then

Iβ(t) ≤
L0∫

0

dy

t∫

0

(Nβ(τ, y)
M0(y)

)β∣∣
∣∂τNβ(τ, y)

∣
∣
∣dτ.

Given 0 ≤ T < ∞

Iβ(t) ≤
∫

ET

(Nβ(τ, y)
M0(y)

)β∣∣
∣∂τNβ(τ, y)

∣
∣
∣dτdy, 0 ≤ t ≤ T.

Using Theorem 5.1

lim
β→∞

Iβ(t) = 0

uniformly with respect to t ∈ [0, T ]. Finally, since (Nβ)β>1 is bounded in L∞(ET ) (see Lemma 5.1.i))
and M0 ∈ L∞(0, L0) (see (1.2)),

L0∫

0

(Nβ(t, y)
M0(y)

)β

|Nβ(t, y) − M0(y)|rdy ≤ (M0(0) + c∗)r−1
Iβ(t), 1 < r < ∞,

that gives the claim. �

We are finally ready for the proof of Theorem 1.2.

Proof of Theorem 1.2.

Δβ(t) =

Lθ(t)∫

0

|Mθ(t, x) − M0(Yθ(t, x))|rdx

and consider the change of variable y = Yθ(t, x). For every t, x = Xθ(t, y) is the inverse of y = Yθ(t, x),
therefore

dx = ∂yXθ(t, y)dy =
dy

∂xYθ(t,Xθ(t, y))
=
(Nβ(t, y)

M0(y)

)β

dy.
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Thanks to the definition of Nβ(t, y),

Δβ(t) =

L0∫

0

|Mθ(t,Xθ(t, y)) − M0(y)|r
(Nβ(t, y)

M0(y)

)β

dy

=

L0∫

0

(Nβ(t, y)
M0(y)

)β

|Nβ(t, y) − M0(y)|rdy,

and, using Theorem 5.2, we get i).
Thanks to (1.4) and Theorem 3.1.ii), we have ∂tNβ(t, y) ≤ 0, (t, y) ∈ E∞. Moreover, since 0 ≤

Yθ(t, x) ≤ L0,

uθ(t, x) = β

Yθ(t,x)∫

0

Nβ(t, y)β−1∂tNβ(t, y)
M0(y)β

dy ≤ 0 (5.7)

and

|uθ(t, x)| ≤ β

L0∫

0

1
Nβ(t, y)

(Nβ(t, y)
M0(y)

)β

|∂tNβ(t, y)|dy.

Due to (5.1)

|uθ(t, x)| ≤ β

c∗e− α
β+1 t

L0∫

0

(Nβ(t, y)
M0(y)

)β

|∂tNβ(t, y)|dy,

where c∗ is defined in (1.2). Since M0(y) is nonincreasing (see (1.4))

|uθ(t, x)| ≤ βe
α

β+1 t

inf
0≤y≤L0

M0(y)

L0∫

0

(Nβ(t, y)
M0(y)

)β

|∂tNβ(t, y)|dy

=
βe

α
β+1 t

M0(L0)

L0∫

0

(Nβ(t, y)
M0(y)

)β

|∂tNβ(t, y)|dy.

Being |∂tNβ(t, y)| = −∂tNβ(t, y), thanks to the equation in (2.1) and (2.2)

|uθ(t, x)| ≤ βe
α

β+1 t

(β + 1)M0(L0)

⎧
⎨

⎩
α

L0∫

0

Nβ(t, y)β+1

M0(y)β
dy − D

L0∫

0

∂y

((Nβ(t, y)
M0(y)

)β

∂yNβ(t, y)
)

dy

⎫
⎬

⎭
.

Lemma 3.1 and the boundary conditions in (2.1) imply

|uθ(t, x)| ≤ β

β + 1
e

α
β+1 t

M0(L0)

{
α
( η

α
+ e−αt(‖M0‖L1(0,L0)

− η

α
)
)

− D
η

D

}

=
β

β + 1
e

α
β+1 t

M0(L0)

{
α ‖M0‖L1(0,L0)

− η
}

.

In light of (5.7) we get

− β

β + 1
e

α
β+1 t

M0(L0)

{
α ‖M0‖L1(0,L0)

− η
}

≤ uθ(t, x) ≤ 0,

that gives ii).
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We observe that

Lθ(t) =

L0∫

0

(Nβ(t, y)
M0(y)

)β

dy

=

L0∫

0

(Nβ(t, y)
M0(y)

)β M0(y) − Nβ(t, y)
M0(y)

dy

︸ ︷︷ ︸
Iβ(t)

+

L0∫

0

(Nβ(t, y)
M0(y)

)β dy

M0(y)
︸ ︷︷ ︸

IIβ(t)

.

Being Nβ(·, y) and M0(y) nonincreasing, we have

Nβ(t, y) ≤Nβ(0, y) = M0(y), M0(L0) ≤ M0(y),

0 ≤ Iβ(t) ≤ 1
M0(L0)

L0∫

0

(Nβ(t, y)
M0(y)

)β

(M0(y) − Nβ(t, y))dy,

and using Theorem 5.2

lim
β→∞

Iβ(t) = 0, uniformly with respect tot ∈ [0, T ], 0 ≤ T < ∞.

From the equation in (2.1), we get

∂t

(

eαt Nβ(t, y)β+1

M0(y)β

)

= D∂y

(

eαt
( M0(y)

Nβ(t, y)

)β

∂yNβ(t, y)
)

.

Multiplying by 1/M0(y) and integrating over [0, L0]

L0∫

0

∂t

(

eαt Nβ(t, y)β+1

M0(y)β

1
M0(y)

)

dy = D

L0∫

0

∂y

(

eαt
( M0(y)

Nβ(t, y)

)β

∂yNβ(t, y)
)

dy

M0(y)
,

and then

∂t

⎛

⎝eαt

L0∫

0

Nβ(t, y)β+1

M0(y)β

dy

M0(y)

⎞

⎠

= Deαt

[( M0(y)
Nβ(t, y)

)β ∂yNβ(t, y)
M0(y)

]L0

0

− Deαt

L0∫

0

( M0(y)
Nβ(t, y)

)β

∂yNβ(t, y)
(

− M ′
0(y)

M0(y)2
)
dy

= Deαt η

D

1
M0(0)

+ Deαt

L0∫

0

( M0(y)
Nβ(t, y)

)β ∂yNβ(t, y)M ′
0(y)

M0(y)2
dy.

Using (1.4) and Theorem 3.2, we have ∂yNβ(t, y)M ′
0(y) ≥ 0, that gives
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eαt η

M0(0)
≤∂t

⎛

⎝eαt

L0∫

0

Nβ(t, y)β+1

M0(y)β

dy

M0(y)

⎞

⎠ ≤

≤eαt η

M0(0)
+ Deαt

L0∫

0

( M0(y)
Nβ(t, y)

)β ∂yNβ(t, y)M ′
0(y)

M0(y)2
dy.

Thanks to (5.2) and (1.4)

eαt η

M0(0)
≤ ∂t

⎛

⎝eαt

L0∫

0

Nβ(t, y)β+1

M0(y)β

dy

M0(y)

⎞

⎠

≤ eαt η

M0(0)
+ Deαt

√
α

D

L0∫

0

|M ′
0(y)|

M0(y)
dy

= eαt η

M0(0)
− eαt

√
αD

L0∫

0

M ′
0(y)

M0(y)
dy

= eαt η

M0(0)
+ eαt

√
αD log

M0(0)
M0(L0)

.

Integrating with respect to t on [0, T ]

eαT − 1
α

η

M0(0)
≤ eαT

L0∫

0

Nβ(T, y)β+1

M0(y)β

dy

M0(y)
− L0

≤ eαT − 1
α

( η

M0(0)
+

√
αD log

M0(0)
M0(L0)

)
.

Since

Lθ(T ) − Iβ(T ) = IIβ(T ) =

L0∫

0

Nβ(T, y)β+1

M0(y)β

dy

M0(y)
,

we have

L0e
−αT +

1 − e−αT

α

η

M0(0)
≤ Lθ(T ) − Iβ(T ) ≤

≤ L0e
−αT +

1 − e−αT

α

η

M0(0)
+

1 − e−αT

α

√
αD log

M0(0)
M0(L0)

.

Sending β → ∞ we get the claim. �
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