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1. Introduction

Organic materials require sophisticated mechanical models. They exhibit nonlinear stress–strain behavior
and are often elastic up to large strains. Typical examples are natural rubber as well as artificial elastic
polymers with rubber-like properties. These materials resist volume changes, are very compliant in shear
and their shear modulus is of orders of magnitude smaller than the shear resistance of most metals. This
motivate the modeling of rubber-like materials as being incompressible and hyperelastic [26,43,45,52], so
that their phenomenological description requires the introduction of an empirical strain energy density
[9,39,55]. Similar properties are observed in soft biological tissues: in many biomechanical studies blood
vessels are modeled as nonlinear elastic materials that are incompressible under physiological loads [12,
24,27,29].

From a mathematical point of view, we consider a hyperelastic body that occupies a bounded open
region Ω ⊂ R

3 in its reference configuration. In presence of a body force field g : Ω → R
3, the energy of

the system is given by the stored elastic energy and the contribution of the external forces∫

Ω

WI(x,∇y(x)) dx −
∫

Ω

(y(x) − x) · g(x) dx.

Here, y : Ω → R
3 denotes the deformation field, ∇y denotes the deformation gradient and WI is

the incompressible elastic energy density. WI is assumed to be frame indifferent and minimized at the
identity with WI(x, I) = 0, so that without an external load y(x) = x is a minimizer of the total
energy corresponding to the stress-free configuration Ω. In order to take into account that the body is
incompressible, WI(x,F) = +∞ whenever detF �= 1.

A common approach in the study of rubber-like materials is to consider a stored energy density
W which is defined in the compressible range, the kinematic constraint detF = 1 being relaxed to a
volumetric penalization: a typical expression of W is given by the usual isochoric-volumetric form

W(x,F) := Wiso(x, (detF)−1/3F) + Wvol(detF) (1.1)

where x ∈ Ω and detF > 0 (extended to +∞ if detF ≤ 0). Here, the nonnegative function Wiso(x,F∗)
is defined for every F∗ such that detF∗ = 1 and satisfies Wiso(x, I) = 0. Moreover, Wvol(t) ≥ 0 for every
t > 0 and Wvol(1) = 0. In fact, we shall first choose a compressible energy density W, for instance in the
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form (1.1), requiring frame indifference and other suitable regularity conditions that will be introduced
in Sect. 2. Then, we shall define the incompressible energy density WI by setting WI(x,F) = W(x,F) if
detF = 1 and WI(x,F) = +∞ if detF �= 1.

The simplest model is the homogeneous Neo-Hookean solid: the energy density is of the form (1.1)
with

Wiso(F∗) := μ ((Tr(FT
∗ F∗) − 3), (1.2)

where detF∗ = 1 and the shear modulus μ is determined experimentally: this model fits material behaviors
with sufficient accuracy under moderate straining while, at higher strains, it can be replaced by the more
general Ogden model, namely

Wiso(F∗) :=
N∑

p=1

μp

αp
(Tr((FT

∗ F∗)αp/2) − 3) (1.3)

where N,μp, αp are material constants. For particular values of the material constants the Ogden model
reduces to either the Neo-Hookean solid (N = 1, α1 = 2) or the so called Mooney–Rivlin material
(N = 2, α1 = 2, α2 = −2) which is often applied to model incompressible biological tissue, see [41,42].
Another phenomenological material model, motivated for simulating the mechanical behavior of carbon-
black filled rubber and for its important applications in the manufacture of automotive tyres, has been
introduced by Yeoh, see [56,57]: the isochoric part of the strain energy density is given by

Wiso(F∗) :=
3∑

k=1

ck((Tr(FT
∗ F∗) − 3)k (1.4)

where ck, k = 1, 2, 3 are material constants. For a complete description of the main properties of such
energy densities and other models, we refer to the classical monographs such as [11,26,44] or to the
reviews in [3,9,39], see also [7,30,55].

Let us now introduce the linearization. If h > 0 is an adimensional parameter, we scale the body force
field by taking g := hf and set y(x) := x + hv(x). The resulting total energy is

Eh(v) :=
∫

Ω

WI(x, I + h∇v) dx − h2

∫

Ω

f · v dx

and it seems meaningful to ask what is the correct scaling of energies Eh as h → 0+. Roughly speaking
in the spirit of [6] (see also [31,46–49,51]) we will show that, under suitable boundary conditions,

inf Eh = h2 min E0 + o(h2),

where

E0(v) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

∫

Ω

E(v)D2W(x, I)E(v) dx −
∫

Ω

f · v dx if div v = 0 a.e. in Ω

+∞ otherwise.

The quadratic form appearing in the expression of E0 features the infinitesimal strain tensor E(v) :=
1
2 (∇v+∇vT ) and can be obtained by a formal Taylor expansion of W around the identity matrix I, with
D2 denoting the Hessian of W(x, ·). We stress that purely volumetric perturbations of W do not affect
WI nor E(v)D2W(x, I)E(v), due to the divergence-free condition. Moreover, we will prove that if

Eh(vh) − inf Eh = o(h2),

then

vh ⇀ v0 ∈ argmin E0
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in the weak topology of a suitable Sobolev space. Since the compliance in shear of rubber-like materials
and the strong nonlinearity of their stress–strain behavior even at modest strain do not allow to suppose
that small strains correspond to small loads, it must be clarified that it would not be reasonable to assume
that either hv or hE(v) are small in any sense. Anyhow we highlight that linearized models may provide
a good approximation that fits experimental data, see for instance [32].

From the viewpoint of the Calculus of Variations, derivation of linearized elasticity from finite elasticity
has a long history that started in [15], where Γ convergence and convergence of minimizers of the associated
Dirichlet boundary value problems are proven in the compressible case (see also [1,2,4,34,35] for more
recent results). In this paper we show how these results can be extended to the incompressible case,
i.e., assuming the constraint det∇y = 1 on admissible deformations fields. It is well-known that such a
constraint poses some challenges to the Γ-convergence analysis (see for instance the derivation of a two-
dimensional model for elastic plates in [13]). Indeed, some novel approach (that we develop in Lemma
4.1) is required for the construction of recovery sequences, due to the necessity of recovering the linearized
incompressibility constraint div v = 0 with a sequence vh satisfying det(I+h∇vh) = 1 a.e. in Ω. Moreover,
a different strategy is also needed to ensure that the whole sequence (vh) and v satisfy the same Dirichlet
condition. To this end the crucial point consists in analyzing vector potentials: we show in Lemma 3.7 that
if v ∈ H1(Ω,R3), div v = 0 in Ω and v = 0 on Γ ⊂ ∂Ω, then, under suitable topological assumptions (see
conditions (2.1)–(2.2)), there exists w ∈ H2(Ω,R3) such that curlw = v in Ω and w = 0 on Γ. Taking
advantage of this result, the construction of the recovery sequence relies on a careful approximation of w
thus outflanking the constraint divv = 0.

We finally mention that other recent contributions have developed a variational analysis for the lin-
earization of finite elasticity under incompressibility constraint, including the case of Neumann boundary
conditions [28,37,38]. Moreover, in [28] the authors have also considered the more general framework of
multiwell potentials.

Plan of the paper

In Sect. 2 we state the main result. Its proof requires the analysis of vector potentials in Sobolev spaces,
which is the object of Sect. 3. In Sect. 4, we develop suitable approximation results that are used for the
construction of the recovery sequence in the proof of the main theorem, which is instead contained in
Sect. 5.

2. Main result

In this section we introduce the basic notation and all the assumptions of our theory. Then, we state the
main result.

Assumptions on the reference configuration

Concerning the reference configuration Ω ⊂ R
3, we assume that

(i) Ω is a bounded, simply connected open set,

(ii) ∂Ω is a connected C3 manifold
(2.1)

and we let n ∈ C2(∂Ω) denote its outward unit normal vector. We will prescribe a Dirichlet boundary
condition on a subset Γ of ∂Ω. Letting ∂Γ denote the relative boundary of Γ in ∂Ω and letting H2 denote
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the two-dimensional Hausdorff measure, we assume that

(i) Γ is a closed subset of ∂Ω and H2(Γ) > 0,

(ii) either ∂Γ = ∅ or ∂Γ is a C3 one-dimensional submanifold of ∂Ω.
(2.2)

Through the proofs we will also suppose, without loss of generality, that Γ is connected. Indeed, all
the arguments that we shall develop can be extended to the non connected case by considering each
connected component. Besides, in case ∂Γ = ∅, it is possible to assume that ∂Ω is C2,1 only (see Remark
4.5 later on).

Some notation

For a Sobolev vector field u ∈ W 1,r(Ω,R3), r ≥ 1, conditions like u = 0 on Γ are always understood in
the sense of traces. Moreover, we shall often use the decomposition in normal and tangential part at the
boundary u = (u · n)n + n ∧ (u ∧ n), where ∧ denotes the cross product. Bold letters will be used in
general for vector fields.

Assumptions on the elastic energy density

Let W : Ω × R
3×3 → [0,+∞] be L3 ×B9- measurable. We assume that W is frame indifferent and

minimized at the identity, i.e.

W(x,RF) = W(x,F) ∀R∈SO(3), ∀F ∈ R
3×3, for a.e. x ∈ Ω , (W1)

min W = W(x, I) = 0 for a.e. x ∈ Ω , (W2)

Moreover, we assume that W(x, ·) is C2 in a neighbor of rotations (with gradient and Hessian denoted
by D and D2), i.e.,

there exists a neighborhood U of SO(3) s.t., for a.e. x ∈ Ω, W(x, ·) ∈ C2(U),
with a modulus of continuity of D2W(x, ·) that does not depend on x.
Moreover, there exists K > 0 such that |D2W(x, I)| ≤ K for a.e. x ∈ Ω.

(W3)

The coercivity of W is described by the following property: there exists C > 0 and p ∈ (1, 2] such that

W(x,F) ≥ C gp(d(F, SO(3))) ∀F ∈ R
3×3, for a.e. x ∈ Ω, (W4)

where gp : [0,+∞) → R is the convex function defined by

gp(t) =

⎧⎪⎨
⎪⎩

t2 if 0 ≤ t ≤ 1

2tp

p
− 2

p
+ 1 if t ≥ 1,

(2.3)

Concerning the latter assumption, we refer to [2] for a discussion about the growth properties of energy
densities of the form (1.1) to (1.3): for certain ranges of the parameters therein and suitable choice of
Wvol, they exhibit a quadratic growth for small deformation gradients and a p-growth, 1 < p ≤ 2, for
large deformation gradients, in particular they satisfy all the above assumptions. Indeed, taking the model
choice Wvol(t) = c(t2 − 1 − 2 log t), c > 0, it is shown in [2] that the Neo-Hookean energy density (1.1),
(1.2) satisfies (W4) for some p ∈ (1, 2), and in fact for p = 2 when restricting to detF = 1 (then the same
holds for the Yeoh model (1.1)–(1.4) with positive ci’s); similarly, the general Ogden model (1.1)–(1.3)
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has a p-growth with p ∈ (1, 2) if μi > 0 and 0 < αi < 3 for all i = 1, . . . , N with αi > 6/5 for at least one
i. We stress that the Ogden model can exhibit a less than quadratic growth even in the incompressibility
regime detF = 1, as can be checked for instance by choosing N = 1, α1 = 3/2 and F = diag(λ−2, λ, λ)
therein.

Let us discuss some first consequences of the above assumptions on W. Since W ≥ 0, assumptions
(W1) and (W2) yield

W(x,R)=0, DW(x,R)=0 ∀R ∈ SO(3), for a.e. x ∈ Ω (2.4)

and in particular the reference configuration has zero energy and is stress free. Due to frame indifference
there exists a function V such that

W(x,F) = V(x, 1
2 (FT F − I)) , ∀F ∈ R

3×3, for a.e. x ∈ Ω,

so by setting F = I + hB, where h > 0 is an adimensional small parameter, we have

h−2W(x, I + hB) = h−2V(x, h symB + h2BT B),

where symB := 1
2 (BT + B), and then we get via Taylor’s expansion

lim
h→0

h−2W(x, I + hB) =
1
2

symBD2V(x,0) symB =
1
2

BT D2W(x, I)B.

Hence, (W4) implies that for a.e. x ∈ Ω

1
2

BT D2W(x, I)B =
1
2
symBD2W(x, I) symB ≥ C

4
|symB|2 ∀ B ∈ R

3×3. (2.5)

Here and through the paper, for a matrix B ∈ R
3×3, we denote |B| :=

√
Tr(BT B).

Incompressibility

We assume that the material is incompressible. This is done by introducing the incompressible elastic
energy density WI as

WI(x,F) :=

⎧⎨
⎩

W(x,F) if detF = 1

+∞ otherwise

External forces

We introduce a body force field f ∈ L
3p

4p−3 (Ω,R3), where p is such that (W4) holds. The corresponding
contribution to the energy is given by the following functional, defined for v ∈ W 1,p(Ω,R3)

L(v) :=
∫

Ω

f · v dx. (2.6)

By the Sobolev embedding W 1,p(Ω,R3) ↪→ L
3p

3−p (Ω,R3), L is a continuous functional on W 1,p(Ω,R3) and
|L(v)| ≤ CL‖v‖W 1,p(Ω,R3) holds for a suitable constant CL that depends on Ω and f .
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Rescaled energies

The functional representing the scaled total energy is denoted by FI
h : W 1,p(Ω,R3) → R ∪ {+∞} and

defined as follows

FI
h(v) :=

1
h2

∫

Ω

WI(x, I + h∇v) dx − L(v).

Linearized functional

In this paper we are interested in the asymptotic behavior as h ↓ 0+ of functionals FI
h and to this aim

we introduce the limit energy functional FI : W 1,p(Ω,R3) → R ∪ {+∞} defined by

FI(v) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

∫

Ω

E(v)D2W(x, I)E(v) dx − L(v) if v ∈ H1
div(Ω,R3)

+∞ otherwise in W 1,p(Ω,R3)

(2.7)

where E(v) :=sym ∇v denotes the infinitesimal strain tensor field associated to the displacement field v,
and where H1

div(Ω,R3) is the set of H1(Ω,R3) vector fields whose divergence vanishes a.e. in Ω.
Since we work with the incompressible energy density WI , we stress that if the function W is replaced

by any other W̃ such that assumptions (W1), (W2), (W3), (W4) are satisfied and W̃(x,F) = W(x,F)
as soon as detF = 1, then this does not affect functional FI . Indeed, if TrB = 0 then det(exp(hB)) =
exp(hTrB) = 1, so that by Taylor’s expansion we have

1
2

symBD2W̃(x, I) symB = lim
h→0

h−2W̃(x, I + hB) = lim
h→0

h−2W̃(x, I + hB + o(h))

= lim
h→0

h−2W̃(x, exp(hB)) = lim
h→0

h−2WI(x, exp(hB)) = lim
h→0

h−2W(x, exp(hB))

= lim
h→0

h−2W(x, I + hB + o(h)) = lim
h→0

h−2W(x, I + hB) =
1
2

symBD2W(x, I) symB.

For instance, if the function W is in the form (1.1), then Wvol can be arbitrarily replaced as soon as the
assumptions (W1), (W2), (W3), (W4) are matched.

Statement of the main result

In order to prescribe a Dirichlet boundary condition on Γ we define GI : W 1,p(Ω,R3) → R ∪ {+∞} and
GI

h : W 1,p(Ω,R3) → R ∪ {+∞} as

GI
h(v) :=

⎧⎨
⎩

FI
h(v) if v = 0 on Γ

+∞ otherwise,

GI(v) :=

⎧⎨
⎩

FI(v) if v = 0 on Γ

+∞ otherwise.

We are ready for the statement of the main result

Theorem 2.1. Assume (2.1), (2.2), (W1), (W2), (W3), (W4). Then for every vanishing sequence (hj)j∈N

of strictly positive real numbers we have

inf
W 1,p(Ω,R3)

GI
hj

∈ R. (2.8)
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If (vj)j∈N ⊂ W 1,p(Ω,R3) is a sequence such that vj = 0 on Γ for any j ∈ N and such that

lim
j→+∞

(
GI

hj
(vj) − inf

W 1,p(Ω,R3)
GI

hj

)
= 0, (2.9)

then we have as j → +∞
vj ⇀ v∗ weakly in W 1,p(Ω,R3),

where v∗ is the unique minimizer of GI over W 1,p(Ω,R3), and

GI
hj

(vj) → GI(v∗), inf
W 1,p(Ω,R3)

GI
hj

→ min
W 1,p(Ω,R3)

GI .

We remark that under our assumptions, functionals GI
h do not have minimizers in general. In case

they have, then it is possible to substitute assumption (2.9) with vj ∈ argmin GI
hj

and convergence of
minimizers is deduced.

Nonhomogeneous boundary conditions

It is worth noticing that Theorem 2.1 works only when we assume homogeneous boundary conditions so it
is quite natural to ask what happens in a more general case. Unfortunately the proof cannot be extended
to the non homogeneous case as well, nevertheless this difficulty can be in some sense circumvented as
follows. Fix v ∈ W 1,∞(Ω,R3) such that div v = 0 a.e. in Ω and define for h > 0

GI
(v) :=

⎧⎨
⎩

FI(v) if v = v on Γ

+∞ otherwise,
(2.10)

G̃I
h(v) := GI

h(v) +
∫

Ω

E(v)D2W(x, I)E(v) dx + GI
(v)

and

G̃I(v) := GI(v) +
∫

Ω

E(v)D2W(x, I)E(v) dx + GI
(v). (2.11)

A slight modification of the proof of Theorem 2.1 gives the following

Corollary 2.2. Assume (2.1), (2.2), (W1), (W2), (W3), (W4) and let v ∈ W 1,∞(Ω,R3) such that div v =
0 in Ω. Then for every vanishing sequence (hj)j∈N of strictly positive real numbers we have

inf
W 1,p(Ω,R3)

G̃I
hj

∈ R. (2.12)

If (vj)j∈N ⊂ W 1,p(Ω,R3) is a sequence such that vj = 0 on Γ for any j ∈ N and such that

lim
j→+∞

(
G̃I

hj
(vj) − inf

W 1,p(Ω,R3)
G̃I

hj

)
= 0, (2.13)

then we have as j → +∞
vj ⇀ v0 weakly in W 1,p(Ω,R3),

where v0 is the unique minimizer of G̃I over W 1,p(Ω,R3), and

G̃I
hj

(vj) → G̃I(v0), inf
W 1,p(Ω,R3)

G̃I
hj

→ min
W 1,p(Ω,R3)

G̃I .

Moreover, v0 + v is the unique minimizer of GI
over W 1,p(Ω,R3) and G̃I(v0) = GI

(v0 + v).
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3. Preliminary results on vector potentials

Given a divergence-free deformation field v, it will often be useful to work with a vector potential w,
such that curlw = v. The next results gather several properties of vector potentials of deformation fields
satisfying suitable Dirichlet boundary conditions. We start by recalling a result that is found for instance
in [5].

Lemma 3.1. ([5, Corollary 2.15]) Assume (2.1) and let w ∈ L2(Ω,R3) be such that curl w ∈ H1(Ω,R3),
div w ∈ H1(Ω,R3), and v · n ∈ H3/2(∂Ω). Then w ∈ H2(Ω,R3).

Lemma 3.2. Assume (2.1) and let v ∈ H1(Ω,R3) be such that div v = 0 a.e. in Ω. Then there exists
w ∈ H2(Ω,R3) such that v = curlw, div w = 0 a.e. in Ω and w · n = 0 on ∂Ω.

Proof. Since ∂Ω is connected then by [5, Lemma 3.5] there exists z ∈ H1(Ω,R3) such that v =
curl z, div z = 0 a.e. in Ω. By taking into account that

z · n ∈ H1/2(∂Ω),
∫

∂Ω

z · ndH2 =
∫

Ω

div zdx = 0,

there exists ϕ ∈ H1(Ω) such that ⎧⎪⎨
⎪⎩

Δϕ = 0 in Ω

∂ϕ

∂n
= z · n in ∂Ω.

By setting w := z − ∇ϕ we get w · n = 0 on ∂Ω, div w = 0, curlw = v ∈ H1(Ω,R3) a.e. in Ω and hence
Lemma 3.1 yields w ∈ H2(Ω,R3). �

It is well known that for a function ζ ∈ H1
0 (Ω,R3) there holds∫

Ω

|∇ζ|2 dx =
∫

Ω

| curl ζ|2 dx +
∫

Ω

|div ζ|2 dx.

In presence of boundary values we have the following formula that we borrow from [23].

Lemma 3.3. ([23, Theorem 3.1.1.1]) Assume (2.1) and let ζ ∈ H1(Ω,R3). Then∫

Ω

|∇ζ|2 dx =
∫

Ω

| curl ζ|2 dx +
∫

Ω

|div ζ|2 dx + 2 〈∇(ζ · n) ∧ n, ζ ∧ n〉∂Ω

−
∫

∂Ω

{
div n (ζ · n)2 + (ζ ∧ n)T ∇n(ζ ∧ n)

}
dH2

where 〈·, ·〉∂Ω denotes the duality between H−1/2(∂Ω) and H1/2(∂Ω).

Lemma 3.4. Assume (2.1) and (2.2) Let (ζh)h∈N ⊂ H1(Ω,R3) be a sequence such that ζh · n = 0 on Γ,
ζh ∧ n = 0 on ∂Ω\Γ, ζh ⇀ 0 weakly in H1(Ω,R3), curl ζh → 0 in L2(Ω,R3) and div ζh → 0 in L2(Ω).
Then ζh → 0 strongly in H1(Ω,R3).

Proof. Since ζh · n = 0 on Γ and ζh ∧ n = 0 on ∂Ω\Γ we get

〈∇(ζ · n) ∧ n, ζ ∧ n〉∂Ω = 0

for any h ∈ N and then Lemma 3.3 yields∫

Ω

|∇ζh|2 dx = Ah + Bh,
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where

Ah :=
∫

Ω

| curl ζh|2 dx +
∫

Ω

|div ζh|2 dx,

Bh := −
∫

∂Ω

{
div n (ζh · n)2 + (ζh ∧ n)T ∇n(ζh ∧ n)

}
dH2.

By taking into account that ζh ⇀ 0 weakly in H1(Ω,R3), we get ζh → 0 in L2(∂Ω,R3), hence Bh → 0.
Moreover, since both curl ζh and div ζh go to zero in L2(Ω), we get also Ah → 0. We conclude that
‖∇ζh‖L2(Ω) → 0 and the result follows from the Poincaré inequality ‖ζh‖2

L2(Ω) ≤ C (‖∇ζh‖2
L2(Ω) +

‖ζh‖2
L2(∂Ω)). �

Always assuming (2.1) and (2.2), we set

X(Γ) := {ζ ∈ H1(Ω,R3) : ζ · n = 0 on Γ, ζ ∧ n = 0 on ∂Ω\Γ},

X0(Γ) := {ζ ∈ X(Γ) : div ζ = 0 in Ω}.

Lemma 3.2 ensures that there exist vector fields w ∈ H2(Ω,R3) such that div w = 0 a.e. in Ω, w · n = 0
on ∂Ω and curlw · n = 0 on Γ. Given w with such properties, for ζ ∈ X(Γ) we define the functional

Φw(ζ) :=
1
2

∫

Ω

(|curlζ|2 + |divζ|2) dx −
∫

∂Ω

(w ∧ ζ) · ndH2.

We prove the following

Lemma 3.5. Assume (2.1) and (2.2) Let w ∈ H2(Ω,R3) be such that div w = 0 a.e. in Ω, w · n = 0 on
∂Ω and curlw ·n = 0 on Γ. Then the functional Φw has minimizers both on X(Γ) and X0(Γ). Moreover,

min
X(Γ)

Φw = min
X0(Γ)

Φw. (3.1)

Proof. Let (ζh) ⊂ X(Γ) be a sequence such that Φw(ζh) → infX(Γ) Φw. We shall first prove that such
a sequence is bounded in H1(Ω,R3). Indeed, assume by contradiction that, up to subsequences, λh :=
‖ζh‖H1(Ω,R3) → +∞ and set ξh := λ−1

h ζh. Then ξh ∈ X(Γ), ‖ξh‖H1(Ω,R3) = 1 and for h large enough

1 ≥ Φw(ζh) = Φw(λhξh) =
λ2

h

2

∫

Ω

(|curl ξh|2 + |divξh|2) dx − λh

∫

∂Ω

(w ∧ ξh) · ndH2.

Hence, by recalling that ‖ξh‖ = 1, there exists ξ∗ ∈ X(Γ) such that, up to subsequences, ξh ⇀ ξ∗ weakly
in H1(Ω,R3) and ∫

Ω

(| curl ξh|2 + |div ξh|2) dx ≤ 2
λh

∫

∂Ω

(w ∧ ξh) · ndH2 + 2λ−2
h → 0,

that is, curl ξh → curl ξ∗ = 0 in L2(Ω,R3), div ξh → div ξ∗ = 0 in L2(Ω) and ξ∗ ∈ X(Γ). We claim
that ξ∗ = 0. Indeed let ψ ∈ H1

0 (Ω,R3) be such that div ψ = 0. Since Ω is simply connected, then by
[5, Theorem 3.17] there exists ω ∈ H2(Ω,R3) such that curl ω = ψ a.e. in Ω, div ω = 0 a.e. in Ω and
ω ∧ n = 0 on ∂Ω. Therefore∫

Ω

ξ∗ · ψ dx =
∫

Ω

ξ∗ · curl ω dx =
∫

Ω

div (ξ∗ ∧ ω) dx

=
∫

∂Ω

(ξ∗ ∧ ω) · ndH2 =
∫

∂Ω

ξ∗ · (ω ∧ n) dH2 = 0.
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Hence, by invoking for instance [22, Lemma 2.1], there exists p ∈ H2(Ω) such that ∇p = ξ∗ a.e. in Ω,
so that Δp = 0 in Ω, ∂p

∂n = 0 on Γ and ∇p ∧ n = 0 on ∂Ω\Γ. In particular, p is constant on ∂Ω\Γ since
n∧ (∇p ∧n) is its tangential derivative, hence p is constant on the whole Ω and ξ∗ = ∇p = 0 as claimed.
By summarizing: ξh ∈ X(Γ), ξh ⇀ 0 weakly in H1(Ω,R3), curl ξh → 0 in L2(Ω;R3), div ξh → 0 in L2(Ω).
Therefore, by Lemma 3.4, ξh → 0 strongly in H1(Ω,R3), which is a contradiction since we are assuming
‖ξh‖H1(Ω,R3) = 1 (see also similar arguments in [8,10,35,36]).

Since we have shown that (ζh) is a bounded sequence in H1(Ω,R3) and since Φw is sequentially l.s.c.
with respect to the weak convergence in H1(Ω,R3) we get existence of minX(Γ) Φw. It remains to prove
that (3.1) holds. Let ζ∗ ∈ argminX(Γ) Φw. Then div ζ∗ ∈ L2(Ω) and we let ϕ ∈ H2(Ω) be solution (see
for instance [50, Theorem 3]) to the boundary value problem⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Δϕ = div ζ∗ in Ω

∂ϕ

∂n
= 0 on Γ

ϕ = 0 on ∂Ω\Γ.

It is readily seen that ζ∗ − ∇ϕ ∈ X0(Γ) and

Φw(ζ∗ − ∇ϕ) = Φw(ζ∗) +
∫

Γ

(w ∧ ∇ϕ) · ndH2 = Φw(ζ∗) +
∫

∂Ω

(w ∧ ∇ϕ) · ndH2

since, due to ϕ = 0 on ∂Ω\Γ, there holds∫

∂Ω\Γ

(w ∧ ∇ϕ) · ndH2 =
∫

∂Ω\Γ

w · (∇ϕ ∧ n) dH2 = 0.

But ∫

∂Ω

(w ∧ ∇ϕ) · ndH2 =
∫

Ω

div (w ∧ ∇ϕ) dx = −
∫

Ω

curl w · ∇ϕ dx

= −
∫

∂Ω

(curl w · n)ϕ dH2 = 0

since curlw · n = 0 on Γ and ϕ = 0 on ∂Ω\Γ. We conclude that

Φw(ζ∗ − ∇ϕ) = Φw(ζ∗),

thus proving the result. �

The next result is based on the Euler–Lagrange equation for functional Φw. Before its statement, we
recall that the reach of a closed set A ⊂ R

3, introduced in [19], is defined by

R(A) := sup{r > 0 : 0 < d(x,A) < r ⇒ ∃! y ∈ A s.t. d(x, y) = d(x,A)}, (3.2)

where the distance function is defined on R
3 by d(x,A) := infy∈A |x − y|. It is well-known that R(A) > 0

whenever A is a C2 compact 1D or 2D manifold without boundary, see for instance [53,54].

Lemma 3.6. Assume (2.1) and (2.2). Let w as in Lemma 3.5 and let ζ∗ ∈ argminX0(Γ) Φw. Then we
have ∫

Ω

curl ζ∗ · curlϕ dx = 0 ∀ϕ ∈ C1
0 (Ω,R3) (3.3)
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and

〈curl ζ∗ ∧ n,ϕ〉∂Ω = −
∫

Γ

(w ∧ n) · ϕ dH2 ∀ϕ ∈ C1(Ω,R3) s.t. ϕ ≡ 0 on ∂Ω\Γ. (3.4)

Proof. If ζ∗ ∈ argminX0(Γ) Φw, then by Lemma 3.5 we have ζ∗ ∈ argminX(Γ) Φw. If ϕ ∈ C1(Ω,R3) is
such that ϕ ∧ n = 0 on ∂Ω\Γ and ϕ · n = 0 on Γ, for any ε ∈ (−1, 1) we have ζ∗ + εϕ ∈ X(Γ). Hence,
the following first order condition holds

∫

Ω

curlζ∗ · curlϕ dx =
∫

∂Ω

(w ∧ ϕ) · ndH2 ∀ϕ ∈ C1(Ω,R3) ∩ X(Γ). (3.5)

Choosing in particular test functions ϕ that vanish on ∂Ω, we deduce (3.3).
Let now 0 < δ < R(∂Ω), let Ωδ := {x ∈ Ω : d(x, ∂Ω) < δ}, so that for any x ∈ Ω there is a unique

projection σ(x) of x on ∂Ω, and set n(x) := n(σ(x)) for every x ∈ Ωδ. Let ηδ ∈ C1(Ω) be a cutoff function
such that ηδ ≡ 1 in Ωδ/2 and ηδ ≡ 0 in Ω\Ωδ. Moreover, for every ϕ ∈ C1(Ω,R3) such that ϕ ≡ 0 on
∂Ω\Γ, we define ϕδ := ηδϕ. We take advantage of the cutoff function to define ϕδ · n on the whole Ω
even if n is defined only on Ωδ, as follows

(ϕδ · n)(x) :=

⎧⎨
⎩

ϕδ(x) · n(x) if x ∈ Ωδ

0 otherwise in Ω.

It is readily seen that θδ := ϕδ − (ϕδ · n)n ∈ X(Γ) ∩ C1(Ω,R3) and therefore we can make use of (3.5)
and get

∫

Ω

curl ζ∗ · curl θδ dx = −
∫

Γ

(w ∧ n) · θδ dH2 = −
∫

Γ

(w ∧ n) · ϕ dH2 (3.6)

A density argument shows that

〈curl ζ∗ ∧ n, (ϕ · n)n〉∂Ω = 0. (3.7)

On the other hand, since (3.3) shows that curl curl ζ∗ = 0 a.e. in Ω, integration by parts entails
∫

Ω

curl ζ∗ · curl θδ dx = 〈curl ζ∗ ∧ n,ϕ − (ϕ · n)n〉∂Ω. (3.8)

Combining (3.6), (3.7) and (3.8) yields the result. �

For a divergence-free deformation field v that vanishes on Γ, taking advantage of the latter results we
can construct a vector potential w̃ that vanishes on Γ as well.

Lemma 3.7. Assume (2.1) and (2.2). Let v ∈ H1(Ω,R3) such that div v = 0 a.e. in Ω and v = 0 on Γ.
Then there exists w̃ ∈ H2(Ω,R3) such that w̃ = 0 on Γ and curl w̃ = v a.e. in Ω.

Proof. Let ζ∗ as in Lemma 3.6. Then curlcurl ζ∗ = 0 a.e. in Ω and by arguing as in Lemma 3.5 with
the help [22, Lemma 2.1] there exists θ ∈ H1(Ω) such that −∇θ = curl ζ∗ a.e. in Ω, hence by (3.4) there
holds ∇θ ∧ n = w ∧ n in the sense of H−1/2(Γ;R3). By taking into account that w ∈ H3/2(∂Ω,R3)
and that n ∧ (∇θ ∧ n) is the (weak) tangential gradient of θ on Γ we get θ ∈ H5/2(Γ), so there exists
θ̃ ∈ H5/2(∂Ω) such that θ̃ = θ on Γ (thanks to the regularity of ∂Γ). Let now ψ∗ be the unique solution
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to the biharmonic boundary value problem
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δ2ψ = 0 in Ω

ψ = θ̃ on ∂Ω

∂ψ

∂n
= 0 on ∂Ω.

Since θ̃ ∈ H5/2(∂Ω) then ψ∗ ∈ H3(Ω) so by setting w̃ := w − ∇ψ∗ ∈ H2(Ω,R3) we get w̃ ∧ n =
(w − ∇ψ∗) ∧ n = w ∧ n − ∇θ ∧ n = 0 on Γ and curl w̃ = curl w = v a.e. in Ω and thesis follows by
recalling that w · n = 0 on the whole ∂Ω. �

Lastly, we prove a property of traces of H2(Ω;R3) functions which will be extremely useful in the
proof of our main result.

Lemma 3.8. Assume (2.1) and (2.2). Let w ∈ H2(Ω,R3) such that w = 0 on Γ. Then

∂

∂n
(w ∧ n) = 0 on Γ (3.9)

if and only if

curlw = 0 on Γ.

Proof. As in the proof of Lemma 3.6 we define here n(x) := n(σ(x)) for every x in a small neighborhood
Ωδ of ∂Ω, being σ(x) the unique projection of x on ∂Ω. In particular, curln = 0 in Ωδ so that ∂kn = ∇nk

on Ωδ for any k ∈ {1, 2, 3}. Suppose first that curl w = 0 on Γ. Then we have on Γ

∂

∂n
(w ∧ n) =

3∑
k=1

nk∂k(w ∧ n) =
3∑

k=1

(nk∂kw ∧ n + nkw ∧ ∂kn) =
3∑

k=1

nk∇wk ∧ n (3.10)

since
∑3

k=1 nk∇nk = 0. But ∇wk ∧ n = 0 on Γ for any k ∈ {1, 2, 3} since w = 0 on Γ, implying that the
tangential derivative of w vanishes on Γ. Conversely if (3.9) holds, by arguing as in (3.10) with the help
of ∇wk ∧ n = 0 on Γ we get

3∑
k=1

nk(∂kw − ∇wk) ∧ n = 0 on Γ. (3.11)

Since by symmetry
∑3

i=1

∑3
k=1 nink(∂kwi − ∂iwk) = 0, from (3.11) we get

3∑
k=1

nk(∂kw − ∇wk) = 0 on Γ.

Therefore, fixing k ∈ {1, 2, 3},

∂kw − ∇wk =
3∑

i=1

(∂kwi − ∂iwk)nin + n ∧ ((∂kw − ∇wk) ∧ n) = n ∧ ((∂kw − ∇wk) ∧ n)

= n ∧ (∂kw ∧ n) = n ∧ (∂k(w ∧ n) − w ∧ ∂kn) = 0

on Γ, where the latter equality is due to the fact that ∇(w ∧ n) = 0 on Γ (since (3.9) holds and since
w ∧ n vanishes on Γ). The result is proven. �
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4. Approximation results

Several approximation results will be needed for obtaining Γ-convergence and for giving the proof of the
main theorem. The first one is contained in the next lemma, which is a consequence of the well known
Reynolds’ Transport Theorem. We will prove it in some details since its application in this context seems
a novelty, at least to our present knowledge.

Lemma 4.1. Let Ω be a bounded open subset of R3 and let Γ ⊆ ∂Ω. Let Ω′ ⊂ R
3 be an open set such

that Ω ⊂ Ω′. Let v ∈ C1(Ω′;R3) be such that div v = 0 in Ω′ and v = 0 on Γ. Then, for every sequence
(hj)j∈N of strictly positive numbers such that limj→∞ hj = 0, there exists a sequence (vj)j∈N ⊂ C1(Ω,R3)
such that

det(I + hj∇vj) = 1 in Ω, (4.1)
vj = 0 on Γ, (4.2)

vj → v in W 1,p(Ω,R3) ∀p ∈ [1,+∞), (4.3)
‖hj∇vj‖L∞(Ω,R3×3) → 0. (4.4)

Proof. Let Ω∗ be an open set, compactly contained in Ω′, such that Ω ⊂ Ω∗. We choose T ∈ (0, 1) small
enough, such that y(t, x) ∈ Ω′ for any x ∈ Ω∗ and any t ∈ [0, T ], where y(·, x) is the unique solution to⎧⎪⎨

⎪⎩
∂y
∂t

(t, x) = v(y(t, x)), t ∈ (0, T ]

y(0, x) = x.

(4.5)

Classical results show that since v ∈ C1(Ω′;R3), then y ∈ C1([0, T ] × Ω∗). In particular, given a
measurable set A ⊂ Ω, for any t ∈ [0, T ] we have At := y(t, A) ⊂ Ω′ and (see also [25, Corollary 5.2.8,
Corollary 5.2.10])

d
dt

|At| =
∫

At

div v(x) dx = 0,

hence |At| = |A| for any t ∈ [0, T ]. Therefore, using the change of variables formula

|At| =
∫

A

det ∇y(t, x) dx,

we conclude that for any t ∈ [0, T ] ∫

A

dx =
∫

A

det ∇y(t, x) dx.

By the arbitrariness of the measurable set A ⊂ Ω, for any t ∈ [0, T ] we get

det ∇y(t, x) = 1 for every x ∈ Ω. (4.6)

Assuming wlog that hj < T , we define

yj(x) := y(hj , x), vj(x) := h−1
j (yj(x) − x), x ∈ Ω∗.

By taking into account that v = 0 on Γ ⊂ Ω∗ we get yj(x) ≡ x on Γ so vj vanishes on Γ and (4.6) entails
det(I + hj∇vj) = 1 in Ω, thus proving (4.1) and (4.2).

We next prove (4.3). Let t ∈ (0, T ]. We notice that from (4.5) we get

1
t

(y(t, x) − x) − v(x) =
1
t

t∫

0

(v(y(s, x)) − v(x)) ds (4.7)
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and thus

1
t
|y(t, x) − x| ≤ |v(x)| + ‖v‖W 1,∞(Ω′)

t∫

0

1
s
|y(s, x) − x|ds

for any x ∈ Ω, and Gronwall lemma entails

1
t
|y(t, x) − x| ≤ |v(x)| exp{‖v‖W 1,∞(Ω′)t} ≤ Cv,

where Cv := ‖v‖W 1,∞(Ω′) exp{‖v‖W 1,∞(Ω′)}. From the definition of vj , from (4.7) and from the latter
estimate we obtain

|vj(x) − v(x)| =
∣∣∣∣ 1
hj

(y(hj , x) − x) − v(x)
∣∣∣∣ ≤ ‖v‖W 1,∞(Ω′)

hj∫

0

1
s

|y(s, x) − x| ds

≤ Cv‖v‖W 1,∞(Ω′) hj

for any x ∈ Ω and any j ∈ N. From the latter we get the convergence of vj to v in L1 ∩ L∞(Ω) as j → 0.
We take now the gradient in (4.7), and since the map Ω∗ � x �→ v(y(t, x)) is Lipschitz continuous for

any t ∈ (0, T ] we may take the gradient under integral sign and obtain

1
t
(∇y(t, x) − I) − ∇v(x) =

1
t

t∫

0

(∇[v(y(s, x))] − ∇v(x)) ds

=
1
t

t∫

0

(∇v(y(s, x))∇y(s, x) − ∇v(x)∇y(s, x)) ds +
1
t

t∫

0

(∇v(x)∇y(s, x) − ∇v(x)) ds

(4.8)

for every x ∈ Ω. Form the first equality of (4.8) we get

1
t
‖∇y(t, ·) − I‖L∞(Ω∗) =

1
t

∥∥∥∥∥∥
t∫

0

∇v(y(s, ·))∇y(s, ·) ds

∥∥∥∥∥∥
L∞(Ω∗)

≤ ‖v‖W 1,∞(Ω′) sup
t∈[0,T ]

‖∇y(t, ·)‖L∞(Ω∗) = Q‖v‖W 1,∞(Ω′)

(4.9)

for any t ∈ (0, T ], where Q := ‖∇y‖C0([0,T ]×Ω∗) < +∞. Still from the first equality of (4.8) we have

|∇vj(x) − ∇v(x)| =
∣∣∣∣ 1
hj

(∇y(hj , x) − I) − ∇v(x)
∣∣∣∣

≤
hj∫

0

|∇y(s, x)|
hj

|∇v(y(s, x)) − ∇v(x)|ds + ‖v‖W 1,∞(Ω′)

hj∫

0

|∇y(s, x) − I|
s

ds,

for every x ∈ Ω and any j ∈ N. Hence, (4.9) entails

|∇vj(x) − ∇v(x)| ≤ Q
hj

hj∫

0

|∇v(y(s, x)) − ∇v(x)|ds + Q‖v‖W 1,∞(Ω′)hj (4.10)
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for every x ∈ Ω and any j ∈ N. We notice that for p ∈ [1,+∞), by Jensen inequality there holds

1
hp

j

⎛
⎜⎝

hj∫

0

|∇v(y(s, x)) − ∇v(x)|ds

⎞
⎟⎠

p

≤ 1
hj

hj∫

0

|∇v(y(s, x)) − ∇v(x)|p ds

≤ 2‖v‖p−1
W 1,∞(Ω′)

1
hj

hj∫

0

|∇v(y(s, x)) − ∇v(x)|ds

and the above right hand side vanishes for any x ∈ Ω as j → +∞ since ∇v is continuous by assumption,
so that we obtain

lim
j→∞

1
hp

j

∫

Ω

⎛
⎜⎝

hj∫

0

|∇v(y(s, x)) − ∇v(x)|ds

⎞
⎟⎠

p

dx = 0 (4.11)

by dominated convergence, using 2‖v‖p
W 1,∞(Ω′) as dominating function on the bounded domain Ω. From

(4.10) we find

∫

Ω

|∇vj(x) − ∇v(x)|p dx ≤ Qp

hp
j

∫

Ω

⎛
⎜⎝

hj∫

0

|∇v(y(s, x)) − ∇v(x)|ds

⎞
⎟⎠

p

dx + |Ω|Qp‖v‖p
W 1,∞(Ω′)h

p
j

so that the Lp(Ω) convergence of ∇vj to ∇v follows by taking the limit as j → +∞ and by using (4.11).
This concludes the proof of (4.3).

Eventually, since ∇vj(x) = 1
hj

(∇y(hj , x) − I), (4.4) directly follows from (4.9). �

The next step is an approximation of divergence-free H1(Ω,R3) vector fields with divergence-free
C1(Ω,R3) vector fields, in presence of suitable vanishing conditions on subsets of ∂Ω. It is stated in Lemma
4.4. It requires the introduction of some notation about normal bundles and a couple of preliminary
lemmas. From here and through the rest of the paper, assumptions (2.1) and (2.2) are always understood
to hold.

Recalling the definition of reach from (3.2), with the convention R(∅) = +∞, let

μ0 :=
1
2

min{R(∂Ω), R(∂Γ)}. (4.12)

Remark 4.2. (Regularity of the squared distance function) Assume (2.1) and (2.2). Let either A = ∂Γ �= ∅
or A = ∂Ω. The distance function d(x,A) := miny∈A |x − y| is differentiable at any point x ∈ R

3 such
that 0 < d(x,A) < R(A), see [18, Theorem 3.3, Chapter 6]. In particular, the squared distance function
d2(·, A) inherits the C3 regularity of A in the tubular neighbor U0(A) := {x ∈ R

3 : d(x,A) < μ0}, see for
instance [33, Proposition 4.6], see also [18, Theorem 6.5, Chapter 6]. We deduce d(·, A) ∈ C3(U0(A)\A).

For every 0 < μ < μ0, let

Sμ := {σ + tn(σ) : σ ∈ Γ, |t| ≤ μ}. (4.13)

We further define, for any 0 < μ < μ0 and any 0 < δ < μ0,

Γδ := {x ∈ ∂Ω : d(x,Γ) ≤ δ}, Sμ,δ := {σ + tn(σ) : σ ∈ Γδ, |t| ≤ μ}. (4.14)

In case Γ = ∂Ω (i.e., ∂Γ = ∅), we have Γδ ≡ Γ and Sμ,δ ≡ Sμ, for any 0 < δ < μ0. We stress that
this case in encoded in Lemmas 4.3 and 4.4 below. On the other hand, if ∂Γ �= ∅, then assumption (2.1)
and the regularity properties of the distance function from ∂Γ (see Remark 4.2) imply that ∂Γδ is a C3

one-dimensional submanifold of ∂Ω. In particular, Γδ itself satisfies assumption (2.2).
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Let us also introduce the following notation for neighbors of Ω and ∂Ω

Ω′ := {x ∈ R
3 : d(x,Ω) < μ0} and Ω′′ := {x ∈ R

3 : d(x, ∂Ω) < μ0} ⊂ Ω′. (4.15)

We notice that n can be extended to Ω′′ in the usual way: n(x) = n(σ(x)), where σ(x) is the unique
projection of x ∈ Ω′′ on ∂Ω, and therefore n is a C2(Ω′′,R3) vector field, so that there exists K > 1 such
that

|∇n| + |∇2n| ≤ K inΩ′′. (4.16)

Some auxiliary estimates are given by the next

Lemma 4.3. Assume (2.1) and (2.2). Let 0 < δ < μ0, where μ0 is defined by (4.12). Let f ∈ H2(Ω′′,R3)
be such that f = 0 on Γδ.

Then there exists ε0 ∈ (0, μ0) such that for any ε ∈ (0, ε0) and any λ ∈ (0, δ) there holds
∫

Sε,λ

|f |2 dx ≤ 2ε2

∫

Sε,λ

|∇f |2 dx, (4.17)

and if
∂f

∂n
= 0 on Γδ as well, there holds

∫

Sε,λ

|f |2 dx ≤ ε4

2

∫

Sε,λ

|∇2f |2 dx. (4.18)

Proof. Let B denote the unit ball in R
2 and let ψ ∈ C3(B;R3) be any local chart parametrizing a

subset of ∂Ω. Let Bλ := ψ−1(Γλ ∩ ψ(B)). Let B × (−ε, ε) � (u, t) �→ Φ(u, t) := ψ(u) + tn(ψ(u)). Up
to covering Γλ with local charts, it is enough to show that (4.17) and (4.18) hold, for suitably small
ε, with Φ(Bλ × (−ε, ε)) in place of Sε,λ. We have |det DΦ(u, 0)| = |∂1ψ(u) ∧ ∂2ψ(u)| > 0, where
D denotes the gradient in the variables (u, t). |det DΦ(u, 0)| is bounded away from zero on B and
|det DΦ(u, t)| = |∂1ψ(u) ∧ ∂2ψ(u)| + o(1) as t → 0, uniformly with respect to u ∈ B. We notice that
|DΦ| is bounded on B × (−ε, ε). Moreover, it is not difficult to check that for any small enough ε there
holds

|det DΦ(u, t)|
|det DΦ(u, s)| ≤ 2 for any (u, t, s) ∈ B × (−ε, ε) × (−ε, ε). (4.19)

By the properties of Sobolev functions (see for instance [40, Chapter 1]), f ◦ Φ ∈ H2(B × (−ε, ε)),
as Φ is a C2 homemorphism whose Jacobian is bounded away from 0 and +∞ on B × (−ε, ε), and
t �→ f(Φ(u, t)) is absolutely continuous for L2-a.e. u ∈ B. Thus

for L2-a.e u ∈ B we get

f(Φ(u, t)) = f(Φ(u, 0)) + t

1∫

0

d(f ◦ Φ)
ds

(u, st) ds,

so that by Jensen inequality, and since f = 0 on Γ and |∂tΦ| = 1, we obtain

|f(Φ(u, t))|2 ≤ |t|
0∨t∫

0∧t

|∇f(Φ(u, s))|2 ds.
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By the latter inequality, by changing variables and by (4.19) we get for any small enough ε

∫

Φ(Bλ×(−ε,ε))

|f |2 dx =
∫

Bλ

ε∫

−ε

|f(Φ(u, t))|2 |det DΦ(u, t)|dt du

≤
∫

Bλ

ε∫

−ε

|t|
⎛
⎝

0∨t∫

0∧t

|∇f(Φ(u, s))|2 ds

⎞
⎠ |det DΦ(u, t)|dt du

≤
∫

Bλ

ε∫

−ε

2|t|
0∨t∫

0∧t

|∇f(Φ(u, s))|2 |det DΦ(u, s)|ds dt du

≤
∫

Bλ

ε∫

−ε

2|t|dt

ε∫

−ε

|∇f(Φ(u, s))|2 |det DΦ(u, s)|ds du

≤ 2ε2

∫

Bλ

ε∫

−ε

|∇f(Φ(u, τ))|2 |det DΦ(u, s)|ds du = 2ε2

∫∫
Φ(Bλ×(−ε,ε))

|∇f |2 dx.

Similarly, under the further null trace assumption of ∂f
∂n on Γμ,δ we deduce that

d
dt

(f(Φ(u, t)))
∣∣
t=0

=
∂f

∂n
(ψ(u))

vanishes as well and we obtain for L2-a.e u ∈ B, since ∂2
t Φ = 0,

|f(Φ(u, t))| =

∣∣∣∣∣∣f(Φ(u, 0)) + t
d
dt

(f(Φ(u, t)))
∣∣
t=0

+
1
2
t2

1∫

0

d2(f ◦ Φ)
ds2

(u, st) ds

∣∣∣∣∣∣

≤ 1
2
t2

1∫

0

|∇2f(Φ(u, st))|ds,

thus

|f(Φ(u, t))|2 ≤ |t|3
2

0∨t∫

0∧t

|∇2f(Φ(u, s))|2 ds.

Arguing as above we get for any small enough ε

∫

Φ(Bλ×(−ε,ε))

|f |2 dx =
∫

Bλ

ε∫

−ε

|f(Φ(u, t))|2 |det DΦ(u, t)|dt du

≤
∫

Bλ

ε∫

−ε

|t|3
2

⎛
⎝

0∨t∫

0∧t

|∇2f(Φ(u, s))|2 ds

⎞
⎠ |det DΦ(u, t)|dt du

≤
∫

Bλ

ε∫

−ε

|t|3 dt

ε∫

−ε

|∇2f(Φ(u, s))|2 |det DΦ(u, s)|ds du =
ε4

2

∫

Φ(Bλ×(−ε,ε))

∣∣∇2f
∣∣2 dx,

as desired. �

We are ready for the statement of the approximation result
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Lemma 4.4. Assume (2.1) and (2.2). Let 0 < δ < μ0, where μ0 is defined by (4.12). Let v ∈ H1(Ω,R3)
such that div v = 0 a.e. in Ω and v = 0 on Γδ. Then there exists a sequence (vj)j∈N ⊂ C1(Ω′,R3) such
that div vj = 0 a.e. in Ω′, vj = 0 on Γ and vj → v in H1(Ω,R3).

Proof. Let 0 < μ < μ0. Recalling (4.13), (4.27) and (4.14), notice that if λ ∈ (0, δ/2), ε ∈ (0, μ/2) then
there hold S2ε,2λ ⊂ Sμ,δ and S2ε,2λ ∩ ∂Ω ⊂ Γδ, which will be crucial for the proof: the projection on ∂Ω
of any point in S2ε,2λ lies on Γδ. On the other hand it clear that S2ε,2λ ⊂ Ω′′, where Ω′′ is defined by
(4.15), thus n is well defined on S2ε,2λ.

Let ζ ∈ C2(R) be defined by

ζ(ξ) :=

⎧⎨
⎩

(3ξ2 − 2ξ3)2 if ξ ∈ [0, 1]
0 if ξ < 0
1 if ξ > 1.

We introduce some notation: S∗
ε,λ := S2ε,λ\Sε,λ, S∗∗

ε,λ := S2ε,2λ\S2ε,λ, S̃ε,λ := S∗
ε,λ∪S∗∗

ε,λ. Let λ ∈ (0, δ/2),
let ε ∈ (0, λ ∧ (μ/2)) and let

ηε,λ(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ∈ Sε,λ

ζ

(
d(x, ∂Ω) − ε

ε

)
if x ∈ S∗

ε,λ

ζ

(
d(x, ∂Ω) − ε

ε

)
+ζ

(
d(σ(x), ∂Γ) − λ

λ

)(
1 − ζ

(
d(x, ∂Ω) − ε

ε

))
if x ∈ S∗∗

ε,λ

1 otherwise in R
3

We notice that in the particular case ∂Γ = ∅, we have Sε,λ = Sε, S∗
ε,λ = S2ε\Sε, S∗∗

ε,λ = ∅, and in fact ηε,λ

does not depend on λ. Taking advantage of the C3 regularity of d(·, ∂Ω) in Ω′′ ∩ {x ∈ R
3 : d(x, ∂Ω) >

ε/2}, of the C2 regularity of σ in Ω′′ and of the C2 regularity of x �→ d(σ(x), ∂Γ) in S2ε,2λ\S2ε,λ (see
Remark 4.2), it can be easily checked that ηε,λ ∈ C1,1(R3). Moreover, we have |∇d(x, ∂Ω)| ≤ 1 and
|∇2d(x, ∂Ω)| ≤ C∗/ε on S∗

ε,λ (and similarly, |∇(d(σ(x), ∂Γ))| ≤ C∗, and |∇2(d(σ(x), ∂Γ))| ≤ C∗/λ on
S∗∗

ε,λ) for some C∗ > that is independent of ε and λ. Taking advantage of these distance estimates, a
computation shows that there is a constant C > 0 (not depending on ε and λ) such that

∇ηε,λ · n = 0 in Sε,λ, 2 |∇ηε,λ · n| ≤ C

ε
in S̃ε,λ

n ∧ (∇ηε,λ ∧ n) = 0 in S∗
ε,λ, 2 |n ∧ (∇ηε,λ ∧ n)| ≤ C

λ
<

C

ε
in S∗∗

ε,λ,

2|∇(∇ηε,λ · n)| ≤ C

ε2
in S∗

ε,λ, 2|∇(n ∧ (∇ηε,λ ∧ n))| ≤ C

λε
in S∗∗

ε,λ.

(4.20)

Thanks to Lemma 3.7, we find w̃ ∈ H2(Ω,R3) such that w̃ = 0 on Γδ and curl w̃ = v a.e. in Ω (in
particular, curl w̃ = 0 on Γδ). Let us consider a H2(R3,R3) extension of w̃, still denoted by w̃, and set

wε,λ := ηε,λw̃.

Therefore, wε,λ ∈ H2(Ω′,R3), wε,λ = 0 on Γδ and

curl wε,λ = ηε,λ curl w̃ − w̃ ∧ ∇ηε,λ (4.21)

so that curl wε,λ = 0 on Γδ as well. Moreover, for i = 1, 2, 3,

∂icurl wε,λ = ∂iηε,λ curl w̃ + ηε,λ∂i curl w̃ − ∂iw̃ ∧ ∇ηε,λ − w̃ ∧ ∂i∇ηε,λ (4.22)

and it is readily seen that, as ε → 0+,

ηε,λ curl w̃ → curl w̃ and ηε,λ∂i curl w̃ → ∂i curl w̃ (4.23)
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in L2(Ω,R3). We claim that

w̃ ∧ ∇ηε,λ → 0, ∂iηε,λ curl w̃ → 0, ∂iw̃ ∧ ∇ηε,λ → 0, w̃ ∧ ∂i∇ηε,λ → 0 (4.24)

in L2(Ω,R3) as ε → 0+, which will then imply, along with (4.21)–(4.22)–(4.23), that

curlwε,λ → curl w̃ = v in H1(Ω,R3) as ε → 0+. (4.25)

In order to prove the claim, we separately treat the four terms in (4.24), by taking into account (4.20)
and Lemma 3.8, which entails w̃ = w̃∧n = ∂

∂n (w̃∧n) = 0 on Γδ (thus, ∇(w̃∧n) = 0 on Γδ as well). We
get, thanks to the usual decomposition a = (a · n)n + n ∧ (a ∧ n), thanks to Lemma 4.3 and to (4.16),
and by recalling that ∇ηε,λ = 0 outside S̃ε,λ we get,∫

Ω

|w̃ ∧ ∇ηε,λ|2 dx ≤
∫

S̃ε,λ

|w̃ ∧ ∇ηε,λ|2 dx

≤ 4
∫

S̃ε,λ

|∇ηε,λ · n|2|w̃ ∧ n|2 dx + 4
∫

S∗∗
ε,λ

|w̃|2 |n ∧ (∇ηε,λ ∧ n)|2

≤ C2

λ2

∫

S∗∗
ε,λ

|w̃|2 dx +
C2

ε2

∫

S2ε,2λ

|w̃|2 dx

≤ C2

λ2

∫

S∗∗
ε,λ

|w̃|2 dx + 2C2

∫

S2ε,2λ

|∇w̃|2 dx

so that w̃ ∧ ∇ηε,λ → 0 in L2(Ω,R3) as ε → 0+. On the other hand, still making use of Lemma 4.3,∫

Ω

|∂iw̃ ∧ ∇ηε|2 dx ≤
∫

S̃ε,λ

|∂iw̃ ∧ ∇ηε,λ|2 dx

≤ 4
∫

S̃ε,λ

(|∂iw̃|2 |n ∧ ∇ηε,λ ∧ n|2 + |∇ηε · n|2|∂iw̃ ∧ n|2) dx

≤ C2

λ2

∫

S̃ε,λ

|∂iw̃|2 dx +
C2

ε2

∫

S2ε,2λ

|∂i(w̃ ∧ n)|2 dx +
C2

ε2

∫

S2ε,2λ

|w̃ ∧ ∂in|2 dx

≤ C2

λ2

∫

S̃ε,λ

|∂iw̃|2 dx +
C2

ε2

∫

S2ε,2λ

|∇(w̃ ∧ n)|2 dx +
K2C2

ε2

∫

S2ε,2λ

|w̃|2 dx

≤ C2

λ2

∫

S̃ε,λ

|∂iw̃|2 dx + 8C2

∫

S2ε,2λ

|∇2(w̃ ∧ n)|2 dx + 8K2C2

∫

S2ε,2λ

|∇w̃|2 dx

≤ C2

λ2

∫

S̃ε,λ

|∂iw̃|2 dx + 24K2C2

∫

S2ε,2λ

(|w̃|2 + |∇w̃|2 + |∇2w̃|2) dx

hence ∂iw̃ ∧ ∇ηε,λ → 0 in L2(Ω,R3) as ε → 0+. Similarly, taking advantage of the fact that curl w̃ = 0
on Γμ,δ and of Lemma 4.3, we get as ε → 0+

∫

Ω

|∂iηε,λ curl w̃|2 dx ≤ C2

ε2

∫

S̃ε,λ

| curl w̃|2 dx ≤ 8C2

∫

S2ε,2λ

|∇curl w̃|2 dx → 0,
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thus ∂iηε,λ curl w̃ → 0 in L2(Ω,R3) as ε → 0+. Moreover, by applying the usual decomposition in normal
and tangential part to ∇ηε,λ we get

w̃ ∧ ∂i(∇ηε,λ) = ∂i(∇ηε,λ · n) w̃ ∧ n + (∇ηε,λ · n) w̃ ∧ ∂in

+ w̃ ∧ (∂in ∧ (∇ηε,λ ∧ n)) + w̃ ∧ (n ∧ ∂i(∇ηε,λ ∧ n))

= ∂i(∇ηε,λ · n) w̃ ∧ n + (∇ηε,λ · n) w̃ ∧ ∂in + w̃ ∧ (∂i(n ∧ (∇ηε,λ ∧ n))),

and by taking again advantage of (4.20) we find∫

Ω

|∂i(∇ηε,λ · n) w̃ ∧ n|2 dx ≤
∫

S̃ε,λ

|∇(∇ηε,λ · n)|2 |w̃ ∧ n|2 dx ≤ C2

4ε4

∫

S2ε,2λ

|w̃ ∧ n|2 dx,

∫

Ω

|(∇ηε,λ) w̃ ∧ ∂in|2 dx ≤ K2

∫

S̃ε,λ

|∇ηε,λ · n|2 |w̃|2 dx ≤ K2C2

4ε2

∫

S2ε,2λ

|w̃|2 dx,

∫

Ω

|w̃ ∧ (∂i(n ∧ (∇ηε,λ ∧ n)))|2 dx ≤
∫

S̃ε,λ

|∇(n ∧ (∇ηε,λ ∧ n))|2 |w̃|2 dx ≤ C2

4ε2λ2

∫

S2ε,2λ

|w̃|2dx

and we see that all these integrals are reduced to the ones of the previous estimates, so that indeed by
using Lemma 4.3 they all vanish as ε → 0+, showing that w̃ ∧ ∂i(∇ηε,λ) → 0 in L2(Ω,R3) as ε → 0+.
This proves the claim, so that (4.25) holds true.

We stress that w̃ε,λ and curl w̃ε,λ vanish in Sε,λ, hence in an open neighbor of Γ in R
3. Let now

(εj)j∈N ⊂ (0,+∞) be such that εj → 0+ as j → +∞, let (ρj)j∈N be a sequence of smooth mollifiers
such that the support of ρj is so small that w̃εj ,λ ∗ ρj still vanishes on a neighbor of Γ. Then, we define
w̃j,λ := w̃εj ,λ ∗ ρj , and vj := curl w̃j,λ. It is readily seen that vj ∈ C1(Ω′,R3), that div vj = 0 in Ω′ and
that vj = 0 on Γ. By recalling (4.25) we get also vj → v in H1(Ω,R3) thus concluding the proof. �

Remark 4.5. If Γ = ∂Ω (i.e., if ∂Γ = ∅), then it is enough to assume C2,1 regularity of ∂Ω in Lemma 4.4.
Indeed, we still get boundedness of ∇2n in Ω′′, which allows the latter proof to carry over.

The final step of this section is another suitable approximation property of divergence-free H1 vector
fields, that is required to treat the case ∂Γ �= ∅. It is stated in Lemma 4.9. It also requires some preliminary
lemmas and some further notation.

Suppose that ∂Γ �= ∅. For every 0 < μ < μ0, where μ0 is defined by (4.12), let

∂lSμ := {σ + tn(σ) : σ ∈ ∂Γ, |t| ≤ μ}.

Since n ∈ C2(∂Ω), we see that ∂lSμ is a compact C2 manifold with boundary. It is the lateral boundary
of Sμ, and we denote by νl the corresponding outward unit normal vector to ∂lSμ. Moreover, for every
0 < δ < μ0 and 0 < μ < μ0, let φμ,δ : ∂lSμ × [−δ, δ] → R

3 be defined by

φμ,δ(s, τ) := s + τνl(s). (4.26)

It is clear that each point of φμ,δ(∂lSμ × [−δ, δ]) is within the reach of both ∂Ω and ∂Γ. φμ,δ inherits the
C1 regularity of νl. We recall the following simple property.

Lemma 4.6. Assume (2.1) and (2.2), with ∂Γ �= ∅. Let μ < μ0. There exists δ0 ∈ (0, μ0) such that the
map φμ,δ : ∂lSμ × [−δ0, δ0] → R

3, defined by (4.26), is one-to-one.

Proof. Assume by contradiction that there is no δ0 > 0 with the required property. Then there exist
sequences (sj)j∈N ⊂ ∂lSμ, (s′

j)j∈N ⊂ ∂lSμ and (tj)j∈N ⊂ (0, 1/n), (t′j)j∈N ⊂ (0, 1/n) such that (sj , tj) �=
(s′

j , t
′
j) and φμ,δ(sj , tj) = φμ,δ(s′

j , t
′
j) for any j ∈ N (hence, sj �= s′

j for any j ∈ N). Since ∂lSμ is compact,
up to subsequences we have sj → s ∈ ∂lSμ, s′

j → s′ ∈ ∂lSμ, tj → 0 and t′j → 0. Therefore, the continuity
of φμ,δ implies φμ,δ(s, 0) = φμ,δ(s′, 0), i.e., s′ = s. This means that (s, 0) has no open neighbor in R

3 where
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φμ,δ is invertible. Let B denote the unit open ball in R
2: for a given C2 local chart u � B �→ ψ(u) ∈ R

3

describing a neighbor of s on the surface ∂lSμ, such that ψ(0) = s, we have |det Dφμ,δ(ψ(0), 0)| =
|∂1ψ(0) ∧ ∂2ψ(0)| �= 0 (by the regularity of the surface), where D denotes the gradient in the variable
(u, t). Therefore, the C1(B × (−δ, δ)) mapping φμ,δ ◦ (ψ, i) has non vanishing Jacobian at the point
(s, 0) = φμ,δ(ψ(0), 0), hence it is invertible in a neighbor of such point, a contradiction. �

Still for ∂Γ �= ∅, for every 0 < μ < μ0 and for every 0 < δ < δ0, where δ0 is the threshold provided by
Lemma 4.6, we define

T±
μ,δ := {s ± τνl(s) : s ∈ ∂lSμ, 0 ≤ τ ≤ δ}, Tμ,δ := T+

μ,δ ∪ T−
μ,δ. (4.27)

We have the following

Lemma 4.7. Assume (2.1) and (2.2), with ∂Γ �= ∅. Let w ∈ H2(Ω,R3) be such that w = ∂
∂n (w ∧ n) = 0

on Γ. Then there exist a vanishing sequence (λj)j∈N ⊂ (0, μ0) and a sequence (wj)j∈N ⊂ H2(Ω,R3) such
that wj = ∂

∂n (wj ∧ n) = 0 on Γλj
and wj → w in H2(Ω,R3) as j → +∞.

Proof. Let δ0 be the threshold from Lemma 4.6. Let μ and δ be such that

0 < 3δ < μ <
1
2

δ0 and 4δ <
1

Lip(νl)
,

where Lip(νl) := sup
{

|ν l(z)−ν l(z
′)|

|z−z′| : z ∈ ∂lSμ, z′ ∈ ∂lSμ, z �= z′
}

<+∞, since νl ∈ C1(∂lSμ).

We define for every y ∈ Γ2δ and for every 0 < λ < (δ/2) ∧ 1

ψλ(y) :=

⎧⎨
⎩

y − 2γλ(d2(y, ∂Γ))(t ∧ n)(s(y)) if y ∈ {x ∈ Γ2δ : d(x, ∂Γ) ≤ 2δ}

y otherwise in Γ2δ

where s(y) ∈ ∂Γ is the unique nearest point of ∂Γ to y ∈ {x ∈ Γ2δ : d(x, ∂Γ) ≤ 2δ} (recalling (4.12)
so that 2δ < δ0 < μ0 implies that y is within the reach of ∂Γ), and t is the unit tangent vector to ∂Γ
(positively orienting ∂Γ with respect to n, so that (t ∧ n)(s(y)) coincides with the outward unit vector
νl(s(y)) to ∂lSμ). Moreover, here γλ ∈ C2(R) is a decreasing cutoff function such that γλ(ξ) = 0 if ξ ≥ δ
and γλ(ξ) = λ if ξ ≤ δ/2. We stress that d2(·, ∂Γ) is a C3 function on the set {x ∈ R

3 : d(x, ∂Γ) < μ0},
so that since s(y) = y − 1

2∇(d2(y, ∂Γ)), s(·) is C2 on such set (see Remark 4.2).
The following property holds: there exists λ0 ∈ (0, (δ/2) ∧ 1) such that, for any λ < λ0,

σ(ψλ(y)) ∈ Γ for every y ∈ Γλ, (4.28)

where σ(·) denotes as usual the unique projection on ∂Ω (since 2γλ ≤ 2λ < μ0, then ψλ(y) is within the
reach of ∂Ω). This crucial property is proved in a separate statement, i.e., in Lemma 4.8 below.

Let us consider an H2(R3,R3) extension of w, still denoted by w.
For any x ∈ S2μ,2δ (thus within the reach of ∂Ω, since 2μ < δ0 < μ0), we introduce the signed distance

function

b(x) :=
{

d(x, ∂Ω) if x /∈ Ω
−d(x, ∂Ω) if x ∈ Ω,

and we notice that b(x) is the unique real number such that x = σ(x) + t(x)n(σ(x)). We notice that
b ∈ C3(Ω′′): indeed, we have n = ∇b. See also [17, Theorem 3.1] for regularity results about the signed
distance function. We let gλ : S2μ,2δ → ∂Ω be defined by gλ(x) := σ(φλ(σ(x))) and we further define

hλ(x) : = [w(gλ(x) + b(x)n(gλ(x))) · n(gλ(x))] n(σ(x))

+ n(σ(x)) ∧ [w(gλ(x) + b(x)n(gλ(x))) ∧ n(gλ(x))] .
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We note that n is extended to a C2(Ω′′,R3) vector field in the usual way, see (4.15), so that n(σ(x)) =
n(x). We let η ∈ C2(R3) be a cutoff function, such that 0 ≤ η ≤ 1, η ≡ 0 in Sμ,δ, and the support of
1 − η is contained in S̊2μ,2δ. Then we define, for every x ∈ R

3,

w∗
λ(x) = (1 − η(x))hλ(x),

so that indeed w∗
λ is supported in S̊2μ,2δ, and

wλ(x) := w∗
λ(x) + η(x)w(x).

We claim that wλ ∈ H2(Ω,R3) for any small enough λ and that wλ → w in H2(Ω,R3) as λ → 0.
Indeed, recalling the definition of γλ and the fact that d2(·, ∂Γ) and s(·) are C2 functions on {x ∈ R

3 :
d(x, ∂Γ) < μ0}, it is readily seen that ψλ ∈ C2(Γ2δ) and that ψλ(y) → y in C2(Γ2δ) as λ → 0. We also
observe that σ : Ω′′ → ∂Ω is a C2 function by assumption (2.1). Therefore, we obtain ψλ ◦ σ → σ in
C2(S2μ,2δ) as λ → 0, and similarly gλ = σ◦ψλ ◦σ → σ in C2(S2μ,2δ) and n◦gλ → n◦σ = n in C2(S2μ,2δ).
Since x = σ(x) + b(x)n(σ(x)), for small enough λ we see that the mapping

S2μ,2δ � x �→ qλ(x) := gλ(x) + b(x)n(gλ(x)) ∈ Ω′′

is a C2 homeomorphism whose Jacobian is bounded away from 0, and moreover by the previous remarks
it converges to the identity as λ → 0 in C2(S2μ,2δ). Since w ∈ H2(R3,R3), we obtain by the properties
of Sobolev functions (as in Lemma 4.3), that w ◦ qλ ∈ H2(S̊2μ,2δ,R

3), and moreover it is easy to check
that w ◦ qλ → w in H2(S̊2μ,2δ,R

3) as λ → 0. Taking the product with the smooth cutoff function 1 − η
(supported on S2μ,2δ), we deduce that (1− η)(w ◦ qλ) → (1− η)w in H2(R3,R3). Moreover, since we also
have n ◦ gλ → n ◦ σ = n in C2(S2μ,2δ), we obtain

w∗
λ = (1 − η)hλ → (1 − η) {[w · n]n + n ∧ [w ∧ n]} = (1 − η)w

in H2(R3,R3) as λ → 0. Thus wλ → w in H2(Ω,R3) as λ → 0. The claim is proved.
We shall now prove that wλ = ∂

∂n (wλ ∧ n) = 0 on Γλ for any small enough λ. Indeed, let λ < λ0

be small enough, such that wλ ∈ H2(Ω,R3). If x ∈ Γλ, then by the property (4.28) we get gλ(x) ∈ Γ,
and since b(x) = 0 and w = 0 on Γ we directly obtain hλ(x) = w∗

λ(x) = 0 on Γλ. But η(x) = 0 as well
(because η = 0 on Sμ,δ and λ < δ/2 so that Γλ ⊂ Γδ ⊂ Sμ,δ), hence wλ(x)=0. On the other hand for
every x ∈ Γλ, we have gλ(x) = σ(ψλ(x)), and we have σ(x + rn(x)) = x, b(x + rn(x)) = r when |r| is
small enough, therefore

hλ(x + rn(x)) : = [w(σ(ψλ(x)) + rn(σ(ψλ(x))) · n(σ(ψλ(x)))] n(x)

+ n(x) ∧ [w(σ(ψλ(x)) + rn(σ(ψλ(x)))) ∧ n(σ(ψλ(x)))]

and
hλ(x + rn(x)) ∧ n(x + rn(x)) = hλ(x + rn(x)) ∧ n(x)

= {n(x) ∧ [(w(σ(φλ(x)) + rn(σ(φλ(x)))) ∧ n(σ(φλ(x)))]} ∧ n(x).

As a consequence, by taking into account that σ(ψλ(x)) ∈ Γ and that ∂
∂n (w ∧ n) = 0 on Γ we get

∂

∂n
(hλ ∧ n)(x) = lim

r→0+

hλ(x + rn(x)) ∧ n(x + rn(x)) − hλ(x) ∧ n(x)
r

= n(x) ∧
(

∂(w ∧ n)
∂n

(σ(ψλ(x))) ∧ n(x)
)

= 0,

and since we have already shown that hλ vanishes on Γλ, we conclude that ∂
∂n (w∗

λ ∧n) = 0 on Γλ. Again,
η is vanishing on Sμ,δ, hence in an open neighbor of Γλ. We deduce that ∂

∂n (wλ ∧ n) = 0 on Γλ.
Eventually, by taking a vanishing sequence of small enough positive numbers (λj)j∈N, we conclude

that wj := wλj
satisfies all the desired properties. �
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Lemma 4.8. Assume (2.1) and (2.2), with ∂Γ �= ∅. Let μ, δ, λ, φλ as in the proof of Lemma 4.7. There
exists λ0 ∈ (0, (δ/2) ∧ 1) such that, for any λ < λ0, (4.28) holds.

Proof. If d(y, ∂Γ) ≥ δ there is nothing to prove, since in this case either y = φλ(y) ∈ Γ or y /∈ Γλ (because
λ < δ/2). Therefore, we assume from now on that d(y, ∂Γ) < δ and we prove the result in four steps.
Step 0 We start by showing the elementary properties T−

μ,3δ ⊂ S2μ and T+
μ,3δ ∩S̊2μ = ∅. Indeed, concerning

the first property, we may prove that for any s ∈ ∂lSμ, a point of the form s − ανl(s), with 0 ≤ α ≤ 3δ,
belongs to S2μ. This is obvious if α is small, since νl is normal to ∂S2μ. Moreover, as α increases without
reaching the threshold δ0, the closest point of ∂lS2μ is always s, by Lemma 4.6 which gives the unique
projection property on ∂lS2μ. This shows that no other point of ∂lS2μ can be a reached. And since α ≤ 3δ,
we are also far from ∂S2μ\∂lS2μ ⊂ {x ∈ R

3 : d(x, ∂Ω) = 2μ}, because d(s−ανl(s), ∂Ω) ≤ d(s, ∂Ω)+3δ =
μ + 3δ < 2μ. The second property is proved in the same way.
Step 1 We check that y ∈ Tμ,δ. Indeed, we have d(y, ∂lSμ) ≤ d(y, ∂Γ) = d(y, s(y)) < δ. We take a point
s∗ ∈ ∂lSμ such that |y − s∗| = d(y, ∂lSμ), therefore d(s∗, s(y)) ≤ d(y, s(y)) + d(y, s∗(y)) < 2δ < μ so that
s∗ is not on the boundary of ∂lSμ. Since s∗ is a minimizer of the distance function from the C2 manifold
∂lSμ, the corresponding first order minimality conditions immediately imply that y − s∗ is orthogonal to
the tangent plane to ∂lSμ at s∗, so that

y = s∗ + τ∗(y)νl(s∗),

where |τ∗(y)| = d(y, ∂lSμ) < δ. Thus, y ∈ Tμ,δ. We notice that by Lemma 4.6, s∗ coincides in fact with
the unique projection s∗(y) of y on ∂lSμ.
Step 2 We prove the result in the case y ∈ Γλ\Γ. In this case we have d(y, ∂Γ) = d(y, s(y)) ≤ λ and
as a consequence d(s(y), s∗(y)) ≤ 2λ. We also have γλ(d2(y, ∂Γ)) = λ because λ < (δ/2) ∧ 1, and
moreover using Step 1 and y /∈ Γ we have y ∈ T+

μ,δ, so that τ∗(y) > 0. Actually, y ∈ T+
2λ,δ as well, since

d(s(y), s∗(y)) ≤ 2λ.
By taking into account that (t ∧ n)(s(y)) = νl(s(y)) we get

ψλ(y) = y − 2γλ(d2(y, ∂Γ))(t ∧ n)(s(y)) = y − 2λνl(s(y))

= s∗(y) + τ∗(y)νl(s∗(y)) − 2λνl(s(y))

= s∗(y) + (τ∗(y) − 2λ)νl(s∗(y)) + 2λ(νl(s∗(y)) − νl(s(y))).

(4.29)

We notice that the point s∗(y) + (τ∗(y) − 2λ)νl(s∗(y)) belongs to T−
2λ,δ, because τ∗(y) = d(y, ∂lSμ) ≤

d(y, s(y)) ≤ λ and therefore −δ < −2λ ≤ τ∗(y) − 2λ ≤ −λ, and we have in particular

d(s∗(y) + (τ∗(y) − 2λ)νl(s∗(y)), ∂lSμ) ≥ λ. (4.30)

But

|2λ(νl(s∗(y)) − νl(s(y)))| ≤ 2λ Lip(νl) |s∗(y) − s(y)| ≤ 4λ2 Lip(νl). (4.31)

By (4.29), (4.30) and (4.31), there exists a small enough λ0 depending on Lip(νl) such that for any λ < λ0

we have ψλ(y) ∈ T−
μ,δ. Since T−

μ,δ ⊂ S2μ by Step 0, the result is proved.
Step 3 We prove the result in case y ∈ Γ. Since y ∈ Tμ,δ by Step 1, we have in this case y ∈ T−

μ,δ, therefore
we have τ∗(y) = −d(y, ∂lSμ). By d(s∗(y), s(y)) < 2δ, we have in particular, y ∈ T−

2δ,δ. With the same
computation of Step 2, we obtain an expression which is analogous to (4.29), that is,

ψλ(y) = s∗(y) − (d(y, ∂lSμ) + 2γλ(d2(y, ∂Γ)))νl(s∗(y)) + 2γλ(d2(y, ∂Γ))(νl(s∗(y)) − νl(s(y))).(4.32)

In particular, since 0 ≤ d(y, ∂lSμ) + 2γλ(d2(y, ∂Γ)) ≤ δ + 2λ < 2δ, we have

s∗(y) − (d(y, ∂lSμ) + 2γλ(d2(y, ∂Γ)))νl(s∗(y)) ∈ T−
2δ,δ+2λ, (4.33)

with

d(s∗(y) − (d(y, ∂lSμ) + 2γλ(d2(y, ∂Γ)))νl(s∗(y)), ∂lSμ) ≥ 2γλ(d2(y, ∂Γ)). (4.34)



132 Page 24 of 33 E. Mainini and D. Percivale ZAMP

By the assumptions on δ, we have

|νl(s∗(y)) − νl(s(y))| ≤ Lip(νl)|s∗(y) − s(y)| ≤ 2δ Lip(νl) ≤ 1
2
. (4.35)

By (4.32), (4.33), (4.34) and (4.35), we conclude that ψλ(y) ∈ T−
2δ+λ,δ+3λ. Therefore, y ∈ T−

μ,3δ, since
2δ + λ < μ and δ + 3λ < 3δ. By Step 0, the result is proved. �

Thanks to the results of Sect. 3 and to Lemma 4.7, we deduce the final approximation result for curl
vector fields.

Lemma 4.9. Assume (2.1) and (2.2), with ∂Γ �= ∅. Let v ∈ H1(Ω,R3) such that div v = 0 a.e. in Ω and
v = 0 on Γ. Then there exist a vanishing sequence (λj)j∈N ⊂ (0, μ0) and a sequence (vj)j∈N ⊂ H1(Ω,R3)
such that div vj = 0 a.e. in Ω, vj = 0 on Γλj

and such that vj → v in H1(Ω,R3) as j → +∞.

Proof. By Lemma 3.7 there exists w̃ ∈ H2(Ω,R3) such that w̃ = 0 on Γ and curl w̃ = v a.e. in Ω, so
that Lemma 3.8 implies ∂

∂n (w̃ ∧ n) = 0 on Γ. Hence, by Lemma 4.7 there exist a vanishing sequence
(λj)j∈N ⊂ (0,+∞) and a sequence (wj)j∈N ⊂ H2(Ω,R3) such that wj = ∂

∂n (wj ∧ n) = 0 on Γλj
and

wj → w̃ in H2(Ω,R3). By Lemma 3.8 we get curlwj = 0 on Γλj
, hence by setting vj := curlwj the

result follows. �

5. Proof of the main result

Let us start by recalling the following version of the rigidity inequality by Friesecke, James and Müller
[20].

Lemma 5.1. (Geometric Rigidity Inequality [2,21]). Let gp the function defined in (2.3). There exists a
constant Cp = Cp(Ω) > 0 such that for every y ∈ W 1,p(Ω,R3) there exists a constant R ∈ SO(3) such
that we have ∫

Ω

gp(|∇y − R|) dx ≤ Cp

∫

Ω

gp(d(∇y, SO(3))) dx. (5.1)

Based on the above result, we deduce compactness of minimizing sequences, which follows in fact from
the results in [2].

Lemma 5.2. Assume (2.1), (2.2), (W1), (W2), (W3), (W4). Let (hj)j∈N be a sequence of positive real
numbers and let (vj) ⊂ W 1,p(Ω,R3) be a sequence such that vj = 0 on Γ for any j ∈ N. For every j ∈ N,
let yj = i+hjvj and let Rj ∈ SO(3) be a constant rotation satisfying (5.1). Then there exists a constant
C > 0 (only depending on p, Ω and Γ) such that for any j ∈ N there hold

|I − Rj |2 ≤ C

∫

Ω

WI(x, I + hjvj) dx (5.2)

and
∫

Ω

|∇vj |p dx ≤ C

⎛
⎝1 +

∫

Ω

WI(x, I + hj∇vj) dx

⎞
⎠ . (5.3)

If we assume in addition that hj → 0 as j → +∞ and that

lim
j→+∞

(
GI

hj
(vj) − inf

W 1,p(Ω,R3)
GI

hj

)
= 0, (5.4)

then supj∈N
‖vj‖W 1,p(Ω,R3) < +∞.
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Proof. We have WI ≥ W, and (5.2) holds true with W in place of WI as proven in [2, Lemma 3.3] (by
taking advantage of assumption (W4) on W). Therefore, (5.2) holds.

Using the form of gp it is clear that there exists a constant c (only depending on p) such that∫

Ω

gp(hj |∇vj |) dx ≤ c

∫

Ω

(
gp(|I + hj∇vj − Rj |) + |I − Rj |2

)
dx.

Hence, by invoking the rigidity estimate (5.1), there is another constant K (only depending on p and Ω)
such that

∫

Ω

gp(hj |∇vj |) dx ≤ K

⎛
⎝

∫

Ω

gp(d(I + hj∇vj , SO(3))) dx + |I − Rj |2
⎞
⎠ ,

and since xp ≤ 1 + 2gp(x) holds for x ≥ 0, by making use of (W4) and (5.2) it follows that there is a
further constant C (only depending on Ω, Γ, p) such that

∫

Ω

|∇vj |p dx ≤
∫

Ω

(1 + 2gp(hj |∇vj |)) dx ≤ C

⎛
⎝1 +

∫

Ω

W(x, I + hj∇vj) dx

⎞
⎠ .

Since W ≤ WI , (5.3) follows.
Let us prove the last statement. Assuming (5.4) and assuming wlog that ‖vj‖W 1,p(Ω,R3) ≥ 1 for any

j ∈ N, we get for any large enough j

1
h2

j

∫

Ω

WI(x, I + hj∇vj) dx − L(vj) = GI
hj

(vj) ≤ GI
hj

(0) + 1 = 1,

thus (5.3) implies

∫

Ω

|∇vj |p dx ≤ C

⎛
⎝1 +

∫

Ω

WI(x, I + hj∇vj) dx

⎞
⎠ ≤ C + C(h2

j + CL h2
j ‖vj‖p

W 1,p(Ω,R3)).

Since hj goes to zero, the result follows by Friedrichs inequality. �

We next prove Γ-convergence. The limsup inequality is based on the approximation results from
Sect. 4. The liminf inequality builds on previous arguments from [2,15,35].

Lemma 5.3. (Energy convergence) Assume (2.1), (2.2), (W1), (W2), (W3), (W4). Let (hj)j∈N be a
vanishing sequence of positive numbers. Then the sequence of functionals (GI

hj
)j∈N is Γ-converging to

functional GI with respect to the weak topology of W 1,p(Ω,R3).

Proof. Since the weak topology of W 1,p is metrizable then we can characterize the Γ−limit in terms of
weakly converging sequences. In particular, by setting (see [14,16])

GI
−(v) := inf{lim inf

j→∞
GI

hj
(vj) : vj ⇀ v weakly in W 1,p(Ω,R3)},

GI
+(v) := inf{lim sup

j→∞
GI

hj
(vj) : vj ⇀ v weakly in W 1,p(Ω,R3)},

since GI
+(v) ≥ GI

−(v), it is enough to prove that GI
+(v) ≤ GI(v) ≤ GI

−(v) for every v ∈ W 1,p(Ω,R3). We
split the proof in two steps.

Step 1 (liminf) We show that GI(v) ≤ GI
−(v) for every v ∈ W 1,p(Ω,R3).

Let v ∈ W 1,p(Ω,R3), assume without restriction that GI
−(v) < +∞, and let (vj)j∈N ⊂ W 1,p(Ω,R3)

be a sequence such that vj ⇀ v weakly in W 1,p(Ω,R3) as j → +∞ and such that supj∈N
GI

hj
(vj) < +∞.
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Then vj = 0 on Γ for any j ∈ N, hence v = 0 on Γ as well, and by setting Bj := 2E(vj) + hj∇vT
j ∇vj

we get

1 = det(I + hj∇vj) = det(I + hj∇vT
j )(I + hj∇vj) = det(I + 2hjE(vj) + h2

j∇vT
j ∇vj)

= 1 + hjTrBj − 1
2
h2

j (Tr(B2
j ) − (TrBj)2) + h3

j detBj

a.e. in Ω, that is,

TrBj = 2div vj + hj |∇vj |2 =
1
2
hj(Tr(B2

j ) − (TrBj)2) − h2
j detBj . (5.5)

We next prove, with an argument from [2], that v ∈ H1(Ω,R3) and that

1Dj
∇vj ⇀ ∇v weakly in L2(Ω,R3×3), (5.6)

1Ω\Dj
∇vj → 0 in Lα(Ω,R3×3), ∀α ∈ [1, p), (5.7)

where we have set Dj :=
{

x ∈ Ω :
√

hj |∇vj(x)| ≤ 1
}

. Indeed, since we are assuming that supj∈N
GI

hj
(vj)

< +∞, we have

sup
j∈N

1
h2

j

∫

Ω

WI(x, I + hj∇vj) dx < +∞, (5.8)

thanks to the definition of GI
hj

and to the boundedness of the sequence (vj)j∈N in W 1,p(Ω,R3). Let
Rj ∈ SO(3) be a constant matrix satisfying (5.1) with respect to yj = i + hjvj . If Qj := {x ∈ Ω :
|I + hj∇vj(x) − Rj | ≤ 3

√
3}, we have Dj ⊂ Qj for any j large enough, and by definition of gp it is clear

that there exists a constant K only depending on p such that gp(x) ≥ Kx2 for any x ∈ [0, 3
√

3], so that
∫

Dj

|∇vj |2 dx ≤ K

h2
j

∫

Qj

(
gp(|I + hj∇vj − Rj |) + |I − Rj |2

)
dx

≤ KC

h2
j

∫

Ω

WI(x, I + hj∇vj) dx + K|Ω| |I − Rj |2
h2

j

,

where we have used (W4) and (5.1). By taking advantage of (5.2) and of (5.8), we conclude that the
sequence (1Dj

∇vj)j∈N is bounded in L2(Ω,R3×3), so that up to (not relabeled) subsequences, 1Dj
∇vj ⇀

H weakly in L2(Ω,R3×3). On the other hand, if α ∈ [1, p), by Hölder inequality and the definition of Dj

we have

‖1Ω\Dj
∇vj‖Lα(Ω,R3×3) ≤ ‖∇vj‖Lp(Ω,R3×3) |Ω\Dj |

p−α
pα ≤ ‖∇vj‖Lp(Ω,R3×3)

⎛
⎝√

hj

∫

Ω

|∇vj |dx

⎞
⎠

p−α
pα

and (5.7) follows from the fact that the above right hand side is vanishing as j → +∞, since the
sequence (vj)j∈N is bounded in W 1,p(Ω,R3). The latter property also implies the weak convergence (up
to not relabeled subsequences) of ∇vj to ∇v in Lα(Ω,R3×3): since (5.7) holds and since 1Dj

∇vj =
(∇vj − 1Ω\Dj

∇vj), we obtain both ∇v = H ∈ L2(Ω,R3×3) and (5.6), and Friedrichs inequality yields
v ∈ H1(Ω,R3).

Thanks to the properties (5.6) and (5.7) we get
√

hj∇vj =
√

hj(1Dj
∇vj + 1Ω\Dj

∇vj) → 0 inLα(Ω,R3×3)
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as j → +∞ for any α ∈ [1, p), hence (up to not relabeled subsequences)
√

hj∇vj → 0 a.e. in Ω. By
taking into account that for some constant c > 0 there hold

|Tr B2
j | ≤ c(|∇vj |2 + h2

j |∇vj |4 + hj |∇vj |3),

|Tr Bj |2 ≤ c(|∇vj |2 + h2
j |∇vj |4),

|detBj | ≤ c|Bj |3 ≤ C(|∇vj |3 + h3
j |∇vj |6),

we get

hj |∇vj |2 +
1
2
hj(Tr(B2

j ) + (TrBj)2) + h2
j detBj → 0

a.e. in Ω as j → +∞. Hence, by (5.5), div vj → 0 a.e. in Ω and by recalling that divvj ⇀ div v weakly
in Lp(Ω) we have div v = 0 a.e. in Ω. Since we have previously shown that v ∈ H1(Ω,R3) and that v = 0
on Γ, we deduce that GI(v) is finite.

By assumption (W3), D2W(x, ·) ∈ C2(U) for a.e. x ∈ Ω and there is an increasing function ω :
[0,+∞) → R such that limy→0 ω(y) = 0 and |D2W(x, I + F) − D2W(x, I)| ≤ ω(|F|) for any F ∈ U and
for a.e. x ∈ Ω. We notice that for any large enough j, we have I+hj∇vj ∈ U for any x ∈ Dj . Therefore,

lim sup
j→+∞

∫

Dj

∣∣∣∣∣
1
h2

j

W(x, I + hj∇vj) − 1
2

∇vT
j D2W(x, I)∇vj

∣∣∣∣∣ dx

≤ lim sup
j→+∞

∫

Dj

ω(hj |∇vj |) |∇vj |2 dx ≤ lim sup
j→+∞

ω(
√

hj)
∫

Ω

1Dj
|∇vj |2 dx = 0,

(5.9)

where we have also used (2.4) and (5.6).
Finally, by taking advantage of (5.9) and (5.6), since WI ≥ W and since the map F �→ ∫

Ω

FT D2W(x, I)Fdx is lower semicontinuous with respect to the weak L2(Ω,R3×3) convergence, we con-
clude that

lim inf
j→+∞

∫

Ω

1
h2

j

WI(x, I + hj∇vj) dx ≥ lim inf
j→+∞

∫

Dj

1
h2

j

W(x, I + hj∇vj) dx

≥ lim inf
j→+∞

∫

Dj

1
2
∇vT

j D2W(x, I)∇vj dx = lim inf
j→+∞

∫

Ω

1
2
(1Dj

∇vj)T D2W(x, I)(1Dj
∇vj)

≥
∫

Ω

1
2
∇vT D2W(x, I)∇v dx =

1
2

∫

Ω

E(v)D2W(x, I)E(v) dx.

Since functional L from (2.6) is continuous with respect to the weak convergence in W 1,p(Ω,R3), we get

lim inf
j→+∞

GI
hj

(vj) = lim inf
j→+∞

∫

Ω

1
h2

j

WI(x, I + hj∇vj) dx − L(vj)

≥ 1
2

∫

Ω

E(v)D2W(x, I)E(v)) dx − L(v) = GI(v).

Therefore, GI
−(v) < +∞ only if v ∈ H1

div(Ω,R3) with v = 0 on Γ, and GI(v) ≤ GI
−(v) for every

v ∈ W 1,p(Ω,R3).
Step 2 (limsup) We show now that GI

+(v) ≤ GI(v) for every v ∈ W 1,p(Ω,R3).
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It will be enough to prove the inequality for every v ∈ H1
div(Ω,R3) such that v = 0 on Γ (otherwise

GI(v) = +∞). This will be done in three subsequent steps, that make use of Lemmas 4.1, 4.4 and 4.9,
respectively.

Assume first that v is the restriction to Ω of a function v ∈ C1(Ω′,R3) such that v = 0 on Γ and
div v = 0 in Ω′, being Ω′ an open set with Ω ⊂ Ω′. By Lemma 4.1 there exists a sequence (vj)j∈N ⊂
C1(Ω,R3) such that (4.1), (4.2),(4.3) and (4.4) hold. Hence, (W3), (4.1) and (4.4) together with W(x, I) =
0, DW(x, I) = 0, see (2.4), imply that

lim
j→+∞

h−2
j WI(x, I + hj∇vj) = lim

j→+∞
h−2

j W(x, I + hj∇vj) =
1
2
E(v)D2W(x, I)E(v)

for a.e. x ∈ Ω, and that there exists a constant C ′ > 0 such that for hj small enough there holds
h−2

j W(x, I + hj∇vj) ≤ C ′|E(vj)|2.
Therefore by (4.3) there exist q > 1 and a constant C ′′ > 0 such that for any large enough j

∫

Ω

(
1
h2

j

W(x, I + hj∇vj)

)q

dx ≤ C ′′,

thus

lim
j→∞

∫

Ω

1
h2

j

WI(x, I + hj∇vj) dx − L(vj) =
1
2

∫

Ω

E(v)D2W(x, I)E(v) dx − L(v).

This shows that GI
+(v) ≤ GI(v) whenever v is the restriction to Ω of a function v ∈ C1(Ω′,R3) such that

v = 0 on Γ and divv = 0 in Ω′, being Ω′ an open set with Ω ⊂ Ω′.
Assume now that v ∈ H1(Ω,R3), div v = 0 a.e. in Ω and v = 0 on Γδ for some 0 < δ < μ0, where

μ0 is defined by (4.12). Then by Lemma 4.4 there exist an open set Ω′ such that Ω ⊂ Ω′ and a sequence
(vj)j∈N ⊂ C1(Ω′,R3) such that div vj = 0 a.e. in Ω′, vj = 0 on Γ and vj → v in H1(Ω,R3). Therefore,

GI
+(vj) ≤ GI(vj).

By taking into account that GI
+ is weakly lower semicontinuous in W 1,p(Ω,R3) and that GI is continuous

with respect the strong convergence in H1(Ω,R3) we get

GI
+(v) ≤ GI(v)

for every v ∈ H1(Ω,R3) such that div v = 0 a.e. in Ω and v = 0 on Γδ for some 0 < δ < μ0. If ∂Γ = ∅,
then Γδ = Γ and the proof is concluded. Suppose instead that ∂Γ �= ∅ and let v ∈ H1(Ω,R3), div v = 0
a.e. in Ω and v = 0 on Γ. By Lemma 4.9 there exist a vanishing sequence (λj)j∈N ⊂ (0, μ0) and a sequence
(vj)j∈N ⊂ H1(Ω,R3) such that div vj = 0 a.e. in Ω, vj = 0 on Γλj

and vj → v in H1(Ω,R3). Then

GI
+(vj) ≤ GI(vj)

and by exploiting again the weak lower semicontinuity of GI
+ in W 1,p(Ω,R3) and continuity of GI in

H1(Ω,R3), we achieve the result. �

The proof of the main result directly follows.

Proof of Theorem2.1. We prove first that GI has a unique minimizer. Weak H1(Ω,R3) compactness of
minimizing sequences follows from (2.5) along with Korn and Poincaré inequalities. Along a sequence
that converges weakly in H1(Ω,R3), the elastic part of the energy is lower semicontinuous, functional L
is continuous, and the divergence-free constraint passes to the limit as well as the vanishing constraint
on Γ. This shows existence of minimizers of GI . Let us prove uniqueness of minimizers. Let

V0(x,B) :=
1
2

symBD2W(x, I) symB (5.10)
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and let v∗, v∗∗ be two minimizers of GI (in particular, v∗ = v∗∗ = 0 on Γ). Then by first order minimality
conditions we have ∫

Ω

DV0(x,E(v∗)) · (E(v∗) − E(v∗∗)) dx

=
∫

Ω

DV0(x,E(v∗∗)) · (E(v∗) − E(v∗∗)) dx = L(v∗ − v∗∗).
(5.11)

Hence, by (5.10) and (5.11)

2
∫

Ω

V0(x,E(v∗) − E(v∗∗)) =
∫

Ω

DV0(x,E(v∗) − E(v∗∗)) · (E(v∗) − E(v∗∗)) dx = 0,

therefore (2.5) implies E(v∗) − E(v∗∗) = 0. Since v∗ − v∗∗ = 0 on Γ, we deduce v∗ − v∗∗ = 0 a.e. on Ω
thus proving uniqueness. From now we denote by v∗ the unique minimizer of GI

.
By testing with the trivial displacement field, we see that inf GI

hj
≤ 0 for any j ∈ N. On the other

hand, since L(v) ≤ CL‖v‖W 1,p(Ω,R3), boundedness from below of functional GI
hj

easily follows from (5.3)
and Friedrichs inequality as soon as j is large enough. This proves (2.8).

The sequence (vj)j∈N is bounded in W 1,p(Ω,R3), thanks to Lemma 5.2. Therefore, let us consider a
(not relabeled) subsequence such that vj ⇀ v weakly in W 1,p(Ω,R3). Let ṽ ∈ H1(Ω,R3) be such that
ṽ = 0 on Γ and div ṽ = 0 a.e. in Ω. Let (ṽj)j∈N ⊂ W 1,p(Ω,R3) be a recovery sequence for ṽ, provided
by Lemma 5.3. By taking advantage of (2.9) and of the Γ-liminf inequality, still provided by Lemma 5.3,
we conclude that

GI(v) ≤ lim inf
j→+∞

GI
hj

(vj) ≤ lim sup
j→+∞

GI
hj

(ṽj) = GI(ṽ).

By the arbitrariness of ṽ we get v ∈ argmin GI hence v = v∗ and the whole sequence (vj)j∈N converges
to v∗ weakly in W 1,p(Ω,R3) thus concluding the proof.

The proof of Corollary 2.2 relies on the following preliminary result.

Lemma 5.4. Under the assumptions of Corollary 2.2, let v ∈ W 1,∞(Ω,R3) be such that div v = 0 a.e.
in Ω. Then GI

from (2.10) has a unique minimizer and if v∗ ∈ argmin GI
then v∗ − v is the unique

minimizer of G̃I and G̃I(v∗ − v) = GI
(v∗), where G̃I is defined by (2.11).

Proof. Existence of a minimizer of GI
and of G̃I again follows from classical results while regarding

uniqueness of minimizers of GI
and of G̃I we may argue as in the proof of Theorem 2.1 and from now we

denote by v∗ the unique minimizer of GI
.

Let u ∈ H1
div(Ω,R3) be such that u = 0 on Γ, and set v = u + v. Then v = v on Γ, div v = 0 a.e. in

Ω and by using (5.10)∫

Ω

V0(x,E(v∗) − E(v)) +
∫

Ω

DV0(x,E(v)) · (E(v∗) − E(v)) dx − L(v∗ − v)

=
∫

Ω

V0(x,E(v∗)) dx +
∫

Ω

V0(x,E(v)) −
∫

Ω

DV0(x,E(v)) · E(v) dx − L(v∗ − v)

≤
∫

Ω

V0(x,E(v)) dx +
∫

Ω

V0(x,E(v)) −
∫

Ω

DV0(x,E(v)) · E(v) dx

+
∫

Ω

DV0(x,E(v)) · E(v) dx −
∫

Ω

DV0(x,E(v)) · E(v) dx − L(v − v)
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=
∫

Ω

V0(x,E(v) − E(v)) dx +
∫

Ω

DV0(x,E(v)) · (E(v) − E(v)) dx − L(v − v),

that is, G̃I(v∗−v) ≤ G̃I(u), thus proving minimality of v∗−v for G̃I by the arbitrariness of u. Uniqueness
of such a minimizer follows by reasoning as in the first part of this proof so we have only to prove that
G̃I(v∗ − v) = GI

(v∗). Indeed

G̃I(v∗ − v) =
∫

Ω

V0(x,E(v∗)) dx +
∫

Ω

V0(x,E(v)) dx −
∫

Ω

DV0(x,E(v)) · E(v∗) dx

− L(v∗ − v) +
∫

Ω

DV0(x,E(v)) · (E(v∗) − E(v)) dx + GI
(v)

=
∫

Ω

V0(x,E(v∗)) dx −
∫

Ω

V0(x,E(v)) dx − L(v∗ − v) + GI
(v) = GI

(v∗)

and the proof is concluded. �

Proof of Corollary 2.2. Since the map

W 1,p(Ω,R3) � v �→
∫

Ω

E(v)D2W(x, I)E(v) dx

is continuous with respect to the weak topology of W 1,p(Ω,R3), Lemma 5.3 implies the Γ-convergence of
functionals G̃I

hj
to G̃I with respect to the same topology.

We notice that G̃I
hj

(0) ≤ GI
(v) so that inf G̃I

hj
< +∞ for any j ∈ N, where the infimum is taken on

W 1,p(Ω,R3). Since GI
(v) ∈ R and since by assumption W3 there holds∫

Ω

E(v)D2W(x, I)E(v) dx ≤ K|Ω| p−1
p ‖∇v‖L∞(Ω,R3×3) ‖v‖W 1,p(Ω,R3), (5.12)

by the same reasoning of the proof of Theorem 2.1 we deduce boundedness from below of G̃I
hj

for any
large enough j so that (2.12) holds.

Let now (vj)j∈N ⊂ H1(Ω,R3) be a sequence such that vj = 0 on Γ and such that (2.13) holds. By
the same argument of the proof of Lemma 5.2, this time also taking (5.12) into account, we deduce
that supj∈N

‖vj‖W 1,p(Ω,R3) < +∞. Therefore, up to not relabeled subsequences, vj ⇀ v0 weakly in
W 1,p(Ω,R3). Thanks to Γ-convergence, by the same argument of the proof of Theorem 2.1, we conclude
that G̃I

hj
(vj) → G̃I(v0) as j → +∞ and that v0 is the unique minimizer of G̃I over W 1,p(Ω,R3).

In particular, the whole sequence (vj) converges to v0 weakly in W 1,p(Ω,R3). By Lemma 5.4, v0 + v ∈
argmin GI

and G̃I(v0) = GI
(v0+v) so that we have recovered the unique minimizer of GI

, thus concluding
the proof.
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