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Abstract. In the theory of second-gradient continua, the internal virtual work functional can be considered as a second-order
distribution in which the virtual displacements take the role of test functions. In its easiest representation, the internal
virtual work functional is represented as a volume integral over a subset of the three-dimensional Euclidean vector space
and involves first and second derivatives of the virtual displacements. In this paper, we show by an iterative integration by
parts procedure how an alternative representation of such a functional can be obtained when the integration domain is a
subset that contains also edges and wedges. Since this procedure strongly relies on the divergence theorem for submanifolds
of a Euclidean vector space, it is a main goal to derive this divergence theorem for submanifolds starting from Stokes’
theorem for manifolds. To that end, results from Riemannian geometry are gathered and applied to the submanifold case.
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1. Introduction

The divergence theorem for submanifolds of a Euclidean vector space is indispensable to prove alternative
representations of internal virtual work functionals of a continuum. These representations are required
among others to identify compatible external virtual work functionals and to obtain the local equilibrium
equations together with the boundary conditions, see among others [11,14,16,18,22,27,28,37]. Typically,
the divergence theorem for an m-dimensional orientable submanifold M ⊆ E

n of an n-dimensional Eu-
clidean vector space E

n is employed, where m ≤ n = 3. Applying Einstein summation convention, which
implies summation over upper and lower indices that appear twice in a term, a point x ∈ E

3 can be
written as x = xiei ∈ E

n, where (e1, . . . , en) is a basis of En. In particular, we agree that Roman indices
range from 1 to n. Consider a (local) parametrization ψ = ψ(θ1, . . . , θm) of the m-dimensional manifold
M , then for α ∈ {1, . . . , m} the vectors gα(x) := ∂ψ

∂θα

∣
∣
ψ−1(x) define a basis of TxM . Hence, a vector field

X ∈ Vect(M) can be represented in two natural ways, namely X = Xi
‖ei = Xαgα with the tacit assump-

tion that Greek indices range from 1 to m. Since the inner product 〈·, ·〉 on E
n induces a Riemannian

metric g on M , the manifold is equipped with the Levi-Civita connection ∇ as well as the Riemann-
ian volume form dM . Exploiting that TxM is a subspace of En, we furthermore define the orthogonal
projection P‖(x) : En → E

n onto TxM .
According to [25,26], the divergence theorem corresponds to the equality

∫

M

divX dM =
∫

∂M

〈X, ν〉 d∂M , (1)

where ν denotes the outward-pointing unit normal to the topological boundary ∂M of M , div(X) is the
divergence of the vector field X and d∂M is used for the Riemannian volume element of the boundary
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manifold ∂M . In the literature on higher gradient continua, see for instance [2,5,13,14,17,18,22,23,27,
28,32,36,37], several expressions of the divergence of a vector field are encountered. Specifically, these
are

divX =
1√
g

∂

∂θα

(√
gXα

)

=
∂Xα

∂θα
+ Γα

αβXβ = P‖
j
i

∂Xi
‖

∂xj
, (2)

where g := det(g(gα, gβ)) = det(〈gα, gβ〉) denotes the determinant of the first fundamental form, Γγ
αβ

are the Christoffel symbols of the connection ∇ and the P‖
j
i

denote the components of the orthogonal
projection. In fact, these are all local expressions, in case a parametrization of the manifold is given or
when the orthogonal projector has been introduced.

In addition to the application of the divergence theorem to second-gradient continua in Sect. 2, the
main goal of this paper is to show why these different representations occur and how they are related. In
fact, the divergence theorem (1) is a consequence of Stokes’ theorem on manifolds [25], which is formulated
in the context of intrinsic differential geometry. To get to the divergence theorem in the form (1), we will
show in this paper how to apply results from intrinsic differential geometry to submanifolds of En. In
Sect. 3, we mainly gather results from the literature and present a concise derivation of the divergence
theorem on Riemannian manifolds, which is of great interest for the theory of general relativity [9,10].
Along the way, we will see that there exist two different but equivalent definitions of the divergence, whose
local representations in a natural way lead to the second and third expression of (2). Then, in Sect. 4, the
special case of submanifolds of En is considered, which directly leads to the divergence theorem in the form
(1) as well as to the last coordinate expression in (2). In particular, we will show again the equivalence
of the two definitions of the divergence. This allows a reader that is only interested in the equivalence
of these definitions for submanifolds of Euclidean vector spaces to omit Theorem 1 and Corollary 1 of
Sect. 3.

2. Equivalent representations of the internal virtual work functional for second-gradient
continua

To get two different representations of the internal virtual work functional of second-gradient continua in
Eulerian description, we apply the divergence theorem for submanifolds (1) together with the divergence
representation given by the last expression in (2). The aim is to show the importance of the divergence
theorem for continuum mechanics, and it is not intended as an exhaustive treatment of second-order
continua. For more details about second-gradient continua and possible applications, we refer to [1,3,4,
7,12,19–21,29,30,33].

Following the postulation accepted for Galilean Mechanics, the physical space, where a second-gradient
continuum can be placed, is modeled as a three-dimensional Euclidean vector space E

3 with the inner
product denoted by 〈·, ·〉. We assume the actual configuration ω ⊂ E

3 of the considered continuum to
be a three-dimensional submanifold with corners, which is sufficiently regular to perform all the required
calculations, see [14]. The topological boundary of ω is denoted by ∂ω, which is the union of a finite
number of two-dimensional orientable surfaces with boundary. These surfaces, called faces of ω, are again
manifolds with corners and their boundary curves are called edges. The union of all edges of ω is denoted
by ∂∂ω.

Choosing a basis (e1, e2, e3) of E
3, we can represent any spatial point as x = xiei ∈ E

3. A spatial
virtual displacement field δx is a vector field on the actual configuration, i.e., a vector-valued function
δx : ω → E

3. Using the basis representation δx(x) = δxi(x)ei for the spatial virtual displacements, we
introduce the abbreviations

δdi
j :=

∂δxi

∂xj
and δdi

jk :=
∂2δxi

∂xj∂xk
(3)

for the components of the first and second gradient of the spatial virtual displacement field δx.
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The internal virtual work functional of a second-gradient continuum in Eulerian form can be defined
in the form

δW int
ω (δx) := −

∫

ω

(

ck
i δdi

k + cjk
i δdi

jk

)

dω , (4)

where ck
i and cjk

i are the components of the Cauchy–Euler stress c and the Cauchy–Euler double-stress
c, respectively. In fact, the functional δW int

ω can be considered as a representation of a second-order
distribution. With the subsequent transformations, we will find an equivalent representation, which is
important for the choice of compatible external virtual work functionals for second-gradient continua.

Using (3) together with the product rule, we have that

ck
i δdi

k + cjk
i δdi

jk = ck
i

∂δxi

∂xk
+ cjk

i

∂2δxi

∂xj∂xk
=

(

ck
i − ∂cjk

i

∂xj

)∂δxi

∂xk
+

∂

∂xj

(

cjk
i

∂δxi

∂xk

)

. (5)

Introducing the abbreviation

c̄k
i := ck

i − ∂cjk
i

∂xj
,

the integrand (5) of the internal virtual work can be further recast to

ck
i δdi

k + cjk
i δdi

jk = − ∂c̄k
i

∂xk
δxi +

∂

∂xj

(

c̄j
i δx

i + cjk
i

∂δxi

∂xk

)

(6)

by using the product rule on the first term. It is clear that because Txω = E
3 for all x ∈ ω, the

orthogonal projection onto Txω is the identity map, whose components are given by the Kronecker delta
δj
i . Consequently, comparing the last term in (6) with the last coordinate expression in (2) reveals that

the internal virtual work (4) can be reformulated as

δW int
ω (δx) =

∫

ω

∂c̄k
i

∂xk
δxi dω −

∫

ω

div
((

c̄j
i δx

i + cjk
i

∂δxi

∂xk

)

ej

)

dω .

We can now invoke the divergence theorem (1) on the second integral to arrive at

δW int
ω (δx) =

∫

ω

∂c̄k
i

∂xk
δxi dω −

∫

∂ω

(

c̄j
i δx

i + cjk
i

∂δxi

∂xk

)

nj d∂ω ,

where ni := 〈ei, n〉 and n denotes the outward-pointing unit normal vector field to ∂ω. Consequently, the
internal virtual work functional can be represented as

δW int
ω = δW int,0

ω + δW int,0
∂ω + δW̄ int,I

∂ω ,

where we have introduced the functionals

δW int,0
ω (δx) :=

∫

ω

∂c̄k
i

∂xk
δxi dω ,

δW int,0
∂ω (δx) := −

∫

∂ω

c̄j
injδx

i d∂ω ,

δW̄ int,I
∂ω (δx) := −

∫

∂ω

cjk
i nj δdi

k d∂ω .

(7)

Since ∂ω has co-dimension one, the tangent space Tx∂ω is a two-dimensional subspace of E3 for all
x ∈ ∂ω. Consequently, the normal space Nx∂ω := (Tx∂ω)⊥ is one-dimensional and is spanned by the
outward-pointing unit normal vector n(x). It is immediately clear that the map

m⊥: E3 → E
3,X �→ 〈n,X〉n
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is the orthogonal projection onto the normal space. Moreover, since

m⊥(ei) = 〈n, ei〉njej = nin
jej = m⊥

j
iej , (8)

the components of the projection can be identified as m⊥
j
i = nin

j . Denoting the orthogonal projection
onto Tx∂ω by m‖(x), it holds that id = m⊥ + m‖, where “id” is the identity map on E

3. Hence, δi
j =

m⊥i
j + m‖i

j
, which we use to further manipulate δW̄ int,I

∂ω defined in (7). Namely,

δW̄ int,I
∂ω (δx) = −

∫

∂ω

cjk
i nj

∂δxi

∂xl
δl
k d∂ω = −

∫

∂ω

cjk
i nj

∂δxi

∂xl
(m⊥l

k + m‖l
k
) d∂ω . (9)

Hence, the virtual work functional (9) can be represented as the sum

δW̄ int,I
∂ω = δW int,I

∂ω + δW̃ int,I
∂ω ,

where the first functional is defined as

δW int,I
∂ω (δx) := −

∫

∂ω

cjk
i

∂δxi

∂xl
njm⊥l

k d∂ω
(8)
= −

∫

∂ω

(cjk
i njnk)

∂δxi

∂xl
nl d∂ω ,

which is a second-order transverse distribution, [31], involving the normal derivative ∂δxi

∂xl nl of the virtual
displacement field δx. The second functional is then given by

δW̃ int,I
∂ω (δx) := −

∫

∂ω

cjk
i nj

∂δxi

∂xl
m‖l

k
d∂ω

= −
∫

∂ω

cjk
i nj

∂δxi

∂xl
m‖l

m
m‖m

k
d∂ω

= −
∫

∂ω

[

m‖l
m

∂

∂xl

(

m‖m
k
cjk

i njδx
i
)

− m‖l
m

∂

∂xl

(

m‖m
k
cjk

i nj

)

δxi
]

d∂ω

(Equ2)
= −

∫

∂ω

[

div
(

m‖m
k
cjk

i njδx
iem

)

− m‖l
m

∂

∂xl

(

m‖m
k
cjk

i nj

)

δxi
]

d∂ω ,

(10)

where for the equalities we have used the idempotence of the projector m‖, the product rule and the
local representation (2) of the divergence. Note, that we are allowed to use (2) for the last equality, since
m‖m

k
cjk

i δxinj are the components of the vector field m‖(c
jk
i njδx

iek) ∈ Vect(∂ω), which in virtue of the
projector m‖ is indeed a vector field on ∂ω. Using the divergence theorem (1) in (10) leads to

δW̃ int,I
∂ω = δW int,0

∂∂ω + δW̃ int,0
∂ω

with the functionals given by

δW int,0
∂∂ω (δx) := −

∫

∂∂ω

m‖m
k
cjk

i njbmδxi d∂∂ω = −
∫

∂∂ω

cjk
i njbkδxi d∂∂ω ,

δW̃ int,0
∂ω (δx) :=

∫

∂ω

m‖l
m

∂

∂xl

(

m‖m
k
cjk

i nj

)

δxi d∂ω ,

(11)

where bm := 〈em, b〉 and b denotes the outward-pointing unit normal field to the edges constituting
∂∂ω which are also tangent to ∂ω. Note, to obtain δW int,0

∂∂ω , the divergence theorem has been applied
leading to a line integral along the edges of ∂ω. We used here a notational convention in the expression
of the integral. In fact, an edge γ is constituted by two concurring boundary surface manifolds σ+ and
σ−, say. Hence, γ is traversed twice: once with the surface normal n−, edge normal b− and the limit
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(δxicjk
i )− approached from the surface σ−, as well as once with the corresponding n+, b+ and (δxicjk

i )+.
Consequently, if we denote each of the edge curves by γi for i = 1, . . . , ne, the integral expression of the
first equality in (11) must be understood as follows

∫

∂∂ω

cjk
i njbkδxi d∂∂ω :=

ne∑

i=1

∫

γi

[

(cjk
i njbkδxi)+ + (cjk

i njbkδxi)−]

dγi .

In conclusion, the internal virtual work functional (4) can be represented equivalently in the form

δW int
ω (δx) = [δW int,0

ω + (δW int,0
∂ω + δW̃ int,0

∂ω ) + δW int,I
∂ω + δW int,0

∂∂ω ](δx)

=
∫

ω

∂c̄k
i

∂xk
δxi dω +

∫

∂ω

[

m‖l
m

∂

∂xl

(

m‖m
k
cjk

i nj

)

− c̄j
inj

]

δxi d∂ω

−
∫

∂ω

(cjk
i njnk)

∂δxi

∂xl
nl d∂ω −

∫

∂∂ω

cjk
i njbkδxi d∂∂ω .

(12)

Since in D’Alembert–Lagrange continuum mechanics, the fundamental principle is the principle of
virtual work, which requires for a static equilibrium the total virtual work δW tot

ω := δW int
ω + δW ext

ω = 0
to vanish for all admissible virtual displacement fields δx, the external virtual work functional compatible
for second-gradient continua must be of the form

δW ext
ω (δx) =

∫

ω

fω
i δxidω +

∫

∂ω

f∂ω
i δxid∂ω +

∫

∂ω

d∂ω
i

∂δxi

∂xc
ncd∂ω +

∫

∂∂ω

f∂∂ω
i δxid∂∂ω , (13)

where the co-vector fields fω, f∂ω and f∂∂ω are forces per unit actual volume, surface and line, respec-
tively. Note, the somehow uncommon additional surface density d∂ω, called surface density of double-
forces, which is a density per unit actual surface and which is dual to the normal gradient with respect
to the actual normal vector. Using (12) and (13) in the principle of virtual work, the expressions in the
volume integral readily lead to the equilibrium equations, whereas the expressions in the surface and edge
integrals lead to the boundary conditions.

3. Divergence theorem on Riemannian manifolds

In this section, we aim at revising the concepts needed to understand the divergence theorem in a setting
which uses the least mathematical structure as possible. For that, we regard M as a smooth oriented
(topological) manifold equipped with a Riemannian metric g, i.e., g is a covariant tensor field of rank two
on M which endows the tangent spaces TxM with an inner product for each x ∈ M .

Since the manifold M is oriented, we can define the Riemannian volume form dM ∈ Ωm(M) as the
unique differential m-form defined by the condition

dMx(B1, . . . , Bm) = 1 (14)

for every x ∈ M and for any positively oriented orthonormal basis (B1, . . . , Bm) of TxM . The Riemannian
volume form is well-defined and unique since the transformation matrix between two positively oriented
orthonormal bases has determinant 1. It can be shown, see Proposition 15.31 in [26], that

dM =
√

g dθ1 ∧ · · · ∧ dθm (15)

with respect to a positively oriented chart φ : M ⊇ U → R
m, x �→ (θ1, . . . , θm), where

√
g =

√

det(gαβ)
and gαβ = g

(
∂

∂θα , ∂
∂θβ

)

.
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With the Riemannian volume form at hand, we can define the divergence of a vector field X on M as
the scalar function divX ∈ C∞(M) satisfying

divX dM = LX(dM) , (16)

where LX denotes the Lie derivative with respect to X, see [25,26]. Hence, the divergence of X captures
how the (incremental) volume of M changes under the flow of the vector field X. It follows immediately
from Cartan’s magic formula LX(dM) = d(X¬dM) + X¬d(dM) and because dM is a top-degree form
that

divX dM = d(X¬dM) . (17)

The divergence operator is not C∞-linear, since the Leibniz rule applies for the exterior derivative. In
fact, for X,Y ∈ Vect(M) and f ∈ C∞(M),

div(X + fY ) dM = d(X¬dM + fY ¬dM)

= d(X¬dM) + fd(Y ¬dM) + df ∧ (Y ¬dM)

= divX dM + f divY dM + df ∧ (Y ¬dM) .

(18)

Since the interior product is an anti-derivation and df ∧ dM = 0, because dM is a top-degree form, we
have that

0 = Y ¬ (df ∧ dM) = (Y ¬df) ∧ dM − df ∧ (Y ¬dM) . (19)

From the sum of (18) and (19) the well-known property

div(X + fY ) = divX + f divY + df(Y ) . (20)

of the divergence operator is readily derived. Property (20) reveals that the divergence operator X �→ divX
is R-linear, which can also be immediately seen from (17) using the R-linearity of the exterior derivative
and the interior product.

Using the representation (15), the first local form of the divergence in (2) is found by straightforward
computations in coordinates.

Proposition 1. Let φ : M ⊇ U → R
m, x �→ (θ1, . . . , θm) be a positively oriented chart of M and let

X = Xα ∂
∂θα be a vector field on M . Then,

divX =
1√
g

∂

∂θα

(√
gXα

)

. (21)

Proof. This proof can be found on page 399 of [25]. Still, it is given here for completeness, as it is also
the goal of this paper to gather all important proofs related to the divergence theorem at one place.

Using the local representation (15) of the Riemannian volume form, we have that

X¬dM =
m∑

α=1

(−1)α−1√gXαdθ1 ∧ · · · ∧ dθ(α) ∧ · · · ∧ dθm ,

where the dual vector dθ(α) is left out in the sequence of wedge products. Consequently, by (17), we have
that

divX dM = d(X¬dM)

=
m∑

α=1

(−1)α−1d(
√

gXα) ∧ dθ1 ∧ · · · ∧ dθ(α) ∧ · · · ∧ dθm

=
m∑

α=1

(−1)α−1 ∂

∂θβ
(
√

gXα)dθβ ∧ dθ1 ∧ · · · ∧ dθ(α) ∧ · · · ∧ dθm .

(22)
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The m-form appearing in the last sum in (22) vanishes whenever α �= β and can be rearranged to equal
dθ1 ∧ · · · ∧dθm when α = β. For that, (α − 1) permutations of the indices occur, such that (22) takes the
form

divX dM =
m∑

α=1

(−1)2(α−1) ∂

∂θα
(
√

gXα)dθ1 ∧ · · · ∧ dθm

=
∂

∂θα
(
√

gXα)dθ1 ∧ · · · ∧ dθm

=
∂

∂θα
(
√

gXα)
1√
g
dM.

Again, (15) has been used. �

Instead of characterizing the divergence of a vector field implicitly by condition (16), an explicit
formula can be found.

Theorem 1. Let ∇ denote the Levi-Civita connection on the Riemannian manifold (M, g). The divergence
of a vector field X ∈ Vect(M) in p ∈ M is the trace of the map φ : M ⊇ U → R

m, x �→ (θ1, . . . , θm).
Explicitly, for any chart φ : M ⊃ U → R

m, x �→ (θ1, . . . , θm) the divergence can be locally written as

divX = dθα
(∇ ∂

∂θα
X

)

. (23)

Hence, as done for instance by [6,34], the divergence could alternatively be defined as

divX = tr(Y �→ ∇Y X) ,

where “tr” denotes the trace operator. The proof of Theorem 1 involves one of the structural equations
of a Riemannian manifold, which we will revise briefly before proving the theorem. The reader familiar
with the subject can skip the subsequent paragraphs and directly go to the proof.

The structural equations result from Cartan’s theory of moving frames, which roughly speaking stems
from representing connections in terms of arbitrary basis fields Bα ∈ Vect(M) instead of using the basis
fields ∂

∂θα induced by a chart of the manifold. Let B1, . . . , Bm denote the canonical dual fields to the
basis given by the Bα. It is clear that, in contrast to the exterior derivative of the dual fields dθα, the
exterior derivatives dBα do not vanish. In fact, by the well-known formula for the exterior derivative of
one-forms, see Proposition 14.29 in [26], for any X,Y ∈ Vect(M) it holds that

dBα(X,Y ) = ∇X

(

Bα(Y )
) − ∇Y

(

Bα(X)
) − Bα([X,Y ]) , (24)

where by definition ∇X(f) := X(f) for any smooth f : M → R and [X,Y ] denotes the Lie bracket of X
and Y . Since the covariant derivative ∇Xω of a one-form ω is defined such that the product rule

∇X(ω(Y )) = ∇Xω(Y ) + ω(∇XY ) (25)

is satisfied, equation (24) can be reformulated to

dBα(X,Y ) = ∇XBα(Y ) + Bα(∇XY ) − ∇Y Bα(X) − Bα(∇Y X) − Bα([X,Y ])

= ∇XBα(Y ) − ∇Y Bα(X) + Bα(∇XY − ∇Y X − [X,Y ])

= ∇XBα(Y ) − ∇Y Bα(X) .

(26)

Herein, we have used that the Levi-Civita connection is torsion free, that is, T (X,Y ) = ∇XY − ∇Y X −
[X,Y ] = 0. Exploiting the linearity of the connection and the fact that any vector field can be represented
as X = Bβ(X)Bβ , it follows from (26) that

dBα(X,Y ) = Bβ(X)∇Bβ
Bα(Y ) − Bβ(Y )∇Bβ

Bα(X) = (Bβ ∧ ∇Bβ
Bα)(X,Y ) ,

from which we conclude the structural equation

dBα = Bβ ∧ ∇Bβ
Bα . (27)
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Introducing the real-valued functions ωγ
αβ := Bγ(∇Bα

Bβ), we have

∇Bα
Bβ = ωγ

αβBγ and ∇Bα
Bγ = −ωγ

αβBβ , (28)

where the second equality follows from the first as a consequence of (25). Using (28), the structural
equation (27) can finally be written as

dBα = Bβ ∧ ∇Bβ
Bα = −ωα

βγBβ ∧ Bγ . (29)

The complete structural equations of a Riemannian manifold can be found in the 5. Theorem of [35,
p. 267]. For a more in depth exposition of the theory of moving frames, we refer to [25] or [35].

To bridge the gap between the theory of moving frames and the “classical” treatment of connections,
we assert that we can always chose Bα = ∂

∂θα . In that case, Bα = dθα. It is immediately clear from (28)
that ωγ

αβ = Γγ
αβ , where the Γγ

αβ denote the Christoffel symbols of the Levi-Civita connection. Moreover,
since dBα = d(dθα) = 0, the structural equation (29) expresses the symmetry of the Christoffel symbols,
i.e., Γγ

αβ = Γγ
βα.

Proof of Theorem 1. A similar proof can be found in Addendum 1 of Chapter 7 in [34]. Without loss
of generality, we choose basis fields Bα ∈ Vect(M) which constitute a positively oriented orthonormal
basis (B1, . . . , Bm) and by (B1, . . . , Bm) denote its canonical dual basis. By that choice, the Riemannian
volume form has the simple representation dM = B1 ∧ · · · ∧ Bm, which can immediately be seen from
(14). Since the trace can be computed using any basis together with its dual basis, we can prove the
theorem by showing that

divX = Bα(∇Bα
X) . (30)

Moreover, the vector field X may be represented as X = XβBβ and by (20) we have that

divX = div(XβBβ) = Xβ divBβ + dXβ(Bβ) . (31)

By the property ∇X(fY ) = f∇XY + df(X)Y for any smooth function f , the right hand side of (30)
satisfies

Bα(∇Bα
X) = Bα(∇Bα

(XβBβ)) = Xβ Bα(∇Bα
Bβ) + dXβ(Bβ) . (32)

Hence, it follows from inserting (31) and (32) in (30) that the theorem can be proven by showing (30)
for the basis vectors B1, . . . , Bm. Moreover, since the basis can be reordered arbitrarily, it even suffices
to show (30) for one basis vector. We choose B1 for simplicity and subsequently show that

divB1 = Bα(∇Bα
B1) .

It is straightforward to see that

B1
¬ (B1 ∧ · · · ∧ Bm) = B2 ∧ · · · ∧ Bm .
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Consequently, by (17) we have

divB1 dM = d(B2 ∧ · · · ∧ Bm)

=
m∑

α=2

(−1)αB2 ∧ · · · ∧ dBα ∧ · · · ∧ Bm

=
m∑

α=2

(−1)αB2 ∧ · · · ∧ ( − ωα
βγBβ ∧ Bγ

) ∧ · · · ∧ Bm

=
m∑

α=2

(−1)αB2 ∧ · · · ∧ ( − ωα
α1B

α ∧ B1
) ∧ · · · ∧ Bm

=
m∑

α=2

(−1)α(−1)α−1(−ωα
α1B

1) ∧ B2 ∧ · · · ∧ Bα ∧ · · · ∧ Bm

=
m∑

α=2

ωα
α1dM ,

where we have used (29). It can be concluded that

divB1 =
m∑

α=2

ωα
α1 . (33)

Because the chosen basis is orthonormal, i.e., g(Bβ , Bγ) = δβγ , and ∇ is metric, it holds that ωγ
αβ =

−ωβ
αγ . Indeed,

0 = ∇Bα
(g(Bβ , Bγ)) = g(∇Bα

Bβ , Bγ) + g(Bβ ,∇Bα
Bγ) = ωγ

αβ + ωβ
αγ .

As a consequence, ω1
11 = 0, which allows to take the sum from 1 to m in (33). Using that ωγ

αβ =
Bγ(∇Bα

Bβ), (33) can be stated as
divB1 = Bα(∇Bα

B1) .

�

Corollary 1. Let Γγ
αβ denote the Christoffel symbols of the Levi-Civita connection on the Riemannian

manifold (M, g) w.r.t. the chart φ : M ⊇ U → R
m, x �→ (θ1, . . . , θm). Moreover, let X = Xα ∂

∂θα , then

divX =
∂Xα

∂θα
+ Γα

αβXβ . (34)

Proof. The representation (34) follows immediately from using the coordinate expression

∇ ∂
∂θα

X =
(∂Xγ

∂θα
+ Γγ

αβXβ
) ∂

∂θγ
(35)

in (23). �

The boundary ∂M of the oriented Riemannian manifold (M, g) is a codimension-one submanifold
of M . This implies that for every boundary point x ∈ ∂M ; the tangent space Tx∂M is a subspace
of TxM . Moreover, the orthogonal complement (Tx∂M)⊥ is one-dimensional. This allows to define the
outward-pointing unit normal vector field ν ∈ Vect(M) to ∂M by the following three conditions. First,
ν is normalized, i.e., g(ν, ν) = 1. Second, ν is orthogonal to the boundary, that is, ν(x) spans (Tx∂M)⊥,
and last, ν is outward-pointing, which means that for all x ∈ ∂M there is a curve γ : (−ε, 0] → M (ε > 0)
with γ(0) = x and γ̇(0) = ν(x).

The orientation of M induces an orientation on the boundary by means of the outward-pointing unit
normal ν. In fact, we define the induced orientation of ∂M by saying that a basis (B1, . . . , Bm−1) of
Tx∂M is positively oriented if and only if the basis (ν,B1, . . . , Bm−1) of TxM is positively oriented.
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Proposition 2. (see [26], Proposition 15.34) Let (M, g) be an oriented Riemannian manifold with boundary
∂M , which carries the induced orientation. Moreover, let dM and d∂M denote the Riemannian volume
form of M and ∂M , respectively. Then,

d∂M = ν¬dM |∂M , (36)

where ν is the outward-pointing unit normal to ∂M .

Proof. For x ∈ ∂M , let (B1, . . . , Bm−1) be a positively oriented orthonormal basis of Tx∂M , then by
definition of the induced orientation, (ν(x), B1, . . . , Bm−1) is a positively oriented basis of TxM . Hence,
by the condition (14) of the Riemannian volume form, it holds that

d∂Mx(B1, . . . , Bm−1) = 1 = dMx(ν(x), B1, . . . , Bm−1) = (ν¬dM)x(B1, . . . , Bm−1) .

This proves the claim, since the orthonormal basis (B1, . . . , Bm−1) is arbitrary. �

With this preparatory work, we can finally proceed to the derivation of the divergence theorem for
Riemannian manifolds. For that, we integrate (17) over M to arrive at

∫

M

divX dM =
∫

M

d(X¬dM) =
∫

∂M

X¬dM , (37)

where Stokes’ theorem has been invoked. To further manipulate the integrand of the right-hand side, we
use the outward-pointing unit normal ν of ∂M to write X = g(ν,X)ν + X‖, where (X‖)x ∈ Tx∂M for all
x ∈ ∂M . Due to the linearity of the interior product, we have

X¬dM = g(ν,X) ν¬dM + X‖
¬dM = g(ν,X) d∂M + X‖

¬dM (38)

on ∂M , where (36) has been used. Moreover, it is easy to see that X‖
¬dM = 0. In fact, for each x ∈ ∂M ,

let (B1, . . . , Bn−1) be a basis of Tx∂M , then

(X‖
¬dM)x(B1, . . . , Bn−1) = dMx(X‖(x), B1, . . . , Bn−1) = 0

since the vectors X‖(x), B1, . . . , Bn−1 are linearly dependent because X‖(x) ∈ Tx∂M . Hence, we can drop
the last summand when inserting (38) in (37), which proofs the divergence theorem in the following form.

Theorem 2. (see [26], Theorem 16.32) Let (M, g) be an oriented Riemannian manifold with boundary
∂M , which carries the induced orientation. Moreover, let dM and d∂M denote the Riemannian volume
forms of M and ∂M , respectively. For a vector field X ∈ Vect(M), it holds that

∫

M

divX dM =
∫

∂M

g(ν,X) d∂M , (39)

where ν is the outward-pointing unit normal to ∂M .

In many applications of the divergence theorem, see for example Sect. 2, the boundary M is the union
of a finite number of faces Fi, which are orientable manifolds with boundary. This makes of M a manifold
with corner and ∂M is not a smooth manifold in general. However, everything which has been said in
this section remains valid for manifold with corners, cf. [26]. To see that, it suffices to use ∂M = ∪iFi

and treat the faces Fi separately whenever ∂M is invoked. That is, we can define the outward-pointing
unit normal νi as well as the induced orientation for every Fi exactly as done above. Also, equation (36)
remains valid for every Fi, i.e., dFi = νi

¬dM |Fi
. Finally, the integration over the boundary of M in the

divergence theorem (39) must be interpreted as the sum of the integrals over the faces, viz
∫

M

divX dM =
∑

i

∫

Fi

g(νi,X) dFi .
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4. Divergence theorem on submanifolds of En

In this section, the divergence theorem for the case of an oriented submanifold M of E
n is studied.

Especially, the last representation of the divergence (2) is derived.
The fact that M ⊆ E

n is a submanifold implies that TxM ⊆ TxE
n for all x ∈ M . In extrinsic

differential geometry, it is custom to identify TxE
n with E

n. This is done implicitly by saying that a
vector v ∈ E

n is tangent to M at x, i.e., lies in TxM , if there is a curve γ in M with γ(0) = x and
γ̇(0) = v, where γ̇ denotes the derivative of the curve. Hence, TxM is a vector subspace of En. The inner
product 〈u, v〉 between two vectors u, v ∈ E

n can be used to induce a Riemannian metric on the manifold
M by setting

g(x) : TxM × TxM → R, (u, v) �→ 〈u, v〉 (40)

for every point x ∈ M . The fact that (M, g) is an oriented Riemannian manifold gives rise to the Levi-
Civita connection on M as well as the Riemannian volume form dM . Moreover, it implies that the
results from Sect. 3 apply directly to submanifolds of En. Especially, using the induced metric (40) in the
right-hand side of (39) leads to the divergence theorem in the following form.

Corollary 2. Let M be an oriented submanifold of En equipped with the induced Riemannian metric (40).
Let ∂M denote the submanifold’s boundary, which carries the induced orientation. Then, the divergence
theorem is given as

∫

M

divX dM =
∫

∂M

〈ν,X〉 d∂M ,

where dM and d∂M are the Riemannian volume forms of M and ∂M , respectively, and ν is outward-
pointing unit normal to ∂M .

To finally derive the last representation of the divergence in (2), it is insightful to further examine
the geometric structure which M inherits from the surrounding space E

n. Choosing a basis (e1, . . . , en)
of E

n, we can write x = xiei ∈ M ⊆ E
n. Moreover, consider a (local) parametrization ψ : Rm →

M, (θ1, . . . , θm) �→ ψ(θ1, . . . , θm) of the manifold M , then the vectors gα(x) := ∂ψ
∂θα

∣
∣
ψ−1(x)

(α = 1, . . . ,m)

define a basis of TxM . Let (g1, . . . , gm) be the canonical dual basis of (g1, . . . , gm), i.e., gβ is a linear map
such that gβ(gα) = δβ

α. Similarly, let (e1, . . . , em) be the canonical dual basis of (e1, . . . , en), then

gα = ei(gα)ei = Ai
αei and gα = gα(ei)ei = Bα

i ei , (41)

where we have implicitly introduced the abbreviations Ai
α := ei(gα) and Bα

i := gα(ei).
Since TxM is a linear subspace of the Euclidean space E

n, we can define the orthogonal projection
P‖(x) : En → E

n onto TxM . By the projection property, P‖ must be the identity map when restricted to
TxM . Hence, P‖(gα) = gα for all α = 1, . . . ,m, which implies the local representation

P‖ : En → E
n, V �→ gα(V )gα .

Using (41), it follows that
P‖(ei) = gα(ei)gα = Bα

i gα = Bα
i Aj

αej . (42)

With the components P‖
j
i

:= ej(P‖(ei)) of the projection, which is equivalent to stating that P‖(ei) =
P‖

j
i
ej , a comparison with (42) yields

P‖
j
i

= Bα
i Aj

α . (43)

The directional derivative of a scalar function f : En → R and a vector field U : En → E
n in the

direction of the vector field V : En → E
n at x ∈ E

n are, respectively, defined as

DV f(x) =
d(f ◦ γ)

dt

∣
∣
∣
t=0

and DV U(x) =
d(U ◦ γ)

dt

∣
∣
∣
t=0

, (44)
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where γ is any curve in E
n with γ(0) = x and γ̇(0) = V (x). Using the chain rule and the product rule, it

is straightforward to verify the following properties

DV (fU + W ) = DV f U + fDV U + DV W

DfV +W U = fDV U + DW U

DV 〈U,W 〉 = 〈DV U,W 〉 + 〈U,DV W 〉 ,

(45)

where U, V,W are vector fields on E
n and f is a scalar function. Since in E

n, we can always use γ(t) =
x + tV , the directional derivative in the direction of the basis vector ej is just the partial derivative with
respect to the component xj , i.e.,

Dej
f(x) =

d
dt

∣
∣
∣
t=0

f(x + tej) =
∂f

∂xj
(x)

Dej
U(x) =

d
dt

∣
∣
∣
t=0

U(x + tej) =
∂U

∂xj
(x) ,

(46)

where (44) has been employed. With the representations U = U iei and V = V jej , it follows from (45)
that

DV U = DV jej
U = V j Dej

U
(46)
= V j ∂U

∂xj
= V j ∂U i

∂xj
ei .

Since two vector fields X,Y ∈ Vect(M) are also vector fields on E
n, it makes sense to compute the

directional derivative DY X. Instead of dedicating ourselves to general vector fields, it is insightful to
compute the directional derivative in the direction of the basis vector field gα = ∂ψ

∂θα ◦ ψ−1 induced by
the parametrization ψ of M . By definition, at point x = ψ(θ1, . . . , θm), the curve γ(t) = ψ(θ1, . . . , θα +
t, . . . θm) satisfies γ(0) = x and γ̇(0) = gα(x). Consequently, in agreement with (44), it holds that

Dgα
f(x) =

d
dt

∣
∣
∣
t=0

f ◦ ψ(θ1, . . . , θα + t, . . . θm) =
∂(f ◦ ψ)

∂θα
◦ ψ−1(x)

Dgα
X(x) =

d
dt

∣
∣
∣
t=0

X ◦ ψ(θ1, . . . , θα + t, . . . θm) =
∂(X ◦ ψ)

∂θα
◦ ψ−1(x) .

(47)

To keep notation short, we will drop the parametrization and briefly write Dgα
X = ∂X

∂θα . In other words,
X and X ◦ ψ are identified and it is assumed to be clear from the context which of the two is meant.
Moreover, we will interchangeably use Dgα

X and ∂X
∂θα .

Using the representation X = Xβgβ in (47), it follows that

Dgα
X =

∂(Xβgβ)
∂θα

=
∂Xβ

∂θα
gβ + Xβ ∂gβ

∂θα
.

It is immediately clear, that while gα and X are vector fields on M , the directional derivative Dgα
X is

not necessarily a vector field on M , because in general Dgα
gβ(x) = ∂gβ

∂θα (x) /∈ TxM . Hence, the directional
derivative D is not suitable as directional derivative on M . However, we can easily construct the covariant
derivative ∇ on M by setting

∇Y X = P‖
(

DY X
)

, (48)

where X,Y ∈ Vect(M). The covariant derivative plays the role of the directional derivative on M . More-
over, since the projection is linear, the covariant derivative inherits the properties (45) of the directional
derivative, where the inner product is replaced by the induced metric (40). That is,

∇Y (fX + Z) = ∇Y f X + f∇Y X + ∇Y Z

∇fY +ZX = f∇XX + ∇ZX

∇Y

(

g(X,Z)
)

= g(∇Y X,Z) + g(X,∇Y Z) ,

(49)
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where X,Y,Z ∈ Vect(M) and f is a scalar function. In particular, the last property shows that the
covariant derivative is metric. In contrast to Dgα

gβ = ∂gβ

∂θα , the covariant derivative ∇gα
gβ is a vector

field on M by construction; hence, it can be spanned by the basis vector fields g1, . . . , gm, that is,

∇gα
gβ = Γγ

αβgγ , (50)

where the coefficients Γγ
αβ are called Christoffel symbols. Since gγ = ∂ψ

∂θγ and using the symmetry of
second derivatives, we have that

∇gα
gβ − ∇gβ

gα = P‖
(∂gβ

∂θα
− ∂gβ

∂θα

)

= P‖
( ∂2ψ

∂θβ∂θα
− ∂2ψ

∂θα∂θβ

)

= 0 . (51)

Using (50), the symmetry property (51) implies the symmetry of the Christoffel symbols

Γγ
αβ = Γγ

βα

and shows that the covariant derivative is torsion-free. Since by the fundamental theorem of Riemannian
geometry, the Levi-Civita connection is the unique connection which is metric and torsion-free, the co-
variant derivative ∇ is exactly the Levi-Civita connection on the Riemannian manifold (M, g), where g
is given by (40). For more details, we refer to Section 4.3 in [25] or Section 4A in [24]. Finally, using the
representation X = Xβgβ , (49) and (50), the covariant derivative of X with respect to gα takes the form

∇gα
X =

(∂Xγ

∂θα
+ Γγ

αβXβ
)

gγ , (52)

which corresponds to (35) since in extrinsic differential geometry the basis vector gα plays the role of the
basis vector ∂

∂θα from the intrinsic theory.
This preparatory work on the geometry of M induced from the surrounding space E

n is used in the
subsequent paragraphs to give an alternative proof of Theorem 1 for the case of extrinsic differential
geometry and to derive the last representation of the divergence (2).

Theorem 3. Let ∇ denote the Levi-Civita connection (48) on the Riemannian manifold (M, g) with the
induced metric (40). The divergence of a vector field X ∈ Vect(M) in x ∈ M is the trace of the map
∇X : TxM → TxM, Yx �→ ∇Yx

X. Explicitly, for any basis (g1, . . . , gm) given by a parametrization
ψ : Rm → M, (θ1, . . . , θm) �→ ψ(θ1, . . . , θm), the divergence can be written as

divX = gα(∇gα
X) . (53)

Proof. The proof follows from direct computations in coordinates starting from (21). By the product rule,
we have

divX =
1√
g

∂

∂θα

(√
gXα

)

=
∂Xα

∂θα
+

1√
g

∂(
√

g)
∂θα

Xα . (54)

Since
√

g =
√

det(gαβ), using the short notation det(g) := det(gαβ), the chain rule can be used to
compute

∂(
√

g)
∂θα

=
1

2
√

g

∂ det(g)
∂θα

=
1

2
√

g

∂ det(g)
∂gβγ

∂gβγ

∂θα
. (55)

Since the matrix gβγ is symmetric and invertible, it holds by Jacobi’s formula that ∂ det(g)
∂gβγ

= det(g)gβγ ,
where gβγ are the components of the inverse matrix of gβγ , i.e., gαβgβγ = δα

γ . Consequently, (55) can be
further manipulated to

∂(
√

g)
∂θα

=
√

g

2
gβγ ∂gβγ

∂θα
=

√
g

2
gβγ

(

g(∇gα
gβ , gγ) + g(gβ ,∇gα

gγ)
)

,

where for the last equality we have used the last property in (49) as well as the fact that gβγ = g(gβ , gγ).
We can now use (50) and the linearity of the metric to arrive at

∂(
√

g)
∂θα

=
√

g

2
gβγ

(

Γν
αβgνγ + Γν

αγgβν

)

=
√

g Γν
αν . (56)
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Finally, inserting (56) in (54) yields

divX =
∂Xα

∂θα
+ Γν

ανXα , (57)

which corresponds to (53) after (52) is inserted. �

Remark that, due to the symmetry of the Christoffel symbols, expression (57) corresponds with the
coordinate expression in Corollary 1.

Proposition 3. Let M be a submanifold of En. For a basis (e1, . . . , en) of En, points x ∈ M and vector
fields X ∈ Vect(M) can be expressed as x = xiei and X = Xi

‖ei, respectively. Using the orthogonal
projection P‖(x) : En → E

n onto TxM , the divergence of the vector field X can be represented as

divX = P‖
j
i

∂Xi
‖

∂xj
. (58)

Proof. Using (48) and (41) in (53) and exploiting linearity, it follows that

divX = gα
(

P‖(Dgα
X)

)

= Bα
k ek

(

P‖(DAj
αej

X)
)

= Bα
k Aj

αek
(

P‖(Dej
X)

)

.

Moreover, invoking (43) and (46), the divergence can be further simplified to

divX = P‖
j
k
ek

(

P‖(ei)
)∂Xi

‖
∂xj

= P‖
j
k
P‖

k
i

∂Xi
‖

∂xj
= P‖

j
i

∂Xi
‖

∂xj
,

where we have used the idempotence of the projection, i.e., P‖
j
k
P‖

k
i

= P‖
j
i
. �

5. Conclusions

In Sect. 2, we have used the divergence theorem for submanifolds of E3 according to Corollary 2 with the
representation of the divergence due to Proposition 3. In fact, we have used the divergence theorem twice,
once to transform the volume integral into a surface integral and once to transform a surface integral to
a line integral. While in the first application the orthogonal projector is trivially given by the identity
map, the second application shows the charm to use (58) as representation of the divergence. Since the
surface is a co-dimension one submanifold, the outward-pointing unit normal vector field readily defines
the orthogonal projector.

We have shown, in order to arrive at the divergence theorem in this form, that one can take the follow-
ing path. We define the divergence of a vector field X on a manifold M by the relation (16). Starting from
this definition and accepting the theorem of Stokes on manifolds, the divergence theorem on Riemannian
manifolds can be readily derived. Specifically, the divergence is integrated over M , then Cartan’s magic
formula, Stokes’ theorem and Proposition 2 are successively employed. Finally, the divergence theorem
for submanifolds of En follows from using the induced metric on M . The representation (58) of the diver-
gence follows directly from computations in coordinates of the submanifold and is gathered in Theorem 3
and Proposition 3. Hereby, Theorem 3 provides us with an alternative definition of the divergence, which
uses the trace of the covariant derivative of the vector field.

For completeness, we wanted to show that the alternative definition of the divergence as the trace
of the covariant derivative of the vector field is also valid for general Riemannian manifolds. This result
is provided by Theorem 1. Similarly to Theorem 3, the proof follows from computations in coordinates.
However, since we do not have the luxury of a surrounding Euclidean space, the proof is more technical
and employs the structure equations of Riemannian manifolds.

For a submanifold M of En, it is also possible and common to define the divergence by (53) for vector
fields X which are not tangent to the submanifolds, see for instance [8,13,15,32]. This exploits the fact
that the expression (48) defining the covariant derivative makes sense also for such vector fields X. In that
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case, one needs an extension of the divergence theorem which stems from an additive splitting of X into
two parts, one tangential and one normal to the manifold M . The need of this splitting is a consequence
of the fact that the divergence theorem from the intrinsic theory can only be applied to the part of the
vector field X which is tangent to M . For more details on this construction, we refer to [6].
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