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Abstract. This paper studies the propagation thresholds in a diffusive epidemic model with latency and vaccination. When
the initial condition satisfies proper exponential decaying behavior, we present the spatial expansion feature of the infected.
Different leftward and rightward spreading speeds are obtained with respect to different decaying initial values. Moreover,
the convergence in the sense of compact open topology is also studied when the spreading speeds are finite. Finally, we show
that the minimal spreading speed is the minimal wave speed of traveling wave solutions, which also presents the precisely
asymptotic behavior of traveling wave solutions for the infected branch at the disease-free side. Here, the asymptotic
behavior plays an important role that distinguishes the minimal spreading speed from all possible spreading speeds. From
the definition of possible spreading speeds, we may find some factors affecting the spatial expansion ability, which includes
that the vaccination could decrease the spatial expansion ability of the disease.

Mathematics Subject Classification. 35K57, 92D30.

Keywords. Generalized upper-lower solutions, Asymptotic spreading, Nonmonotone delayed system, Minimal wave speed,

Fast propagation.

1. Introduction

The vaccination has been widely utilized to prevent diseases, which greatly reduces risks of getting a
disease [36]. To quantitatively understand the role of vaccination, many mathematical models have been
established and studied. For example, in very recent works by Papst et al. [26] and Zou et al. [44], the
effect of vaccination and other factors were, respectively, investigated to model the spreading of seasonal
flu and COVID-19. Moreover, Miyaoka et al. [24] discussed the optimal control of Zika virus by analyzing
a reaction-diffusion model and El Alami Laaroussi and Rachik [10] used a reaction-diffusion system to
model the spatial spread of Ebola in gorillas in Gabon, in which the nontrivial role of vaccination was
discussed.

By introducing an exposed class into the classical SVIR (susceptible, vaccinated, infected and recovered
classes) compartmental epidemic model, He et al. [13] established a diffusive epidemic model with latency
and vaccination. Since the R−branch is linear and does not affect the dynamics for S, V, I in their model,
they studied the following model

⎧
⎪⎪⎨

⎪⎪⎩

∂S(x,t)
∂t = d1

∂2S(x,t)
∂x2 + Π − (μ + ω)S(x, t) − β1S(x,t)I(x,t)

1+αI(x,t) ,
∂V (x,t)

∂t = d2
∂2V (x,t)

∂x2 + ωS(x, t) − μV (x, t) − β2V (x,t)I(x,t)
1+αI(x,t) ,

∂I(x,t)
∂t = d3

∂2I(x,t)
∂x2 + e−μτ [β1S(x,t−τ)+β2V (x,t−τ)]I(x,t−τ)

1+αI(x,t−τ) − (μ + ν)I(x, t),

(1.1)
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in which x ∈ R, t > 0, S(x, t), V (x, t), I(x, t) are the population sizes of the susceptible, vaccinated,
infected classes at location x and time t, respectively, d1 > 0, d2 > 0, d3 > 0 are positive constants de-
scribing moving ability of each class. In the above model, Π > 0 and ω > 0 depend on the entering flux
and the vaccination rate of the susceptible, respectively, μ denotes the natural death rate, τ ≥ 0 is the
latent period, β1 and β2 are the transmission coefficients of susceptible and vaccinated individuals, respec-
tively, α ≥ 0 measures the saturation level, ν is the recovery rate. Here, e−μτ [β1S(x,t−τ)+β2V (x,t−τ)]I(x,t−τ)

1+αI(x,t−τ)

reflects the incidence effect.
Evidently, (1.1) always has a disease-free equilibrium

E0 = (S0, V0, 0) :=
(

Π
ω + μ

,
Πω

μ(ω + μ)
, 0

)

.

When

R1
0 :=

e−μτ (β1S0 + β2V0)
μ + ν

> 1,

it also has a unique endemic steady state E∗
1 = (S∗

1 , V ∗
1 , I∗

1 ) with

S∗
1 =

Π(1 + αI∗
1 )

β1I∗
1 + (μ + ω) (1 + αI∗

1 )
, V ∗

1 =
ωΠ(1 + αI∗

1 )2

(β1I∗
1 + (μ + ω) (1 + αI∗

1 )) (β2I∗
1 + μ (1 + αI∗

1 ))

and I∗
1 is the unique positive root of AI2 + BI + C = 0, where

A = (μα + β2) ((μ + ω)α + β1) > 0, C = μ(μ + ω)
(
1 − R1

0

)
< 0,

B = (μ + ω) (2μα + β2) + μβ1 − α (β1μ + β2ω) + β1β2

μ + ν
e−μτΠ.

In He et al. [13], the authors formulated the disease spreading process by traveling wave solutions of (1.1).
Here, a traveling wave solution of (1.1) is a special entire solution taking the form

(S(x, t), V (x, t), I(x, t)) = (Ŝ(x + ct), V̂ (x + ct), Î(x + ct)), x, t ∈ R,

and satisfying the asymptotic boundary conditions

(Ŝ, V̂ , Î)(−∞) = (S0, V0, 0) and (Ŝ, V̂ , Î)(+∞) = (S∗
1 , V ∗

1 , I∗
1 ) ,

where c > 0 is the wave speed and (Ŝ, Î, R̂) is the wave profile. By the definition of traveling wave
coordinate x + ct, we see that such a traveling wave solution could model the disease spreading process
at a fixed speed c. Therefore, the threshold that determines the existence or nonexistence of nontrivial
traveling wave solutions becomes very important, which is also called the minimal wave speed. In He et
al. [13], the authors gave such a threshold for (1.1). In particular, when the wave speed is the threshold,
the existence of traveling wave solutions was proved by passing to a limit function in Ref. [13]. We also
refer to some recent works [20,33,38,39,41] for the traveling wave solutions in epidemic models with the
vaccinated class.

Based on the above work, the purpose of this article is to study the propagation dynamics for a
generalized system of (1.1) by considering general incidence functions. Our model is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂S(x,t)
∂t = d1

∂2S(x,t)
∂x2 + Π − (μ + ω)S(x, t) − S(x, t)f1(I(x, t)),

∂V (x,t)
∂t = d2

∂2V (x,t)
∂x2 + ωS(x, t) − μV (x, t) − V (x, t)f2(I(x, t)),

∂I(x,t)
∂t = d3

∂2I(x,t)
∂x2 − (μ + ν)I(x, t)

+ e−μτ [S (x, t − τ) f1(I(x, t − τ)) + V (x, t − τ)f2(I(x, t − τ))],

(1.2)

in which two functions f1, f2 : [0,∞) → [0,∞) will be further stated in Sect. 2. Our study is from both
the initial value problem and the traveling wave solutions that model the disease expansion process. In
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what follows, for the initial value problem, we equip (1.2) with the following initial condition

(S(x, s), V (x, s), I(x, s)) = (φ1(x, s), φ2(x, s), φ3(x, s)), x ∈ R, s ∈ [−τ, 0]. (1.3)

When the initial condition (1.3) satisfies proper limit assumptions, we shall try to show the long time
feature of solutions to (1.2) by leftward and rightward spreading speeds. Here, the leftward and rightward
spreading speeds of a function are defined as follows (see Aronson and Weinberger [3–5] for related
definition).

Definition 1.1. Assume that u(x, t) ≥ 0, x ∈ R, t > 0. Then, a finite constant cl
u > 0 is called the leftward

spreading speed of it provided that
(a) lim supt→∞ sup−x>(clu+ε)t u(x, t) = 0 for any given ε > 0;
(b) lim inft→∞ inf0<−x<(clu−ε)t u(x, t) > 0 for any given ε ∈ (0, cl

u).

In particular, we define cl
u = ∞ if lim inft→∞ inf0<−x<ct u(x, t) > 0 for any given c > 0. Similarly, we can

define the rightward spreading speed cr
u.

For parabolic systems, traveling wave solutions and spreading speeds have been widely studied. For
example, when a system could generate monotone semiflows [11,14,19,23,27,35] or a nonmonotone semi-
flow can be controlled by two monotone semiflows [15,17,31,40], many important conclusions have been
established, which often imply that the minimal wave speed equals to the minimal spreading speed.
Moreover, when the initial value problem is concerned, the fast propagation or accelerating spreading of
cooperative systems or scalar equations was also studied in [2,12,37], which shows the existence of infinite
spreading speed. In epidemics models, these thresholds could describe the ability of disease spreading and
have been studied in many works, see earlier results in [7,8,29]. In particular, when an epidemic system
can not generate monotone semiflows, the spreading speed has attracted much attention in the past
decade, see [9,16,22,32,42]. It should be noted that in model (1.2), the third equation of I depends on
the two equations of S, V such that the structure is different from that in [1,9,16,22,32,42] and the known
results in these works can not be directly applied to it. Moreover, even if only the traveling wave solutions
are concerned, the possible deficiency of classical comparison principle in (1.2) makes the analysis more
complex than the special monotone model (1.1) in Ref. [13].

In this article, we first show possible different leftward and rightward propagation thresholds when the
initial values satisfy different decaying behaviors. The upper bounds of spreading speed (see the item (a)
in Definition 1.1) are estimated by the upper bounds of S, V , as well as some auxiliary monotone delayed
equations. Furthermore, motivated by Ref. [22,25], we shall construct an auxiliary monotone delayed
equation of I according to the estimation on S, V, by which we may obtain the lower bounds of spreading
speed (see the item (b) in Definition 1.1). Using these two bounds, we obtain the spreading speeds of I,
which shall be discussed in Sect. 3. Moreover, we study the convergence of initial value problem in the
sense of compact open topology, which will be presented in Sect. 4. In Sect. 5, we investigate the existence
and nonexistence of traveling wave solutions by constructing upper and lower solutions and auxiliary
monotone equations. When the wave speed is not less than the minimal wave speed, our conclusion
implies the exponentially decaying behavior of traveling wave solutions and completes the known results.
Finally, in Sect. 6, we give a brief discussion on the potential investigation and the role of vaccination.
In particular, when the vaccination plays a positive role in the sense of f1 ≤ f2, f

′
1(0) < f ′

2(0), the
vaccination could decrease the spreading ability of the disease from both the outbreak threshold and the
possible spreading speeds.

2. Main results

In this article, we shall use the standard partial ordering in R
n, n = 1, 2, 3. The assumptions on f1, f2

are first listed as follows, which will be imposed without further illustration.
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(F1) fi : [0,∞) → [0,∞) is differentiable such that fi(0) = 0 and

max{0, f ′
i(0)x − Lx1+σ} < fi(x) < f ′(0)x, x > 0

for some σ ∈ (0, 1], L > 0 and i ∈ {1, 2};
(F2) fi(x)/x is strictly decreasing in x > 0, i ∈ {1, 2}, and there exists I0 > 0 such that

e−μτ [S0 supx∈[0,I] f1(x) + V0 supx∈[0,I] f2(x)] < (μ + ν)I for any I ≥ I0.

Evidently, in the model (1.1), the corresponding monotone functions f1, f2 satisfy our condition. Besides
them, there are many functions satisfying (F1)–(F2) but they are not monotone. For example, f1(x) =
f2(x) = pxe−x, 2pe−μτ > μ + ν also satisfies (F1)–(F2) but the monotone property might be false. With
the existence of nonmonotonic f1, f2 in (1.2), the comparison principle similar to that in Ref. [13] does
not hold always.

To state our main results, we further introduce some constants. Firstly, define

R0 :=
e−μτ (S0f

′
1(0) + V0f

′
2(0))

μ + ν
S

and consider

Λ(λ, c) = d3λ
2 − cλ + e−(μ+cλ)τ (S0f

′
1(0) + V0f

′
2(0)) − (μ + ν), λ ≥ 0, c ≥ 0.

By the monotonicity in c > 0 and convex in λ ≥ 0, the following conclusion holds.

Lemma 2.1. Assume that R0 > 1. Then, there exists a constant c∗ > 0 such that Λ(λ, c∗) = 0 has a
unique positive root λ∗ such that

2d3λ − c − cτe−(μ+cλ)τ (S0f
′
1(0) + V0f

′
2(0)) = 0, λ = λ∗, c = c∗.

Moreover, if c > c∗, then Λ(λ, c) = 0 has two distinct positive roots and we denote the smaller (larger)
root by λc(Λc).

With these constants, we give the following assumptions and classifications of the initial condition
(1.3).
(I1) (0, 0, 0) ≤ (φ1(x, s), φ2(x, s), φ3(x, s)) ≤ (S0, V0, I0) for all x ∈ R, s ∈ [−τ, 0];
(I2) (φ1(x, s), φ2(x, s), φ3(x, s)) is uniformly continuous for all x ∈ R, s ∈ [−τ, 0] and φ3 has nonempty

support in the sense that φ3(x0, 0) > 0 for some x0 ∈ R;
(I3) infx∈R,s∈[−τ,0] φ3(x, s) > 0;
(IL1) there exists A1 > 0 such that φ3(x, s) ≤ A1(−x + 1)eλ∗x, x < 0, s ∈ [−τ, 0];
(IL2) there exist A2 > 1, cl > c∗,X1 > 0 such that

A−1
2 eλclx ≤ φ3(x, 0) ≤ A2e

λclx, φ3(x, s) ≤ A2e
λclx, s ∈ [−τ, 0), x < −X1;

(IL3) for any ε > 0, we have lim infx→−∞ φ3(x, 0)e−εx = ∞;
(IR1) there exists A3 > 0 such that φ3(x, s) ≤ A3(x + 1)e−λ∗x, x > 0, s ∈ [−τ, 0];
(IR2) there exist A4 > 1, cr > c∗,X2 > 0 such that if x > 0 is large, we have

A−1
4 e−λcrx ≤ φ3(x, 0) ≤ A4e

−λcrx, φ3(x, s) ≤ A4e
−λcrx, s ∈ [−τ, 0), x > X2;

(IR3) for any ε > 0, we have lim infx→+∞ φ3(x, 0)eεx = ∞.

Let

[Tiu(·, s)] (t)(x) =
1√

4πdit

∫

R

e
−(x−y)2

4dit u(x, s)dy, t ≥ 0, x ∈ R, i = 1, 2, 3,

in which u is a continuous and bounded function. Using the notation, we give the following existence
result of bounded solution.
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Table 1. Spreading speeds of (1.1) with different initial conditions

Initial conditions (IL1) and (IR1) (IL1) and (IR2) (IL1) and (IR3)
Spreading speeds clI = crI = c∗ clI = c∗, crI = cr clI = c∗, crI = ∞
Initial conditions (IL2) and (IR1) (IL2) and (IR2) (IL2) and (IR3)
Spreading speeds clI = cl, c

r
I = c∗ clI = cl, c

r
I = cr clI = cl, c

r
I = ∞

Initial conditions (IL3) and (IR1) (IL3) and (IR2) (IL3) and (IR3)

Spreading speeds clI = ∞, crI = c∗ clI = ∞, crI = cr clI = crI = ∞

Theorem 2.2. Assume that (I1) and (I2) hold. Then, (1.2) with (1.3) has a mild solution

S(x, t) = [T1S(·, 0)] (t)(x) +

t∫

0

[T1 [Π − (μ + ω)S(·, s) − S(·, s)f1(I(·, s))]] (t − s)(x)ds,

V (x, t) = [T2V (·, 0)] (t)(x) +

t∫

0

[T2 [ωS(·, s) − μV (·, s) − V (·, s)f2(I(·, s))]] (t − s)(x)ds,

I(x, t) = [T3I(·, 0)] (t)(x) − (μ + ν)

t∫

0

[T3I(·, s)] (t − s)(x)ds

+e−μτ

t∫

0

[T3 [S(·, s − τ)f1(I(·, s − τ)) + V (·, s − τ)f2(I(·, s − τ))]] (t − s)(x)ds

for all t > 0, x ∈ R, which is the classical solution when t > τ and also satisfies

(0, 0, 0) ≤ (S(x, t), V (x, t), I(x, t)) ≤ (S0, V0, I0), I(x, t) > 0, x ∈ R, t > 0.

Moreover, for each t0 > 0, there exists δ > 0 such that

S(x, t) > δ, V (x, t) > δ, x ∈ R, t ≥ t0.

Finally, the partial derivatives

ut(x, t), ux(x, t), u ∈ {S, V, I}
are uniformly continuous and bounded for x ∈ R, t ≥ τ + 1.

For the former part of this conclusion, we may refer to He et al. [13]. The latter part is clear by the
boundedness, and we omit the proof here. Using these constants, for the bounded solution of (1.2) with
(1.3), we present the following four theorems.

Theorem 2.3. Assume that R0 > 1 and (I1)–(I2) hold. Then, with different decaying initial values, the
leftward and rightward spreading speeds of (1.2) with (1.3) are given by Table 1.

It should be noted that |x|e−λ∗|x| plays an important role in determining the spreading speeds. In
fact, this is related to the asymptotic behavior of traveling wave solutions with minimal wave speed c∗.
Here, a traveling wave solution of (1.2) is a special solution having the form

(S(x, t), V (x, t), I(x, t)) = (S(x + ct),V(x + ct), I(x + ct)), x, t ∈ R, (2.1)

and satisfying the asymptotic boundary conditions

(S,V, I)(−∞) = (S0, V0, 0) and lim infz→∞(S(z)V(z)I(z)) > 0. (2.2)
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Theorem 2.4. If R0 > 1, then (2.1)–(2.2) has a positive solution if and only if c ≥ c∗. When c = c∗(c >
c∗), (2.1)–(2.2) has a positive solution such that

limz→−∞{I(z)e−λ∗z/z} < 0 (limz→−∞{I(z)e−λcz} > 0).

If R0 ≤ 1, then (2.1)-(2.2) does not have a nontrivial positive solution for any c ∈ R.

Remark 2.5. Combining Theorem 2.4 with [13, Theorem 3.7], for model (1.1) with critical wave speed,
we obtain the precise asymptotic behavior of Î(z) when z → −∞.

To state the convergence, we make several assumptions.

(F3) If R0 > 1, then system (1.2) has a unique positive steady state (S∗, V ∗, I∗) that is spatially homo-
geneous.

(B1) Assume that (F3) holds. If positive constants S, V , I, S, V , I satisfy

(0, 0, 0) � (S, V , I) ≤ (S, V , I) � (S0, V0, I0)

and

Π − (μ + ω)S − S supI∈[I,I] f1(I) ≤ 0, (2.3)

Π − (μ + ω)S − S infI∈[I,I] f1(I) ≥ 0, (2.4)

ωS − μV − V supI∈[I,I] f2(I) ≤ 0, (2.5)

ωS − μV − V infI∈[I,I] f2(I) ≥ 0, (2.6)

e−μτS infI∈[I,I] f1(I) + e−μτV infI∈[I,I] f2(I) − (μ + ν)I ≤ 0, (2.7)

e−μτS supI∈[I,I] f1(I) + e−μτV supI∈[I,I] f2(I) − (μ + ν)I ≥ 0, (2.8)

then (S, V , I) = (S, V , I) = (S∗, V ∗, I∗).
(B2) Assume that R0 > 1, (F3), (I1)–(I3) hold. Then, (1.2) with (1.3) satisfies

limt→∞(|S(x, t) − S∗|, |V (x, t) − V ∗|, |I(x, t) − I∗|) = (0, 0, 0) uniformly in x ∈ R.

Theorem 2.6. Assume that (I1)–(I2) hold and R0 > 1 in (1.2). If cl
I , c

r
I are finite, then

lim sup
t→∞

sup
x>(crI+ε)t or x<−(clI+ε)t

(|S(x, t) − S0| + |V (x, t) − V0| + I(x, t)) = 0 for any ε > 0. (2.9)

Further suppose that (B1) or (B2) holds, then

lim sup
t→∞

sup
(crI−ε)t>x>−(clI−ε)t

(|S(x, t) − S∗| + |V (x, t) − V ∗| + |I(x, t) − I∗|) = 0 (2.10)

for any small ε > 0. Therefore, if (B1) or (B2) holds, then a positive solution of (2.1)–(2.2) satisfies

limz→∞(S(z),V(z), I(z)) = (S∗, V ∗, I∗). (2.11)

Because f1, f2 may be nonmonotone, it is difficult to give a sufficient condition on general f1, f2 such
that (B1) or (B2) holds. But for special functions f1, f2, the verification is possible. For the assumption
(B1) in (1.1), we also give the following sufficient condition.

Proposition 2.7. Assume that R1
0 > 1 in (1.1). Then, (B1) holds provided that

α(μ + ν)(I − I) ≤ β1S

[
e−μτβ1

μ + ω
+

e−μτβ2

μ

ω

(μ + ω)

] [
I

1 + αI
− I

1 + αI

]

+β2V
e−μτβ2

μ

[
I

1 + αI
− I

1 + αI

]

(2.12)
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leads to I = I. In particular, (2.12) implies I = I if

α(μ + ν) ≥ β1S0

[
e−μτβ1

μ + ω
+

e−μτβ2

μ

ω

(μ + ω)

]

+ β2V0
e−μτβ2

μ
, (2.13)

which indicates that large α leads to the convergence.

Similarly, for (B2), we have the following conclusion.

Proposition 2.8. Assume that R1
0 > 1 in (1.1). Then, by regarding (1.1) as a special case of (1.2), (B2)

holds for large α > 0.

Moreover, if R0 ≤ 1, then the following convergence remains true.

Theorem 2.9. Assume that (I1) and (I2) hold. If R0 ≤ 1 in (1.2), then

limt→∞(S(x, t), V (x, t), I(x, t)) = (S0, V0, 0) uniformly in x ∈ R. (2.14)

3. Proof of spreading speeds

In this part, we shall give the proof of Theorems 2.3 and 2.9. We first consider the following initial value
problem

⎧
⎪⎨

⎪⎩

∂U(x,t)
∂t = D0

∂2U(x,t)
∂x2 + f̂1(U(x, t − τ)) + f̂2(U(x, t − τ))

−εU(x, t − τ) − C1U(x, t) − C2U
2(x, t),

U(x, s) = Φ(x, s),

(3.1)

in which x ∈ R, t > 0, s ∈ [−τ, 0],D0, C1 are positive constants and ε ≥ 0, C2 ≥ 0, f̂1, f̂2 satisfy (F1) and
(F2). When f̂ ′

1(0) + f̂ ′
2(0) − ε > C1, we define u∗ > 0 as the unique root of

f̂1(u∗)/u∗ + f̂2(u∗)/u∗ − ε − C1 − C2u
∗ = 0,

of which the uniqueness is clear by the monotonicity of f̂i(x)/x. We also define

Λ1(λ, c) = D0λ
2 − cλ + (f̂ ′

1(0) + f̂ ′
2(0) − ε)e−λcτ − C1, c ≥ 0, λ > 0,

for which the properties can be studied similar to Lemma 2.1.

Lemma 3.1. If f̂ ′
1(0)+ f̂ ′

2(0) > ε+C1, then there exists a constant c′
1 > 0 such that Λ1(λ, c) = 0 has a real

root if and only if c ≥ c′
1. Therefore, there exists a unique λ′

1 > 0 such that Λ1(λ′
1, c

′
1) = 0. In particular,

c′
1, λ

′
1 are continuous in ε. When c > c′

1, then Λ1(λ, c) = 0 has two positive roots and the smaller one is
denoted by λc

1.

Using these constants, we have the following conclusion by the entire solutions in Li et al. [18],
spreading speeds in Solar and Trofimchuk [28], Thieme and Zhao [30], stability of traveling waves in
Wang et al. [34] and the fast propagation in Zhu [43].

Lemma 3.2. Assume that there exists u ≥ u∗ such that

f̂1(u) + f̂2(u) − εu, u ∈ [0, u]

is nondecreasing. If Φ(x, s) is nonnegative, bounded and continuous and 0 ≤ Φ(x, s) ≤ u, x ∈ R, s ∈
[−τ, 0], then (3.1) has a bounded mild solution 0 ≤ U(x, t) ≤ u, x ∈ R, t > 0, which has the following
properties.

(D1) It is a classical solution for all t > τ.

(D2) If f̂ ′
1(0) + f̂ ′

2(0) ≤ ε + C1, then limt→∞ U(x, t) = 0 uniformly in x ∈ R.



59 Page 8 of 28 Y. Wang et al. ZAMP

Table 2. Spreading speeds of (3.1) with different initial conditions

Initial conditions (IL4) and (IR4) (IL4) and (IR5) (IL4) and (IR6)

Spreading speeds clU = crU = c′
1 clU = c′

1, c
r
U = cr clU = c′

1, c
r
U = ∞

Initial conditions (IL5) and (IR4) (IL5) and (IR5) (IL5) and (IR6)
Spreading speeds clU = cl, c

r
U = c′

1 clU = cl, c
r
U = cr clU = cl, c

r
U = ∞

Initial conditions (IL6) and (IR4) (IL6) and (IR5) (IL6) and (IR6)
Spreading speeds clU = ∞, crU = c′

1 clU = ∞, crU = cr clU = crU = ∞

(D3) If the continuous function U : R × [−τ,∞) → [0, u] satisfies

U(x, s) ≤ (≥)Φ(x, s), x ∈ R, s ∈ [−τ, 0]

and

U(x, t) ≤ (≥) [T3U(·, r)] (t − r)(x) +

t∫

r

[
T3

[
f̂1 (U(·, s − τ))

]]
(t − s)(x)ds

+

t∫

r

[
T3

[
f̂2 (U(·, s − τ)) − εU(·, s − τ)

]]
(t − s)(x)ds

−
t∫

r

[
T3

[
C1U(·, s) + C2U

2(·, s)]] (t − s)(x)ds

for any 0 ≤ r ≤ t, then U(x, t) ≤ (≥)U(x, t) for all x ∈ R, t > 0.

(D4) If f̂ ′
1(0) + f̂ ′

2(0) > ε + C1 and c1 > 0, c2 > 0 such that lim inft→∞ inf−c1t<x<c2t U(x, t) > 0, then
lim supt→∞ sup−c1t<x<c2t |U(x, t) − u∗| = 0.

(D5) With different decaying initial values, the spreading speeds of U are given by Table 2. Here, the
initial conditions are defined by the following items:

(IL4) there exists A5 > 0 such that Φ(x, s) ≤ A5(−x + 1)eλ′
1x, x < 0, s ∈ [−τ, 0];

(IL5) there exist A6 > 1, cl > c′
1,X3 > 0 such that

A−1
6 eλ

cl
1 x ≤ Φ(x, 0) ≤ A6e

λ
cl
1 x,Φ(x, s) ≤ A6e

λ
cl
1 x, s ∈ [−τ, 0], x < −X3;

(IL6) for any ε > 0, we have lim infx→−∞ Φ(x, 0)e−εx = ∞;
(IR4) there exists A7 > 0 such that Φ(x, s) ≤ A7(x + 1)e−λ′

1x, x > 0, s ∈ [−τ, 0];
(IR5) there exist A8 > 1, cr > c′

1,X4 > 0 such that

A−1
8 e−λcr

1 x ≤ Φ(x, 0) ≤ A8e
−λcr

1 x,Φ(x, s) ≤ A8e
−λcr

1 x, s ∈ [−τ, 0], x > X4;

(IR6) for any ε > 0, we have lim infx→+∞ Φ(x, 0)eεx = ∞.

Lemma 3.3. Theorem 2.9 holds.

Proof. By Theorem 2.2, as well as the property of semigroup, we have

I(x, t) ≤ [T3I(·, r)] (t − r)(x) + e−μτS0

t∫

r

[T3f1 (I(·, s − τ))] (t − s)(x)ds

+

t∫

r

[
T3

[
e−μτV0f2 (I(·, s − τ)) − (μ + ν)I(·, s)]] (t − s)(x)ds
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≤ [T3I(·, r)] (t − r)(x) + e−μτS0

t∫

r

[
T3f1 (I(·, s − τ))

]
(t − s)(x)ds

+

t∫

r

[
T3

[
e−μτV0f2 (I(·, s − τ)) − (μ + ν)I(·, s)]] (t − s)(x)ds (3.2)

for all 0 ≤ r ≤ t, where

f i(x) = sup
y∈[0,x]

fi(y), x ∈ [0, I0], i = 1, 2.

Evidently, f i(x) is nondecreasing and f
′
i(0) = f ′

i(0) for x ∈ [0, I0], i = 1, 2. Using (D2) and (D3) in
Lemma 3.2, we complete the proof. �

Lemma 3.4. Assume that R0 > 1 is true. Then, the upper bounds of spreading speeds in Table 1 hold.

Proof. Due to (3.2), the conclusion is clear by Lemma 3.2. �

Lemma 3.5. Assume that R0 > 1, (I1) and (I2) hold. Then, Theorem 2.3 is true.

Proof. We only consider the case t > 2τ + 1 such that the classical solution is concerned. Define

f(x) − 2(S0 + V0)εx = inf
y∈[x,I0]

[S0f1(y) + V0f2(y) − 2(S0 + V0)εy] , x ∈ [0, I0].

Evidently, for small ε > 0, we have

f(x) − 2(S0 + V0)εx, x ∈ (0, I0],

is nondecreasing and positive. In particular, (F1) implies that

f ′(0) = S0f
′
1(0) + V0f

′
2(0).

Further select ε > 0 small enough such that

d3λ
2 − cλ + e−(μ+cλ)τ (S0f

′
1(0) + V0f

′
2(0)) − (μ + ν) − 2ε(f ′

1(0) + f ′
1(0))e−λcτ > 0, λ > 0.

For any given ε > 0 satisfying the above properties, we shall prove that there exist t0 ≥ 2τ + 1,M > 0
such that

∂I(x, t)
∂t

≥ d3
∂2I(x, t)

∂x2
+ e−μτf (I(x, t − τ))

−ε(f ′
1(0) + f ′

2(0))I(x, t − τ) − (μ + ν)I(x, t) − MI2(x, t) (3.3)

for all t > t0, x ∈ R. Once (3.3) holds, then I(x, t0) > 0, x ∈ R (see Theorem 2.2), Lemma 3.2 implies the
inner spreading speeds are not less than c∗ by selecting any small ε > 0. From Lemma 3.4, we further
find that cl

I = c∗ when (IL1) holds or cr
I = c∗ when (IR1) is true.

For the case (IL2), from

∂I(x, t)
∂t

≥ d3
∂2I(x, t)

∂x2
− (μ + ν)I(x, t)

and

I(x, t) ≥ e−(μ+ν)t [T3I(·, 0)] (t)(x),

there exists a small constant ε0 > 0 such that

I(x, t0 + s) ≥ ε0e
λclx, x < 0, s ∈ [−τ, 0].

Combining this with (3.3), for any fixed c ∈ (0, cl), we can find that the leftward spreading speed is not
less than cl by selecting ε > 0 small enough. With the help of Lemma 3.4, we have cl

I = cl. Similarly, the
conclusions for cr

I = cr hold when (IR2) is true.
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When the case (IL3) is concerned, for any given ĉ > c∗ and the corresponding λĉ, we can select a
small constant ε0 > 0 such that

I(x, t0 + s) ≥ ε0e
λĉx, x < 0, s ∈ [−τ, 0].

Using (3.3), the leftward spreading speed of I is not less than ĉ. Due to the arbitrary of ĉ, cl
I = ∞.

Similarly, we can prove that (IR3) implies that cr
I = ∞.

Therefore, it suffices to obtain (3.3), which will be divided into the following two steps.

Step 1 We estimate S(x, t) − S0, V (x, t) − V0.
Step 2 From the equation of I, we shall find (3.3).

We now discuss the Step 1. Since

∂[S(x, t) − S0]
∂t

= d1
∂2[S(x, t) − S0]

∂x2
+ (μ + ω)S0 − (μ + ω)S(x, t) − S(x, t)f1(I(x, t))

= d1
∂2[S(x, t) − S0]

∂x2
− (μ + ω)[S(x, t) − S0] − S(x, t)f1(I(x, t))

≥ d1
∂2[S(x, t) − S0]

∂x2
− (μ + ω)[S(x, t) − S0] − S0f

′
1(0)I(x, t),

we have

S(x, t) − S0 ≥ −e−(μ+ω)(t−t1)S0 − S0f
′
1(0)

t∫

t−t1

e−(μ+ω)(t−s)

√
4πd1(t − s)

∫

R

e
−(x−y)2

4d1(t−s) I(y, s)dyds

for any x ∈ R, 0 ≤ t1 ≤ t < ∞. By the uniform convergence of 1√
4πd1t

∫

R

e
−y2
4d1t dy when t belongs to a

bounded interval, as well as the decay behavior of e−(μ+ω)t, we can select T1 > 2τ + 1 large enough such
that

S(x, t) − S0 ≥ −ε

4
− S0f

′
1(0)

t−1/T1∫

t−T1

e−(μ+ω)(t−s)

√
4πd1(t − s)

T1∫

−T1

e
−(x−y)2

4d1(t−s) I(y, s)dyds

for any t > 2T1.

Furthermore, from

∂[V (x, t) − V0]
∂t

= d2
∂2[V (x, t) − V0]

∂x2
+ ω[S(x, t) − S0] − μ[V (x, t) − V0] − V (x, t)f2(I(x, t))

≥ d2
∂2[V (x, t) − V0]

∂x2
+ ω[S(x, t) − S0] − μ[V (x, t) − V0] − V0f

′
2(0)I(x, t),

we obtain

V (x, t) − V0 ≥ −e−μ(t−t1)V0 − V0f
′
2(0)

t∫

t−t1

e−μ(t−s)

√
4πd2(t − s)

∫

R

e
−(x−y)2

4d2(t−s) I(y, s)dyds

+ω

t∫

t−t1

e−μ(t−s)

√
4πd2(t − s)

∫

R

e
−(x−y)2

4d2(t−s) [S(y, s) − S0]dyds

≥ −V0e
−μ(t−t1) − S0e

−(μ+ω)(t−t1)(eωt1 − 1)
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−V0f
′
2(0)

t∫

t−t1

e−μ(t−s)

√
4πd2(t − s)

∫

R

e
−(x−y)2

4d2(t−s) I(y, s)dyds

−ωS0f
′
1(0)

t∫

t−t1

e−μ(t−s)

√
4πd2(t − s)

∫

R

e
−(x−y)2

4d2(t−s)

×
⎡

⎣

s∫

s−t1

e−(μ+ω)(s−r)

√
4πd1(s − r)

∫

R

e
−(z−y)2

4d1(s−r) I(z, r)dzdr

⎤

⎦ dyds

for any x ∈ R, 0 ≤ t1 ≤ t < ∞, s ∈ [t − t1, t]. Similar to the discussion on S(x, t), we can select T2 ≥ T1

such that

V (x, t) − V0 ≥ −ε

4
− V0f

′
2(0)

t−1/T2∫

t−T2

e−μ(t−s)

√
4πd2(t − s)

T2∫

−T2

e
−(x−y)2

4d2(t−s) I(y, s)dyds

−ωS0f
′
1(0)

t−1/T2∫

t−T2

e−μ(t−s)

√
4πd2(t − s)

T2∫

−T2

e
−(x−y)2

4d2(t−s)

×
⎡

⎣

s∫

s−T1

e−(μ+ω)(s−r)

√
4πd1(s − r)

T1∫

−T1

e
−(z−y)2

4d1(s−r) I(z, r)dzdr

⎤

⎦ dyds

for all t ≥ 2T1 + 2T2 + 2τ + 1, x ∈ R.

Further study the Step 2. From

∂I(x, t)
∂t

= d3
∂2I(x, t)

∂x2
+ e−μτS (x, t − τ) f1(I(x, t − τ))

+e−μτV (x, t − τ) f2(I(x, t − τ)) − (μ + ν)I(x, t)

= d3
∂2I(x, t)

∂x2
+ e−μτ [S0f1(I(x, t − τ)) + V0f2(I(x, t − τ))] I(x, t − τ)

+e−μτ [S (x, t − τ) − S0]f1(I(x, t − τ))
+e−μτ [V (x, t − τ) − V0]f2(I(x, t − τ)) − (μ + ν)I(x, t)

≥ d3
∂2I(x, t)

∂x2
+ e−μτf(I(x, t − τ)) − (μ + ν)I(x, t)

+e−μτ [[S (x, t − τ) − S0]f ′
1(0) + [V (x, t − τ) − V0]f ′

2(0)] I(x, t − τ),

we shall look for M > 0, t0 > 0 such that

e−μτ [[S (x, t − τ) − S0]f ′
1(0) + [V (x, t − τ) − V0]f ′

2(0)] I(x, t − τ)
≥ −(f ′

1(0)ε + f ′
2(0)ε)I(x, t − τ) − MI2(x, t) (3.4)

for all x ∈ R, t ≥ t0.

If

S0f
′
1(0)

t∫

t−t1

e−(μ+ω)(t−s)

√
4πd1(t − s)

∫

R

e
−(x−y)2

4d1(t−s) I(y, s)dyds <
ε

8
, (3.5)



59 Page 12 of 28 Y. Wang et al. ZAMP

V0f
′
2(0)

t∫

t−t1

e−μ(t−s)

√
4πd2(t − s)

∫

R

e
−(x−y)2

4d2(t−s) I(y, s)dyds <
ε

8
(3.6)

and

ωf ′
1(0)S0

t−1/T2∫

t−T2

e−μ(t−s)

√
4πd2(t − s)

T2∫

−T2

e
−(x−y)2

4d2(t−s)

×
⎡

⎣

s∫

s−T1

e−(μ+ω)(s−r)

√
4πd1(s − r)

T1∫

−T1

e
−(z−y)2

4d1(s−r) I(z, r)dzdr

⎤

⎦ dyds <
ε

8
, (3.7)

then we obtain

e−μτ [[S (x, t − τ) − S0]f ′
1(0) + [V (x, t − τ) − V0]f ′

2(0)] I(x, t − τ)
≥ −e−μτ [f ′

1(0)ε + f ′
2(0)ε] I(x, t − τ)/2. (3.8)

If Eq. (3.5) is false, then

f ′
1(0)S0

t−1/T1∫

t−T1

e−(μ+ω)(t−s)

√
4πd1(t − s)

T1∫

−T1

e
−(x−y)2

4d1(t−s) I(y, s)dyds ≥ ε

8
(3.9)

for some t ≥ 2T1 + 2T2 + 2τ + 1, x ∈ R. From Theorem 2.2, I is uniformly continuous, then we can select
two constants η > 0, δ > 0 such that

I(y, s) > η for some s ∈ [t − T1, t − 1/T1], y0 ∈ (x − T1, x + T1)
and all y ∈ [y0 − δ, y0 + δ] ⊆ [x − T1, x + T1].

In particular, η > 0, δ > 0 are independent of x, t once (3.9) holds. That is, we may fix η > 0, δ > 0 for
all x, t ≥ 2T1 + 2T2 + 2τ + 1 such that (3.9) holds.

Consider the initial value problem

∂i(x, t)
∂t

= d3
∂2i(x, t)

∂x2
− (γ + μ) i(x, t), x ∈ R, t > 0

with a continuous initial condition

i(x, 0)

⎧
⎪⎨

⎪⎩

= η, |x| ≤ δ/2,

= 0, |x| ≥ δ,

∈ [0, η], δ/2 ≤ |x| ≤ δ.

Let

κ = inf
t∈[1/T1,T1+τ ],x∈[−T1,T1]

i(x, t).

Then, κ is independent on x, t when (3.9) holds. That is, we can fix κ > 0 for all x, t ≥ 2T1 +2T2 +2τ +1
such that (3.4) holds. Using the comparison principle, we have I(x, t) > κ when (3.9) is true, which
implies the existence of M > 0 by the boundedness of the left of (3.4). When (3.6) or (3.7) does not hold,
we can get a similar conclusion by selecting M, t0 large enough but finite. The proof is complete. �
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4. Proof of convergence

Lemma 4.1. Assume that (I1)–(I2) hold and R0 > 1. If cl
I , c

r
I are finite, then (2.9) is true.

Proof. We prove the result for given ε > 0. Let {εn} be a strictly increasing sequence such that ε1 =
ε/2, limn→∞ εn = ε. Define

lim inf
t→∞ inf

−(clI+εn)t>x or x>(crI+εn)t
S(x, t) = sn, lim sup

t→∞
sup

−(clI+εn)t>x or x>(crI+εn)t

I(x, t) = In.

Then, {sn} is nondecreasing and positive in n and In = 0 for all n ∈ R Therefore, the limit of {sn} exists,
we denote it by s′. Let

lim inf
t→∞ inf

−(clI+ε)t>x or x>(crI+ε)t
S(x, t) = s0.

Then, we have s0 ≥ sn and s0 ≥ s′. Select θ > 0 such that

θs + Π − (μ + ω)s − sf1(i), s ∈ [0, S0], i ∈ [0, I0]

is nondecreasing in s. For given sn, sn+1, the dominated convergence in the integral equation of S implies
that

sn+1 ≥ (θsn + Π − (μ + ω)sn)/θ.

Letting n → ∞, we have s′ ≥ S0. Note that, S(x, t) ≤ S0, we obtain s′ = s0 = S0.
In a similar way, we can prove the result on V. The proof is complete. �

Lemma 4.2. Assume that R0 > 1 and (B1) hold. Then, (2.10) holds.

Proof. Let

lim inf
t→∞ inf

−(clu−ε)t<x<(cru−ε)t
u(x, t) = u, lim sup

t→∞
sup

−(clu−ε)t<x<(cru−ε)t

u(x, t) = u, u ∈ {S, V, I}.

Then, these are positive constants such that

S < S0, V < V0, I < I0.

Similar to the proof of Lemma 4.1, we obtain (2.3)–(2.8). Then, (B1) implies what we wanted. The proof
is complete. �

Lemma 4.3. Assume that R0 > 1 and (B2) hold. Then, (2.10) holds.

Proof. We can prove this similar to Bo et al. [6, Section 4] and omit the detail here. �

Lemma 4.4. Proposition 2.7 is true.

Proof. From the monotonicity, the assumption (B1) becomes if

Π − (μ + ω)S − β1SI

1 + αI
≤ 0, (4.1)

Π − (μ + ω)S − β1SI

1 + αI
≥ 0, (4.2)

ωS − μV − β2V I

1 + αI
≤ 0, (4.3)

ωS − μV − β2V I

1 + αI
≥ 0, (4.4)

e−μτβ1S

1 + αI
+

e−μτβ2V

1 + αI
− (μ + ν) ≤ 0, (4.5)
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e−μτβ1S

1 + αI
+

e−μτβ2V

1 + αI
− (μ + ν) ≥ 0, (4.6)

then (S, V , I) = (S, V , I) = (S∗, V ∗, I∗). From (4.1) and (4.2), we have

− (S − S) ≥ 1
(μ + ω)

[
β1SI

1 + αI
− β1SI

1 + αI

]

. (4.7)

Applying (4.3) and (4.4), we obtain

− (V − V ) ≥ 1
μ

[

ω
(
S − S

)
+

β2V I

1 + αI
− β2V I

1 + αI

]

≥ 1
μ

[
ω

(μ + ω)

[
β1SI

1 + αI
− β1SI

1 + αI

]

+
β2V I

1 + αI
− β2V I

1 + αI

]

. (4.8)

Using (4.5) and (4.6), we find

e−μτβ1(S − S) + e−μτβ2(V − V ) ≥ α(μ + ν)(I − I). (4.9)

From (4.7) to (4.9), we further have

0 ≥ e−μτβ1

(μ + ω)

[
β1SI

1 + αI
− β1SI

1 + αI

]

+ α(μ + ν)(I − I)

+
e−μτβ2

μ

[
ω

(μ + ω)

[
β1SI

1 + αI
− β1SI

1 + αI

]

+
β2V I

1 + αI
− β2V I

1 + αI

]

=
[
e−μτβ1

μ + ω
+

e−μτβ2

μ

ω

(μ + ω)

] [
β1SI

1 + αI
− β1SI

1 + αI

]

+ α(μ + ν)(I − I)

+
e−μτβ2

μ

[
β2V I

1 + αI
− β2V I

1 + αI

]

or

α(μ + ν)(I − I) ≤
[
e−μτβ1

μ + ω
+

e−μτβ2

μ

ω

(μ + ω)

] [
β1SI

1 + αI
− β1SI

1 + αI

]

+
e−μτβ2

μ

[
β2V I

1 + αI
− β2V I

1 + αI

]

≤
[
e−μτβ1

μ + ω
+

e−μτβ2

μ

ω

(μ + ω)

] [
β1SI

1 + αI
− β1SI

1 + αI

]

+
e−μτβ2

μ

[
β2V I

1 + αI
− β2V I

1 + αI

]

≤ β1S

[
e−μτβ1

μ + ω
+

e−μτβ2

μ

ω

(μ + ω)

] [
I

1 + αI
− I

1 + αI

]

+β2V
e−μτβ2

μ

[
I

1 + αI
− I

1 + αI

]

≤ β1S

[
e−μτβ1

μ + ω
+

e−μτβ2

μ

ω

(μ + ω)

]

(I − I) + β2V
e−μτβ2

μ
(I − I).

Thus, we find that if (2.12) leads to I = I, then further from I = I, (4.7) leads to S = S and (4.8) leads
to V = V . Due to the uniqueness of constant steady states, we obtain (S, V , I) = (S, V , I) = (S∗, V ∗, I∗).
Thus, (B1) holds true. Moreover, (2.13) also makes I = I by the fact ( x

1+αx )′ ≤ 1, x ≥ 0, which also
implies (B1). We complete the proof. �
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On the assumption (B1), we may give further bounds of S, V , I, S, V , I, which possibly weakens the
verification of (B1). We give a special case here. Let s > 0, v > 0 be defined by

Π − (μ + ω)s − s sup
i∈[0,I0]

f1(i) = 0, ωs − μv − v sup
i∈[0,I0]

f1(i) = 0, (4.10)

which are well defined once R0 > 1. When

e−μτf ′
1(0)s + e−μτf ′

2(0)v > μ + ν, (4.11)

we further fix i > 0 such that

e−μτs inf
i∈[i,I0]

f1(i) + e−μτv inf
i∈[i,I0]

f2(i) = (μ + ν)i.

Using the notations in the proof of Lemma 4.4, we can verify that

(S, V , I) ≥ (s, v, i).

From (s, v, i), we may obtain a new bound (S1, V 1, I1) of (S, V , I), where S1 is defined by

Π − (μ + ω)S1 − S1 inf
i∈[i,I0]

f1(i) = 0,

and V 1, I1 are defined in the similar way. Repeating the process, we obtain a strictly decreasing sequence
{(Sn, V n, In)} of upper bounds and a strictly increasing sequence {(Sn, V n, In)} of lower bounds. For
each n, we consider (B1) in the rectangle [(Sn, V n, In), (Sn, V n, In)]. With the larger n, it is possible to
obtain a weaker condition such that (B1) holds.

Lemma 4.5. Proposition 2.8 is true.

Proof. We prove this by the idea of comparison principle. Consider
⎧
⎪⎨

⎪⎩

x′(t) = Π − (μ + ω)x(t) − β1x(t)z(t)
1+αz(t) ,

y′(t) = ωx(t) − β2y(t)z(t)
1+αz(t) − μy(t),

z′(t) = e−μτ β1x(t−τ)z(t−τ)
1+αz(t−τ) + e−μτ β2y(t−τ)z(t−τ)

1+αz(t−τ) − (μ + ν)z(t).

(4.12)

For (1.1), I0 is defined by

e−μτβ1S0

1 + αI0
+

e−μτβ2V0

1 + αI0
= μ + ν.

Let s > 0, v > 0 such that

Π − (μ + ω)s − β1sI0
1 + αI0

= 0, ωs − β2vI0
1 + αI0

− μv = 0.

When

e−μτβ1s + e−μτβ2v > μ + ν, (4.13)

fix i > 0 such that

e−μτβ1s

1 + αi
+

e−μτβ2v

1 + αi
= μ + ν.

It should be noted that (4.11) is true if α > 0 is large. Evidently, there exist m > 1, α0 > 0 such that
α ≥ α0 implies that

1
mα

≤ S0 − s, V0 − v, I0, i ≤ m

α
.

We now consider the question if α ≥ α0. Define continuous functions

(x(t), y(t), z(t)) = (S∗
1 + (S0 − S∗

1 + ε1)e−rt, V ∗
1 + (V0 − V ∗

1 + ε2)e−rt, I∗
1 + (I0 − I∗

1 + ε3)e−rt),

(x(t), y(t), z(t)) = (S∗
1 − (S∗

1 − s + ε4)e−rt, V ∗
1 − (V ∗

1 − v + ε5)e−rt, I∗
1 − (I∗

1 − i + ε6)e−rt),
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in which

r > 0, εi > 0, i ∈ {1, 2, 3, 4, 5, 6},

are small constants clarified later. In what follows, we finish the proof by two steps.
Step 1 We verify the necessary differentiable inequalities (See Appendix).
Step 2 We study the initial condition and apply the comparison principle.

For the Step 2, we verify that if (I3) holds, there exists T > 0 such that

(x(0), y(0), z(0)) ≥ (S(x, T + s), V (x, T + s), I(x, T + s)) ≥ (x(0), y(0), z(0))

for all x ∈ R, s ∈ [−τ, 0]. Once this is proved, then the comparison principle implies what we wanted.
Note that,

∂S(x, t)
∂t

≤ d1
∂2S(x, t)

∂x2
+ Π − (μ + ω)S(x, t),

then

lim sup
t→∞

sup
x∈R

S(x, t) ≤ Π
μ + ω

and the conclusion holds. Similarly, we can finish the proof. �

5. Traveling waves

In this part, we investigate the existence and nonexistence of Eqs. (2.1)–(2.2). By Eq. (2.1), we study
the positive solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cS ′(z) = d1S ′′(z) + Π − (μ + ω)S(z) − S(z)f1(I(z)),
cV ′(z) = d2V ′′(z) + ωS(z) − μV(z) − V(z)f2(I(z)),
cI ′(z) = d3I ′′(z) − (μ + ν)I(z)

+e−μτ [S(z − cτ)f1(I(z − cτ)) + V(z − cτ)f2(I(z − cτ))]

(5.1)

for all z ∈ R. Note that, a traveling wave solution is a special entire solution, then the results on asymptotic
spreading imply the following conclusion.

Lemma 5.1. Assume that R0 > 1. If (S,V, I) is positive and satisfies (5.1) and

limz→−∞(S(z),V(z), I(z)) = (S0, V0, 0), I(z0) > 0 for some z0 ∈ R, (5.2)

then (2.2) holds. Further suppose that Theorem 2.9 holds. Then, (2.11) is true.

Therefore, when the existence of Eqs. (2.1)–(2.2) is concerned, we only study the existence of nontrivial
solutions to Eq. (5.1). For this, we introduce the following definition and result.

Definition 5.2. Assume that continuous functions

(0, 0, 0) ≤ (S(z), V (z), I(z)) ≤ (S(z), V (z), I(z)) ≤ (S0, V0, I0), z ∈ R

satisfy the following inequalities

cS
′
(z) ≥ d1S

′′
(z) + Π − (μ + ω)S(z) − S(z)f1(I(z)), (5.3)

cV
′
(z) ≥ d2V

′′
(z) + ωS(z) − μV (z) − V (z)f2(I(z)), (5.4)

cI
′
(z) ≥ d3I

′′
(z) − (μ + ν)I(z)

+e−μτ
[
S(z − cτ)f1(I(z − cτ)) + V (z − cτ)f2(I(z − cτ))

]
, (5.5)

cS′(z) ≤ d1S
′′(z) + Π − (μ + ω)S(z) − S(z)f1(I(z)), (5.6)
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cV ′(z) ≤ d2V
′′(z) + ωS(z) − μV (z) − V (z)f2(I(z)), (5.7)

cI ′(z) ≤ d3I
′′(z) − (μ + ν)I(z)

+e−μτ [S(z − cτ)f1(I(z − cτ)) + V (z − cτ)f2(I(z − cτ))] (5.8)

except finite points for z ∈ R, in which I is any continuous function with I(z) ≤ I(z) ≤ I(z), z ∈ R.
Then, they are a pair of generalized upper and lower solutions of (5.1).

Lemma 5.3. Assume that (S(z), V (z), I(z)), (S(z), V (z), I(z)) are a pair of generalized upper and lower
solutions of (5.1) such that

u′(z+) ≤ u′(z−), u ∈ {S(z), V (z), I(z)}, z ∈ R,

u′(z+) ≥ u′(z−), u ∈ {S(z), V (z), I(z)}, z ∈ R.

Then, (5.1) has a solution (S,V, I) such that

(S(z), V (z), I(z)) ≤ (S(z),V(z), I(z)) ≤ (S(z), V (z), I(z)), z ∈ R.

This lemma can be obtained by Lin and Ruan [21], and we omit the proof here.

5.1. Critical wave speed

For simplicity, in this subsection, we use c, λ instead of c∗, λ∗, respectively. Define continuous functions
as follows

S(z) = S0, V (z) = V0,

I(z) =

{
min{(−z + K1)eλz, I0}, z < 0,

I0, z ≥ 0,

S(z) = max{S0 − K2e
γz, s}, V (z) = max{V0 − K3e

γz, v},

I(z) =

{
(−z − K4

√−z)eλz, z < −K2
4 ,

0, z ≥ −K2
4 ,

in which γ = min{c/(d1 + d2 + 1), λ/4}, K1,K2,K3,K4 are positive constants clarified later, and s, v are
defined by (4.10). From Lemma 5.3, we can obtain Theorem 2.4 for c = c∗ by the following conclusion.

Lemma 5.4. There exist K1,K2,K3,K4 large enough such that Eqs. (5.3)–(5.8) hold.

Proof. We prove them one by one. From the definitions of S0, V0, (5.3), (5.4) are clear. Let K1 > 0 be
large enough such that supz<0{(−z+K1)eλz} > 2I0 and z1 < 0 be the smaller root of (−z+K1)eλz = I0.
Then, (5.5) holds when z > z1. When z < z1, (5.5) holds if

cI
′
(z) ≥ d3I

′′
(z) − (μ + ν)I(z) + e−μτ [S0f

′
1(0) + V0f

′
2(0)] I(z − cτ)

by (F1). In fact,

[(−z)eλz]′ = −eλz − λzeλz, [(−z)eλz]′′ = −λ2zeλz − 2λeλz

implies that

d3I
′′
(z) − cI

′
(z) − (μ + ν)I(z) + e−μτS0f

′
1(0)I(z − cτ) + e−μτV0f

′
2(0)I(z − cτ).

= K1Λ(λ, c)eλz + d3[−λ2zeλz − 2λeλz] − c[−eλz − λzeλz]

−(μ + ν)(−z)eλz + e−μτ [S0f
′
1(0) + V0f

′
2(0)] (−z + cτ)eλ(z−cτ)

= 0,

and we complete the proof of Eq. (5.5).
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For fixed K1 > 0, we now select K2,K3 such that (5.6)–(5.7) hold. When S′(z) = 0 or V ′(z) = 0, the
conclusions are clear. Select K2 > S0 large enough such that S0 − K2e

γz > s implies that I(z) ≤ eλz/2.
When S0 − K2e

γz > s, we have z < 0 and it suffices to prove that

cS′(z) ≤ d1S
′′(z) + Π − (μ + ω)S(z) − f ′

1(0)S0e
λz/2. (5.9)

Since

d1S
′′(z) − cS′(z) + Π − (μ + ω)S(z) − f ′

1(0)S0e
λz/2

= −d1K2γ
2eγz + cK2γeγz + (μ + ω)K2e

γz − f ′
1(0)S0e

λz/2

≥ (μ + ω)K2e
γz − f ′

1(0)S0e
λz/2

≥ (μ + ω)K2e
γz − f ′

1(0)S0e
γz

= eγz [(μ + ω)K2 − f ′
1(0)S0] ,

(5.9) is true by selecting large K2 > S0. Similarly, we can fix K3 such that (5.7) holds.
Finally, we verify (5.8). By what we have done, K1 has been fixed. Let K5 > 1 be large such that

z < −K5 implies that

I(z) < eλ′z for some λ′ ∈ (λ/2, λ) with (1 + σ)λ′ > λ, λ′ + γ > λ.

By direct calculation, we have

I ′(z) = λI(z) − eλz +
K4

2
√−z

eλz,

I ′′(z) = λ2I(z) − 2λeλz +
K4λ√−z

eλz +
K4

4
√

(−z)3
eλz

and

d3I
′′(z) − cI ′(z) − (μ + ν)I(z) + e−μτ [f ′

1(0)S0 + f ′
2(0)V0] I(z − cτ)

= d3I
′′(z) − cI ′(z) − (μ + ν)I(z) + e−μτ [f ′

1(0)S0 + f ′
2(0)V0]

[
(−z − K4

√−z)eλ(z−cτ)
]

+e−μτ [f ′
1(0)S0 + f ′

2(0)V0] I(z − cτ)

−e−μτ [f ′
1(0)S0 + f ′

2(0)V0]
[
(−z − K4

√−z)eλ(z−cτ)
]

= d3

[

−2λeλz +
K4λ√−z

eλz +
K4

4
√

(−z)3
eλz

]

− c

[

−eλz +
K4

2
√−z

eλz

]

+e−μτ [f ′
1(0)S0 + f ′

2(0)V0]
[
I(z − cτ) − (−z − K4

√−z)eλ(z−cτ)
]

= cτ [f ′
1(0)S0 + f ′

2(0)V0]
[

−1 +
K4

2
√−z

]

e−(μ+cλ)τ+λz +
d3K4e

λz

4
√

(−z)3

+cτ [f ′
1(0)S0 + f ′

2(0)V0]

[

1 − K4
√−(z − cτ) +

√−z

]

e−(μ+cλ)τ+λz

=
d3K4e

λz

4
√

(−z)3
+ cτK4 [f ′

1(0)S0 + f ′
2(0)V0]

[
1

2
√−z

− 1
√−(z − cτ) +

√−z

]

e−(μ+cλ)τ+λz

≥ d3K4e
λz

4
√

(−z)3

for z < −K5. Therefore,

d3I
′′(z) − cI ′(z) − (μ + ν)I(z)
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+e−μτS(z − cτ)f1(I(z − cτ)) + e−μτV (z − cτ)f2(I(z − cτ))
= d3I

′′(z) − cI ′(z) − (μ + ν)I(z) +
+e−μτS0f1(I(z − cτ)) + e−μτV0f2(I(z − cτ))
+e−μτ [S(z − cτ) − S0] f1(I(z − cτ)) + e−μτ [V (z − cτ) − V0] f2(I(z − cτ))

≥ d3I
′′(z) − cI ′(z) − (μ + ν)I(z) +

+e−μτS0f
′
1(0)I(z − cτ) + e−μτV0f

′
2(0)I(z − cτ) − Le−μτ [S0 + V0]I1+σ(z − cτ)

+e−μτ [S(z − cτ) − S0] f ′
1(0)I(z − cτ) + e−μτ [V (z − cτ) − V0] f ′

2(0)I(z − cτ)
≥ d3I

′′(z) − cI ′(z) − (μ + ν)I(z)
+e−μτS0f

′
1(0)I(z − cτ) + e−μτV0f

′
2(0)I(z − cτ) − Le−μτ [S0 + V0]I1+σ(z)

+e−μτ [S(z − cτ) − S0] f ′
1(0)I(z) + e−μτ [V (z − cτ) − V0] f ′

2(0)I(z)
≥ d3I

′′(z) − cI ′(z) − (μ + ν)I(z)

+e−μτS0f
′
1(0)I(z − cτ) + e−μτV0f

′
2(0)I(z − cτ) − Le−μτ [S0 + V0]I

1+σ
(z)

+e−μτ [S(z − cτ) − S0] f ′
1(0)I(z) + e−μτ [V (z − cτ) − V0] f ′

2(0)I(z)

≥ d3K4e
λz

4
√

(−z)3
− Le−μτ [S0 + V0]e(1+σ)λ′z − e−μτ [f ′

1(0)K2 + f ′
2(0)K3] eγzeλ′z

= eλz

[
d3K4

4
√

(−z)3
− Le−μτ [S0 + V0]e[(1+σ)λ′−λ]z − e−μτ [f ′

1(0)K2 + f ′
2(0)K3] e(γ+λ′−λ)z

]

.

Let K6 > 1 such that
d3K4

4
√

(−z)3
> Le−μτ [S0 + V0]e[(1+σ)λ′−λ]z + e−μτ [f ′

1(0)K2 + f ′
2(0)K3] e(γ+λ′−λ)z, z < −K6.

Then, (5.8) holds by selecting K4 = K5 + K6. The proof is complete. �

5.2. Other cases

In this subsection, we first present the existence of nontrivial traveling wave solutions.

Lemma 5.5. Assume that R0 > 1, c > c∗. Then, (5.1) has a positive solution satisfying (5.2).

Proof. For z ∈ R, define

S(z) = S0, S(z) = max{S0 − K7e
γz, s},

V (z) = V0, V (z) = max{V0 − K8e
γz, v},

I(z) = min{eλcz, I0}, I(z) = max{eλcz − K9e
ηλcz, 0},

where K7 > 0,K8 > 0,K9 > 1 are large enough and γ > 0, η − 1 > 0 are small such that

ηλc < min{(1 + σ)λc, λc + γ,Λc}.

Then, similar to that in Sect. 5.1, we can verify these are generalized upper and lower solutions of Eq.
(5.1). By what we have done, we can finish the proof. �

Before considering the nonexistence, we give the following strict positivity.

Lemma 5.6. For given c ∈ R, if Eq. (5.1) has a positive solution (S,V, I) satisfying Eq. (5.2), then

s < S(z) < S0, v < V(z) < V0, 0 < I(z) < I0, z ∈ R.
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Proof. Let γ1 < 0 < γ2 be the roots of

d3x
2 − cx − (μ + ν) = 0.

Then, I(z) also satisfies

I(z) =
e−μτ

d3(γ2 − γ1)

∫

R

min{eγ1(z−s), eγ2(z−s)}

×[S(s − cτ)f1(I(s − cτ)) + V(s − cτ)f2(I(s − cτ))]ds

for all z ∈ R. From (F1) and (5.2), we see that I(z) > 0, z ∈ R. The remainder can be proved in a similar
way, and we omit them here. �

From the special invariant form of traveling wave solutions, we obtain the following nonexistence
result, see Theorem 2.9.

Lemma 5.7. If R0 ≤ 1, then Eqs. (5.1)–(5.2) has not a solution.

The second result of nonexistence is given as follows.

Lemma 5.8. Assume that R0 > 1, c < c∗. Then, (2.1) has not a solution satisfying (2.2).

Proof. We prove this by contradiction. Were the statement false for some c1 < c∗ and (S, I, V ). From
(5.2) and Theorem 2.3, we see that (2.2) holds. Let ε > 0 such that

d3λ
2 − c1λ + e−(μ+c1λ)τ ((S0 − 2ε)f ′

1(0) + (V0 − 2ε)f ′
2(0)) − (μ + ν) > 0, λ ≥ 0.

Also define

c2 = inf{c > 0 : d3λ
2 − cλ + e−(μ+cλ)τ ((S0 − 2ε)f ′

1(0) + (V0 − 2ε)f ′
2(0))

−(μ + ν) = 0 has a real root}.

Then, c2 ∈ (c1, c∗).
Select z′ such that

S(z) > S0 − ε, V (z) > V0 − ε, z ≤ z′.

Then, we have

c1I
′
(z) ≥ d3I

′′
(z) − (μ + ν)I(z) + e−μτ [(S0 − ε)f1(I(z − c1τ)) + (V0 − ε)f2(I(z − c1τ))]

for z ≤ z′. When z > z′, the positivity in Lemma 5.6 and limit behavior (2.2) imply that infz>z′ I(z) > 0
such that

c1I
′
(z) ≥ d3I

′′
(z) − (μ + ν)I(z) + e−μτ [S0f1(I(z − c1τ)) + V0f2(I(z − c1τ))] − MI

2
(z)

for z > z′ and large M > 0. Then, I(x, t) = I(x + c1t) satisfies

∂I(x, t)
∂t

≥ d3
∂2I(x, t)

∂x2
− (μ + ν)I(x, t) − MI2(x, t)

+e−μτ [(S0 − ε)f1(I(x, t − τ)) + (V0 − ε)f2(I(x, t − τ))]

≥ d3
∂2I(x, t)

∂x2
− (μ + ν)I(x, t) − MI2(x, t)

+e−μτ [(S0 − ε)f
1
(I(x, t − τ)) + (V0 − ε)f

2
(I(x, t − τ))]

with I(x, 0) = I(x) > 0, x ∈, t > 0, where

f
i
(x) = inf

y∈[x,I0]
fi(y), x ∈ [0, I0], i = 1, 2.
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Let i∗ > 0 be the unique real rot of

−(μ + ν)i∗ − Mi2∗ + e−μτ [(S0 − ε)f
1
(i∗) + (V0 − ε)f

2
(i∗)] = 0.

From Lemma 3.2, we have lim inft→∞ I(−c2t, t) ≥ i∗. Note that, −c2t + c1t → ∞ when t → ∞. By the
invariant form of traveling waves, we obtain lim infz→−∞ I(z) ≥ i∗. A contradiction occurs. The proof is
complete. �

6. Discussion

We have studied the initial value problem and traveling wave solutions for noncooperative system (1.2).
With different special decaying initial values, we could classify the corresponding leftward and rightward
spreading speeds. When the disease spreads successfully, there is a minimal spreading speed that is the
minimal wave speed of traveling wave solutions. Moreover, our results on traveling wave solutions have
completed He et al. [13, Theorem 3.8] by presenting the precise asymptotic behavior of critical traveling
wave solutions. The behavior is important to classify the spreading speeds with different initial conditions.

Without the vaccination branch, then (1.1) becomes
{

∂S(x,t)
∂t = d1

∂2S(x,t)
∂x2 + Π − μS(x, t) − β1S(x,t)I(x,t)

1+αI(x,t) ,
∂I(x,t)

∂t = d3
∂2I(x,t)

∂x2 + e−μτ β1S(x,t−τ)I(x,t−τ)
1+αI(x,t−τ) − (μ + ν)I(x, t).

(6.1)

Clearly, the basic reproduction ratio of the corresponding kinetic system is e−μτβ1Π/(μ(μ + ν)). By Lin
et al. [22], the minimal spreading speed of (6.1) depends on the eigenvalue problem

d3λ
2 − cλ + β1Πe−(μ+cλ)τ/μ − (μ + ν) = 0, λ ≥ 0, c ≥ 0. (6.2)

For this Eq. (6.2), we may analyze it similar to that in Lemma 2.1. Note that, S0 + V0 = Π/μ, if β1 > β2

(see [13, pp. 1973]), then we find that the minimal spreading speed of (1.1) is smaller than that of
(6.1), which shows that the vaccination could decrease the spreading ability of the disease from both the
outbreak threshold (the basic reproduction ratio), as well as the minimal spreading speed. For the general
system (1.2), when f1 ≤ f2, f

′
1(0) < f ′

2(0) (the vaccination plays a positive role controlling the disease),
we may obtain a similar conclusion. At the same time, the role of the latent period τ can be discussed
similar to that in many works, e.g., [13, pp. 1993]. Moreover, besides for the minimal spreading speed,
we may show the effect of vaccination and latency for other possible spreading speeds and obtain similar
conclusions.

Although we have investigated different decaying initial values, it is still a long way to further describe
the propagation dynamics of these values. For example, when the slowly decaying initial values (IL3) and
(IR3) are concerned, the corresponding fast propagation needs further investigation, which at least incudes
the estimation of moving speed for level sets. For cooperative systems, the estimation has been done in
several works [2,12,37]. To the best of our knowledge, this topic remains open for many noncooperative
systems including (1.2). Moreover, when the asymptotic behavior of traveling waves for (1.1) is concerned,
He et al. [13, Theorem 3.8] confirmed the limit behavior by a Lyapunov type discussion, of which the
condition is weaker than that in (B1) and (B2). For the convergence of solutions to initial value problem,
is it possible to obtain the convergence by such an idea?

The assumption (F2) is important to obtain our conclusion since this leads to a bounded result of
I. In fact, the boundedness is not clear in some models. We only illustrate this from special model
(1.1). When α > 0 as that in this paper and [13], the boundedness of I-branch is clear such that we
can follow our discussion. If α = 0, the boundedness is not clear enough although this should be true.
When the boundedness of I was proven, we can make a similar discussion. In fact, the boundedness
of some noncooperative systems is not trivial but may be obtained. For example, Ducrot [9] studied a
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noncooperative system by using local Lp estimation and other techniques. We hope the idea in [9] can
be further developed to such a delayed system (1.1) with α = 0.
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Appendix

Verification of step 1 in the proof of lemma 4.5 To avoid many superscripts and subscripts in our calcu-
lations, we denote

(S, V, I) := (S0, V0, I0), (s, v, i) := (S∗
1 , V ∗

1 , I∗
1 )

in this part.
(1). For x(t), we shall prove that

x′(t) = −r(S − s + ε1)e−rt ≥ Π − (μ + ω)x(t) − β1x(t)z(t)
1 + αz(t)

, t > 0. (6.3)

By direct calculation, we have

Π − (μ + ω)x(t) − β1x(t)z(t)
1 + αz(t)

= Π − (μ + ω)[s + (S − s + ε1)e−rt] − β1[s + (S − s + ε1)e−rt][i − (i − i + ε6)e−rt]
1 + α[i − (i − i + ε6)e−rt]

= (μ + ω)[S − s] − (μ + ω)(S − s + ε1)e−rt − β1[s + (S − s + ε1)e−rt][i − (i − i + ε6)e−rt]
1 + α[i − (i − i + ε6)e−rt]

= −ε1(μ + ω)e−rt + (μ + ω)[S − s][1 − e−rt] − β1[s + (S − s + ε1)e−rt][i − (i − i + ε6)e−rt]
1 + α[i − (i − i + ε6)e−rt]

= −ε1(μ + ω)e−rt +
β1is[1 − e−rt]

1 + αi
− β1[s + (S − s + ε1)e−rt][i − (i − i + ε6)e−rt]

1 + α[i − (i − i + ε6)e−rt]

≤ −ε1(μ + ω)e−rt +
β1is[1 − e−rt]

1 + αi
− β1s[i − (i − i + ε6)e−rt]

1 + αi

= −ε1(μ + ω)e−rt − β1s(i − ε6)e−rt

1 + αi

≤ −ε1(μ + ω)e−rt

≤ −r(S − s + ε1)e−rt

if r > 0 is small enough. We complete the verification of (6.3).
(2). For y(t), we shall prove

y′(t) ≥ ωx(t) − β2y(t)z(t)
1 + αz(t)

− μy(t), t > 0. (6.4)
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Similar to the calculation in (1), we have

ωx(t) − β2y(t)z(t)
1 + αz(t)

− μy(t)

= ω
[
s + (S − s + ε1)e−rt

] − μ
[
v + (V − v + ε2)e−rt

]

−β2 [v + (V − v + ε2)e−rt] [i − (i − i + ε6)e−rt]
1 + α[i − (i − i + ε6)e−rt]

= [ωε1 − με2]e−rt +
β2vi[1 − e−rt]

1 + αi
− β2 [v + (V − v + ε2)e−rt] [i − (i − i + ε6)e−rt]

1 + α[i − (i − i + ε6)e−rt]

≤ [ωε1 − με2]e−rt +
β2vi[1 − e−rt]

1 + αi
− β2v[i − (i − i + ε6)e−rt]

1 + αi

≤ [ωε1 − με2]e−rt

< −r(V − v + ε2)e−rt

if r > 0 is small and

ωε1 − με2 < 0. (6.5)

We complete the verification of (6.4).
(3). We shall verify that

z′(t) = −r(I − i + ε3)e−rt

≥ e−μτ β1x (t − τ) z(t − τ)
1 + αz(t − τ)

+ e−μτ β2y(t − τ)z(t − τ)
1 + αz(t − τ)

− (μ + ν)z(t), t > 0. (6.6)

By direct calculation, we have

e−μτ β1x (t − τ) z(t − τ)
1 + αz(t − τ)

+ e−μτ β2y(t − τ)z(t − τ)
1 + αz(t − τ)

− (μ + ν)z(t)

= e−μτ β1[s + (S − s + ε1)e−r(t−τ)][i + (I − i + ε3)e−r(t−τ)]
1 + α[i + (I − i + ε3)e−r(t−τ)]

+e−μτ β2

[
v + (V − v + ε2)e−r(t−τ)

]
[i + (I − i + ε3)e−r(t−τ)]

1 + α[i + (I − i + ε3)e−r(t−τ)]
−(μ + ν)[i + (I − i + ε3)e−rt]

= e−μτ β1[s + (S − s + ε1)e−r(t−τ)][i + (I − i + ε3)e−r(t−τ)]
1 + α[i + (I − i + ε3)e−r(t−τ)]

+e−μτ β2

[
v + (V − v + ε2)e−r(t−τ)

]
[i + (I − i + ε3)e−r(t−τ)]

1 + α[i + (I − i + ε3)e−r(t−τ)]

−(μ + ν)[i + (I − i + ε3)e−r(t−τ)]

+(μ + ν)[i + (I − i + ε3)e−r(t−τ)] − (μ + ν)[i + (I − i + ε3)e−rt]

= e−μτ β1[s + (S − s + ε1)e−r(t−τ)][i + (I − i + ε3)e−r(t−τ)]
1 + α[i + (I − i + ε3)e−r(t−τ)]

+e−μτ β2

[
v + (V − v + ε2)e−r(t−τ)

]
[i + (I − i + ε3)e−r(t−τ)]

1 + α[i + (I − i + ε3)e−r(t−τ)]

−e−μτ β1s + β2v

1 + αi
[i + (I − i + ε3)e−r(t−τ)]

+(μ + ν)[i + (I − i + ε3)e−r(t−τ)] − (μ + ν)[i + (I − i + ε3)e−rt].
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If ε1, ε2, ε3 are small enough such that

(1 + αi) [β1ε1 + β2ε2] < α (β1s + β2v) ε3, (6.7)

then
β1S + β2V

1 + αI
=

β1s + β2v

1 + αi
= eμτ (μ + ν)

implies that

β1[s + (S − s + ε1)e−r(t−τ)] + β2

[
v + (V − v + ε2)e−r(t−τ)

]

1 + α[i + (I − i + ε3)e−r(t−τ)]
− β1s + β2v

1 + αi

=
e−r(t−τ) {(1 + αi) [β1 (S + ε1) + β2 (V + ε2)] − (β1s + β2v) [1 + α (I + ε3)]}

[1 + αi]
[
1 + α[i + (I − i + ε3)e−r(t−τ)]

]

=
e−r(t−τ) [(1 + αi) [β1ε1 + β2ε2] − α (β1s + β2v) ε3]

[1 + αi]
[
1 + α[i + (I − i + ε3)e−r(t−τ)]

]

≤ e−r(t−τ) [(1 + αi) [β1ε1 + β2ε2] − α (β1s + β2v) ε3]
[1 + α[I + ε3]]

2

< 0.

Since

(μ + ν)[i + (I − i + ε3)e−r(t−τ)] − (μ + ν)[i + (I − i + ε3)e−rt]
= (μ + ν)(I − i + ε3)e−rt[erτ − 1]

and

lim
r→0

[erτ − 1]
rτ

= 1,

then (6.6) holds if r > 0 is small enough and (6.7) is true.
(4). For x(t), we shall prove that

x′(t) = r(s − s + ε4)e−rt ≤ Π − (μ + ω)x(t) − β1x(t)z(t)
1 + αz(t)

, t > 0. (6.8)

The right side is

Π − (μ + ω)x(t) − β1x(t)z(t)
1 + αz(t)

= Π − (μ + ω)[(s − (s − s + ε4)e−rt] − β1[(s − (s − s + ε4)e−rt][i + (i − i + ε3)e−rt)]
1 + α[i + (i − i + ε3)e−rt)]

= (μ + ω)(s − s + ε4)e−rt +
β1si

1 + αi
− β1[(s − (s − s + ε4)e−rt][i + (i − i + ε3)e−rt)]

1 + α[i + (i − i + ε3)e−rt)]

≥ (μ + ω)(s − s + ε4)e−rt +
β1si

1 + αi
− β1[(s − (s − s + ε4)e−rt][i + (i − i + ε3)e−rt)]

1 + αi

≥ (μ + ω)(s − s + ε4)e−rt +
−β1s(i − i + ε3)e−rt + β1(s − s + ε4)ie−rt

1 + αi

= (μ + ω)(s − s + ε4)e−rt − β1sie
−rt

1 + αi
+

β1(s − s + ε4)ie−rt

1 + αi

=
[

Π
(s − s + ε4)

s
− β1si

1 + αi

]

e−rt
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=
[

Π − Π
(s − ε4)

s
− β1si

1 + αi

]

e−rt

=
[

(μ + ω)s − Π
(s − ε4)

s

]

e−rt.

Evidently, if α → ∞, then s → s such that

(μ + ω)s − Π
(s − ε4)

s
>

Πε4
2s

for large α. Selecting small r > 0, we obtain (6.8).
(5). We need to prove that

y′(t) = r(v − v + ε5)e−rt ≤ ωx(t) − β2y(t)z(t)
1 + αz(t)

− μy(t), t > 0. (6.9)

Since

ωs − μv − β2vI

1 + αI
= ωs − μv − β2vi

1 + αi
,

and

vi[1 + α[i + (I − i + ε3)e−rt]] − [v − (v − v + ε5)e−rt][i + (I − i + ε3)e−rt] [1 + αi]
= vi(I − i + ε3)e−rt − v(I − i + ε3) [1 + αi] e−rt

+(v − v + ε5)[i + (I − i + ε3)e−rt] [1 + αi] e−rt

≥ vi(I − i + ε3)e−rt − v(I − i + ε3) [1 + αi] e−rt

+(v − v + ε5)i [1 + αi] e−rt,

we have

ωx(t) − β2y(t)z(t)
1 + αz(t)

− μy(t)

= ω[s − (s − s + ε4)e−rt] − μ[v − (v − v + ε5)e−rt]

−β2[v − (v − v + ε5)e−rt][i + (I − i + ε3)e−rt]
1 + α[i + (I − i + ε3)e−rt]

= −ω(s − s + ε4)e−rt + μ(v − v + ε5)e−rt

+
β2vi

1 + αi
− β2[v − (v − v + ε5)e−rt][i + (I − i + ε3)e−rt]

1 + α[i + (I − i + ε3)e−rt]
≥ −ω(s − s + ε4)e−rt + μ(v − v + ε5)e−rt

+
β2vi

1 + αi
− β2[v − (v − v + ε5)e−rt][i + (I − i + ε3)e−rt]

1 + αi

≥ −ω(s − s + ε4)e−rt + μ(v − v + ε5)e−rt

+
β2i(v − v + ε5)e−rt

1 + αi
− β2v(I − i + ε3)e−rt

1 + αi
.

Note that, α → ∞ implies that

v − v → 0, s − s → 0, I → 0,

then (6.9) holds if we select r > 0 small enough and

με5 > 2ωε4. (6.10)

(6). We need to prove that

z′(t) = r(i − i + ε6)e−rt
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≤ e−μτ β1x (t − τ) z(t − τ)
1 + αz(t − τ)

+ e−μτ
β2y(t − τ)z(t − τ)

1 + αz(t − τ)
− (μ + ν)z(t), t > 0. (6.11)

By the definition, we have

e−μτ β1x (t − τ) z(t − τ)
1 + αz(t − τ)

+ e−μτ
β2y(t − τ)z(t − τ)

1 + αz(t − τ)
− (μ + ν)z(t)

= e−μτ β1[s − (s − s + ε4)e−r(t−τ)][i − (i − i + ε6)e−r(t−τ)]
1 + α[i − (i − i + ε6)e−r(t−τ)]

+e−μτ β2[v − (v − v + ε5)e−r(t−τ)][i − (i − i + ε6)e−r(t−τ)]
1 + α[i − (i − i + ε6)e−r(t−τ)]

− (μ + ν)[i − (i − i + ε6)e−rt]

= e−μτ β1[s − (s − s + ε4)e−r(t−τ)][i − (i − i + ε6)e−r(t−τ)]
1 + α[i − (i − i + ε6)e−r(t−τ)]

+e−μτ β2[v − (v − v + ε5)e−r(t−τ)][i − (i − i + ε6)e−r(t−τ)]
1 + α[i − (i − i + ε6)e−r(t−τ)]

− (μ + ν)[i − (i − i + ε6)e−r(t−τ)]

+(μ + ν)[i − (i − i + ε6)e−r(t−τ)] − (μ + ν)[i − (i − i + ε6)e−rt].

Similar to that in Step 3, since

e−μτ β1s + β2v

1 + αi
= μ + ν, e−μτ β1s + β2v

1 + αi
= μ + ν

and
β1[s − (s − s + ε4)e−r(t−τ)] + β2[v − (v − v + ε5)e−r(t−τ)]

1 + α[i − (i − i + ε6)e−r(t−τ)]
− β1s + β2v

1 + αi

=
e−r(t−τ)(1 + αi){eμτ (μ + ν)[α(ε6 − i) − 1] + [β1(s − ε4) + β2(v − ε5)]}

[1 + α[i − (i − i + ε6)e−r(t−τ)]][1 + αi]

=
e−r(t−τ)(1 + αi){β1s + β2v − eμτ (μ + ν)(1 + αi) + αε6e

μτ (μ + ν) − β1ε4 − β2ε5}
[1 + α[i − (i − i + ε6)e−r(t−τ)]][1 + αi]

>
e−r(t−τ)(1 + αi)[αε6e

μτ (μ + ν) − β1ε4 − β2ε5]
[1 + αi]2

> 0

when ε4, ε5, ε6 are small such that

αε6e
μτ (μ + ν) > β1ε4 + β2ε5, (6.12)

then (6.11) is true if r > 0 is small enough.
Before ending this part, we show the selection of parameters. Firstly, we see that (6.5), (6.7), (6.10)

and (6.12) are admissible by selecting εi small enough. In particular, small εi leads to

(x(0), y(0), z(0)) 
 (0, 0, 0),

and they are independent of r. After fixing εi, we can give a small r > 0 satisfying our discussion. The
verification is complete.
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