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Abstract. We consider the thermoelastic wave equation in three dimensions with transparent boundary conditions on a
bounded, not necessarily convex domain. In order to solve this problem numerically, we introduce a coupling of the thermo-
elastic wave equation in the interior domain with time-dependent boundary integral equations. Here, we want to highlight
that this type of problem differs from other wave-type problems that dealt with FEM–BEM coupling so far, e.g., the
acoustic as well as the elastic wave equation, since our problem consists of coupled partial differential equations involving
a vector-valued displacement field and a scalar-valued temperature field. This constitutes a nontrivial challenge which is
solved in this paper. Our main focus is on a coercivity property of a Calderón operator for the thermoelastic wave equation
in the Laplace domain, which is valid for all complex frequencies in a half-plane. Combining Laplace transform and energy
techniques, this coercivity in the frequency domain is used to prove the stability of a fully discrete numerical method in the
time domain. The considered numerical method couples finite elements and the leapfrog time-stepping in the interior with
boundary elements and convolution quadrature on the boundary. Finally, we present error estimates for the semi- and full
discretization.
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1. Introduction and outline

In this paper, we study the thermoelastic wave equation in R
3, which describes the interaction of the

elastic behavior of a material and its temperature. Initial conditions and inhomogeneities are assumed
to have support in a bounded, possibly non-convex domain, such that waves may re-enter the domain.
Instead of considering this domain explicitly, we equip the wave equation with transparent boundary
conditions, which are nonlocal in space and time. We achieve a stable numerical coupling of the interior
and exterior problems by use of a so-called Calderón operator. Thus, it suffices to solve a problem
which couples the thermoelastic wave equation to a boundary integral equation which represents the
transmission conditions between the interior and exterior domain.

The kind of coupling we intend to use has been applied successfully for other wave-type equations,
e.g., in [4] for the acoustic wave equation, in [8] for the elastodynamic wave equation, and in [15] for
Maxwell’s equations. Further, we want to mention the comparison of the acoustic and elastic FEM–BEM
coupling in [10] as well as the implementation of the elastodynamic problem in [9]. However, the functional
analytic setting is different as thermoelasticity has as variables a vector-valued1 displacement field �U and
a scalar-valued temperature field T . One of the challenges is to include the equation involving the time

1Scalar-valued quantities are denoted by capital Latin letters, vector-valued quantities are denoted by capital Latin

letters with an arrow above �·, matrices are denoted by capital Latin letters with two arrows above
⇒· .

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-022-01720-0&domain=pdf
http://orcid.org/0000-0002-4243-3643


163 Page 2 of 27 S. Eberle ZAMP

derivative of T as well as the time derivative of �∇ · �U . All in all, we have a coupled set of a partial
differential equation of second order in time and space (w.r.t. �U) as well as a second-order PDE which is
first order in time (w.r.t. T ). This is one of the main differences between the thermoelastic wave equation
and the wave-type equations which have been considered in the above literature and thus an extension
to the existing literature.

So far, most articles considering thermoelastic wave propagation used either a finite element method,
such as, e.g., [14,20] or more recently [23], or a boundary element method, e.g., [6,7,21]. We also want
to mention [1] which deals with a CQM-based BEM formulation for uncoupled transient quasistatic
thermoelasticity analysis. However, methods which couple finite element methods in the interior of a
domain with boundary elements, as we do in this work, have not been considered so far, although they
build an essential step in the framework of FEM–BEM coupling.

Our main result is the derivation of a stable and convergent fully discrete numerical method that
couples discretizations in the interior and on the boundary, without requiring convexity of the domain.
The key component for this is an analysis of the underlying equations in the Laplace domain by means
of a Calderón operator involving boundary integral operators which cannot be directly adopted from the
elastodynamic case as shown in [8] and has to be modified and extended due to the coupling of partial
differential equations for the displacement vector �U and the temperature T . We want to mention that
we have to transform the equation involving the time derivative of the temperature T , since the original
formulation would lead to problems in several proofs later on.

This paper is organized as follows: We start with the introduction of the time-dependent thermoelastic
wave equation as it can be found, e.g., in [5], [13] Equation (3.1.13), or [16] (I,12.13), and equip it with
transparent boundary conditions. This set of equations is then transformed with respect to time into
the Laplace domain. There, we construct the aforementioned Calderón operator, for which we need the
fundamental solutions to the Laplace transformed thermoelastic wave equation. This is done in Sect. 3.
Having constructed the Calderón operator, we show its coercivity in Sect. 4. We discretize our system
in Sect. 5 by transforming the thermoelastic wave equation into a system which is first order with
respect to time and derive a variational formulation for this system. Next, we take a look at the spatial
discretization, where we apply finite elements in the interior and boundary elements on the boundary.
The time discretization is performed by a leapfrog scheme and convolution quadrature. Sections 6–9 deal
with stability and error bounds of our semi-discrete and fully discrete schemes. For this purpose, we derive
several energies for our system and consider their behavior in time. Finally, we show an asymptotically
optimal O (

h + Δt2
)

convergence under the corresponding CFL condition. The paper is completed by a
conclusion and an outlook on further research directions.

2. The thermoelastic wave equation

It is well known that elastic solids expand if their temperature rises. This interaction also works the
other way around, i.e., elastic deformations influence the temperature. Such interactions are summarized
in the term thermoelasticity. In a simple, linear, but non-stationary setting, an adequate description in
three-dimensional Euclidean space is given by the system (see, e.g., [13], Eq. (3.1.13))

ρ∂2
t
�U(�x, t) = μΔ�U(�x, t) + (λ + μ)�∇(�∇ · �U(�x, t)) − β�∇T (�x, t) + ρ∂t

�F (�x, t), (2.1)

∂t(ρcpT (�x, t) + βTref
�∇ · �U(�x, t)) = κΔT (�x, t) + �Tref∂tG(�x, t), (2.2)

�U(�x, 0) = �U0 in R
3, (2.3)

∂t
�U(�x, 0) = �V0 in R

3, (2.4)

T (�x, 0) = T0 in R
3, (2.5)
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where �U is the displacement vector, T the temperature, ρ is the density, μ and λ the Lamé parame-
ters, which we assume to be constant, β = 3Kα with the compression modulus K = λ + 2

3 μ and the
thermal expansion coefficient α, cp the specific heat capacity, Tref > 0 a reference temperature, κ the
thermal diffusivity coefficient, the abbreviation � = ρcp

Tref
, ∂t

�F the inhomogeneity w.r.t. �U , �Tref∂tG the
inhomogeneity w.r.t. T , and the first two equations are supposed to hold for all (�x, t) ∈ R

3 × (0, tend].
The fact that we consider time derivatives of functions as inhomogeneities is due to technical reasons
which will become clear once we derive a first-order formulation. For short, we refer to Eqs. (2.1) and
(2.2) as thermoelastic wave equation. They are complemented by the radiation conditions (see, e.g., [13],
Eq. (3.3.43))

lim
‖�x‖2→∞

‖�x‖2
�Uc.f.(�x, t) = 0, lim

‖�x‖2→∞
‖�x‖2

2

∂

∂xj

�Uc.f.(�x, t) < ∞ for j = 1, 2, 3, (2.6)

lim
‖�x‖2→∞

‖�x‖2
�Ud.f.(�x, t)<∞, lim

‖�x‖2→∞
‖�x‖2

(
∂

∂r
�Ud.f.(�x, t) +

√
ρ

μ

∂

∂t
�Ud.f.(�x, t)

)
= 0, (2.7)

lim
‖�x‖2→∞

‖�x‖2 T (�x, t) = 0, lim
‖�x‖2→∞

‖�x‖2
2

∂

∂xj
T (�x, t) < ∞ for j = 1, 2, 3. (2.8)

Here, ‖·‖2 is the Euclidean norm in R
3, the index c.f. means the curl-free part of �U , the index d.f. means

the divergence-free part of �U , and ∂
∂r denotes a derivative in radial direction.

In order to obtain a system in which each PDE is of second order with respect to time, we apply the
variable transformation T = ∂tQ such that Eqs. (2.1)–(2.5) become

ρ∂2
t
�U(�x, t) = μΔ�U(�x, t) + (λ + μ)�∇(�∇ · �U(�x, t)) − β�∇∂tQ(�x, t) + ρ∂t

�F (�x, t), (2.9)

�∂2
t Q(�x, t) =

κ

Tref
Δ∂tQ(�x, t) − β�∇ · ∂t

�U(�x, t) + �∂tG(�x, t), (�x, t) ∈ R
3 × (0, tend], (2.10)

�U(�x, 0) = �U0 in R
3, (2.11)

∂t
�U(�x, 0) = �V0 in R

3, (2.12)

Q(�x, 0) = Q0 in R
3, (2.13)

∂tQ(�x, 0) = T0 in R
3. (2.14)

This transformation is essential for successfully applying several techniques in the proofs later on in this
paper. We also want to highlight that this choice is not trivial and required a deep examination of the
underlying problem. In contrast to other equations for which the numerical method we have in mind has
been considered, we now have to deal with a vector-valued and a scalar-valued quantity. Moreover, our
system involves terms which mix spatial and temporal derivatives. Note that due to the mixed derivative
term κ

Tref
Δ∂tQ(�x, t) in Eq. (2.10), we have a third-order system here.

2.1. Transmission conditions between interior and exterior space

To account for bounded support of initial conditions and inhomogeneities, we split our problem: For the
interior part of a bounded Lipschitz-domain Ω ⊂ R

3 which contains the supports of initial conditions and
right-hand sides, find the solution �U− for the system (2.9)–(2.14), whereas for the exterior part Ω+ =
R

3 \ Ω, where �F = �0, G = 0 and initial conditions vanish, determine the solution �U+ of the homogenous
version of (2.9)–(2.14). Both problems are coupled by transmission conditions on the boundary ∂Ω = Γ.
Thus, we introduce Dirichlet as well as Neumann traces. We remind the reader that Neumann traces
are related to co-normal derivatives, which may differ from normal derivatives. In our case, they even
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correspond to different entities for �U and Q as can be seen in the boundary conditions

�γD
�U(�x, t) = �U(�x, t)|Γ, (�x, t) ∈ Γ × [0, tend], (2.15)

�γN
�U(�x, t) =

(⇒
S el(�U(�x, t)) − β

⇒
I ∂tQ(�x, t)

)
�n(�x), (�x, t) ∈ Γ × [0, tend], (2.16)

γDQ(�x, t) = Q(�x, t)|Γ, (�x, t) ∈ Γ × [0, tend], (2.17)

γNQ(�x, t) =
κ

Tref

�∇∂tQ(�x, t) · �n(�x), (�x, t) ∈ Γ × [0, tend], (2.18)

where �n is the outer unit normal to Ω,
⇒
I is the unit matrix in R

3×3 and
⇒
S el(�U(�x, t)) :=μ

(
�∇�U +

(
�∇�U

)T
)

+ λ
(

�∇ · �U
)⇒

I = 2μ
⇒
E(�U) + λ

(
�∇ · �U

)⇒
I (2.19)

is the elastic stress tensor. Here, we also introduced the elastic strain tensor
⇒
E(�U) :=

1
2

(
�∇�U +

(
�∇�U

)T
)

. (2.20)

The thermoelastic stress tensor is
⇒
S ((�U,Q)(�x, t)) :=

⇒
S el(�U(�x, t)) − β

⇒
I ∂tQ(�x, t). (2.21)

Based on this, we finally state the transmission conditions

�γ−
D

�U− = �γ+
D

�U+, �γ−
N

�U− = �γ+
N

�U+, γ−
DQ− = γ+

DQ+, γ−
NQ− = γ+

NQ+. (2.22)

We also extend the trace operators to Sobolev spaces in the usual way, such that

�γD : (H1(Ω))3 → (H
1
2 (Γ))3, �γN :

{
�U ∈ (H1(Ω))3 : ∇ ·

⇒
S el(�U) ∈ (L2(Ω))3

}
→ (H− 1

2 (Γ))3 (2.23)

γD : H1(Ω) → H
1
2 (Γ), γN : {Q ∈ H1(Ω) : ΔQ ∈ L2(Ω)} → H− 1

2 (Γ). (2.24)

2.2. Laplace transform of the thermoelastic wave equation

We introduce the Laplace transforms2

�U(�x, s) := L�U(�x, t), Q (�x, s) := LQ(�x, t)

with the parameter s ∈ C. If we assume vanishing initial conditions for the moment, transferring the
modified thermoelastic wave equations (2.9)–(2.10) to the Laplace domain yields

ρs2�U(�x, s) = μΔ�U(�x, s) + (λ + μ)�∇(�∇ · �U(�x, s)) − βs�∇Q (�x, s) + ρs�F (�x, s) in Ω, (2.25)

�s2Q (�x, s) =
κ

Tref
sΔQ (�x, s) − β s �∇ · �U(�x, s) + � sG(�x, s) in Ω, (2.26)

�γD�U(�x, s) = �U(�x, s)|Γ on Γ, (2.27)

γDQ (�x, s) = Q (�x, s)|Γ on Γ, (2.28)

�γN �U(�x, s) =
(⇒

S el(�U(�x, s)) − sβ
⇒
I Q (�x, s)

)
�n(�x) on Γ, (2.29)

γNQ (�x, s) =
κ

Tref
s
(

�∇Q (�x, s)
)

· �n(�x) on Γ. (2.30)

2For the Laplace domain, we use calligraphic Latin letters and differentiate between scalars, vectors and matrices in
the same way as in the time domain (see 1).
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This leads to the relation
(

ρs2�U(�x, s)
�s2Q (�x, s) + βs�∇ · �U(�x, s)

)
=

⎛

⎝
�∇ ·

(⇒
S el(�U(�x, s)) − sβ

⇒
I Q (�x, s)

)

�∇ · κ
Tref

s�∇Q (�x, s)

⎞

⎠+
(

ρ s �F (�x, s)
� sG(�x, s)

)
. (2.31)

Further on, we drop the dependence on (�x, s) as it is clear from context whether functions are considered
in the time or the Laplace domain.

3. Potentials and Calderón operator

The material of this section is taken from [19], Chapters 6 and 7, and included for the convenience of the
reader. We introduce the trace operators

⇒
γ D : (H1(Ω))4 → (H

1
2 (Γ))4, (3.1)

⇒
γ N :

{
(

�U,Q
)T

∈ (H1(Ω))3 × H1(Ω) :
(

∇ ·
⇒
S el(�U),ΔQ

)T

∈ (L2(Ω))4
}

→ (H− 1
2 (Γ))4, (3.2)

such that
⇒
γ D

(
�U,Q

)T
:=

(
�γD�U, γDQ

)T
,

⇒
γ N

(
�U,Q

)T
:=

(
�γN �U, γNQ

)T
. (3.3)

For any linear partial differential equation, the single layer potential is given by

S(s)[
⇒
φ ](�x) :=

∫

Γ

⇒
Gs(�x, �y)

⇒
φ(�y) d�s�y (3.4)

and the double layer potential by

D(s)[
⇒
ψ ](�x) :=

∫

Γ

[
⇒
γ ∗

N

⇒
G∗

s(�x, �y)]∗
⇒
ψ(�y) d�s�y (3.5)

for �x ∈ R
3 \ Γ, where

⇒
G∗

s(�x, �y) is the adjoint of
⇒
Gs(�x, �y). The fundamental solution tensor

⇒
Gs(�x, �y) can

be adapted from [13], Section 3.2(b), or [16], Chapter II, §3. We include it in Appendix A. The layer
potentials and related traces fulfill the following mapping properties:

S(s) : (H− 1
2 (Γ))4 → (H1(Ω))4, D(s) : (H

1
2 (Γ))4 → (H1(Ω))4, (3.6)

⇒
γ DS(s) : (H− 1

2 (Γ))4 → (H
1
2 (Γ))4,

⇒
γ DD(s) : (H

1
2 (Γ))4 → (H

1
2 (Γ))4, (3.7)

⇒
γ NS(s) : (H− 1

2 (Γ))4 → (H− 1
2 (Γ))4,

⇒
γ ND(s) : (H

1
2 (Γ))4 → (H− 1

2 (Γ))4. (3.8)

The jumps of the traces over Γ are defined as
[
(�U,Q )T

]
=

⇒
γ

−
D(�U,Q )T − ⇒

γ
+

D(�U,Q )T , (3.9)
[⇒
γ N (�U,Q )T

]
=

⇒
γ

−
N (�U,Q )T − ⇒

γ
+

N (�U,Q )T , (3.10)

which allows us to state the corresponding jump relations

[S(s)
⇒
φ ] =

⇒
0 , [

⇒
γ NS(s)

⇒
φ ] =

⇒
φ [D(s)

⇒
ψ ] = −

⇒
ψ, [

⇒
γ ND(s)

⇒
ψ ] =

⇒
0 , (3.11)

such that with the definitions
⇒
ψ =

(
�ψ�U
ψQ

)
= −

([
�γD�U

]

[γDQ ]

)
,

⇒
φ =

(
�φ�U
φQ

)
=

1
s

([
�γN �U

]

[γNQ ]

)
, (3.12)
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it holds that
(

�U
Q

)
= sS(s)

(
�φ�U
φQ

)
+ D(s)

(
�ψ�U
ψQ

)
. (3.13)

Moreover, we define the operators

J(s)
⇒
φ :=

⇒
γ DS(s)

⇒
φ : (H− 1

2 (Γ))4 → (H
1
2 (Γ))4, (3.14)

W(s)
⇒
ψ := − ⇒

γ ND(s)
⇒
ψ : (H

1
2 (Γ))4 → (H− 1

2 (Γ))4, (3.15)

K(s)
⇒
ψ :=

1
2

(
⇒
γ

+

DD(s)
⇒
ψ +

⇒
γ

−
DD(s)

⇒
ψ

)
= {{⇒

γ DD(s)
⇒
ψ}} : (H

1
2 (Γ))4 → (H

1
2 (Γ))4, (3.16)

K̃∗(s)
⇒
φ :=

1
2

(
⇒
γ

+

NS(s)
⇒
φ +

⇒
γ

−
NS(s)

⇒
φ

)
= {{⇒

γ NS(s)
⇒
φ}} : (H− 1

2 (Γ))4 → (H− 1
2 (Γ))4, (3.17)

where we also introduced the notation {{·}} for averages of inner and outer limits at the boundary. This
allows us to compactly summarize the limit and jump relations

⎛

⎝

[⇒
γ D·

]

1
s

[⇒
γ N ·

]

⎞

⎠
(

sS(s)
⇒
φ D(s)

⇒
ψ

)
=

(⇒
0 −

⇒
ψ

⇒
φ

⇒
0

)

, (3.18)

⎛

⎝

{{⇒
γ D·

}}

− 1
s

{{⇒
γ N ·

}}

⎞

⎠
(

sS(s)
⇒
φ D(s)

⇒
ψ

)
=

(
sJ(s)

⇒
φ K(s)

⇒
ψ

−K̃∗(s)
⇒
φ 1

sW(s)
⇒
ψ

)

. (3.19)

Moreover, we introduce the Calderón operator

B(s) =
(

sJ(s) K(s)
−K̃∗(s) 1

sW(s)

)
: (H− 1

2 (Γ))4 × (H
1
2 (Γ))4 → (H

1
2 (Γ))4 × (H− 1

2 (Γ))4. (3.20)

4. Coercivity results for the Calderón operator

In order to show stability of the suggested numerical model, we need to show that the Calderón operator
satisfies a coercivity estimate, both in the Laplace as well as in the time domain. Our considerations here
extend the results for the elastic wave equations in [8] as we consider a vector-valued partial differential
equation (second order in time and space) which is coupled with a scalar-valued third-order PDE (second
order in time), which stems from the transformation of the original problem as well as the corresponding
boundary conditions.

4.1. Coercivity of the Laplace transformed Calderón operator B(s)

We need the following estimates which can be found in [11], p. 28, and [19], Theorem 10.2, respectively.

Lemma 1. Let Ω be a domain with a Lipschitz boundary Γ. Then, it holds the trace inequality

‖
⇒
S el(�U)�n‖2

(H− 1
2 (Γ))3

≤ ‖
⇒
S el(�U)‖2

(L2(R3\Γ))3×3 + ‖�∇ ·
⇒
S el(�U)‖(L2(R3\Γ))3 (4.1)

and Korn’s second inequality

‖
⇒
E(�U)‖2

(L2(Ω))3×3 ≥ a‖�∇�U‖(L2(Ω))3×3 − b‖�U‖(L2(Ω))3 . (4.2)
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With these estimates, we can show coercivity of the Calderón operator. In the following, 〈·, ·〉Γ denotes

the anti-duality in (H− 1
2 (Γ))4 × (H

1
2 (Γ))4 and (H

1
2 (Γ))4 × (H− 1

2 (Γ))4. Furthermore, we define for
⇒
φ ,

⇒
ψ

as in Eq. (3.12)

‖
⇒
φ‖2

(H− 1
2 (Γ))4

:= ‖�φ�U‖2

(H− 1
2 (Γ))3

+ ‖φQ ‖2

H− 1
2 (Γ)

, ‖
⇒
ψ‖2

(H
1
2 (Γ))4

:= ‖�ψ�U‖2

(H
1
2 (Γ))3

+ ‖ψQ ‖2

H
1
2 (Γ)

. (4.3)

Lemma 2. There exists a constant c̃ > 0 such that the Calderón operator B(s) as defined in Eq. (3.20)
satisfies

Re

〈(⇒
φ
⇒
ψ

)

,B(s)

(⇒
φ
⇒
ψ

)〉

Γ

≥ c̃
Re(s)
|s|3 min

(
1, |s|3)

(
‖

⇒
φ‖2

(H− 1
2 (Γ))4

+ ‖
⇒
ψ‖2

H
1
2 (Γ)4

)
(4.4)

for Re(s) > 0 and for all
⇒
φ ∈ (H− 1

2 (Γ))4 and
⇒
ψ ∈ (H

1
2 (Γ))4.

Proof. We start with the consideration of

〈(⇒
φ
⇒
ψ

)

,B(s)

(⇒
φ
⇒
ψ

)〉

Γ

= <
⎛

⎜
⎜
⎝

1
s

[
�γN �U

]

1
s [γNQ ]
− [

�γD�U
]

− [γDQ ]

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

{{
�γD�U

}}

{{γDQ }}
− 1

s

{{
�γN �U

}}

− 1
s {{γNQ }}

⎞

⎟
⎟
⎠>

Γ

=
1
s

(〈
�γ−

N
�U, �γ−

D
�U
〉
Γ

+
〈
γ−

NQ , γ−
DQ

〉
Γ

− 〈
�γ+

N
�U, �γ+

D
�U
〉
Γ

− 〈
γ+

NQ , γ+
DQ

〉
Γ

)
.

(4.5)

If we now substitute the definitions of �γN �U and γNQ from Eqs. (2.28) and (2.30), we can apply a modified
version of Green’s second identity for poroelasticity from [2], Theorem 4.3., to obtain

Re
(

1
s

(〈
�γ−

N
�U, �γ−

D
�U
〉
Γ

+
〈
γ−

NQ , γ−
DQ

〉
Γ

− 〈
�γ+

N
�U, �γ+

D
�U
〉
Γ

− 〈
γ+

NQ , γ+
DQ

〉
Γ

)
)

= Re
(

2μ
1
s

(⇒
E(�U),

⇒
E(�U)

)

(L2(R3\Γ))3×3

+ λ
1
s

(
�∇ · �U, �∇ · �U

)

L2(R3\Γ)
+ ρs

(
�U, �U

)
(L2(R3\Γ))3

+
κ

Tref

(
�∇Q , �∇Q

)

(L2(R3\Γ))3
+ �s (Q ,Q )L2(R3\Γ)

)

≥ dmin Re(s)min
(

1,
1
|s|
)( ∥

∥
∥
∥

1
s

⇒
E(�U)

∥
∥
∥
∥

2

(L2(R3\Γ))3×3

+
∥
∥
∥
∥

1
s

�∇ · �U

∥
∥
∥
∥

2

L2(R3\Γ)

+ ‖�U‖2
(L2(R3\Γ))3

+ ‖�∇Q ‖2
(L2(R3\Γ))3 + ‖Q ‖2

L2(R3\Γ)

)
,

(4.6)

where dmin = min
{

2μ, λ, ρ, κ
Tref

,�
}

.
Next, we take a look at the norms of the boundary densities. It is

‖�φ�U‖2

(H− 1
2 (Γ))3

=
∥
∥
∥
∥

1
s

[(⇒
S el(�U) − βsQ

⇒
I

)
�n

]∥∥
∥
∥

2

(H− 1
2 (Γ))3

≤ d1

(∥
∥
∥
∥

1
s

(⇒
S el(�U) − βsQ

⇒
I

)∥∥
∥
∥

2

(L2(R3\Γ))3×3

+
∥
∥ρs�U

∥
∥2

(L2(R3\Γ))3

)

≤ d1,max

(∥
∥
∥
∥

1
s

⇒
E(�U)

∥
∥
∥
∥

2

(L2(R3\Γ))3×3

+
∥
∥
∥
∥

1
s

�∇ · �U

∥
∥
∥
∥

2

L2(R3\Γ)

+ ‖Q ‖2
L2(R3\Γ) + |s|2‖�U‖2

(L2(R3\Γ))3

)
,

(4.7)
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where we have also used Eqs. (4.1) and (2.9), the triangle inequality, and defined d1,max := d1 max(8μ2, 2λ2,
β2, ρ2).

Further, we have

‖φQ ‖2

H− 1
2 (Γ)

=
∥
∥
∥
∥

1
s

[
κ

Tref
s
(

�∇Q
)

· �n
]∥∥
∥
∥

2

H− 1
2 (Γ)

≤ d2

(∥
∥
∥

κ

Tref

�∇Q
∥
∥
∥

2

(L2(R3\Γ))3
+
∥
∥
∥

κ

Tref
ΔQ

∥
∥
∥

2

L2(R3\Γ)

)

= d2

(∥
∥
∥

κ

Tref

�∇Q
∥
∥
∥

2

(L2(R3\Γ))3
+ ‖�sQ + β�∇ · �U‖2

L2(R3\Γ)

)

≤ d2,max

(
‖�∇Q ‖2

(L2(R3\Γ))3 + |s|2‖Q ‖2
L2(R3\Γ) + ‖�∇ · �U‖2

L2(R3\Γ)

)
,

(4.8)

where we used Eqs. (4.1) and (2.10), the triangle inequality, the relation

‖�ψ�U‖2

(H
1
2 (Γ))3

≤ d
(
‖�U‖2

(L2(R3\Γ))3 + ‖�∇�U‖2
(L2(R3\Γ))3×3

)

≤ d3

(
‖�U‖2

(L2(R3\Γ))3 + ‖
⇒
E(�U)‖2

(L2(R3\Γ))3×3

) (4.9)

which is obtained by using Korn’s inequality (4.2), and

‖ψQ ‖2

H
1
2 (Γ)

≤ d4

(
‖Q ‖2

L2(R3\Γ) + ‖�∇Q ‖2
(L2(R3\Γ))3

)
, (4.10)

as well as defined d2,max := d2 max
((

κ
Tref

)2

,�2,β2

)
. By adding the estimates for the norms of the four

boundary densities, we find

‖�φ�U‖2

(H− 1
2 (Γ))3

+ ‖φQ ‖2

H− 1
2 (Γ)

+ ‖�ψ�U‖2

(H
1
2 (Γ))3

+ ‖ψQ ‖2

H
1
2 (Γ)

≤ dmax max
(
1, |s|2)

(∥
∥
∥
∥

1
s

⇒
E(�U)

∥
∥
∥
∥

2

(L2(R3\Γ))3×3

+
∥
∥
∥
∥

1
s

�∇ · �U

∥
∥
∥
∥

2

L2(R3\Γ)

+ ‖�U‖2
(L2(R3\Γ))3

+ ‖Q ‖2
L2(R3\Γ) + ‖�∇Q ‖2

(L2(R3\Γ))3

)
,

(4.11)

where dmax := 3 max{d1,max, d2,max, d3, d4}. By combining the final estimates in Eqs. (4.6) and (4.11), we
achieve the desired result

Re
〈(⇒

φ
⇒
ψ

)

,B(s)

(⇒
φ
⇒
ψ

)〉

Γ

≥ c̃
Re(s)
|s|3 min

(
1, |s|3)

(
‖�φ�U‖2

(H− 1
2 (Γ))3

+ ‖φQ ‖2

H− 1
2 (Γ)

+ ‖�ψ�U‖2

(H
1
2 (Γ))3

+ ‖ψQ ‖2

H
1
2 (Γ)

) (4.12)

with c̃ := dmin
dmax

. �

4.2. Coercivity of the time-dependent Calderón operator B(∂t)

In order to analyze the stability of our numerical scheme and find error estimates, we have to transfer
the coercivity result for the Calderón operator from the Laplace domain to the time domain. This is
directly possible due to an operator-valued variant of the classical Herglotz theorem and the convolution
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quadrature as shown in [4]. The following lemmas follow from this Herglotz theorem in a way similar to
the corresponding results for the elastic wave equation derived in [8] and from the estimates

‖sJ(s)‖ ≤ M(σ)|s|3, ‖K(s)‖ ≤ M(σ)|s|2, ∥
∥s−1W(s)

∥
∥ ≤ M(σ)|s|2, (4.13)

where M depends only on σ = Re(s). These estimates can be derived in a similar way as in [3,17].

Exemplary for ‖sJ(s)‖, we define
(
�U,Q

)T
:= sS(s)

⇒
φ for

⇒
φ ∈ (H− 1

2 (Γ))4, so that
⇒
φ = 1

s

[⇒
γ N

(
�U,Q

)T
]

and
⇒
ψ =

⇒
γ D

(
�U,Q

)T
= sJ(s)

⇒
φ . Further, we have

[⇒
γ D

(
�U,Q

)T
]

=
[

⇒
γ DsS(s)

⇒
φ

]
=

⇒
0 . (4.14)

Hence,
⇒
ψ =

⇒
γ

−
D

(
�U,Q

)T
=

⇒
γ

+

D

(
�U,Q

)T
=
{{⇒

γ D

(
�U,Q

)T
}}

. (4.15)

Then

Re
〈⇒

φ, sJ(s)
⇒
φ

〉
= Re

〈⇒
φ,

⇒
ψ

〉
= Re

〈
1
s

[ ⇒
γN

(
�U,Q

)T
]
,
{{⇒

γ D

(
�U,Q

)T
}}〉

(4.16)

= Re
(

1
s

(〈
�γ−

N
�U, �γ−

D
�U
〉
Γ

+
〈
γ−

NQ , γ−
DQ

〉
Γ

− 〈
�γ+

N
�U, �γ+

D
�U
〉
Γ

− 〈
γ+

NQ , γ+
DQ

〉
Γ

)
)

. (4.17)

As in the proof of Lemma 2, we get

Re
〈⇒

φ, sJ(s)
⇒
φ

〉
≥ c̃

Re(s)
|s|3 min

(
1, |s|3) ‖

⇒
φ‖2

(H− 1
2 (Γ))4

. (4.18)

The Lax–Milgram lemma in the form of [22] (Lemma 2.1.51 with the definition of ellipticity as in (2.43))
then gives

∥
∥(sJ(s))−1

∥
∥ ≤ 1

c̃

|s|3
Re(s)

max
(

1,
1

|s|3
)

. (4.19)

Now
∣
∣
∣
∣

〈
1
s
J−1(s)

⇒
ψ,

⇒
ψ

〉∣∣
∣
∣ (4.20)

≥ Re
〈

1
s
J−1(s)

⇒
ψ,

⇒
ψ

〉
= Re

〈⇒
φ,

⇒
ψ

〉
= Re

〈
1
s

[ ⇒
γN

(
�U,Q

)T
]
,
{{⇒

γ D

(
�U,Q

)T
}}〉

= Re
(

1
s

(〈
�γ−

N
�U, �γ−

D
�U
〉
Γ

+
〈
γ−

NQ , γ−
DQ

〉
Γ

− 〈
�γ+

N
�U, �γ+

D
�U
〉
Γ

− 〈
γ+

NQ , γ+
DQ

〉
Γ

)
)

. (4.21)

With Eq. (4.6), we get
∣
∣
∣
∣

〈
1
s
J−1(s)

⇒
ψ,

⇒
ψ

〉∣∣
∣
∣

≥ dmin Re(s)min
(

1,
1
|s|
)( ∥

∥
∥
∥

1
s

⇒
E(�U)

∥
∥
∥
∥

2

(L2(R3\Γ))3×3

+
∥
∥
∥
∥

1
s

�∇ · �U

∥
∥
∥
∥

2

L2(R3\Γ)

+ ‖�U‖2
(L2(R3\Γ))3

+ ‖�∇Q ‖2
(L2(R3\Γ))3 + ‖Q ‖2

L2(R3\Γ)

)
, (4.22)

Using the trace inequality and Korn’s lemma as in Eq. (4.2), we obtain
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∥
∥
∥
∥

⇒
ψ

∥
∥
∥
∥

2

(4.23)

≤ dmax max(1, |s|2)
(

‖�U‖2
(L2(R3\Γ))3 + ‖Q ‖2

L2(R3\Γ) +
∥
∥
∥
∥

1
s

⇒
E(�U)

∥
∥
∥
∥

2

(L2(R3\Γ))3×3

+ ‖�∇Q ‖2
(L2(R3\Γ))3

)

≤ dmax max(1, |s|2)
(

‖�U‖2
(L2(R3\Γ))3 + ‖Q ‖2

L2(R3\Γ) +
∥
∥
∥
∥

1
s

⇒
E(�U)

∥
∥
∥
∥

2

(L2(R3\Γ))3×3

+ ‖�∇Q ‖2
(L2(R3\Γ))3

+
∥
∥
∥
∥

1
s

�∇ · �U

∥
∥
∥
∥

2

L2(R3\Γ)

)

(4.24)

so that
∣
∣
∣
∣

〈
1
s
J−1(s)

⇒
ψ,

⇒
ψ

〉∣∣
∣
∣ ≥ dmin

dmax
min

(
1,

1
|s|3

)
Re(s)

∥
∥
∥
∥

⇒
ψ

∥
∥
∥
∥

2

(4.25)

and
∥
∥
∥
∥

1
s
J−1(s)

∥
∥
∥
∥ ≥ dmin

dmax
min

(
1,

1
|s|3

)
Re(s). (4.26)

The Lax–Milgram lemma in the form of [22] (Lemma 2.1.51 with the definition of ellipticity as in (2.43))
then gives

‖sJ(s)‖ ≤ dmax

dmin

1
Re(s)

max
(
1, |s|3) (4.27)

=
dmax

dmin

1
Re(s)

max
(

1,
1

|s|3
)

|s|3 (4.28)

≤ dmax

dmin

(
1
σ

+
1
σ4

)
|s|3. (4.29)

Lemma 3. From Lemma 2, we get
tend∫

0

e
− 2t

tend

〈(⇒
φ(·, t)
⇒
ψ(·, t)

)

,B(∂t)

(⇒
φ(·, t)
⇒
ψ(·, t)

)

(·, t)
〉

Γ

dt

≥ c̃ dend

tend∫

0

e
− 2t

tend

(
‖∂−2

t

⇒
φ(·, t)‖2

(H− 1
2 (Γ))4

+ ‖∂−2
t

⇒
ψ(·, t)‖2

(H
1
2 (Γ))4

)
dt

(4.30)

for any tend > 0 and for all
⇒
φ ∈ C5([0, tend], (H− 1

2 (Γ))4),
⇒
ψ ∈ C4([0, tend], (H

1
2 (Γ))4), with

⇒
φ(·, 0) =

⇒
0 =

∂k
t

⇒
φ(·, 0), for k ∈ {1, 2, 3, 4} and

⇒
ψ(·, 0) =

⇒
0 = ∂j

t

⇒
ψ(·, 0), for j ∈ {1, 2, 3}. Here, dend = min(t−2

end, t−5
end),

and ∂−1
t is a short-hand notation for an integration with respect to time from 0 to t which corresponds to

the factor 1
s in the Laplace domain.

Lemma 3 can be extended to bound the time behavior of an energy.

Lemma 4. Let E : [0,∞) → [0,∞), S : R → R,
⇒
φ∈C5([0, tend], (H− 1

2 (Γ))4) and
⇒
ψ∈C4([0, tend], (H

1
2 (Γ))4)

with
⇒
φ(·, 0) =

⇒
0 = ∂k

t

⇒
φ(·, 0) for k ∈ {1, 2, 3, 4} and

⇒
ψ(·, 0) =

⇒
0 = ∂j

t

⇒
ψ(·, 0) for j ∈ {1, 2, 3}. If

Ė +
〈(⇒

φ(·, t)
⇒
ψ(·, t)

)

,B(∂t)

(⇒
φ(·, t)
⇒
ψ(·, t)

)〉

Γ

= S in [0, tend], (4.31)
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then

E(tend) + c̃ dend

tend∫

0

(
‖∂−2

t

⇒
φ(·, t)‖2

(H− 1
2 (Γ))4

+ ‖∂−2
t

⇒
ψ(·, t)‖2

(H
1
2 (Γ))4

)
dt

≤ e2
E(0) +

tend∫

0

e
2
(
1− t

tend

)

S(t) dt,

(4.32)

where dend = min(t−2
end, t−5

end) and Ė denotes the derivative of E with respect to t.

For both, Lemma 3 as well as Lemma 4, time discrete analogs hold (see [4]).

Remark 1. Here, we want to highlight one of the major differences to the acoustic [4], elastic [8] and

Maxwell’s [15] cases. In both, Lemmas 3 and 4, we have integrals involving ‖∂−2
t

⇒
φ(t, ·)‖

(H− 1
2 (Γ))4

and

‖∂−2
t

⇒
ψ(t, ·)‖

(H
1
2 (Γ))4

instead of ‖∂−1
t

⇒
φ(t, ·)‖

(H− 1
2 (Γ))4

and ‖∂−1
t

⇒
ψ(t, ·)‖

(H
1
2 (Γ))4

. This leads to nontrivial
challenges in the energy estimates later on, which are solved in this paper.

Lemma 5. In the situation of Lemma 3, we have for tend = mΔt and 0 < Δt ≤ Δt0 that
m∑

n=0

e
− 2nΔt

tend

〈(⇒
φn

⇒
ψn

)

,B(∂Δt
t )

(⇒
φn

⇒
ψn

)〉

Γ

≥ c̃ dend

m∑

n=0

e
− 2nΔt

tend

(
‖(∂Δt

t )−2
⇒
φn‖2

(H− 1
2 (Γ))4

+ ‖(∂Δt
t )−2

⇒
ψn‖2

(H
1
2 (Γ))4

)
,

(4.33)

for all sequences
⇒
φn =

⇒
φ(nΔt, ·) in (H− 1

2 (Γ))4 and
⇒
ψn =

⇒
ψ(nΔt, ·) in (H

1
2 (Γ))4, n = 0, . . . ,m. Here,

dend = cmin(t−2
end, t−5

end), where c > 0 depends only on Δt0 and tends to 1 as Δt0 tends to zero.

Lemma 6. Let E : [0,∞) → [0,∞), S : R → R, and
⇒
φn and

⇒
ψn as in Lemma 5. Further, let tend = mΔt

and 0 < Δt ≤ Δt0. If

E
n+1 − E

n

Δt
+
〈(⇒

φn

⇒
ψn

)

,B(∂Δt
t )

(⇒
φn

⇒
ψn

)〉

Γ

= S
n for n = 0, . . . , m, (4.34)

then

E
m+1 + c̃ dendΔt

m∑

n=0

(
‖(∂Δt

t )−2
⇒
φn‖2

(H− 1
2 (Γ))4

+ ‖(∂Δt
t )−2

⇒
ψn‖2

(H
1
2 (Γ))4

)

≤ c

(

e2
E

0 + Δt

m∑

n=0

e2(1− n
m )

S
n

)

,

(4.35)

where dend = min(t−2
end, t−5

end) and c > 0 depends only on Δt0 and tends to 1 as Δt0 tends to zero.

5. Discretization

As we now have all the necessary theoretical results, let us discuss the discretization of our problem. We
do this in two steps, first a semi-discretization in space and then a full discretization including space and
time.
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5.1. Variational formulation

Returning to the time domain, the second relation in Eq. (3.12) translates to the more explicit formulation

�φ�U = −∂−1
t

⇒
γ D(2μ

⇒
E(�U) + λ(�∇ · �U)

⇒
I − β∂tQ

⇒
I )�n, (5.1)

φQ = −∂−1
t �γD

(
κ

Tref

�∇∂tQ

)
· �n, (5.2)

which yields for the Calderón operator

B(∂t)

⎛

⎜
⎜
⎝

�φ�U
φQ

�ψ�U
ψQ

⎞

⎟
⎟
⎠ =

1
2

⎛

⎜
⎜
⎜
⎜
⎝

�γD
�U

γDQ

−∂−1
t

⇒
γ D(2μ

⇒
E(�U) + λ(�∇ · �U)

⇒
I − β∂tQ

⇒
I )�n

−∂−1
t �γD

(
κ

Tref
�∇∂tQ

)
· �n

⎞

⎟
⎟
⎟
⎟
⎠

. (5.3)

Together with Eqs. (2.9) and (2.10), this leads to the following formulation which is of first order in time:

ρ∂t
�U = μ�∇ ·

⇒
V + λ�∇W − β�∇Q + ρ�F , (5.4)

∂t

⇒
V = 2

⇒
E(�U) = �∇�U + (�∇�U)T , (5.5)

∂tW = �∇ · �U, (5.6)

�∂tQ =
κ

Tref
ΔQ − β�∇ · �U + �G, (5.7)

B(∂t)

⎛

⎜
⎜
⎝

�φ�U
φQ

�ψ�U
ψQ

⎞

⎟
⎟
⎠ =

1
2

⎛

⎜
⎜
⎜
⎜
⎝

�γD
�U

γDQ

−⇒
γ D(μ

⇒
V + λW

⇒
I − βQ

⇒
I )�n

− κ
Tref

(
�γD

�∇Q
)

· �n

⎞

⎟
⎟
⎟
⎟
⎠

. (5.8)

With the test functions X,R ∈ H1(Ω), �Z ∈ (H1(Ω))3, 1
2

⇒
Y ∈ (H1(Ω))3×3, ξQ ∈ H− 1

2 (Γ), χQ ∈ H
1
2 (Γ),

�ξU ∈ (H− 1
2 (Γ))3, and �χU ∈ (H

1
2 (Γ))3, we perform integration by parts to obtain a variational formulation.

However, we split up some of the terms before performing integration by parts in order to end up with
antisymmetries. As it should be clear from context, we only write (·, ·) to denote the L2-inner product in

each of the spaces H1(Ω), (H1(Ω))3, and (H1(Ω))3×3. By observing that
⇒
V =

⇒
V T , we arrive at

ρ(∂t
�U, �Z) = −1

2
μ(

⇒
V , �∇�Z) +

1
2
μ(�∇ ·

⇒
V , �Z) +

1
2
μ
〈⇒
γ D(

⇒
V )�n,�γD

�Z
〉
Γ

(5.9)

− 1
2
λ(W, �∇ · �Z) +

1
2
λ(�∇W, �Z) +

1
2
λ
〈⇒
γ D(W

⇒
I )�n,�γD

�Z
〉
Γ

+
1
2
β(Q, �∇ · �Z) − 1

2
β(�∇Q, �Z) − 1

2
β
〈⇒
γ D(Q

⇒
I )�n,�γD

�Z
〉
Γ

+ ρ(�F , �Z),

(∂t

⇒
V ,

1
2

⇒
Y ) =

1
2
(�∇�U,

⇒
Y ) − 1

2
(�U, �∇ ·

⇒
Y ) +

1
2
〈
�γD

�U,
⇒
γ D(

⇒
Y )�n

〉
Γ
, (5.10)

(∂tW,X) =
1
2
(�∇ · �U,X) − 1

2
(�U, �∇X) +

1
2
〈
�γD

�U,
⇒
γ D(X

⇒
I )�n

〉
Γ
, (5.11)

� (∂tQ,R) = − κ

Tref
(�∇Q, �∇R) +

κ

Tref

〈
(�γD

�∇Q) · �n, γDR
〉
Γ

(5.12)
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− 1
2
β(�∇ · �U,R) +

1
2
β(�U, �∇R) − 1

2
β
〈
�γD

�U,
⇒
γ D(R

⇒
I )�n

〉
Γ

+ �(G,R),

<
⎛

⎜
⎜
⎝

�ξ�U
ξQ

�χ�U
χQ

⎞

⎟
⎟
⎠ ,B(∂t)

⎛

⎜
⎜
⎝

�φ�U
φQ

�ψ�U
ψQ

⎞

⎟
⎟
⎠>

Γ

=
1
2
〈
�ξ�U , �γD

�U
〉
Γ

− 1
2
〈
�χ�U ,

⇒
γ D(μ

⇒
V + λW

⇒
I − βQ

⇒
I )�n

〉
Γ

+
1
2
〈
ξQ, γDQ

〉
Γ

− 1
2

〈
χQ, �γD

(
κ

Tref

�∇Q

)
· �n
〉

Γ

. (5.13)

These equations are completed by the relations

�φ�U = −⇒
γ D(μ

⇒
V + λW

⇒
I − βQ

⇒
I )�n, φQ = − κ

Tref

(
�γD

�∇Q
)

· �n, �ψ�U = �γD
�U, ψQ = γDQ, (5.14)

which are valid due to the transmission conditions (2.22).

Choosing as test functions �Z = �U ,
⇒
Y = μ

⇒
V , X = λW , R = Q, �ξ�U = �φ�U , ξQ = φQ, �χ�U = �ψ�U , as well

as χQ = ψQ, and rearranging terms slightly yields

ρ(∂t
�U, �U) = −μ

1
2
(
⇒
V , �∇�U) + μ

1
2
(�∇ ·

⇒
V , �U)−λ

1
2
(W, �∇ · �U) + λ

1
2
(�∇W, �U)

+
1
2
β(Q, �∇ · �U) − 1

2
β(�∇Q, �U)

+
1
2
〈⇒
γ D

(
μ

⇒
V + λW

⇒
I − βQ

⇒
I

)
�n,�γD

�U
〉
Γ

+ ρ(�F , �U), (5.15)

(∂t

⇒
V ,

μ

2

⇒
V ) = +μ

1
2
(�∇�U,

⇒
V ) − μ

1
2
(�U, �∇ ·

⇒
V )+μ

1
2
〈
�γD

�U,
⇒
γ D(

⇒
V )�n

〉
Γ
, (5.16)

(∂tW, λW ) = +λ
1
2
(�∇ · �U,W ) − λ

1
2
(�U, �∇W )+λ

1
2
〈
�γD

�U,
⇒
γ D(W

⇒
I )�n

〉
Γ
, (5.17)

� (∂tQ,Q) = − κ

Tref
(�∇Q, �∇Q)+

κ

Tref

〈
(�γD

�∇Q) · �n, γDQ
〉
Γ

−1
2
β(�∇ · �U,Q) +

1
2
β(�U, �∇Q)−1

2
β
〈
�γD

�U,
⇒
γ D(Q

⇒
I )�n

〉
Γ

+ �(G,Q), (5.18)

<
⎛

⎜
⎜
⎝

�φ�U
φQ

�ψ�U
ψQ

⎞

⎟
⎟
⎠ ,B(∂t)

⎛

⎜
⎜
⎝

�φ�U
φQ

�ψ�U
ψQ

⎞

⎟
⎟
⎠>

Γ

=
1
2
〈
�φ�U , �γD

�U
〉
Γ
−1

2
〈
�ψ�U ,

⇒
γ D(μ

⇒
V + λW

⇒
I − βQ

⇒
I )�n

〉
Γ

+
1
2
〈
φQ, γDQ

〉
Γ

− κ

2Tref

〈
ψQ,

(
�γD

�∇Q
)

· �n〉
Γ
. (5.19)

Taking Eq. (5.14) into account, terms given the same color cancel out when we sum up these equations
to obtain

ρ(∂t
�U, �U) +

1
2
μ(∂t

⇒
V ,

⇒
V ) + λ(∂tW,W ) + �(∂tQ,Q) +

κ

Tref
(�∇Q, �∇Q) +

〈(⇒
φ
⇒
ψ

)

,B(∂t)

(⇒
φ
⇒
ψ

)〉

Γ

= ρ(�F , �U) + �(G,Q) (5.20)
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⇐⇒ d
dt

(
1
2
ρ
∥
∥
∥�U

∥
∥
∥

2

(L2(R3\Γ))3
+

1
4
μ

∥
∥
∥
∥

⇒
V

∥
∥
∥
∥

2

(L2(R3\Γ))3×3

+
1
2
λ‖W‖2

L2(R3\Γ) +
1
2
�‖Q‖2

L2(R3\Γ)

+
κ

Tref

∫ t

0

‖�∇Q(·, t′)‖2
(L2(R3\Γ))3 dt′

)
+

〈(⇒
φ
⇒
ψ

)

, B(∂t)

(⇒
φ
⇒
ψ

)〉

Γ

= ρ(�F , �U)(L2(R3\Γ))3 + �(G,Q)L2(R3\Γ). (5.21)

Hence, we end up with an energy given by

E(t) =
1
2
ρ
∥
∥
∥�U

∥
∥
∥

2

(L2(R3\Γ))3
+

1
4
μ

∥
∥
∥
∥

⇒
V

∥
∥
∥
∥

2

(L2(R3\Γ))3×3

+
1
2
λ ‖W‖2

L2(R3\Γ) +
1
2
� ‖Q‖2

L2(R3\Γ)

+
κ

Tref

∫ t

0

∥
∥
∥�∇Q(·, t′)

∥
∥
∥

2

L2(R3\Γ)
dt′.

(5.22)

Here, we see the first consequence of the presence of a Laplace operator in Eq. (5.7). This is actually

similar to the dependence on �U as
⇒
V is the time-integrated symmetrized Jacobi matrix of �U and W

its time-integrated curl. However, we want to remark that this energy is a mathematical construct and
should not be interpreted as a quantity with a physical meaning.

Remark 2. We want to mention that this special choice of testing (see (5.15)–(5.19)) is required for the
construction of the energy (5.22) and is only possible due to our variable substitution T ← ∂tQ, we
introduced in (2.10).

If ρ > 0, μ > 0, λ > 0, κ > 0 which is valid for most common materials, and Tref > 0, Lemma 4 implies
for �F = �0 and G = 0 (i.e., S = 0) that the field energy is bounded for t > 0:

E(tend) + c̃ dend

tend∫

0

(
‖∂−2

t

⇒
φ(·, t)‖2

(H− 1
2 (Γ))4

+ ‖∂−2
t

⇒
ψ(·, t)‖2

(H
1
2 (Γ))4

)
dt ≤ e2

E(0). (5.23)

5.1.1. FEM–BEM spatial semi-discretization. To discretize in space3, let Wh = Qh ⊂ H1(Ω), Uh =
Q3

h ⊂ (H1(Ω))3, Vh = Q3×3
h ⊂ (H1(Ω))3×3, ZQ,h ⊂ H

1
2 (Γ), Z�U,h = Z3

Q,h ⊂ (H
1
2 (Γ))3, PQ,h ⊂ H− 1

2 (Γ),

and P�U,h = P3
Q,h ⊂ (H− 1

2 (Γ))3 be finite dimensional subspaces of the given Sobolev spaces. Qh is a
finite element space of continuous piecewise linear function, ZQ,h a boundary element space of continuous
piecewise linear functions, and PQ,h a boundary element space of piecewise constant functions. We denote

the chosen bases of these spaces by (bQ
i ) = (bW

i ), (�bU
i ), (

⇒
b V

i ), (bΨQ

i ), (�bΨU
i ), (bΦQ

i ), and (�bΦU
i ). Furthermore,

ZQ,h and PQ,h contain the traces of Qh, i.e., γDQh ⊆ ZQ,h and γNQh ⊆ PQ,h. This is not problematic
since we assume that the boundary of Ω is approximated in a piecewise polygonal manner. The inclusion
also implies �γDUh ⊆ Z�U,h and �γNUh ⊆ P�U,h. The semi-discretized problem then reads:

Find �Uh(·, t) ∈ Uh,
⇒
V h(·, t) ∈ Vh, Wh(·, t) ∈ Qh, Qh(·, t) ∈ Qh, φQ,h(·, t) ∈ PQ,h, ψQ,h(·, t) ∈ ZQ,h,

�φ�U,h(·, t) ∈ P�U,h, and �ψ�U,h(·, t) ∈ Z�U,h such that for all �Zh ∈ Uh,
⇒
Y h ∈ Vh, Xh ∈ Qh, Rh ∈ Qh,

ξQ,h ∈ PQ,h, χQ,h ∈ ZQ,h, �ξ�U,h ∈ P�U,h, and �χ�U,h ∈ Z�U,h, Eqs. (5.9)–(5.14) hold with the respective
substitutions. We can turn the result into matrix-vector-form by testing with the according basis functions

(bQ
i ) = (bW

i ), (�bU
i ), (

⇒
b V

i ), (bΨQ

i ), (�bΨU
i ), (bΦQ

i ), and (�bΦU
i ) (provided the occurring functions are evaluated

3The discrete subspaces of the corresponding Sobolev spaces are denoted with bold fractional letters.
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in the nodes of the discretization)4:

ρM0∂tU = μD0V + λD1W − βD1Q − C0φU + ρM0F , (5.24)

M1∂tV = −DT
0 U + C1ψU

{
+M1I

}
, (5.25)

M2∂tW = −DT
1 U + C2ψU

{
+M2K

}
, (5.26)

�M2∂tQ = − κ

Tref
D2Q − C3φQ +

κ

Tref
C4ψQ + βDT

1 U − βC2ψU + � M2G, (5.27)

B(∂t)

⎛

⎜
⎜
⎝

φU

φQ

ψU

ψQ

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎝

CT
0 U

CT
3 Q

−μCT
1 V − λCT

2 W + βCT
2 Q

− κ
Tref

CT
4 Q

⎞

⎟
⎟
⎟
⎠

⎧
⎪⎪⎨

⎪⎪⎩
+

⎛

⎜
⎜
⎝

ν
ς
η
ξ

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
. (5.28)

Here, we have

M0|ij := (�bU
i ,�bU

j ), M1|ij :=
1
2

(⇒
bV
i ,

⇒
bV
j

)

, M2|ij := (bQ
i , bQ

j ), (5.29)

D0|ij :=
1
2

(
�bU

i , �∇ ·
⇒
bV
j

)

− 1
2

(
�∇�bU

i ,
⇒
bV
j

)

, D1|ij :=
1
2

(
�bU

i , �∇bQ
j

)
− 1

2

(
�∇ ·�bU

i , bQ
j

)
,

D2|ij :=
(

�∇bQ
i , �∇bQ

j

)
, (5.30)

and for the boundary

C0|ij :=
1
2

〈
�bΨU

i ,�bΦU
j

〉

Γ
, C1|ij :=

1
2
〈⇒
γ D(

⇒
bV
i )�n,�bΨU

j

〉
Γ
, C2|ij :=

1
2
〈
b
ΨQ

i �n,�bΨU
j

〉
Γ
,

C3|ij :=
1
2
〈
b
ΨQ

i , b
ΦQ

j

〉
Γ
, C4|ij :=

1
2
〈 (

�γD
�∇bQ

i

)
· �n, b

ΨQ

j

〉
Γ
. (5.31)

The terms in gray are meant to be perturbations. They do not have any physical meaning, but need to
be considered in our stability analysis later on. For Eqs. (5.24) and (5.27), perturbations are considered
as parts of the actual right-hand sides F and G, respectively. Further, we divided the boundary term
from Eq. (5.12) into two terms and plugged in φQ,h for one, but ψQ,h for the other. Thus, terms involving
these boundary contributions and the related terms from Eq. (5.28) also cancel out in the semi-discrete
and discrete settings.

With
⇒
bΨ
i and

⇒
bΦ
i suitable basis functions of Zh :=

(
ZQ,h

)4 and Ph :=
(
PQ,h

)4, respectively, we can
define the blocks

J(s)|ij :=
〈⇒

bΦ
i , J(s)

⇒
bΦ
j

〉

Γ

, K(s)|ij :=
〈⇒

bΦ
i ,K(s)

⇒
bΨ
j

〉

Γ

, W (s)|ij :=
〈⇒

bΨ
i ,W(s)

⇒
bΨ
j

〉

Γ

(5.32)

and, thus, represent the matrix B(s) by

B(s) =

(
sJ(s) K(s)

−K̃
∗
(s) 1

sW (s)

)

. (5.33)

4Discrete vector-valued quantities are written in bold and matrices in addition with · .
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5.2. Time discretization via leapfrog and convolution quadrature

In order to apply the leapfrog method, see, e.g., [12], and convolution quadrature, we use the same ideas
as in [8], but have to account for the additional terms involving D1Q as well as the equation for Q and
related boundary conditions. As a consequence, we get a time-stepping scheme which is implicit for Q,
in accordance with [12], Section 1.8. Thus, we obtain

M1V
n+ 1

2 = M1V
n − Δt

2
DT

0 Un +
Δt

2
C1ψ

n
U

{
+

Δt

2
M1I

n

}
, (5.34)

M2W
n+ 1

2 = M2W
n − Δt

2
DT

1 Un +
Δt

2
C2ψ

n
U

{
+

Δt

2
M2K

n

}
, (5.35)

�M2Q
n+1 = �M2Q

n − Δt
κ

Tref
D2Q

n+ 1
2 − ΔtC3φ

n+ 1
2

Q + Δt
κ

Tref
C4ψ

n+ 1
2

Q

+ ΔtβDT
1 U

n+ 1
2 − ΔtβC2ψ

n+ 1
2

U + Δt�M2G
n+ 1

2 , (5.36)

ρM0U
n+1 = ρM0U

n + ΔtμD0V
n+ 1

2 + ΔtλD1W
n+ 1

2

− ΔtβD1Q
n+ 1

2 − ΔtC0φ
n+ 1

2
U + ΔtρM0F

n+ 1
2 , (5.37)

M1V
n+1 = M1V

n+ 1
2 − Δt

2
DT

0 Un+1 +
Δt

2
C1ψ

n+1
U

{
+

Δt

2
M1I

n+1

}
, (5.38)

M2W
n+1 = M2W

n+ 1
2 − Δt

2
DT

1 Un+1 +
Δt

2
C2ψ

n+1
U

{
+

Δt

2
M2K

n+1

}
, (5.39)

⎡

⎢
⎢
⎣B(∂Δt

t )

⎛

⎜
⎜
⎝

φU

φQ

ψU

ψQ

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

n+ 1
2

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

CT
0 U

n+ 1
2

CT
3 Q

n+ 1
2

−μCT
1 Ṽ

n+ 1
2 − λCT

2 W̃
n+ 1

2 + βCT
2 Q

n+ 1
2

− κ
Tref

CT
4 Q

n+ 1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

+

⎛

⎜
⎜
⎜
⎝

νn+ 1
2

ςn+ 1
2

ηn+ 1
2

ξn+ 1
2

⎞

⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (5.40)

where the bar above a quantity denotes an average, e.g.,

Q
n+ 1

2 =
1
2
(
Qn+1 + Qn

)
(5.41)

and analogously for all others. Further, we introduced

Ṽ
n+ 1

2 = V n+ 1
2 + δ (Δt)2 M−1

1 C1ψ̇
n+ 1

2
U , (5.42)

W̃
n+ 1

2 = W n+ 1
2 + δ (Δt)2 M−1

2 C2ψ̇
n+ 1

2
U (5.43)

where δ > 0 is a stabilization parameter which is discussed in more detail in Section 8 and the dot above
a quantity denotes a central difference with respect to time, i.e.,

ψ̇
n+ 1

2
U =

1
Δt

(
ψ̇

n+1

U − ψ̇
n

U

)
(5.44)

and similarly for other quantities. Please note that there is another discretization for the first-order
derivative with respect to time in play here, which is denoted by ∂Δt

t . It is used for the discretization of
the Calderón operator and given by the backward differentiation formula BDF-2 according to [4], Section
2.3.

Let us compare the above system of equations to the known ones for the acoustic and the elastic wave
equations. For both of those, only the system of equations incorporating the Calderón operator is implicit.

Thus, it is possible to express the analog to U
n+ 1

2 explicitly without referring to Un+1. This allows for a
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decoupling such that a more concrete expression can be given for the (still implicit) equations involving
the Calderón operator, for the acoustic wave equation in [4], Section 5.3, and for the elastic wave equation
in [8], Section 5.3. Due to the implicit nature of Eqs. (5.36) and (5.37), we cannot do something like this
here. Only Eqs. (5.34), (5.35), (5.38), and (5.39) can be treated as explicit time-stepping schemes, whereas
all other equations must be considered together as a coupled system of implicit equations.

Further, we provide the equations for V and W using a staggered grid, cf. [12], Eq. (1.7), as this is
the version used to prove stability results and is obtained by substituting (5.38) and (5.39) into (5.34)
and (5.35), respectively, so that

M1V
n+ 1

2 = M1V
n− 1

2 − ΔtDT
0 Un + ΔtC1ψ

n
U

{
+Δt M1I

n
}

, (5.45)

M2W
n+ 1

2 = M2W
n− 1

2 − ΔtDT
1 Un + ΔtC2ψ

n
U

{
+Δt M2K

n
}

. (5.46)

We will also need a set of semi-discrete equations which is of third order in time. These can be derived by
taking derivatives with respect to time of Eqs. (5.24), (5.27), and (5.28) as well as using Eqs. (5.25) and
(5.26) to replace the time derivatives of V and W that appear on the right-hand when time derivatives
are applied to Eq. (5.24).

For our stability considerations, we also need a formulation which is closer to a time discretized version
of that system which reads

ρM0

(
U̇

n+1 − 2 U̇
n

+ U̇
n−1

)
= − (Δt)2 μD0M

−1
1

(
DT

0 U̇
n − C1ψ̇

n

U

)

− (Δt)2 λD1M
−1
2

(
DT

1 U̇
n − C2ψ̇

n

U

)

− (Δt)2 βD1Q̈
n

− (Δt)2 C0φ̈
n

U

+ (Δt)2 ρM0F̈
n
{

+ (Δt)2 μD0İ
n

+ (Δt)2 λD1K̇
n
}

, (5.47)

�M2

(
Q̇

n+1 − 2 Q̇
n

+ Q̇
n−1

)
= − (Δt)2

κ

Tref
D2Q̈

n

− (Δt)2 C3φ̈
n

Q + (Δt)2
κ

Tref
C4ψ̈

n

Q

+ (Δt)2 βDT
1 Ü

n

− (Δt)2 βC2ψ̈
n

U + (Δt)2 � M2G̈
n
, (5.48)

where the dot above a quantity is to be interpreted as a central difference in time as in Eq. (5.44) and a
bar denotes averaging, see Eq. (5.41). Hence we have

Q̈
n

=
1

2Δt

(
Q̇

n+1 − Q̇
n−1

)
,

...
Q

n
=

1
(Δt)2

(
Q̇

n+1 − 2 Q̇
n

+ Q̇
n−1

)
. (5.49)

The accompanying equations for the boundary densities are

⎡

⎢
⎢
⎢
⎣

B(∂t)

⎛

⎜
⎜
⎜
⎝

φ̈U

φ̈Q

ψ̈U

ψ̈Q

⎞

⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎦

n

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

CT
0 Ü

n

CT
3 Q̈

n

−μCT
1

¨̃
V

n

− λCT
2

¨̃
W

n

+ βCT
2 Q̈

n

− κ
Tref

CT
4 Q̈

n

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

+

⎛

⎜
⎜
⎜
⎝

ν̈n+ 1
2

ς̈n+ 1
2

η̈n+ 1
2

ξ̈
n+ 1

2

⎞

⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (5.50)

where ¨̃
V

n

and ¨̃
W

n

are to be understood as placeholders such that

¨̃
V

n

= M−1
1

(
−DT

0 U̇
n

+ C1ψ̇
n

U

)
+ δ (Δt)2 M−1

1 C1

...
ψ

n
U

{
+İ

n
}

, (5.51)

¨̃
W

n

= M−1
2

(
−DT

1 U̇
n

+ C2ψ̇
n

U

)
+ δ (Δt)2 M−1

2 C2

...
ψ

n
U

{
+K̇

n
}

. (5.52)
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6. Stability of the spatial semi-discretization

Let us assume that our bases of Uh, Vh, Qh, Zh, and Ph are orthonormal in L2(Ω)3, (L2(Ω))3×3,
L2(Ω), (H

1
2 (Γ))4, and (H− 1

2 (Γ))4, respectively. Then the matrices M0 and M2 become unit matrices.
The matrix M1, however, becomes a diagonal matrix whose diagonal elements are all 1

2 . Consequently,

M−1
1 is a diagonal matrix with a 2 for each entry on the diagonal.
To analyze the propagation of errors in the spatial discretization, we consider bounds of the Euclidean

norms of the solution of these equations, where we take the norm of the perturbations F , G, I, K, ν,
ς, η, and ξ into account. Similar to the continuous field energy we introduce a semi-discrete field energy
and show its boundedness.

Lemma 7. The semi-discrete field energy

E(t) =
1
2
ρ ‖U(t)‖2

2 +
1
4
μ ‖V (t)‖2

2 +
1
2
λ ‖W (t)‖2

2 +
1
2
� ‖Q(t)‖2

2 +
κ

Tref

∫ t

0

∥
∥
∥D

1
2
2 Q(τ)

∥
∥
∥

2

2
dτ (6.1)

is bounded along the solution by

E(t) ≤ f(c̃)

(

E(0) +
t

2

t∫

0

(
ρ‖F (τ)‖2

2 +
μ

2
‖I(τ)‖2

2 + λ‖K(τ)‖2
2 + �‖G(τ)‖2

2

)
dτ

+ max
(
t2, t8

)
t∫

0

(‖∂3
t ν(τ)‖2

2 + ‖∂3
t ς(τ)‖2

2 + ‖∂3
t η(τ)‖2

2 + ‖∂3
t ξ(τ)‖2

2

)
dτ

) (6.2)

for t > 0. This estimate holds provided ν(0) = ∂tν(0) = ∂2
t ν(0) = 0, ς(0) = ∂tς(0) = ∂2

t ς(0) = 0,
η(0) = ∂tη(0) = ∂2

t η(0) = 0, and ξ(0) = ∂tξ(0) = ∂2
t ξ(0) = 0.

To prove this lemma, we start by taking inner products of Eq. (5.24) with U , Eq. (5.25) with μV ,
Eq. (5.26) with λW , Eq. (5.27) with Q, and Eq. (5.28) with

(
φU ,φQ,ψU ,ψQ

)T . Summing up the results
of this procedure gives us an ordinary differential equation for the semi-discrete field energy E which allows
us to apply Lemma 4. From there, the proof follows along the lines of the proof for Lemma 6.1 in [4]. For
this purpose, observe that the coercivity result

tend∫

0

e
− 2t

tend <
⎛

⎜
⎜
⎝

φU (t)
φQ(t)
ψU (t)
ψQ(t)

⎞

⎟
⎟
⎠ ,B(∂t)

⎛

⎜
⎜
⎝

φU (t)
φQ(t)
ψU (t)
ψQ(t)

⎞

⎟
⎟
⎠>

Γ

dt

≥ c̃ dend

tend∫

0

e
− 2t

tend
(‖∂−2

t φU (t)‖2
2 + ‖∂−2

t φQ(t)‖2
2 + ‖∂−2

t ψU (t)‖2
2 + ‖∂−2

t ψQ(t)‖2
2

)
dt

(6.3)

with c̃ > 0 independent of the grid size is inherited by the Calderón operator for the semi-discrete case
from the continuous result in Lemma 3. However, due to the fact that our coercivity result in Lemma 2
gives an estimate which involves |s|3 instead of |s|2, our result involves third-order derivatives of ν, ς, η,
and ξ, necessitating that the values and derivatives of these functions up to order 2 vanish at t = 0. For
the same reason, our estimate involves t8 instead of t6. Further, our result is similar to Lemma 7 in [8].
However, it was assumed there that M1 is a unit matrix, resulting in some minor differences.
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We can estimate the norms of the boundary densities. For that we define

H(t) =
1
2
ρ
∥
∥∂2

t U(t)
∥
∥2

2
+ μ

∥
∥
∥DT

0 ∂tU(t) − C1∂tψU (t)
∥
∥
∥

2

2
+

1
2
λ
∥
∥
∥DT

1 ∂tU(t) − C2∂tψU (t)
∥
∥
∥

2

2

+
1
2
�‖∂2

t Q‖2
2+

κ

Tref

∫ t

0

‖D
1
2
2 ∂2

t Q(τ)‖2
2dτ

(6.4)

Lemma 8. The semi-discrete boundary functions φU , φQ, ψU , and ψQ of Eqs. (5.24)–(5.28) are bounded
in the form

t∫

0

(
‖φU (τ)‖2

2 +
∥
∥φQ(τ)

∥
∥2

2
+ ‖ψU (τ)‖2

2 +
∥
∥ψQ(τ)

∥
∥2

2

)
dτ

≤ h(c̃)

(

max
(
t2, t5

)
H(0)

+ max
(
t3, t6

)
t∫

0

(
ρ
∥
∥∂2

t F (τ)
∥
∥2

2
+ μ

∥
∥∂2

t I(τ)
∥
∥2

2
+ λ

∥
∥∂2

t K(τ)
∥
∥2

2
+ �

∥
∥∂2

t G(τ)
∥
∥2

2

)
dτ

+ max
(
t2, t8

)
t∫

0

(∥
∥∂3

t ν(τ)
∥
∥2

2
+
∥
∥∂3

t ς(τ)
∥
∥2

2
+
∥
∥∂3

t η(τ)
∥
∥2

2
+
∥
∥∂3

t ξ(τ)
∥
∥2

2

)
dτ

)

(6.5)

for t > 0. This estimate holds provided F (0) = ∂tF (0) = 0, G(0) = ∂tG(0) = 0, I(0) = ∂tI(0) = 0,
K(0) = ∂tK(0) = 0, ν(0) = ∂tν(0) = ∂2

t ν(0) = 0, ς(0) = ∂tς(0) = ∂2
t ς(0) = 0, η(0) = ∂tη(0) =

∂2
t η(0) = 0, and ξ(0) = ∂tξ(0) = ∂2

t ξ(0) = 0.

For the proof, we have to provide estimates for the three cases i) E(0) = H(0) = F = G = I = K = 0,
ii) I = K = ∂tν = ∂tς = ∂tη = ∂tξ = 0, and iii) E(0) = H(0) = F = G = ∂tν = ∂tς = ∂tη = ∂tξ = 0,
and follow the same ideas as Lemma 6.3 in [4] in that we use intermediate results from and modifications
of the proofs of both previous lemmas to prove the cases i) and iii). However, in order to get rid of the ∂−2

t

in Lemma 4, we have to use the third-order system obtained by differentiating the second-order system
and then follow the case ii) of the proof of Lemma 6.3 in [4]. This results in the energy H(0).

7. Error bound for the spatial semi-discretization

Let us first take a look at the consistency error for the spatial semi-discretization.

Lemma 9. Let Ph denote the L2(Ω)-orthogonal projection from
(
H1(Ω)

)4 onto (Qh)4. In the case of a
quasi-uniform triangulation of Ω, there exists a positive constant k such that

∥
∥
∥
∥

⇒
Z − Ph

⇒
Z

∥
∥
∥
∥

(H1(Ω))4
≤ kh

∥
∥
∥
∥

⇒
Z

∥
∥
∥
∥

(H2(Ω))4
for all

⇒
Z ∈ (H2(Ω))4. (7.1)

Proof. We take a look at
⇒
Z − Ph

⇒
Z =

(⇒
Z − Ih

⇒
Z

)
+
(
Ih

⇒
Z − Ph

⇒
Z

)
, (7.2)

where Ih is the finite element interpolation operator. The H1-norm for the first term is of order O(h),
whereas the L2-norm for the second term is of order O(h2). The desired estimate then follows from a
standard inverse inequality. �



163 Page 20 of 27 S. Eberle ZAMP

Lemma 10. There exists a constant m(t), growing at most polynomially with t, such that

t∫

0

∥
∥
∥
∥
∥
∥
∥
∥
∥

B(∂t)

⎛

⎜
⎜
⎜
⎝

(I − PP�U,h
)�φ�U (·, τ)

(I − PPQ,h
)φQ(·, τ)

(I − PZ�U,h
)�ψ�U (·, τ)

(I − PZQ,h
)ψQ(·, τ)

⎞

⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥

2

(H
1
2 (Γ))4×(H− 1

2 (Γ))4

dτ

≤ m(t)h2

t∫

0

(
‖∂3

t
�φ�U (·, τ)‖2

(H
1
2 (Γ))3

+ ‖∂3
t φQ(·, τ)‖2

H
1
2 (Γ)

+ ‖∂3
t
�ψ�U (·, τ)‖2

(H
3
2 (Γ))3

+ ‖∂3
t ψQ(·, τ)‖2

H
3
2 (Γ)

)
dτ

(7.3)

for any t > 0 and for all �φ�U ∈ C3([0, t], (H
1
2 (Γ))3), φQ ∈ C3([0, t],H

1
2 (Γ)), �ψ�U ∈ C3([0, t], (H

3
2 (Γ))3),

ψQ ∈ C3([0, t],H
3
2 (Γ)), with �φ�U (·, 0) = ∂t

�φ�U (·, 0) = ∂2
t
�φ�U (·, 0) = 0, φQ(·, 0) = ∂tφQ(·, 0) = ∂2

t φQ(·, 0) =
0, �ψ�U (·, 0) = ∂t

�ψ�U (·, 0) = ∂2
t
�ψ�U (·, 0) = 0, ψQ(·, 0) = ∂tψQ(·, 0) = ∂2

t ψQ(·, 0) = 0. Here P− denotes the
L2(Γ)-orthogonal projection onto the corresponding boundary element spaces given as indices.

Proof. This lemma is proven in a similar way as the corresponding results for the acoustic wave equation
[4] or the elastodynamic wave equation [8] by applying the bounds of the boundary integral operators.

�

By combining the previous results, we obtain the following theorem.

Theorem 11. Assume that the initial values �U(·, 0),
⇒
V (·, 0), W (·, 0), and Q(·, 0) have their support in

Ω. Let the initial values for the semi-discretization be chosen as ∂j
t
�Uh(0) = PUh

∂j
t
�U(0), j = 0, 1, 2,

⇒
V h(0) = PVh

⇒
V (0), Wh(0) = PQh

W (0), and ∂k
t Qh(0) = PQh

∂k
t Q(0), k = 0, 1, 2. Here P− denotes the

L2(Ω)-orthogonal projection onto the corresponding finite element spaces. If we assume that the solution of
the wave equation is sufficiently smooth, then the error of the FEM–BEM semi-discretization is bounded
by

ρ‖�Uh(t) − �U(t)‖(L2(Ω))3 +
1
2
μ‖

⇒
V h(t) −

⇒
V (t)‖(L2(Ω))3×3 + λ‖Wh(t) − W (t)‖L2(Ω)

+ �‖Qh(t) − Q(t)‖L2(Ω) +
κ

Tref

t∫

0

∥
∥
∥�∇Qh(τ) − �∇Q(τ))

∥
∥
∥

(L2(Ω)3)
dτ

+
( t∫

0

‖�φ�U,h(τ) − �φ�U (τ)‖2

(H− 1
2 (Γ))3

+ ‖φQ,h(τ) − φQ(τ)‖2

H− 1
2 (Γ)

+ ‖�ψ�U,h(τ) − �ψ�U (τ)‖2

(H
1
2 (Γ))3

+ ‖ψQ,h(τ) − ψQ(τ)‖2

H
1
2 (Γ)

dτ

) 1
2

≤ m(t)h,

(7.4)

where the constant m(t) grows at most polynomially with t.

Proof. For the first term on the left-hand side, the triangle inequality yields

‖�Uh(t) − �U(t)‖(L2(Ω))3 ≤ ‖�Uh(t) − PUh
�U(t)‖(L2(Ω))3 + ‖PUh

�U(t) − �U(t)‖(L2(Ω))3 (7.5)
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and similar estimates hold for all other quantities. The second term on the right can be estimated
according to Lemma 9. For the sum of the first terms, observe that the differences

(
�Uh(t) − PUh

�U(t)
)
,

(⇒
V h(t) − PVh

⇒
V (t)

)
, (Wh(t) − PQh

W (t)), (Qh(t) − PQh
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(
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�φ�U (t)
)
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)
,
(

�ψ�U,h(t) − PZ�U,h

�ψ�U (t)
)
, and

(
ψQ,h(t) − PZQ,h

ψQ(t)
)

satisfy Eqs. (5.9)–(5.13) for test
functions from the respective FEM and BEM spaces if the right-hand sides are defined such that

ρ(�Fh, �Zh) = −1
2
μ(

⇒
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⇒
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1
2
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2
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1
2
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+
1
2
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Q, �∇ · �Zh) − 1
2
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Q), �Zh)

(
⇒
I h,

⇒
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1
2
(�∇(�U − PUh
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⇒
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2
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⇒
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(Kh,Xh) =
1
2
(�∇ · (�U − PUh

�U),Xh) − 1
2
(�U − PUh
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Tref
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− 1
2
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1
2
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(7.6)

and for the boundary densities

⎛
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κ
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⎟
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⎟
⎠

(7.7)

All that is left to do is apply the stability results from the previous section together with Lemmas 9 and
10 to get the desired result, similar to the proof of Theorem 7.1 in [4] and Theorem 6.1 in [15]. �

8. Stability of the full discretization

We want to study the stability of the full discrete scheme under the corresponding CFL condition.
Inspecting Eqs. (5.36), (5.37), (5.40), (5.45), and (5.46), we observe that Eq. (5.36) is similar in spirit to
the Crank–Nicolson scheme for parabolic PDEs. Thus, there is no CFL- or other stability condition with
regard to Q and we only need the CFL condition from elasticity, which reads

Δt ≤
√

ρ
√

2μ
∥
∥
∥D0

∥
∥
∥

2

+ λ
∥
∥
∥D1

∥
∥
∥

2
. (8.1)

As a further stability condition, it is sufficient to assume

δ ≥ 2 (8.2)

resulting from the considerations of the proof of Lemma 12. This guarantees that the discrete energy
E

n ≥ 0 for all n = 0, 1, 2, . . ..
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Similar to the continuous and semi-discrete case, the discrete field energy for Eqs. (5.34)–(5.40) is
given by

E
n =

1
2
ρ‖Un‖2

2 +
1
8
μ
(
‖V n+ 1

2 ‖2
2 + ‖V n− 1

2 ‖2
2

)
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1
4
λ
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‖W n+ 1

2 ‖2
2 + ‖W n− 1

2 ‖2
2

)

+
1
2
�‖Qn‖2

2 + Δt
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Tref
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∥
∥
∥D

1
2
2 Q
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2
∥
∥
∥

2

2

(8.3)

under the assumption that all needed bases are orthonormal.

Lemma 12. For 0 < Δt ≤ Δt0, the discrete field energy (8.3) is bounded at t = nΔt by

E
n ≤ p

(

E
0 +

t

2
Δt
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ρ‖F j+ 1
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,

(8.4)

where p is independent of h, Δt, and n.

As mentioned, the proof of this lemma follows essentially the steps sketched in the proof of Lemma
8.1 in [4] by using the staggered equations (5.45) and (5.46).

Similar to the semi-discrete case, we obtain an estimate for the boundary densities. For that, observe
that
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∣
∣Ü

n+ 1
2

∣
∣
∣
∣

2

+
1
2

�

∣
∣
∣
∣Q̈

n+ 1
2

∣
∣
∣
∣

2

+ Δt
κ

Tref

n∑

j=1

∣
∣
∣D

1
2
2 Q̈j

∣
∣
∣
2

+ μ
∣
∣
∣DT

0 U̇n+ 1
2 − C1ψ̇

n+ 1
2

U

∣
∣
∣
2

+
1
2

λ
∣
∣
∣DT

1 U̇n+ 1
2 − C2ψ̇

n+ 1
2

U

∣
∣
∣
2

.

(8.5)

Lemma 13. For 0 < Δt ≤ Δt0, the discrete boundary densities φ
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2
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(8.6)

where r is independent of h, Δt, and n.

Similar to Lemma 8, we have a contribution from H
− 1

2 here. This time however, this contribution does
not vanish in the setting relevant for the next section. Instead, this particular term yields a condition on
the implementation of initial conditions, cf. [18], Theorem 13.2.
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9. Error bound for the full discretization

As our final result, we present an error bound for the full discretization.

Theorem 14. Assume that the initial values and the inhomogeneities of the thermoelastic wave equation
have their support in Ω. Let the initial values for the semi-discretization be chosen as �Uh(0) = PUh

�U(0),
⇒
V h(0) = PVh

⇒
V (0), Wh(0) = PQh

W (0), Qh(0) = PQh
Q(0), where P− denotes the L2-orthogonal projec-

tion onto the corresponding finite element spaces. Further, we set the initial values of the time discretiza-
tion to

�U1
h = PUh

(
�U(0) + Δt∂t

�U(0) +
(Δt)2

2
∂2

t
�U(0)

)
, (9.1)

�U0
h = PUh

�U(0), (9.2)

�U−1
h = PUh

(
�U(0) − Δt∂t

�U(0) +
(Δt)2

2
∂2

t
�U(0)

)
, (9.3)

�U−2
h = PUh

(
�U(0) − 2Δt∂t

�U(0) + 2(Δt)2∂2
t
�U(0) − Δt3∂3

t
�U(0)

)
, (9.4)

Q1
h = PQh

(
Q(0) + Δt∂tQ(0) +

(Δt)2

2
∂2

t Q(0)
)

, (9.5)

Q0
h = PQh

Q(0), (9.6)

Q−1
h = PQh

(
Q(0) − Δt∂tQ(0) +

(Δt)2

2
∂2

t Q(0)
)

, (9.7)

Q−2
h = PQh

(
Q(0) − 2Δt∂tQ(0) + 2(Δt)2∂2

t Q(0) − Δt3∂3
t Q(0)

)
. (9.8)

If the solution of the wave equation is sufficiently smooth, then, under the CFL condition and if the
stability parameter δ ≥ 2, the error of the FEM and BEM and leapfrog and convolution quadrature full
discretization is bounded at t = nΔt by

ρ‖�Un
h − �U(t)‖(L2(Ω))3 +

1
2
μ‖

⇒
V n

h −
⇒
V (t)‖(L2(Ω))3×3 + λ‖Wn

h − W (t)‖L2(Ω)

+ �‖Qn
h − Q(t)‖L2(Ω) + Δt

κ

Tref

n−1∑

j=0

‖�∇Qj
h − �∇Q(tj)‖(L2(Ω))3

+

(

Δt

n−1∑

j=0

‖�φ
j+ 1

2
�U,h

− �φ�U (tj+ 1
2
)‖2

(H− 1
2 (Γ))3

+ ‖φ
j+ 1

2
Q,h − φQ(tj+ 1

2
)‖2

H− 1
2 (Γ)

+ ‖�ψ
j+ 1

2
�U,h

− �ψ�U (tj+ 1
2
)‖2

(H
1
2 (Γ))3

+ ‖ψ
j+ 1

2
Q,h − ψQ(tj+ 1

2
)‖2

H
1
2 (Γ)

) 1
2

≤ q(t)(h + (Δt)2) (9.9)

where the constant q(t) grows at most polynomially with t.

Proof. We are searching for �Un
h ∈ Uh,

⇒
V n

h,
⇒
V

n+ 1
2

h ∈ Vh, Wn
h , W

n+ 1
2

h , Qn
h, Q

n+ 1
2

h ∈ Qh, �φ
n+ 1

2
�U,h

∈ P�U,h,

φ
n+ 1

2
Q,h ∈ PQ,h, �ψn

�U,h
∈ Z�U,h, and ψ

n+ 1
2

Q,h ∈ ZQ,h such that

2
Δt

(
⇒
V

n+ 1
2

h −
⇒
V n

h,
1
2

⇒
Yh) =

1
2
(�∇�Un

h ,
⇒
Yh) − 1

2
(�Un

h , �∇ ·
⇒
Yh) +

1
2
〈
�ψn

�U,h
,
⇒
γ D(

⇒
Yh)�n

〉
Γ
, (9.10)
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2
Δt

(Wn+ 1
2

h − Wn
h ,Xh) = −1

2
(�Un

h , �∇Xh) +
1
2
(�∇ · �Un

h ,Xh) +
1
2
〈
�ψn

�U,h
,
⇒
γ D(Xh

⇒
I )�n

〉
Γ
, (9.11)

�

Δt

(
Qn+1

h − Qn
h, Rh

)
= − κ

Tref
(�∇Q

n+ 1
2

h , �∇Rh) − 1
2
〈
φ

n+ 1
2

Q,h , γDRh

〉
Γ

+
1
2

κ

Tref

〈
ψ

n+ 1
2

Q,h , �γD(�∇Rh) · �n〉
Γ

− 1
2
β(�∇ · �U

n+ 1
2

h , Rh) +
1
2
β(�Un+ 1

2
h , �∇Rh) − 1

2
β
〈
�ψ

n+ 1
2

�U,h
,
⇒
γ D(Rh

⇒
I )�n

〉
Γ

+ �(G(tn), Rh), (9.12)

ρ

Δt
(�Un+1

h − �Un
h , �Zh) = −μ

2
(
⇒
V

n+ 1
2

h , �∇�Zh) +
μ

2
(�∇ ·

⇒
V

n+ 1
2

h , �Zh)

− λ

2
(Wn+ 1

2
h , �∇ · �Zh) +

λ

2
(�∇W

n+ 1
2

h , �Zh)

+
β

2
(Qn+ 1

2
h , �∇ · �Zh) − β

2
(�∇Q

n+ 1
2

h , �Zh)

− 1
2
〈
�φ

n+ 1
2

�U,h
, �γD

�Zh

〉
Γ

+ ρ(�F (tn+ 1
2
, �Zh), (9.13)

2
Δt

(
⇒
V n+1

h −
⇒
V

n+ 1
2

h ,
1
2

⇒
Yh) =

1
2
(�∇�Un+1

h ,
⇒
Yh) − 1

2
(�Un+1

h , �∇ ·
⇒
Yh) +

1
2
〈
�ψn+1

�U,h
,
⇒
γ D(

⇒
Yh)�n

〉
Γ
, (9.14)

2
Δt

(Wn+1
h − W

n+ 1
2

h ,Xh) = −1
2
(�Un+1

h , �∇Xh) +
1
2
(�∇ · �Un+1

h ,Xh) +
1
2
〈
�ψn+1

�U,h
,
⇒
γ D(Xh

⇒
I )�n

〉
Γ
, (9.15)

for �Zh, �Nh ∈ Uh,
⇒
Yh ∈ Vh, Xh, Rh ∈ Qh, and

<⎛

⎜
⎜
⎝

�ξ�U,h

ξQ,h

�χ�U,h

χQ,h

⎞

⎟
⎟
⎠ ,

⎡

⎢
⎢
⎢
⎣
B(∂Δt

t )

⎛

⎜
⎜
⎜
⎝

�φ�U,h

φQ,h

�ψ�U,h

ψQ,h

⎞

⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎦

n+ 1
2 >

Γ

=
1
2
〈
�ξ�U,h, �γD

�U
n+ 1

2
h

〉
Γ

+
1
2
〈
ξQ,h, γDQ

n+ 1
2

h

〉
Γ

−1
2
〈
�χ�U,h,

⇒
γ D(μ

⇒
V

n+ 1
2

h + λW
n+ 1

2
h

⇒
I − βQ

n+ 1
2

h

⇒
I )�n

〉
Γ

−δ (Δt)2
〈
�χ�U,h, �̇ψ

n+ 1
2

�U

〉
Γ

− δ (Δt)2
〈
χQ,h, ψ̇

n+ 1
2

Q

〉

Γ

−1
2

〈
χQ,h, �γD

(
κ

Tref

�∇Q
n+ 1

2
h

⇒
I

)
�n

〉

Γ

(9.16)

for �ξ�U,h ∈ P�U,h, ξQ,h ∈ PQ,h, �χ�U,h ∈ Z�U,h, and χQ,h ∈ ZQ,h, where

�U
n+ 1

2
h =

1
2

(
�Un+1

h + �Un
h

)
, �ψ

n+ 1
2

�U,h
=

1
2

(
�ψn+1

�U,h
+ �ψn

�U,h

)
, (9.17)

�̇ψ
n+ 1

2
�U,h

=
1

Δt

(
�ψn+1

�U,h
− �ψn

�U,h

)
, ψ̇

n+ 1
2

Q,h =
1

Δt

(
ψ

n+ 1
2

Q,h − ψ
n− 1

2
Q,h

)
. (9.18)

Again, we take a look at the defects under the projection of the exact solution to the variational

formulation of the fully discretized scheme. However, as in [4,8], we replace PVh

⇒
V

n+ 1
2

h by a slightly

different term. We define
⇒
V

n+ 1
2

mid :=
⇒
V (tn+ 1

2
)− 1

8Δt2∂2
t

⇒
V (tn+ 1

2
), such that

⇒
V

n+ 1
2

mid =
⇒
V (tn)+ 1

2Δt∂t

⇒
V (tn+1)+

O(Δt3) and
⇒
V (tn+1) =

⇒
V

n+ 1
2

mid + 1
2Δt∂t

⇒
V (tn+1)+O(Δt3). If the solution is smooth enough, it can be shown
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by Taylor expansion that then

2
Δt

(PVh

⇒
V

n+ 1
2

mid − PVh

⇒
V (tn),

1
2

⇒
Y h) =

1
2
(�∇(PUh

(�U(tn))),
⇒
Y h) − 1

2
(PUh

�U(tn), �∇ ·
⇒
Y h)

+
1
2
〈
PZ�U,h

�ψ�U (tn),
⇒
γ D(

⇒
Y h)�n

〉
Γ

+ (
⇒
dh

V,n,
⇒
Y h)

holds for all
⇒
Y h ∈ Vh. Here, the defect is

⇒
dh

V,n =
⇒
I h(tn) +

2
Δt

PVh

(⇒
V

n+ 1
2

mid −
⇒
V (tn) − Δt

2
∂t

⇒
V (tn)

)
, (9.19)

where the first term represents the consistency error and the second one is of order O(Δt2). For the
further defects of the full discrete equations, we refer to the equations of the spatial semi-discretization.
In addition, we obtain for a temporally smooth solution terms of order O(Δt2). Further, the initial values
of the time discretization are chosen as described in [18], so that H− 1

2 is well defined and is of order O(Δt2)
as well. Summarizing the discrete stability results and the error bounds of the spatial semi-discretization,
we finally obtain the error bound for the full discretization. �

10. Summary and conclusion

In this paper, we presented a numerically stable FEM–BEM coupling for the thermoelastic wave equation
with transparent boundary conditions. We started with the introduction of the involved equations and
stated the corresponding fundamental solution as well as the required layer potentials. Based on these,
we took a look at the boundary integral operators which are needed for the construction of the Calderón
operator. The key issue for the stability analysis was the coercivity result of the Calderón operator together
with energy techniques. Here, we first considered the semi-discretization followed by the full discretization
including time, where we applied a leapfrog scheme in the domain’s interior and convolution quadrature
on the boundary. Finally, we ended up with an asymptotically optimal convergence result.

In order to manage the coupled system of a vector-valued PDE (second order in time and space) and
a third-order scalar-valued PDE (first order in time and second order in space), we introduced a time-
integrated temperature deviation. In particular, this allowed us to handle the coupling term without
having to use a factor s in the test functions for the displacement vector, see, e.g., [24], Theorem 3.9.
All in all, we understand this contribution as a step-stone to generalize the methods from [4,8] to more
general sets of partial differential equations, as, e.g., those which describe wave propagation in poroelastic
media [24].
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Appendix A. Fundamental solution tensor

For the thermoelastic wave equation in the Laplace domain as given by Eq. (2.31), a fundamental solution
tensor can be computed explicitly [13]. In order to state it, we need the following abbreviations:

c1 =

√
λ + 2μ

ρ
, c2 =

√
μ

ρ
, e =

β2

�(λ + 2μ)
, d2

1 = −s2

c21
, d2

2 = −s2

c22
, q =

−�Tref
κ

Tref

s, (A.1)

k2
1,2 =

1
2

{
d2
1 + q + eq ±

[(
d2
1 + q + eq

)2 − 4qd2
1

] 1
2
}

, (A.2)

H (r, s) =
d2
1

(
k2
1 − q

)

k2
1 (k2

1 − k2
2)

exp(k1r)
r

− d2
1

(
k2
2 − q

)

k2
2 (k2

1 − k2
2)

exp(k2r)
r

− exp(d2r)
r

, where r = ‖�x‖. (A.3)

Then

U(i)
j =

δij

4πρc22

exp(d2r)
r

+
1

4πρs2

∂2

∂xi∂xj
H (r, s), i, j ∈ {1, 2, 3}, (A.4)

T (i) =
qe

4πβ (k2
1 − k2

2)
∂

∂xi

(
exp(k1r)

r
− exp(k2r)

r

)
, i ∈ {1, 2, 3}, (A.5)

U(4)
j = − β

4π κ
Tref

ρc21 (k2
1 − k2

2)
∂

∂xj

(
exp(k1r)

r
− exp(k2r)

r

)
, j ∈ {1, 2, 3}, (A.6)

T (4) = − 1
4π κ

Tref
(k2

1 − k2
2)

(
(
k2
1 − d2

1

) exp(k1r)
r

− (
k2
2 − d2

1

) exp(k2r)
r

)
. (A.7)

For the convenience of the reader, we remark that for any k ∈ C,

∂

∂xi

exp(kr)
r

=
xi

r3
(kr − 1) exp(kr) , (A.8)

∂

∂xi∂xj

exp(kr)
r

=
[
δij

kr − 1
r3

+
xixj

r5
(
3 − 3kr + k2r2

)
]

exp(kr) . (A.9)

As we are in the Laplace domain, the fundamental solution for Q is obtained from those for T by
multiplying with s.

Finally, the fundamental solution is given by

⇒
Gs =

(
U(i)

j T (i)

U(4)
j T (4)

)

. (A.10)
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[15] Kovács, B., Lubich, Ch.: Stable and convergent fully discrete interior-exterior coupling of Maxwell’s equations. Numer.

Math. 137, 91–117 (2017)
[16] Kupradze, V.D.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North

Holland (1979)
[17] Laliena, A.R., Sayas, F.-J.: Theoretical aspects of the application of convolution quadrature to scattering of acoustic

waves. Num. Math. 112(4), 637–678 (2009)
[18] Larsson, S., Thomée, V.: Partial Differential Equations with Numerical Methods. Springer, Berlin (2003)
[19] McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge

(2000)
[20] Oden, J. T., Kross, D. A.: Analysis of general coupled thermoelasticity problems by the finite element method. Technical

Report AFFDL TR 68-150, Research Institute, University of Alabama, Huntsville (1969)
[21] Park, K., Banerjee, P.: Two- and three-dimensional transient thermoelastic analysis by BEM via particular integrals.

Int. J. Solids Struct. 39, 2871–2892 (2002)
[22] Sauter, S., Schwab, C.: Boundary Element Methods. Springer, Berlin (2011)
[23] Tian, X., Shen, Y., Chen, C., He, T.: A direct finite element method study of generalized thermoelastic problems. Int.

J. Solids Struct. 43, 2050–2063 (2006)
[24] Urthaler, P.: Analysis of Boundary Element Methods for Wave Propagation in Porous Media. Computation in Engi-

neering and Science, Monographic Series TU Graz (2012)

Sarah Eberle
Institute for Mathematics Goethe-University Frankfurt
Frankfurt am Main
Germany
e-mail: eberle@math.uni-frankfurt.de

(Received: April 3, 2019; revised: September 3, 2021; accepted: January 20, 2022)


	FEM–BEM coupling for the thermoelastic wave equation with transparent boundary conditions in 3D
	Abstract
	1. Introduction and outline
	2. The thermoelastic wave equation
	2.1. Transmission conditions between interior and exterior space
	2.2. Laplace transform of the thermoelastic wave equation

	3. Potentials and Calderón operator
	4. Coercivity results for the Calderón operator
	4.1. Coercivity of the Laplace transformed Calderón operator mathscrB(s)
	4.2. Coercivity of the time-dependent Calderón operator mathscrB(t)

	5. Discretization
	5.1. Variational formulation
	5.1.1. FEM–BEM spatial semi-discretization

	5.2. Time discretization via leapfrog and convolution quadrature

	6. Stability of the spatial semi-discretization
	7. Error bound for the spatial semi-discretization
	8. Stability of the full discretization
	9. Error bound for the full discretization
	10. Summary and conclusion
	Appendix A. Fundamental solution tensor
	References




