
Z. Angew. Math. Phys. (2022) 73:234

c© 2022 The Author(s)
0044-2275/22/060001-28
published online October 21, 2022
https://doi.org/10.1007/s00033-022-01869-8

Zeitschrift für angewandte
Mathematik und Physik ZAMP

Boundary homogenization with large reaction terms on a strainer-type wall
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Abstract. We consider a homogenization problem for the Laplace operator posed in a bounded domain of the upper half-
space, a part of its boundary being in contact with the plane {x3 = 0}. On this part, the boundary conditions alternate
from Neumann to nonlinear-Robin, being of Dirichlet type outside. The nonlinear-Robin boundary conditions are imposed
on small regions periodically placed along the plane and contain a Robin parameter that can be very large. We provide all
the possible homogenized problems, depending on the relations between the three parameters: period ε, size of the small
regions rε and Robin parameter β(ε). In particular, we address the convergence, as ε tends to zero, of the solutions for
the critical size of the small regions rε = O(ε2). For certain β(ε), a nonlinear capacity term arises in the strange term
which depends on the macroscopic variable and allows us to extend the usual capacity definition to semilinear boundary
conditions.
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1. Introduction

We consider a boundary homogenization problem for the Laplace operator posed in a bounded domain
Ω of the upper half-space R

3+ = {x ∈ R
3 : x3 > 0}, a part of its boundary Σ being in contact with

the plane {x3 = 0}. A Dirichlet boundary condition is imposed out of Σ. On Σ the boundary conditions
alternate periodically from Neumann to nonlinear-Robin. The nonlinear-Robin conditions contain the
so-called Robin parameter β(ε) multiplied by a nonlinear function σ of the solution uε, σ = σ(x, uε). The
reaction term β(ε)σ concentrates on small regions T ε, the reaction regions, placed along Σ while β(ε)
can be very large. These conditions recall the elastic response or the reaction of the media; cf. [17] and
[20] in this connection. The small parameter ε measures the periodicity, and we address the asymptotic
behavior of the solution when ε → 0.

The problem for the same operator and geometrical configuration here considered but with alternating
boundary conditions of Neumann (or linear-Robin) and Dirichlet type has been addressed, for instance,
in [4] and [31]; cf. [2] and [26] for the elasticity system. Alternating Neumann and linear-Robin boundary
conditions have been considered in [32] for the Laplacian, and [12] and [13] for the elasticity operator.
The model under consideration (2.5) may represent the scalar version of a nonlinear Winkler bed, namely
a block of an elastic material which has a part of its boundary (∂Ω \ Σ) clamped to a rigid profile, while
the other part (Σ) rests partially on a nonlinear Winkler foundation along the small region T ε; see [12],
[13] and [17] for linear models.

From the geometrical viewpoint, the problem belongs to a large class of boundary homogenization
problems studied for a long time in the literature of applied mathematics for different operators. We
mention some of the first works in which keywords such as critical sizes and critical relations between
parameters have been introduced [7,29,30] and [35], also [8] for nonhomogeneous boundary conditions. Let
us refer to [5,6] and references therein for rapidly alternating Dirichlet–Steklov boundary conditions and
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Fig. 1. Geometrical configuration of the problem

[11,18,28] for further references and possible applications in the framework of Geophysics and Winkler
beds (foundations). See [9–15] and [32] for an extensive and updated bibliography on different boundary
homogenization problems with Robin-type boundary conditions. Finally, we also mention the first works
[16] and [19] where different strange terms in the homogenization of volume perforated media with
nonlinear-Robin boundary conditions have been introduced.

The small regions T ε mentioned above have a diameter O(rε) and are placed along the plane at a
distance O(ε) between them, see Fig. 1. Here, ε and rε are two parameters that converge toward zero,
rε � ε, while β(ε) can range from very small to very large as ε → 0. The nonlinear function σ := σ(x, u)
is a continuous function in Ω × R, globally Lipschitz and monotonic in the u variable, cf. (2.2)–(2.4).

Three different relations between the parameters play an important role when describing the asymp-
totic behavior of the solution. As a matter of fact, there appear critical relations between parameters
for which different strange terms arise in the homogenized Robin boundary conditions. These conditions
are intermediate between the Dirichlet and Neumann ones which appear asymptotically for the extreme
cases. Let us describe these relations in further detail.

Setting

lim
ε→0

β(ε)r2
εε−2 = β∗, (1.1)

a critical relation between ε, rε and β(ε) appears when β∗ > 0. Other key relations between parameters
are given by

lim
ε→0

rεε
−2 = r0 (1.2)

and

lim
ε→0

rεβ(ε) = β0. (1.3)

In the case where r0 > 0 we deal with the classical critical size of the regions T ε. We call it classical since
it was obtained a long time ago in the case of a Dirichlet condition on T ε instead of a Robin one (cf.,
e.g., [4] and [31] for the same operator and geometrical configuration here considered).

Using matched asymptotic expansions, we obtain the homogenized problems depending on whether
these limits β∗, r0 and β0 take the value zero, positive or infinity (cf. Sect. 2.1). For the sake of brevity,
we avoid introducing the method here and we refer to [10] for the technique for a perforate media
(with volume perforations) along a wall and to [32] for a linear problem. Also for brevity, we show the
convergence of the solutions in the most troubled situations, namely the cases in which the so-called
microscopic or local problems are crucial to describe the macroscopic behavior of the media. Below, we
summarize the whole limit situations, the state of the art and the structure of the paper.



ZAMP Boundary homogenization with large reaction terms Page 3 of 28 234

Fig. 2. Example of the most critical relation when r0 > 0 and β0 > 0: see the intersecting line of the three surfaces and its
projection over the planes

The most critical situation happens when r0 > 0 and β0 > 0 which also amounts to r0 > 0 and
β∗ > 0, cf. the intersecting line in the 3D graphic in Fig. 2. In this case, the strange term contains
a nonlinear function of the solution u0, Ce(x, u0) which is referred to as extended capacity, cf. (2.12),
and depends on the function σ in a non-trivial way. This dependence involves the solutions of a bi-
parametric family of nonlinear-Robin local problems posed in the upper half-space R

3+ (cf. problem
(2.13) and Fig. 4), the parameters dealing with the macroscopic variable and the unknown solution of the
homogenized problem. The capacity also depends on the shape of the unit region T and, as a matter of
fact, we show that the function Ce(x, u0)u0, has similar properties to the given nonlinear function σ (cf.
Proposition 3.3). The proof of the convergence compulsorily implies introducing suitable test functions
in variational inequalities. We construct the test functions from the solutions of the local problems, and
after proving a certain smoothness of these solutions in the macroscopic parameters of these problems,
we are led to a well-known result on convergence of surface measures (cf. Lemma 4.1). All of this involves
some technical restrictions on the nonlinear dependence of σ in the u variable, see Remarks 2.1 and 2.2
in this connection. The homogenized problem reads (2.11).

When r0 > 0, the other critical case arises when β0 = +∞ (equivalently, β∗ = +∞). It implies a
Dirichlet condition on T for the solution of the microscopic problem which becomes linear (cf. problem
(2.17) and Fig. 4). This case asymptotically amounts to Dirichlet conditions on T ε and, consequently,
the same capacity term appears in the strange term. It is a constant capacity, which seemingly ignores
the nonlinear function σ but also depends on the shape of T , cf. (2.16). However, it is defined through
a product of duality in H−1/2(T ) × H1/2(T ) which adds unforeseen difficulties in justifications. Due to
the fact that the uε does not vanish on the T ε, now the proof of the convergence requires introducing
new results on integrals of potential type and on the convergence of the traces of the solutions uε on the
reaction regions. It also involves further restrictions on the nonlinear function σ, see Proposition 5.2 and
Remark 5.1. Also the local problem (2.17) and the test functions from its solution become essential. The
homogenized problem reads (2.15).

In the case where r0 = +∞ with β∗ > 0, the homogenized Robin condition contains the same nonlinear
function σ multiplied by the somewhat averaged Robin parameter, β∗|T |, which only takes into account
the area of the unit region T for any shape. Notice that β∗ > 0 is obtained when the total area of the
regions T ε multiplied by the Robin parameter β(ε) is of order 1, in such a way that a critical size of T ε

corresponds to each Robin parameter β(ε), namely rε = O(β(ε)−1/2ε), while a critical Robin parameter
β(ε) = O(ε2r−2

ε ) corresponds to each size rε, cf. Fig. 3. The homogenized problem is (2.18).
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Fig. 3. Examples of critical relations when r0 = +∞ with two different β∗ > 0: there is a wide variety of possible surfaces
(green color) between the two surfaces rε = 5−1ε and rε = 5−1ε2 (Color figure online)

The rest of the possible values of the limits in (1.1)–(1.3) lead to extreme cases when either a Neumann
condition or a Dirichlet one is asymptotically imposed on Σ, the homogenized problems being (2.19) or
(2.20).

In this paper, we show the convergence for r0 > 0; see Remark 5.2 related to proofs in the rest of the
cases and possible extensions.

As regards closer works in the literature, it should be emphasized that the justification scheme here
developed applies to the homogenization of the nonlinear diffusion problems in porous media addressed
in [10]. This justification was left as an open problem. Currently, in [10], it may get simplified due to the
geometry of the local problem in porous media. Also the technique extends that for the linear problem
in [32] when r0 > 0 and β0 > 0, while it justifies the case where r0 > 0 and β0 = +∞ which also was left
as an open problem in [32]. Moreover, although we deal with a scalar problem, the technique developed
in [2,13] and [31] for the linear elasticity operator, based on projections over spaces of linear functions,
does not work for the nonlinear problem here considered.

Finally, the structure of the paper is as follows. Section 2 contains the setting of the homogenization
problem and the list of homogenized problems with the corresponding local problems (cf. Sect. 2.1).
Sections 3 and 4 deal with the convergence when r0 > 0 and β0 > 0. Section 3 contains the setting of the
bi-parametric family of local problems, and some properties for solutions which are key points to show
the convergence in Sect. 4. Section 5 addresses the convergence when r0 > 0 and β0 = +∞; the study of
the local problem is in Sect. 5.1.

2. Setting of the problem and limit problems

Let Ω be an open bounded domain of R
3 situated in the upper half-space R

3+, with a Lipschitz boundary
∂Ω. Let Σ be the part of ∂Ω in contact with the plane {x3 = 0} which is assumed to be non-empty and
let ΓΩ be the rest of the boundary: ∂Ω = ΓΩ ∪ Σ. Let T denote an open bounded domain of the plane
{x3 = 0} with a smooth boundary. Without any restriction, we can assume that both Σ and T contain
the origin of coordinates.

Let ε be a small parameter ε � 1. We consider rε an order function such that rε � ε. For k =
(k1, k2) ∈ Z

2, we denote by x̃ε
k the point of the plane {x3 = 0} of coordinates x̃ε

k = (k1ε, k2ε, 0), and by
T ε

x̃k
the homothetic domain of T of ratio rε after translation to the point x̃ε

k, namely the set

T ε
x̃k

= x̃ε
k + rεT .

If there is no ambiguity, we shall write x̃k instead of x̃ε
k, and T ε instead of T ε

x̃k
.
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In this way, for a fixed ε, we construct a grid of squares in the plane {x3 = 0} whose vertices are in the
regions T ε. Let the set J ε denote J ε = {k ∈ Z

2 : T ε
x̃k

⊂ Σ}, while Nε denotes the number of elements
of J ε:

Nε �
|Σ|
ε2

= O(ε−2). (2.1)

Finally, if no confusion arises, we denote by
⋃

T ε the union of all the T ε contained in Σ. Also, in what
follows x = (x1, x2, x3) denotes the usual Cartesian coordinates, while by x̂ = (x1, x2) we refer to the two
first components of x ∈ R

3.
Let us consider the function σ ≡ σ(x, u), a continuous function in Ω × R, globally Lipschitz in the

following sense:

|σ(x, u) − σ(x′, u′)| ≤ K1

(

|x − x′| + |u − u′|(1 + |u|τ + |u′|τ)
)

∀x, x′ ∈ Ω, ∀u, u′ ∈ R, (2.2)

which is also monotonic in the variable u, and satisfying

σ(x, 0) = 0 and (σ(x, u) − σ(x, u′))(u − u′) ≥ 0 ∀x ∈ Ω, ∀u, u′ ∈ R, (2.3)

and

K2|u| ≤ |σ(x, u)| ∀x ∈ Ω, u ∈ R. (2.4)

Above, K1 and K2 are certain positive constants and τ ∈ [0, 2].
For different technical reasons further restrictions on the constant τ will be imposed throughout the

paper in order to obtain the desired convergence (cf. Theorems 4.1 and 5.2). See Remark 2.1 for less and
more restrictive conditions and see Remark 2.2 for the above-mentioned reasons.

Let f ∈ L2(Ω) and uε be the solution of the following homogenization problem:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−Δuε = f in Ω ,
uε = 0 on ΓΩ ,
∂uε

∂n
= 0 on Σ \⋃T ε,

∂uε

∂n
+ β(ε)σ(x, uε) = 0 on

⋃

T ε ,

(2.5)

where n stands for the unit outer normal to Ω along Σ, and β(ε) is a positive parameter.
The weak formulation of (2.5) reads: Find uε ∈ V satisfying

∫

Ω

∇uε.∇v dx + β(ε)
∫

⋃

T ε

σ(x̂, uε)v dx̂ =
∫

Ω

fv dx, ∀v ∈ V, (2.6)

where the space V is obtained by completion of {v ∈ C1(Ω) : v = 0 on ΓΩ} with respect to the Dirichlet
norm.

The existence and uniqueness of solution uε of (2.6) holds from that of the variational inequality

〈Aεuε, v − uε〉 ≥ (f, v − uε)L2(Ω), ∀v ∈ V,

where Aε : V �−→ V′ is the monotonic hemicontinuous operator defined by

〈Aεu, v〉 =
∫

Ω

∇u.∇v dx + β(ε)
∫

⋃

T ε

σ(x̂, u)v dx̂, for u, v ∈ V

(see Theorems 8.2-8.4 in Sections II.8.2 and II.8.3 of [24], and, also, see Section I.2 in [3] and Theorem
2.1 in [15] for a detailed application of these results), and this amounts to: Find uε ∈ V satisfying

∫

Ω

∇v.∇(v − uε) dx + β(ε)
∫

⋃

T ε

σ(x̂, v)(v − uε) dx̂ ≥
∫

Ω

f(v − uε) dx, ∀v ∈ V. (2.7)
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Fig. 4. The domain of setting for homogenized and local problems

On account of the Poincaré inequality (2.3) and (2.4), uε satisfies and
∫

Ω

|∇uε|2 dx ≤ C, β(ε)
∫

⋃

T ε

σ(x̂, uε)uε dx̂ ≤ C and β(ε)
∫

⋃

T ε

|uε|2 dx̂ ≤ C, (2.8)

where C is a constant independent of ε. Hence, for any sequence, we can extract a subsequence, still
denoted by ε such that

uε → u0 in H1(Ω) − weak, as ε → 0, (2.9)

for some u0 ∈ V. The aim of this work is to identify u0 with the unique solution of a certain homogenized
problem which depends on the different relations for the parameters ε, rε and β(ε).

Depending on the values β∗, r0 and β0 in (1.1), (1.2) and (1.3), respectively, in Sect. 2.1, we state all
the possible homogenized problems: (2.11), (2.15), (2.18), (2.19) and (2.20). In Sects. 3–5, we provide the
proof of the convergence in the critical cases where r0 > 0 and β0 > 0 or β0 = +∞. The corresponding
homogenized problems are (2.11) and (2.15), respectively; see Remark 5.2 for other cases.

Remark 2.1. As outlined in [10], the homogenization problem (2.5) is a well-posed problem under less
restrictive conditions for σ. Indeed, it suffices to guarantee that the boundary integral

∫

⋃

T ε

σ(x̂, uε(x̂))v(x̂) dx̂

is well defined for uε, v ∈ H1(Ω) and the left-hand side of (2.6) defines a monotonic operator.
Several papers in the literature consider the case of a smooth σ which satisfies σ ∈ C1(Ω × R),

σ(x, 0) = 0 and, for instance,

0 < K2 ≤ ∂σ

∂u
(x, u) ≤ K1(1 + |u|τ ) ∀x ∈ Ω, u ∈ R, for a τ ∈ [0, 2]. (2.10)

These hypotheses on smoothness and boundedness for σ are weakened in our hypotheses (2.2)–(2.4).
However, it should be noted that (2.10) already allows a certain nonlinear increasing of σ. Many models
arising in hydrology and ecology use nonlinear functions which fall in the framework of these hypotheses
or even of more restrictive hypotheses on σ which somehow imply a linear increasing; namely, when
0 < K2 ≤ ∂σ

∂u (x, u) ≤ K1 (see [1] and [10] in this connection). �

2.1. The homogenized problems and the local problems

The technique of matched asymptotic expansions, which follows from that in [9,10] and [12], with the
suitable modifications, leads us to the homogenized problems listed below:
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• In the most critical situation when β0 > 0 and r0 > 0, the homogenized problem reads
⎧

⎪

⎪

⎨

⎪

⎪

⎩

−Δxu0 = f in Ω,
u0 = 0 on ΓΩ,
∂u0

∂nx
+ r0 Ce(x, u0)u0 = 0 on Σ,

(2.11)

where Ce is the function defined as:

Ce(x, u) =
∫

T

∂W x,u

∂ny
dŷ, (2.12)

W x,u being the solution of the (x, u)-dependent local problem
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−ΔyW x,u = 0 in R
3+,

∂W x,u

∂ny
= 0 on {y3 = 0} \ T,

u
∂W x,u

∂ny
− β0σ(x, (1 − W x,u)u) = 0 on T,

W x,u(y) → 0 as |y| → ∞, y3 > 0.

(2.13)

Above, and in what follows, the variable y denotes an auxiliary variable in R
3 (cf. (2.14)), and the

lower indexes x or y indicate the variable for derivatives, while the upper indexes x, u refer to the
parameter arising in the equation on T , which deals with the macroscopic variable x. Note that
we have indeed a biparametric family of local problems, x, u being the two parameters. As is well
known, macroscopic and local variables are related by

y =
x − x̃k

rε
. (2.14)

It is self-evident that for u = 0, the trivial equality of the boundary condition on T in (2.13) gives
nothing, and we set W x,0 = 0.

• For the critical size r0 > 0, when β0 = +∞, the homogenized problem reads
⎧

⎪

⎪

⎨

⎪

⎪

⎩

−Δxu0 = f in Ω,
u0 = 0 on ΓΩ,
∂u0

∂nx
+ r0 Cu0 = 0 on Σ,

(2.15)

where C is now a constant defined as:

C =
〈

∂W

∂ny
, 1
〉

H−1/2(T )×H1/2(T )

, (2.16)

W being the solution of the local problem
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−ΔyW = 0 in R
3+,

∂W

∂ny
= 0 on {y3 = 0} \ T,

W = 1 on T,
W (y) → 0 as |y| → ∞, y3 > 0.

(2.17)

• For β∗ > 0 and large sizes r0 = +∞, the homogenized problem reads
⎧

⎪

⎪

⎨

⎪

⎪

⎩

−Δxu0 = f in Ω,
u0 = 0 on ΓΩ,
∂u0

∂nx
+ β∗|T |σ(x, u0) = 0 on Σ.

(2.18)
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• For the extreme cases where β∗ = 0 or r0 = 0, the homogenized problem is
⎧

⎪

⎪

⎨

⎪

⎪

⎩

−Δxu0 = f in Ω,
u0 = 0 on ΓΩ,
∂u0

∂nx
= 0 on Σ.

(2.19)

• For the extreme cases where r0 = +∞ and, β0 > 0, or β0 = +∞, or β0 = 0 and β∗ = +∞, the
homogenized problem is the Dirichlet problem

{−Δxu0 = f in Ω,
u0 = 0 on ∂Ω.

(2.20)

The variational formulations of (2.20) in H1
0 (Ω), and of (2.19) in V are classical in the literature.

The existence and uniqueness of a weak solution of (2.18) in V holds as that of (2.5). The existence of a
unique solution in V of the linear problem (2.15) is a consequence of the fact that the capacity constant
C is positive (see (5.8)). Its variational formulation reads: find u0 ∈ V satisfying

∫

Ω

∇xu0.∇xv dx + r0 C
∫

Σ

u0v dx̂ =
∫

Ω

fv dx, ∀v ∈ V. (2.21)

Regarding problem (2.11), we show that Ce(x, u) > 0 in (2.12) from the properties (see (3.5)) of the
solution of the local problem (2.13). Let us define the function Ξ as:

Ξ(x, u) := Ce(x, u)u for u �= 0, and Ξ(x, 0) = 0. (2.22)

It is clear that Ξ depends on the nonlinear function σ, on the parameter β0, and on the shape of the
unit reaction region T . For τ ∈ [0,

√
3 − 1], in Sect. 3, we show that Ξ satisfies analogous properties to σ

(cf. Proposition 3.3 and Remark 2.2) and, therefore, the existence and uniqueness of a weak solution of
(2.11) holds true.

The weak formulation of problem (2.11) reads: Find u0 ∈ V satisfying
∫

Ω

∇xu0.∇xv dx + r0

∫

Σ

Ce(x̂, u0)u0v dx̂ =
∫

Ω

fv dx, ∀v ∈ V,

or equivalently,
∫

Ω

∇xu0.∇xv dx + r0

∫

Σ

Ξ(x̂, u0)v dx̂ =
∫

Ω

fv dx, ∀v ∈ V. (2.23)

Rewriting the reasoning for (2.6) and (2.7), we show that (2.23) has a unique solution which coincides
the unique solution u0 ∈ V of the variational inequality

∫

Ω

∇xv.∇x(v − u0) dx + r0

∫

Σ

Ξ(x̂, v)(v − u0) dx̂ ≥
∫

Ω

f(v − u0) dx, ∀v ∈ V. (2.24)

Note that in the case where Ξ(x̂, v) ≡ Cv, also the solution of (2.21) is the unique solution of (2.24).

Remark 2.2. In connection with Remark 2.1, it should be emphasized that the Lipschitz condition (2.2)
becomes essential in order to show both the continuity on the macroscopic parameters of the solutions
of the local problem (2.13) and the correct position of the homogenized problem (2.11). The further
restrictions on τ , which we perform throughout the paper, seem to be technical questions to be overcome.
As a matter of fact, the restriction τ ∈ [0,

√
3−1] has been obtained in [10] in connection with the correct

setting of the homogenized problem for the case of perforated media. More specifically, related to the
local problem, in Proposition 4.2 of [10] we prove the estimate

|Ξ(x, u)| ≤ C(|u| + |u|(τ+1)2) ∀x ∈ Ω, u ∈ R, τ ∈ [0, 1), (2.25)



ZAMP Boundary homogenization with large reaction terms Page 9 of 28 234

which allows us to define correctly the surface integral, cf. (2.23),
∫

Σ

Ξ(x̂, u0)v dx̂

for u0, v ∈ V and a τ ∈ [0,
√

3 − 1].
On account of this restriction, even for a larger τ , but τ ∈ [0, 1), we obtain the bounds arising in

(3.9)–(3.14) and the limit (4.7), namely the necessary bounds to get (4.8). Finally, the last restriction
τ ∈ [0,

√
5−1
2 ] ⊂ [0,

√
3 − 1] ⊂ [0, 1), is needed when applying a density argument in the integral on Σ in

which the extended capacity appears (cf. (4.4) and (4.5)). �

3. Solutions of the parametric family of local problems

In this section, we deal with the abstract framework of the parameter family of local problems (2.13)
and the properties of their solutions in their dependence on the parameters x ∈ Ω and u ∈ R. These
properties become essential to show the correct setting of (2.23) and (2.24) and to derive the convergence
of solutions of the homogenization problem (2.5) toward that of (2.11), as ε → 0.

Let D(R3+) be the space of functions which are the restrictions to R3+ of the elements of D(R3).
Consider the space V, completion of D(R3+) with respect to the Dirichlet norm

‖U‖V = ‖∇yU‖L2(R3+) . (3.1)

As it is well known, the elements of V belong to L6(R3+) and to H1
loc(R

3+), and the continuous embedding
V ⊂ L2(T ) holds, namely

‖U‖L2(T ) ≤ C‖U‖V ∀U ∈ V, (3.2)

with C a constant independent of U . This ensures that the integrals arising in (3.3) are well defined and
also that the elements of V somehow converge toward zero as |y| → ∞ (see, e.g., Section I.4 of [21] and
Section IV.8 of [34]).

Problem (2.13) has a weak formulation: Find W x,u ∈ V satisfying

u

∫

R3+

∇yW x,u.∇yV dy − β0

∫

T

σ(x, (1 − W x,u(ŷ))u)V dŷ = 0, ∀V ∈ V. (3.3)

In the next theorem, we show the existence and uniqueness of solution of (3.3) in V, as well as its
precise behavior at infinity (cf. (2.13)).

Theorem 3.1. Problem (3.3) has a unique solution W x,u ∈ V and it satisfies

W x,u(y) =
K(x, u)

|y| + O(
1

|y|2 ) as |y| → ∞, (3.4)

where K(x, u) is a constant, independent of y, but dependent on the parameters of the problem x and u.
In addition, we have the following chain of equalities defining K(x, u):

2πK(x, u) =
∫

T

∂W x,u

∂ny
dŷ =

β0

u

∫

T

σ(x, (1 − W x,u(y))u)dŷ

=
∫

R3+

|∇yW x,u|2dy +
β0

u2

∫

T

σ(x, (1 − W x,u(ŷ))u)(1 − W x,u(ŷ))u dŷ.

(3.5)

Also, the function (2.22) reads

Ξ(x, 0) = 0 and Ξ(x, u) = 2πK(x, u)u, ∀u ∈ R, u �= 0. (3.6)
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Proof. To show the existence and uniqueness of the solution of (3.3), we use the theory of monotonic
operators (cf., e.g., Theorem 8.2 in Section II.8.2 in [24]) and rewrite the proof in Theorem 4.1 of [10],
with the suitable modifications.

Now, let us deduce the representation (3.4), for a certain constant K(x, u). Since W x,u is harmonic in
R

3+ and satisfies a Neumann condition on the plane outside the circle B(0, R0) ∩ {y3 = 0}, with R0 such
that T ⊂ B(0, R0), we can extend it to a harmonic function in R

3 \B(0, R0), denoted by Wx,u, satisfying
∇yWx,u ∈ (L2(R3 \ B(0, R0)))3. The representation of Wx,u in L2(∂B(0, R0)) in terms of the spherical
harmonics leads to (3.4) for a certain K(x, u) independent of the y variable: see, for instance, Section II
in [23] and Section IV.8 in [34]. In fact, formula (3.5) which we show below gives a characterization of
this constant K(x, u) in terms of the parameters x and u.

Now, taking V = W x,u in (3.3) gives
∫

R3+

|∇yW x,u|2dy =
β0

u

∫

T

σ(x, (1 − W x,u)u)W x,udŷ,

when u �= 0, and straightforward computations provide the last equality in (3.5). Moreover, the equation
on T in (2.13) gives the second equality in (3.5). Finally, to show the first equality, we apply again the
Green formula in B+(0, R) and consider (3.4). Thus,

∫

T

∂W x,u

∂ny
dŷ = − lim

R→∞

∫

Γ+
R

∂W x,u

∂νy
dsy = 2πK(x, u).

Since Ce(x, u) defined in (2.12) is also defined by any term of (3.5), the formula (3.6) for Ξ, is a
consequence of the definition (2.22). Note that this is in good agreement with the fact that all the
integrals in (3.5) vanish when u = 0. Thus, the theorem holds. �

Under the hypotheses (2.2)–(2.4), the following results provide further properties of the functions
W x,u and Ξ(u, v) which are useful in the proof of the convergence.

As a consequence of Theorem 3.1, in Proposition 3.2 we show that the solution W x,u of (2.13) as well
as certain other related functions are continuous functions of the parameters x ∈ Ω and u ∈ R. First, we
obtain:

Proposition 3.1. Let σ satisfy (2.2)–(2.4) with τ ∈ [0, 2]. Then, for all (x, u) ∈ Ω × R, the solution W x,u

of (2.13) verifies estimates

‖W x,u‖L2(T ) ≤ C(1 + |u|τ ) and ‖∇yW x,u‖L2(R3+) ≤ C(1 + |u|τ ) (3.7)

where C is a constant independent of x and u.

Proof. First, let us note that for u = 0 the above estimates hold since the function W x,0 = 0 and all the
norms above vanish in this case.

For u �= 0, using the monotonicity (2.3) of σ and the weak formulation of (2.13), cf. (3.3), with
V = W x,u/u, we have

∫

R3+

|∇yW x,u|2dy

≤
∫

R3+

|∇yW x,u|2dy +
β0

u2

∫

T

(

σ(x, (1−W x,u)u) − σ(x, u)
)(

(1−W x,u)u − u
)

dŷ

=
∫

R3+

|∇yW x,u|2dy − β0

u

∫

T

σ(x, (1−W x,u)u)W x,u dŷ +
β0

u

∫

T

σ(x, u)W x,udŷ
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=
β0

u

∫

T

σ(x, u)W x,udŷ.

Now, applying (2.2), the Cauchy–Bunyakovsky–Schwarz inequality and (3.2), we get
∫

R3+

|∇yW x,u|2dy ≤ C1

∫

T

(1 + |u|τ )|W x,u|dŷ ≤ C2(1 + |u|τ )‖∇yW x,u‖L2(R3+),

and consequently, cf. (3.2), the estimates in (3.7) hold with C a constant independent of x and u. In
particular, for τ = 0,

‖W x,u‖L2(T ) ≤ C and ‖∇yW x,u‖L2(R3+) ≤ C. (3.8)

�

Proposition 3.2. Under the hypotheses of Proposition 3.1, with τ ∈ [0, 1), the function W x,uu depends
continuously on (x, u) ∈ Ω × R in the topology of L2(T ) and V. Also, the functions

∫

T

σ(x, (1 − W x,u)u)dŷ and K(x, u)u

depend continuously on (x, u) ∈ Ω × R, and the following estimates hold:

‖W x,uu − W x′,u′
u′‖L2(T ) ≤ C

[|x − x′| + |u − u′|(1 + |u|τ+τ2
+ |u′|τ+τ2)]

, (3.9)

‖∇y(W x,uu − W x′,u′
u′)‖L2(R3+) ≤ C

[|x − x′| + |u − u′|(1 + |u|τ+τ2
+ |u′|τ+τ2)]

, (3.10)

‖W x,u − W x′,u′‖L2(T ) ≤ C
1
|u|

[|x − x′| + |u − u′|(1 + |u|τ+τ2
+ |u′|τ+τ2)]

, with u �= 0, (3.11)

‖∇y(W x,u − W x′,u′
)‖L2(R3+) ≤ C

1
|u|

[|x − x′| + |u − u′|(1 + |u|τ+τ2
+ |u′|τ+τ2)]

, with u �= 0, (3.12)

∣

∣

∣

∫

T

σ(x, (1 − W x,u(ŷ))u) − σ(x′, (1 − W x′,u′
(ŷ))u′) dŷ

∣

∣

∣

≤ C
[|x − x′| + |u − u′|(1 + |u|τ+τ2

+ |u′|τ+τ2)](

1 + |u|τ+τ2
+ |u′|τ+τ2)

,

(3.13)

∣

∣K(x, u)u − K(x′, u′)u′∣
∣ ≤ C

[|x − x′| + |u − u′|(1 + |u|τ+τ2
+ |u′|τ+τ2)](

1 + |u|τ+τ2
+ |u′|τ+τ2)

,

(3.14)

∀(x, u), (x′, u′) ∈ Ω × R.
In addition, for each φ ∈ C1(Ω) with φ = 0 on ΓΩ, the function Θ(x) := φ(x)K(x, φ(x)) is a continu-

ous function whose distributional partial derivatives satisfy
∂Θ
∂xi

∈ L∞(Ω), i = 1, 2, 3. (3.15)

Proof. For x, x′ ∈ Ω, u, u′ ∈ R, let us consider (3.3) for V = W x,uu−W x′,u′
u′, and the weak formulation

of problem (2.13), with parameters (x′, u′) instead of (x, u), for V = W x,uu−W x′,u′
u′, and subtract both

expression. Thus,

‖∇y(W x,uu − W x′,u′
u′)‖2

L2(R3+)

= u

∫

R3+

∇yW x,u.∇y(W x,uu − W x′,u′
u′) dy − u′

∫

R3+

∇yW x′,u′
.∇y(W x,uu − W x′,u′

u′) dy

= β0

∫

T

(

σ(x, (1−W x,u)u) − σ(x′, (1−W x′,u′
)u′)

)(

W x,uu − W x′,u′
u′)dŷ
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and

β0

∫

T

(

σ(x, (1−W x,u)u) − σ(x′, (1−W x′,u′
)u′)

)(

(1 − W x,u)u − (1 − W x′,u′
)u′) dŷ

+‖∇y(W x,uu − W x′,u′
u′)‖2

L2(R3+)

= β0

∫

T

(

σ(x, (1−W x,u)u) − σ(x′, (1−W x′,u′
)u′)

)(

u − u′) dŷ. (3.16)

Now, using (2.2), the Cauchy–Bunyakovsky–Schwarz inequality and, for 0 < τ < 1, the Hölder inequality
with p = 1/τ and q = 1/(1 − τ), we obtain

β0

∫

T

(

σ(x, (1−W x,u)u) − σ(x′, (1−W x′,u′
)u′)

)(

u − u′) dŷ

≤ C1|x − x′||u − u′|
+C2|u − u′|

∫

T

(|u − u′| + |W x,uu − W x′,u′
u′|)

(

1 + |u|τ |1−W x,u|τ + |u′|τ |1−W x′,u′ |τ
)

dŷ

≤ C1|x − x′||u − u′| + C3

(

|u − u′|2 + |u − u′|‖W x,uu − W x′,u′
u′‖L2(T )

)

(

1 + |u|τ‖1−W x,u‖τ
L2(T ) + |u′|τ‖1−W x′,u′‖τ

L2(T )

)

. (3.17)

Therefore, gathering (2.3), (3.16), (3.17), (3.2) and (3.7) yields

‖∇y(W x,uu − W x′,u′
u′)‖2

L2(R3+) ≤ C1|x − x′||u − u′|
+C3

(

|u − u′|2 + |u − u′|‖∇y(W x,uu − W x′,u′
u′)‖L2(R3+)

)(

1 + |u|τ+τ2
+ |u′|τ+τ2

)

. (3.18)

Here, we have also used that

1 + |u|τ (1 + |u|τ )τ ≤ 2(1 + |u|τ+τ2
) for any u ∈ R and 0 ≤ τ < 1. (3.19)

Consequently, (3.10) is proved because either ‖∇y(W x,uu − W x′,u′
u′)‖L2(R3+) ≤ |x − x′| + |u − u′| and

(3.10) holds or |u − u′| ≤ |x − x′| + |u − u′| ≤ ‖∇y(W x,uu − W x′,u′
u′)‖L2(R3+) and, due to (3.18), (3.10)

holds.
Estimate (3.12) follows from (3.10), (3.7), and the fact that

W x,u − W x′,u′
=

1
u

(W x,uu − W x′,u′
u′) +

u′ − u

u
W x′,u′

for u �= 0.

Estimates (3.9) and (3.11) are a direct consequence of the continuous embedding V ⊂ L2(T ) (see (3.2))
and estimates (3.10) and (3.12), respectively.

As regards (3.13) and (3.14), we use again (2.2) and the Hölder inequality to obtain
∫

T

(

σ(x, (1−W x,u)u) − σ(x′, (1−W x′,u′
)u′)

)

dŷ

≤ C1|x − x′| + C3

(

|u − u′| + ‖W x,uu − W x′,u′
u′‖L2(T )

)

(

1 + |u|τ‖1−W x,u‖τ
L2(T ) + |u′|τ‖1−W x′,u′‖τ

L2(T )

)

(cf. (3.17)). Now, taking into account (3.7), (3.9) and (3.19) yields (3.13). Estimate (3.14) is a consequence
of (3.13) and (3.5).
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Let us show the last assertion in the statement of the theorem. The continuity of Θ in Ω follows from
that of φ and K(x, φ(x)). The assertion on the derivative is obtained from (3.14), which taking u = φ(x)
and u′ = φ(x′) reads

∣

∣φ(x)K(x, φ(x)) − φ(x′)K(x′, φ(x′))
∣

∣

≤ C
[|x − x′| + |φ(x) − φ(x′)|(1 + |φ(x)|τ+τ2

+ |φ(x′)|τ+τ2)](

1 + |φ(x)|τ+τ2
+ |φ(x′)|τ+τ2)

.

From the smoothness for φ and its partial derivatives, we write the global Lipschitz condition of Θ,

|Θ(x) − Θ(x′)| ≤ Cφ|x − x′|, (3.20)

with a constant independent of x and x′, and (3.15) also holds, see Sections III.24 and III.28 in [38].
Thus, the proposition is proved. �

Proposition 3.3. Under the assumptions (2.2)–(2.3) with τ ∈ [0, 1), the function Ξ defined by (2.22)
satisfies Ξ ∈ C(Ω × R),

Ξ(x, 0) = 0, (Ξ(x, u) − Ξ(x, v))(u − v) ≥ 0, (3.21)

|Ξ(x, u) − Ξ(x, v)| ≤ C|u − v|(1 + |u|τ+τ2
+ |v|τ+τ2

)2, (3.22)

|Ξ(x, u)u − Ξ(x, v)v| ≤ C|u − v|(|u| + |v|)(1 + |u|τ+τ2
+ |v|τ+τ2

)2 (3.23)

∀x ∈ Ω, u, v ∈ R.

Proof. The continuity of function (2.22) in Ω× R is a consequence of the continuity of K(x, u)u stated in
Proposition 3.2 and equation (3.6). To prove (3.21), we rewrite the proof in Proposition 4.2 in [10] with
minor modifications.

Inequality (3.22) follows from (3.6) and (3.14). Besides, taking v = 0 in (3.22), we obtain

|Ξ(x, u)| ≤ C|u|(1 + |u|τ+τ2
)2, ∀x ∈ Ω, u ∈ R (3.24)

(cf. also (2.25)). Finally, to prove (3.23) we write

Ξ(x, u)u − Ξ(x, v)v = Ξ(x, u)(u − v) + (Ξ(x, u) − Ξ(x, v))v

and use (3.24) and (3.22). Thus, the proposition is proved. �

Proposition 3.4. For x ∈ Ω, u ∈ R, the solution W x,u of (3.3) satisfies

|W x,u(y)| ≤ Cu,τ
C

d(y, T )
and

∣

∣

∣

∣

∂W x,u

∂yj
(y)

∣

∣

∣

∣

≤ Cu,τ
C

d(y, T )2
, ∀y ∈ R

3+, (3.25)

for j = 1, 2, 3, where d(y, T ) denotes the distance from the point y ∈ R
3+ to T ,

Cu,τ =
(

1 + |u|τ+τ2)2 when u �= 0, C0,τ = 0,

and C is a constant independent of x, u, τ and y.

Proof. Considering

qx,u =
∂W x,u

∂ny

∣

∣

∣

T
,

then a solution of (2.13) reads

W x,u(y) = − 1
2π

∫

T

1
√

(y1 − ξ1)2 + (y2 − ξ2)2 + y2
3

qx,u(ξ1, ξ2)dξ̂, ∀y ∈ R
3+

(cf., e.g., [22,31] and [35]). To show that this function belongs to V, we follow the technique in Theorem
4.1 in [26] with minor modifications.
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As a consequence, we have (3.25) for Cu,τ ≡ Cx,u,τ a certain constant, which in principle can depend
on x, u and τ . However, considering the equation on T in (2.13), (2.2), (2.3) and Proposition 3.2 (cf.,
e.g., (3.13) with x = x′ and u′ = 0), we can take:

|W x,u(y)| ≤ Cx,u,τ

d(y, T )

with

Cx,u,τ =
1
2π

∫

T

|qx,u(ξ̂)|dξ̂ =
1
2π

β0

|u|
∫

T

|σ(x, (1 − W x,u)u)|dξ̂

≤ C
(

1 + |u|τ+τ2)2
,

where C is a constant independent of x, u, τ and y.
The same reasoning shows (3.25) for the derivatives. Thus, the proposition holds. �

3.1. On the test functions in the most critical case

In this section, we introduce some functions which allow us to obtain the convergence of the homoge-
nization problem when r0 > 0 and β0 > 0. These auxiliary functions are constructed from the solutions
of the parametric family of local problems (2.13), x̃k and u(x̃k) being the parameters. Throughout the
section, we assume that u is a function such that u(x̃k) is defined, x̃k ∈ Σ, u bounded on Ω:

|u(x)| ≤ Cu, ∀x ∈ Ω, (3.26)

where Cu is a constant independent of x.
Let us consider ϕ ∈ C∞[0, 1], 0 ≤ ϕ ≤ 1, ϕ = 1 in [0, 1/8] and Supp(ϕ) ⊂ [0, 1/4]. We construct the

function

ϕε(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 for x ∈ ⋃

k∈J ε B+
(

x̃k, rε + ε
8

)

,

ϕ
( |x − x̃k| − rε

ε

)

for x ∈ Cε,+
x̃k

, k ∈ J ε,

0 for x ∈ Ω \⋃k∈J ε B+
(

x̃k, rε + ε
4

)

,

(3.27)

where J ε = {k ∈ Z
2 : T ε

x̃k
⊂ Σ}, B+(x̃k, r) denotes the half-ball of radius r centered at the point x̃k,

namely, B(x̃k, r) ∩ {x3 > 0}, and Cε,+
x̃k

stands for the half-annulus

Cε,+
x̃k

= B+
(

x̃k, rε +
ε

4

)

\ B+
(

x̃k, rε +
ε

8

)

.

Let us define the functions ˜W ε,u(x), which we construct from the solutions of the local problems
(2.13), as follows: We set

W k,ε,u(x) = W x̃k,u(x̃k)

(

x − x̃k

rε

)

ϕε(x) for x ∈ B+
(

x̃k, rε +
ε

4

)

,

and

˜W k,ε,u(x) = 1 − W k,ε,u(x) for x ∈ B+
(

x̃k, rε +
ε

4

)

,

that we extend by 1 in Ω \⋃B+
(

x̃k, rε + ε
4

)

. Then, we define

˜W ε,u(x) =
{

˜W k,ε,u(x) for x ∈ B+
(

x̃k, rε + ε
4

)

, k ∈ J ε,
1 for x ∈ Ω \⋃k∈J ε B+

(

x̃k, rε + ε
4

)

.
(3.28)
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Proposition 3.5. There is a constant C independent of ε such that ∀x ∈ Cε,+
x̃k

:
∣

∣

∣

∣

∂ϕε

∂xj
(x)

∣

∣

∣

∣

≤ C
1
ε
, j = 1, 2, 3, (3.29)

∣

∣

∣

∣

W x̃k,u(x̃k)
(x − x̃k

rε

)

∣

∣

∣

∣

≤ C
rε

ε
,

∣

∣

∣

∣

∂W x̃k,u(x̃k)

∂xj

(x − x̃k

rε

)

∣

∣

∣

∣

≤ C
rε

ε2
, j = 1, 2, 3, (3.30)

and

|W k,ε,u(x)| ≤ C
rε

ε
,

∣

∣

∣

∣

∂W k,ε,u

∂xj
(x)

∣

∣

∣

∣

≤ C
rε

ε2
, j = 1, 2, 3. (3.31)

In addition,

‖˜W ε,u‖H1(Ω) ≤ C and ˜W ε,u ε→0−−−−−−→ 1 in H1(Ω) − weak. (3.32)

Proof. Bound (3.29) is a consequence of the definition (3.27), while bounds (3.30) are a consequence of
(3.25). Estimates (3.29) and (3.30) give (3.31). Let us show (3.32).

First, we evaluate
∥

∥

∥∇˜W ε,u
∥

∥

∥

2

L2(Ω)
=
∑

x̃k

∥

∥∇xW k,ε,u
∥

∥

2

L2(Cε,+
x̃k

)
+
∑

x̃k

∥

∥∇xW k,ε,u
∥

∥

2

L2(B+(x̃k,rε+ε/8))

≤ C
r2
ε

ε4

∑

x̃k

∫

Cε,+
x̃k

dx + rε

∑

x̃k

∥

∥

∥∇yW x̃k,u(x̃k)
∥

∥

∥

2

L2(B+(0,1+ε/(rε8)))
≤ C (3.33)

where we have considered (3.31), (2.14), (3.7), (2.1) and r0 > 0 in (1.2).
Then, we estimate

∥

∥

∥

˜W ε,u − 1
∥

∥

∥

2

L2(Ω)
=
∑

x̃k

∥

∥W k,ε,u
∥

∥

2

L2(B+(x̃k,rε+ε/4))

≤ Cε2
∑

x̃k

∥

∥∇xW k,ε,u
∥

∥

2

L2(B+(x̃k,rε+ε/4))

≤ ε2C
∥

∥

∥∇x
˜W ε,u

∥

∥

∥

2

L2(Ω)
≤ Cε2,

where we have used the definition (3.27) and the Poincaré inequality on each half-ball and (3.33). Thus,
the convergence of (˜W ε,u − 1) toward zero in L2(Ω) holds, as ε → 0, and also the bound in (3.32) holds
true. This concludes the proof of the proposition. �

On account of (3.26) and (3.25), for τ > 0 in (2.2), the constants appearing in bounds (3.30)–(3.31)
as well as in the proof of Propositions 3.4 and 3.5 may depend on the function u and the parameter τ ,
cf. (3.26). We avoid writing this dependence because, in the next section, these bounds will be applied
with a fixed τ and also a fixed u ≡ φ ∈ C1(Ω) with φ|ΓΩ = 0.

4. The convergence for the most critical case

In this section, we consider the case where r0 > 0 and β0 > 0, and we show that the limit of uε in
H1(Ω)-weak given by (2.9) is the weak solution of the homogenized problem (2.11). In order to do this,
it proves useful to introduce here a convergence result of measures (see [25] for the proof).
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Lemma 4.1. Let aε < ε be such that aεε
−1 → a0, as ε → 0, and let B(x̃k, aε) denote the ball of radius aε

centered at x̃k. Then, ∀w ∈ H1
0 (Ω),

∣

∣

∣

∑

x̃k

∫

∂B(x̃k,aε)

w dsx − 4πa2
0

∫

Σ

w dx̂
∣

∣

∣≤ C(ε1/2 + |aεε
−1 − a0|)‖w‖H1(Ω).

Theorem 4.1. For r0 > 0 and β0 > 0 in (1.2) and (1.3), and τ ∈ [0,
√

5−1
2 ] in (2.2), the solution of (2.6)

converges in H1(Ω)-weak towards the solution of (2.23) as ε → 0.

Proof. Let us consider φ ∈ {v ∈ C1(Ω) : v = 0 on ΓΩ}. From the definitions of the spaces V and V, and
of the function W x̃k,φ(x̃k), on account of (3.28) and (3.32), we have that φ˜W ε,φ ∈ V and φ˜W ε,φ → φ in
H1(Ω)-weak as ε → 0. Then, we take the test functions v = φ˜W ε,φ in (2.7) and we write:

∫

Ω

∇(φ˜W ε,φ − uε).∇(φ˜W ε,φ) dx + β(ε)
∫

⋃

T ε

σ(x̂, φ˜W ε,φ)(φ˜W ε,φ − uε) dx̂ ≥
∫

Ω

f(φ˜W ε,φ − uε) dx.

This amounts to
∫

Ω

∇(φ˜W ε,φ − uε).∇φ˜W ε,φ dx +
∫

Ω

∇(φ2
˜W ε,φ − uεφ).∇˜W ε,φ dx −

∫

Ω

(φ˜W ε,φ − uε)∇φ.∇˜W ε,φ dx

+β(ε)
∫

⋃

T ε

σ(x̂, φ˜W ε,φ)(φ˜W ε,φ − uε) dx̂ ≥
∫

Ω

f(φ˜W ε,φ − uε) dx.

On account of (2.9) and (3.32), for subsequences, still denoted by ε, we take limits as ε → 0 and obtain:
∫

Ω

∇(φ − u0).∇φ dx −
∫

Ω

f(φ − u0) dx

≥ − lim
ε→0

⎛

⎜

⎝

∫

Ω

∇(φ2
˜W ε,φ − uεφ).∇˜W ε,φ dx + β(ε)

∫

⋃

T ε

σ(x̂, φ˜W ε,φ)(φ˜W ε,φ − uε) dx̂

⎞

⎟

⎠

:= − lim
ε→0

Iε.

(4.1)

Below, we show that the limit on the right-hand side is

lim
ε→0

Iε = r0

∫

Σ

∫

T

∂W x̂,φ(x̂)

∂ny
dŷ φ(φ − u0)dx̂. (4.2)

Thus, (4.1) reads
∫

Ω

∇(φ − u0).∇φ dx + r0

∫

Σ

∫

T

∂W x̂,φ(x̂)

∂ny
dŷ φ(φ − u0)dx̂ ≥

∫

Ω

f(φ − u0) dx,

and, considering (3.5) and (3.6), the inequality above is nothing but
∫

Ω

∇(φ − u0).∇φ dx + r0

∫

Σ

Ξ(x̂, φ)(φ − u0)dx̂ ≥
∫

Ω

f(φ − u0) dx, (4.3)

which holds for any φ ∈ {v ∈ C1(Ω) : v = 0 on ΓΩ}. Now, taking into account the continuity of Ξ(x, u)
and Ξ(x, u)u and using a density argument yields (2.24) for τ ∈ [0,

√
5−1
2 ]. Let us explain the last assertion

in further detail.
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Here, we have applied the following inequalities:
∫

Σ

(Ξ(x̂, φ) − Ξ(x̂, v))udx̂

≤ C‖φ − v‖L4(Σ)

(

‖u‖L4/3(Σ) + ‖u‖L4(Σ)‖φτ+τ2‖2
L4(Σ) + ‖u‖L4(Σ)‖vτ+τ2‖2

L4(Σ)

)

≤ C‖φ − v‖L4(Σ)

(

‖u‖L4/3(Σ) + ‖u‖L4(Σ)‖φ‖2
L4(Σ) + ‖u‖L4(Σ)‖v‖2

L4(Σ)

)

(4.4)

and
∫

Σ

(Ξ(x̂, φ)φ − Ξ(x̂, v)v)dx̂ ≤ C‖φ − v‖L4(Σ)

(

‖φ‖L4/3(Σ) + ‖v‖L4/3(Σ) + ‖φ1+2(τ+τ2)‖L4/3(Σ)

+‖v1+2(τ+τ2)‖L4/3(Σ) + ‖φ‖L4(Σ)‖vτ+τ2‖2
L4(Σ) + ‖v‖L4(Σ)‖φτ+τ2‖2

L4(Σ)

)

≤ C‖φ − v‖L4(Σ)

(

‖φ‖L4/3(Σ) + ‖v‖L4/3(Σ) + ‖φ‖L4(Σ)‖v‖2
L4(Σ) + ‖v‖L4(Σ)‖φ‖2

L4(Σ)

)

, (4.5)

which can be obtained from (3.22), (3.23), the Hölder inequality, and the continuous embedding V ⊂
L4(Σ). Indeed, we take the maximum τ such that inequalities of the type

∫

Σ

(φ − v)w dx̂ ≤
(

∫

Σ

(φ − v)p dx̂
)1/p(

∫

Σ

wq dx̂
)1/q

,

for certain p, q with 1/p + 1/q = 1, provide a bound for u, v ∈ V to be in good agreement with the above
mentioned embedding. This gives the maximum τ = (

√
5 − 1)/2.

Thus, taking limits in (4.3) for φ → v in V gives (2.24). By the uniqueness of solution, the whole
sequence uε → u0 as ε → 0 in the weak topology of H1(Ω) and u0 is also the unique solution of (2.24)
and (2.23).

Therefore, it remains to show (4.2) to end the proof of the theorem.
The proof of equality (4.2).
For the sake of brevity, we introduce the following notations

W k,rε(x) ≡ W x̃k,φ(x̃k)

(

x − x̃k

rε

)

and Γ+
x̃k,rε+ ε

8
= ∂B(x̃k, rε +

ε

8
) ∩ R

3+.

We divide the proof into three steps.
First step: The reduction of the limit in (4.1) to the limit of integrals on half-spheres (cf. (4.8)). For the
first integral in Iε, cf. (4.1), on account of (3.27), we write

∫

Ω

∇(φ2
˜W ε,φ − uεφ).∇˜W ε,φ dx =

∑

x̃k

∫

B+(x̃k,rε+ ε
8 )

∇x((1 − W k,rε)φ2 − uεφ).∇x(1 − W k,rε) dx

+
∑

x̃k

∫

Cε,+
x̃k

∇x((1 − W k,rεϕε)φ2 − uεφ).∇x(1 − W k,rεϕε) dx := IIε + IIIε.

Taking into account the estimates in Proposition 3.5, (2.8), (2.1), (1.2), the volume of each Cε,+
x̃k

, and
applying the Cauchy–Bunyakovsky–Schwarz inequality, we show that IIIε above is bounded C

√
ε.

Therefore, we write the limit in (4.1) as follows:

lim
ε→0

Iε = lim
ε→0

(IIε + IVε),
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where

IVε := β(ε)
∫

⋃

T ε

σ(x̂, (1 − W k,rε)φ)(φ(1 − W k,rε) − uε) dx̂,

and, using the Green formula in B+(x̃k, rε + ε
8 ), we derive

lim
ε→0

Iε = − lim
ε→0

∑

x̃k

∫

Γ+
x̃k,rε+ ε

8

((1 − W k,rε)φ2 − uεφ)
∂W k,rε

∂νx
dsx

− lim
ε→0

∑

x̃k

∫

T ε
x̃k

((1 − W k,rε)φ2 − uεφ)
∂W k,rε

∂nx
dx̂

+ lim
ε→0

β(ε)
∑

x̃k

∫

T ε
x̃k

σ(x̂, (1 − W k,rε)φ)(φ(1 − W k,rε) − uε) dx̂

:= lim
ε→0

(−L1
ε − L2

ε + L3
ε).

For Lε
1, we write the boundary condition for W x̃k,u(x̃k) on T in the macroscopic variable, cf. (2.13)

and (2.14), and we decompose it as follows:

−L1
ε =

∑

x̃k

∫

Γ+
x̃k,rε+ ε

8

((1 − W x̃k,φ(x̃k))φ2 − uεφ)
∂W x̃k,φ(x̃k)

∂νx
dsx

=
∑

x̃k

∫

Γ+
x̃k,rε+ ε

8

(φ − uε)φ
∂W x̃k,φ(x̃k)

∂νx
dsx −

∑

x̃k

∫

Γ+
x̃k,rε+ ε

8

W x̃k,φ(x̃k)φ2 ∂W x̃k,φ(x̃k)

∂νx
dsx.

Then, for the last sum above, we use (3.25) to obtain an estimate in the half-spheres. Namely, for
x ∈ Γ+

x̃k,rε+ ε
8
, we have

∣

∣

∂W x̃k,φ(x̃k)

∂νx

(x − x̃k

rε

)∣

∣ =
1
rε

∣

∣

∣

∂W x̃k,φ(x̃k)

∂νy
(y)

∣

∣

∣ ≤ C
1
rε

(rε)2
1

d(x, T ε
x̃k

)2
≤ C

and
∣

∣W x̃k,φ(x̃k)
(x − x̃k

rε

)∣

∣ ≤ Crε
1

d(x, T ε
x̃k

)
≤ C

rε

ε
.

Therefore,
∣

∣

∣

∑

x̃k

∫

Γ+
x̃k,rε+ ε

8

W x̃k,φ(x̃k)φ2 ∂W x̃k,φ(x̃k)

∂νx
dsx

∣

∣

∣ ≤ Crεε
−1

∑

x̃k

|Γ+
x̃k,rε+ ε

8
| ≤ Cε.

Taking limits as ε → 0, we get

− lim
ε→0

L1
ε = lim

ε→0

∑

x̃k

∫

Γ+
x̃k,rε+ ε

8

(φ − uε)φ
∂W x̃k,φ(x̃k)

∂νx
dsx. (4.6)

Next, let us show that

lim
ε→0

(−L2
ε + L3

ε) = 0, (4.7)
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which along with (4.6) provides

lim
ε→0

Iε = lim
ε→0

∑

x̃k

∫

Γ+
x̃k,rε+ ε

8

(φ − uε)φ
∂W x̃k,φ(x̃k)

∂νx
dsx. (4.8)

Second step: The proof of (4.7). Based on the properties of σ (cf. (2.2)), the properties of W x,u (cf. (2.13)
and Proposition 3.2) and (1.3), we perform cumbersome but straightforward computations that lead us
to write

(−L2
ε + L3

ε) =

−
∑

x̃k

∫

T ε
x̃k

((1 − W x̃k,φ(x̃k))φ − uε)(φ(x̂) − φ(x̃k))
∂W x̃k,φ(x̃k)

∂nx
dx̂

+
(

β(ε)rε − β0
) 1

rε

∑

x̃k

∫

T ε
x̃k

((1 − W x̃k,φ(x̃k))φ − uε)σ(x̃k, (1 − W x̃k,φ(x̃k))φ(x̃k)) dx̂

+β(ε)
∑

x̃k

∫

T ε
x̃k

(

σ(x̂, (1 − W x̃k,φ(x̃k))φ(x̃k)) − σ(x̃k, (1 − W x̃k,φ(x̃k))φ(x̃k))
)

gε,k(x̂) dx̂

+β(ε)
∑

x̃k

∫

T ε
x̃k

(

σ(x̂, (1 − W x̃k,φ(x̃k))φ(x̂)) − σ(x̂, (1 − W x̃k,φ(x̃k))φ(x̃k))
)

gε,k(x̂) dx̂

:= J1
ε + J2

ε + J3
ε + J4

ε,

where gε,k denotes the function

gε,k(x̂) = φ(x̂)
(

1 − W x̃k,φ(x̃k)
( x̂ − x̃k

rε

)

)

− uε(x̂).

Let us show that Ji
ε → 0 as ε → 0 for i = 1, 2, 3, 4. In order to simplify notations, let us denote by

gε :=
(

∫

⋃

k∈J ε T ε
x̃k

|gε,k(x̂)|2dx̂
)1/2

.

Using (2.2), the Cauchy–Bunyakovsky–Schwarz inequality, the change of variable (2.14), the continuous
embedding of V in Lp′

(T ) for 2 ≤ p′ ≤ 4 (see, e.g., Section I.4 of [21] and Section IV.8 of [34]), (2.1),
(3.7), β0 > 0 and r0 > 0 in (1.3) and (1.2) and (2.1), we get

|J4
ε| ≤ Cβ(ε)

∑

x̃k

∫

T ε
x̃k

∣

∣1 − W x̃k,φ(x̃k)
∣

∣

(

1 +
∣

∣1 − W x̃k,φ(x̃k)
∣

∣

τ)|φ(x̂) − φ(x̃k)||gε,k|dx̂

≤ Cβ(ε)rεgε

(

∑

x̃k

∫

T ε
x̃k

∣

∣1 − W x̃k,φ(x̃k)
∣

∣

2 +
∣

∣1 − W x̃k,φ(x̃k)
∣

∣

2(1+τ)dx̂
)1/2

≤ Cβ(ε)rεgε

(

ε−2r2
ε

)1/2 ≤ Cgε

(

rε

)1/2
.

Similarly, using (2.2), (2.1), β0 > 0 and r0 > 0 in (1.3) and (1.2), and (2.1), we have

|J3
ε| ≤ Cgε

(

rε

)3/2
.

The same tools used to obtain the estimate for J4
ε lead us to

|J2
ε| ≤ C

∣

∣

∣β(ε)rε − β0
∣

∣

∣

1
(rε)1/2

gε
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and

|J1
ε| ≤

∑

x̃k

∫

T ε
x̃k

∣

∣gε,k
∣

∣

∣

∣φ(x̂) − φ(x̃k)
∣

∣

∣

∣

∣

∂W x̃k,φ(x̃k)

∂nx

∣

∣

∣ dx̂ ≤ Cgε.

Here above, we have also applied the change of variable (2.14) for the derivative in the equation on T in
the local problem.

All of this along with a uniform bound for (rε)−1/2gε, gives the convergence towards zero of Ji
ε,

i = 1, 2, 3, 4. To obtain this uniform bound, it suffices to show
1
rε

∫

⋃

T ε

|φ(1 − W x̃k,φ(x̃k))|2dx̂ ≤ C and
1
rε

∫

⋃

T ε

|uε|2dx̂ ≤ C.

Indeed, using (2.1), (2.14), (3.7) and r0 > 0 in (1.2), the first estimate above holds

1
rε

∫

⋃

T ε

|φ(1 − W x̃k,φ(x̃k))|2dx̂ ≤ 1
rε

ε−2r2
ε ≤ C.

Also, since β0 > 0 in (1.3) and (2.8), we get the second estimate above for |uε|2.
Therefore, (4.7) and (4.8) also hold.

Third step: The application of Lemma 4.1. To end the proof of the theorem, it only remains to show that
(4.8) gives (4.2), namely that

lim
ε→0

∑

x̃k

∫

Γ+
x̃k,rε+ ε

8

(φ − uε)φ
∂W x̃k,φ(x̃k)

∂νx
dsx = r0

∫

Σ

∫

T

∂W x̂,φ(x̂)

∂νy
dŷ φ(φ − u0)dx̂.

Using (3.4) and (3.5), we can write

LL := lim
ε→0

∑

x̃k

∫

Γ+
x̃k,rε+ ε

8

(φ − uε)φ
∂W x̃k,φ(x̃k)

∂νx
dsx

= lim
ε→0

rε

(rε + (ε/8))2
∑

x̃k

∫

Γ+
x̃k,rε+ ε

8

(φ − uε)φK(x̃k, φ(x̃k)) dsx,

where, we have used r0 > 0 in (1.2), the uniform bounds for K, cf. Propositions 3.2 and 3.4, and the fact
that

∑

x̃k

∫

Γ+
x̃k,rε+ ε

8

|uεφ|dx ≤ C, (4.9)

which holds true taking into account that the sequence |uεφ| is bounded in H1(Ω) (cf., e.g., Section 28.I
in [38]) and Lemma 4.1.

The estimate (3.20) implies
∣

∣

∣

φ(x̃k)
β0

K(x̃k, φ(x̃k)) − φ(x)
β0

K(x, φ(x))
∣

∣

∣ ≤ Cε, ∀x ∈ Γ+
x̃k,rε+ ε

8
,

and straightforward computations give

LL = lim
ε→0

rε

(rε + (ε/8))2
∑

x̃k

∫

Γ+
x̃k,rε+ ε

8

(φ(x) − uε(x))φ(x)K(x, φ(x)) dsx,
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Now, considering the function Θ(x) defined over Ω (recall Θ(x) := φ(x)K(x, φ(x))), we use the smooth-
ness of Θ in Proposition 3.2, cf. (3.15), which guarantees that Θ(φ − uε) ∈ H1(Ω), and considering (2.8)
gives

‖Θ(φ − uε)‖H1(Ω) ≤ C.

Extending by symmetry the functions Θ(φ − uε) to the lower half-space {x3 < 0}, we get a sequence of
functions ̂Θ(φ − uε) ∈ H1

0 (̂Ω), satisfying

̂Θ(φ − uε) → ̂Θ(φ − u0) inH1(̂Ω) − weak, as ε → 0,

where by ̂Ω we denote the domain Ω extended by symmetry.
Therefore, using this extension and Lemma 4.1, we have

LL = 82r0
1
2

lim
ε→0

∑

x̃k

∫

∂B+(x̃k,rε+ ε
8 )

̂Θ(φ − uε) dx = r02π

∫

Σ

Θ(φ − u0) dx̂.

Finally, considering (4.8) and (3.5), we obtain

lim
ε→0

Iε = r02π

∫

Σ

K(x̂, φ(x̂))φ(φ − u0)dx̂ = r0

∫

Σ

∫

T

∂W x̂,φ(x̂)

∂ny
dŷ φ(φ − u0)dx̂.

This shows (4.2) and the theorem is proved. �

Note that the constants appearing throughout the proof of Theorem 4.1 (before taking limits in (4.3)
for φ → u0) can depend on φ, and more specifically on the maximum for φ and their derivatives in Ω,
and also on τ ; but since they have been fixed, we avoid writing this dependence.

5. The other critical case

In this section, we address the convergence of solutions of problem (2.5) as ε → 0, when r0 > 0 and
β0 = +∞ in (1.2) and (1.3), and the nonlinear function σ satisfies:

σ ∈ C1(Ω × R), σ(x, 0) = 0 and 0 < K1 ≤ ∂σ

∂u
(x, u) ≤ K2, ∀x ∈ Ω, u ∈ R, (5.1)

see Remark 5.1. The main result is given by Theorem 5.2. Now, the homogenized problem reads (2.15),
where C is the capacity constant defined by (2.16) with W the solution of the local problem (2.17).

We follow the scheme in Sects. 3–4 with the suitable modifications that we outline in Sects. 5.1–5.2.
Section 5.1 presents properties of the auxiliary functions constructed from the solution of (2.17). The
convergence result is in Sect. 5.2.

5.1. The Dirichlet local problem and the test functions

We derive some properties of the function W and the positivity of C.
Let D1(R3+) denote the space of functions in D(R3+) which vanish in a neighborhood of T . Let V1

be the space obtained by completion of D1(R3+) with respect to the Dirichlet norm (3.1). We take a
function

Ψ ∈ D(R3+), Ψ = 1 in a neighborhood of T.

Then, the variational formulation of (2.17)1-(2.17)3 reads: Find W ∈ Ψ + V1 satisfying
∫

R3+

∇yW.∇yV dy = 0 ∀V ∈ V1. (5.2)
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Problem (5.2) has a unique solution which is independent of Ψ. Also, ∂W
∂ny

∣

∣

y3=0
is a distribution having

compact support contained in T and belongs to H−1/2(T ) (see, e.g., Appendix in [31] and Section 4 in
[26]). The condition at infinity in (2.17) is a consequence of the next theorem.

Theorem 5.1. The solution W ∈ Ψ + V1 of problem (5.2) admits the representation

W (y) =
K
|y| + O(

1
|y|2 ) as |y| → ∞, (5.3)

where K is the constant in the chain of equalities

2πK =
〈∂W

∂ny
, 1
〉

H−1/2(T )×H1/2(T )
=

∫

R3+

|∇yW |2dy. (5.4)

Proof. First, let us note that the solution W ∈ Ψ + V1 of problem (5.2) can be represented as follows:

W (y1, y2, y3) = − 1
2π

〈

q,
1

√

(y1 − ·)2 + (y2 − ·)2 + y2
3

〉

H−1/2(T )×H1/2(T )
, (5.5)

where

q =
∂W

∂ny

∣

∣

T
.

We refer to [26] and Appendix in [31] for this proof (cf. also the linear homogenization problems in
[2,12,13,27] and [32] in this connection).

Consequently, there is a positive constant C such that for y ∈ R
3+, with |y| large enough, we have

|W (y)| ≤ C
1
|y| and

∣

∣

∣

∣

∂W

∂yi
(y)

∣

∣

∣

∣

≤ C
1

|y|2 , i = 1, 2, 3. (5.6)

Formula (5.5) also provides the representation (5.3) for a certain constant K. To get the chain of
equalities (5.4), we multiply the Laplace equation in (2.17) by V ∈ D(R3+) and apply the Green formula.
We obtain

∫

R3+

∇yW.∇yV dy =
〈∂W

∂ny
, V

〉

H−1/2(T )×H1/2(T )
, ∀V ∈ D(R3+). (5.7)

By a density argument, we have that (5.7) holds for any V ∈ V, and consequently, taking V = W ,

C :=
〈∂W

∂ny
, 1
〉

H−1/2(T )×H1/2(T )
=

∫

R3+

|∇yW |2 dy. (5.8)

That is, we have proved the second equality in (5.4). To get the first one, we consider the Laplace equation
in (2.17) and apply the Green formula in B+(0, R) (cf. also Theorem 3.1). Thus,

〈∂W

∂ny
, 1
〉

H−1/2(T )×H1/2(T )
= − lim

R→∞

∫

Γ+
R

∂W

∂νy
dsy = 2πK,

which gives the first equality in (5.4) and ends the proof of the theorem. �

Throughout this section, we consider ˜W ε constructed as in (3.28), by replacing W x̃k,u(x̃k) with the
function W defined by (5.5); namely, we set

W k,ε(x) = W

(

x − x̃k

rε

)

ϕε(x) and ˜W k,ε(x) = 1 − W k,ε(x) , for x ∈ B+
(

x̃k, rε +
ε

4

)

,
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and, finally,

˜W ε(x) =
{

˜W k,ε(x) for x ∈ B+
(

x̃k, rε + ε
4

)

, k ∈ J ε,
1 for x ∈ Ω \⋃k∈J ε B+

(

x̃k, rε + ε
4

)

.
(5.9)

Taking into account (5.6), the proof of the following proposition is obtained by rewriting that of
Proposition 3.5

Proposition 5.1. For r0 > 0 and β0 = +∞ in (1.2) and (1.3), the properties (3.29)–(3.32) hold changing
the functions W x̃k,u(x̃k), W k,ε,u and ˜W ε,u by W , W k,ε and ˜W ε respectively.

5.2. The convergence result

The aim of this section is to prove Theorem 5.2. Keeping r0 > 0, we apply the technique in Theorem 4.1
when β0 > 0, with the suitable modifications, to show the convergence of uε, as ε → 0, for β0 = +∞. As
a matter of fact, functions (3.28) are replaced by (5.9), which vanish on

⋃

T ε. In addition, some integrals
on T transform into dual products in H−1/2(T )×H1/2(T ) and the corresponding proof must be changed.
In this respect, in addition to Lemma 4.1 we need a new convergence result, for the trace on

⋃

T ε of the
solution of (2.5), which we introduce here below.

Proposition 5.2. Let σ satisfy (5.1), r0 > 0 and β0 = +∞. Then, the solution uε of (2.6) verifies:
∑

x̃k

∥

∥

∥uε
∥

∥

∥

2

H1/2(T ε
x̃k

)
→ 0, as ε → 0.

Proof. From the definition of the H1/2-norm, we write the sum above as:

Lε :=
∑

x̃k

∥

∥

∥uε
∥

∥

∥

2

L2(T ε
x̃k

)
+
∑

x̃k

∫

T ε
x̃k

∫

T ε
x̃k

|uε(x̂) − uε(x̂′)|2
|x̂ − x̂′|3 dx̂dx̂′. (5.10)

For the first summation, we have
∑

x̃k

∥

∥

∥uε
∥

∥

∥

2

L2(T ε
x̃k

)
=

1
β(ε)

∫

⋃

T ε
x̃k

β(ε)(uε)2dx̂ = oε(1), (5.11)

where, here and below, oε(1) denotes a certain function satisfying oε(1) → 0 as ε → 0. Obviously, we
have used the bound (2.8) and the fact that β(ε) → ∞ to obtain (5.11).

Then, we use the bound obtained by a simple integration in (5.1),

K2
1 (u − v)2 ≤ (σ(x, u) − σ(x, v))2 ≤ K2

2 (u − v)2, ∀u, v ∈ R, x ∈ Ω.

This, along with (2.2) which holds for τ = 0, allows us to write, for the second summation in (5.10), the
following chain of inequalities:

∑

x̃k

∫

T ε
x̃k

∫

T ε
x̃k

|uε(x̂) − uε(x̂′)|2
|x̂ − x̂′|3 dx̂dx̂′ ≤ ˜C

∑

x̃k

∫

T ε
x̃k

∫

T ε
x̃k

|σ(x̂, uε(x̂)) − σ(x̂, uε(x̂′))|2
|x̂ − x̂′|3 dx̂dx̂′

≤ 2 ˜C
∫

⋃

T ε
x̃k

∫

⋃

T ε
x̃k

|σ(x̂, uε(x̂)) − σ(x̂′, uε(x̂′))|2
|x̂ − x̂′|3 dx̂dx̂′ + ̂C

∑

x̃k

∫

T ε
x̃k

∫

T ε
x̃k

1
|x̂ − x̂′|dx̂dx̂′

≤ 2 ˜C
∥

∥

∥σ(·, uε(·))
∥

∥

∥

2

H1/2(
⋃

T ε
x̃k

)
+ ̂C

∑

x̃k

∫

T ε
x̃k

∫

T ε
x̃k

1
|x̂ − x̂′|dx̂dx̂′ := 2 ˜CL1

ε + ̂CL2
ε,
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where ˜C and ̂C denote the two constants independent of ε.
In addition, we have

(

L1
ε

)1/2

≤ 1
β(ε)

∥

∥

∥β(ε)χ⋃

T εσ(·, uε(·))
∥

∥

∥

H1/2(Σ)
≤ C

1
β(ε)

∥

∥

∥

∂uε

∂n

∥

∥

∥

H−1/2(Σ)
≤ C

1
β(ε)

= oε(1), (5.12)

where χ⋃

T ε denotes the characteristic function of the set
⋃

k∈J ε T ε
x̃k

, and we have used the equation on
Σ in (2.6), cf. (2.5), the trace embedding theorem, (2.8) and β(ε) → +∞, as ε → 0.

As for the other term, on each T ε
x̃k

, we consider the function defined as:

Uε,k(x̂′) =
∫

T ε
x̃k

1
|x̂ − x̂′|dx̂,

and apply the Theorem in Section I.6.1 of [37] for integrals of potential type (cf. also Lemma 5 in Section
I.2 of [21] and Theorem 1 in Section IV.115 of [36] in this connection); we obtain

|Uε,k(x̂′)| ≤ C|T ε
x̃k

|1/3(rε)1/3, ∀x̂′ ∈ T ε
x̃k

.

Taking into account the volume of each T ε
x̃k

, (2.1) and r0 > 0 (1.2), we get

L2
ε :=

∑

x̃k

∫

T ε
x̃k

∫

T ε
x̃k

1
|x̂ − x̂′|dx̂dx̂′ ≤ C(rε)3ε−2 ≤ C(rε)2. (5.13)

Finally, using (5.11), (5.12) and (5.13) in (5.10), we obtain the convergence stated in the proposition.

Remark 5.1. As regards the proof of Proposition 5.2, it should be noted that in the case where r0 > 0
and β0 = +∞, the restriction on σ to satisfy (5.1) allows the function σ(·, uε(·)) to be in H1(Ω). Less
restrictive hypotheses, such as (2.10) or (2.2)–(2.4) with a τ > 0, could be allowed provided that the
trace of the function σ(·, uε(·)) belongs to H1/2(

⋃

T ε
x̃k

). The restriction (5.1) is also in good agreement
with that in [10] to derive the homogenized model with asymptotic expansions.

Theorem 5.2. Under the hypotheses (5.1) for σ, r0 > 0 and β0 = +∞, the solution uε of (2.6) converges
in H1(Ω)-weak, as ε → 0, toward the solution u0 of (2.21).

Proof. For φ ∈ C1(Ω), φ = 0 on ΓΩ, we take the test function v(x) = φ(x)˜W ε(x) in (2.7), with ˜W ε in
(5.9). Since ˜W ε vanishes on

⋃

T ε, also σ(x̂, φ(x̂)˜W ε(x̂)) = 0 for x̂ ∈ ⋃

T ε, and we have
∫

Ω

∇(φ˜W ε − uε).∇φ˜W ε dx +
∫

Ω

∇(φ2
˜W ε − uεφ).∇˜W ε dx

−
∫

Ω

(φ˜W ε − uε)∇φ.∇˜W ε dx ≥
∫

Ω

f(φ˜W ε − uε) dx.

On account of (2.9) for subsequences, still denoted by ε, and of (3.32) (cf. Proposition 5.1), we take limits
as ε → 0 and we obtain:

∫

Ω

∇(φ − u0).∇φ dx −
∫

Ω

f(φ − u0) dx ≥ − lim
ε→0

∫

Ω

∇(φ2
˜W ε − uεφ).∇˜W ε dx. (5.14)

Setting

Iε :=
∫

Ω

∇(φ2
˜W ε − uεφ).∇˜W ε dx, (5.15)
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below, we show that the limit on the right-hand side is

lim
ε→0

Iε = r0

〈

∂W

∂ny
, 1
〉

H−1/2(T )×H1/2(T )

∫

Σ

φ(φ − u0)dx̂. (5.16)

Thus, cf. (2.16), (5.14) reads
∫

Ω

∇(φ − u0).∇φ dx + r0 C
∫

Σ

φ(φ − u0)dx̂ ≥
∫

Ω

f(φ − u0) dx,

which holds for any φ ∈ {v ∈ C1(Ω) : v = 0 on ΓΩ}. Using a density argument, we get (2.24) for
Ξ(x̂, v) ≡ Cv and, consequently, (2.21).

Therefore, it remains to show (5.16) to end the proof of the theorem. Let us do this following the ideas
in steps 1 and 3 of the proof of Theorem 4.1.

Below W k,rε denotes W k,rε(x) ≡ W
(

x−x̃k
rε

)

, W being the solution of (2.17). Following the step 1 in
Theorem 4.1, and applying the Green formula in B+(x̃k, rε + ε

8 ), we get

lim
ε→0

Iε = − lim
ε→0

∑

x̃k

∫

Γ+
x̃k,rε+ ε

8

((1 − W k,rε)φ2 − uεφ)
∂W k,rε

∂νx
dsx

+ lim
ε→0

∑

x̃k

〈

∂W k,rε

∂nx
, uεφ

〉

H−1/2(T ε
x̃k

)×H1/2(T ε
x̃k

)

:= − lim
ε→0

L1
ε + lim

ε→0
L2

ε. (5.17)

Rewriting the proof for the limit of L1
ε in Theorem 4.1, with the suitable modifications, and taking

limits, for the first term in (5.17) we show

− lim
ε→0

L1
ε = lim

ε→0

∑

x̃k

∫

Γ+
x̃k,rε+ ε

8

(φ − uε)φ
∂W k,rε

∂νx
dsx, (5.18)

while for the second term, below we prove

lim
ε→0

L2
ε = 0. (5.19)

In order to do this, we note that we can decompose the integral in (5.15) in sums of integrals on each
B+(x̃k, rε + ε

4 ), and perform the change x �→ y, cf. (2.14), to get

Iε = rε

∑

x̃k

∫

B+(0,1+ ε
4rε

)

∇y(φ2
˜W ε − uεφ).∇y

˜W ε dy.

Rewriting the considerations above and some straightforward computations lead us to

L2
ε := rε

∑

x̃k

〈

∂W

∂ny
, 
y(uεφ)

〉

H−1/2(T )×H1/2(T )

,

where 
y denotes the above mentioned change (2.14). Then, applying the Cauchy–Schwarz inequality and
(2.1), we write

|L2
ε| ≤ rε

∑

x̃k

∥

∥

∥

∥

∂W

∂ny

∥

∥

∥

∥

H−1/2(T )

‖
y(uεφ)‖H1/2(T ) ≤ Crεε
−1
(

∑

x̃k

∥

∥

∥
yuε
∥

∥

∥

2

H1/2(T )

)1/2

.
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Hence, applying again (2.14), we have
∥

∥
yuε
∥

∥

2

H1/2(T )
=
∫

T

|
yuε|2dŷ +
∫

T

∫

T

|
yuε(ŷ) − 
yuε(ŷ′)|2
|ŷ − ŷ′|3 dŷdŷ′

=
1
r2
ε

∫

T ε
x̃k

|uε|2dx̂ +
1
rε

∫

T ε
x̃k

∫

T ε
x̃k

|uε(x̂) − uε(x̂′)|2
|x̂ − x̂′|3 dx̂dx̂′

≤ 1
r2
ε

∥

∥uε
∥

∥

2

L2(T ε
x̃k

)
+

1
rε

∥

∥uε
∥

∥

2

H1/2(T ε
x̃k

)
.

Therefore, using (2.4),

|L2
ε| ≤ Cε−1

(

∑

x̃k

∥

∥

∥uε
∥

∥

∥

2

L2(T ε
x̃k

)

)1/2

+ Cε−1√rε

(

∑

x̃k

∫

T ε
x̃k

∫

T ε
x̃k

|uε(x̂) − uε(x̂′)|2
|x̂ − x̂′|3 dx̂dx̂′

)1/2

≤ C

√
rε

ε
√

rεβ(ε)

(

∑

x̃k

β(ε)
∫

T ε
x̃k

(uε)2dx̂
)1/2

+ C
(

Lε

)1/2

,

where Lε is defined in (5.10). Consequently, because of (2.8), β0 = +∞ in (1.3) and r0 > 0 in (1.2),
and the convergence in Proposition 5.2, we have that the two terms on the right-hand side of the last
inequality tend to 0 as ε → 0. This ends the proof of (5.18).

Finally, on account of (5.17), (5.18) and (5.19), we have that

lim
ε→0

Iε = lim
ε→0

∑

x̃k

∫

Γ+
x̃k,rε+ ε

8

(φ − uε)φ
∂W

∂νx
dsx, (5.20)

and we proceed as in the proof of the third step of Theorem 4.1 with the suitable modifications which
imply using (5.3), (5.4), (4.9), the extension of φ(φ − uε) by symmetry to the lower half-space {x3 < 0}
and Lemma 4.1. Thus, the limit in (5.20) reads

lim
ε→0

Iε = lim
ε→0

rε

(rε + (ε/8))2
∑

x̃k

∫

Γ+
x̃k,rε+ ε

8

(φ − uε)φK dsx

= r0

〈∂W

∂ny
, 1
〉

H−1/2(T )×H1/2(T )

∫

Σ

(φ − u0)φdx̂.

This shows (5.16) and providing the limit in (5.14), and the theorem is proved. �

Remark 5.2. As regards the convergence of solutions in the rest of the cases stated in Sect. 2.1, we note
that when r0 = 0, the convergence (3.32) takes place in H1(Ω) (cf. (3.33)), and the proof above simplifies
providing that u0 in (2.9) is the solution of (2.19). Let us refer to the analysis in [33] when r0 = +∞.

Also, it should be mentioned that combining the technique here developed with that in [13] will likely
allow us to broach the vector problem arising in the nonlinear homogenization on a strainer Winkler-type
foundation, which describes the interaction of an elastic body with a nonlinear elastic foundation. This
remains as an open problem to be considered by the authors in a forthcoming research.
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[1] Brillard, A., Gómez, D., Lobo, M., Pérez, E., Shaposhnikova, T.A.: Boundary homogenization in perforated domains
for adsorption problems with an advection term. Appl. Anal. 95, 218–237 (2016)
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