
Z. Angew. Math. Phys. (2022) 73:16

c© 2021 The Author(s)

0044-2275/22/010001-25
published online November 27, 2021
https://doi.org/10.1007/s00033-021-01650-3

Zeitschrift für angewandte
Mathematik und Physik ZAMP

On the two-dimensional Boussinesq equations with temperature-dependent thermal and
viscosity diffusions in general Sobolev spaces

Zihui He and Xian Liao

Abstract. We study the existence, uniqueness as well as regularity issues for the two-dimensional incompressible Boussinesq
equations with temperature-dependent thermal and viscosity diffusion coefficients in general Sobolev spaces. The optimal
regularity exponent ranges are considered.

Mathematics Subject Classification. 35Q30, 76D03.

Keywords. Boussinesq equations, Temperature-dependent diffusion coefficients, Existence, Uniqueness, Regularity, Sobolev

spaces.

1. Introduction

In the present paper, we consider the two-dimensional incompressible Boussinesq equations
⎧
⎪⎨

⎪⎩

∂tθ + u · ∇xθ − divx(κ∇xθ) = 0,

∂tu + u · ∇xu − divx(μSxu) + ∇xΠ = βθ �e2,

divx u = 0,

(1.1)

where (t, x) ∈ [0,∞) × R
2 denote the time and space variables, respectively. The unknown temperature

function θ = θ(t, x) : [0,∞) × R
2 → R satisfies the parabolic-type equation (1.1)1, and the unknown

velocity vector field u = u(t, x) : [0,∞)×R
2 → R

2 together with the unknown pressure term Π = Π(t, x) :
[0,∞)× R

2 → R satisfies the incompressible Navier–Stokes type equations (1.1)2-(1.1)3, respectively. We
are going to study the well-posedness and regularity problems for the Boussinesq system (1.1) together
with the initial data

(θ, u) |t=0= (θ0, u0). (1.2)

We write x =
(

x1

x2

)

∈ R
2 with x1, x2 denoting the horizontal and vertical components, respectively.

Let u =
(

u1

u2

)

: [0,∞) × R
2 → R

2, and let

1
2
Sxu :=

1
2
(∇xu + (∇xu)T

)
, with ∇xu =

(
∂xj

ui
)

1≤i,j≤2

denote the symmetric deformation tensor in the second equation (1.1)2 above. The vector field �e2 denotes

the unit vector in the vertical direction: �e2 =
(

0
1

)

, and βθ �e2 stands for the buoyancy force, with the

constant parameter β > 0 denoting the thermodynamic dilatation coefficient which will be assumed to
be 1 in the following context for simplicity.
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We consider the cases when the heat diffusion and the viscosity in the fluids are sensitive to the
change of temperatures, that is, the thermal diffusivity κ and the viscosity coefficient μ may depend on
the temperature function θ as follows

κ = a(θ), μ = b(θ), with κ∗ ≤ a ≤ κ∗, μ∗ ≤ b ≤ μ∗, (1.3)

where κ∗ ≤ κ∗, μ∗ ≤ μ∗ are positive constants. We will not assume any smallness conditions on κ∗ − κ∗
or μ∗ − μ∗, and large variations in these diffusivity coefficients are permitted.

The Boussinesq system (1.1) arises from the zero order approximation to the corresponding inhomo-
geneous hydrodynamic systems, which are nonlinear coupling between the Navier–Stokes equations or
Euler equations and the thermodynamic equations for the temperature or density functions: The Boussi-
nesq approximation [5] ignores density differences except when they appear in the buoyancy term. They
are common geophysical models describing the dynamics from large-scale atmosphere and ocean flows to
solar and plasma inner convection, where density stratification is a typical feature [22,34].

The temperature or density differences in the inhomogeneous fluids may cause density gradients. When
the thermodynamical coefficients such as the heat conducting coefficients and the viscosity coefficients
are assumed to be constant in the Boussinesq approximation [i.e., κ, μ are constants in (1.1)], density
gradients influence the motion of the flows only through the buoyancy force, which may lead to finite
time singularity in the flows (the formation of the finite time singularity is sensitive to the thermal and
viscous dissipation and see Sect. 1.1 below for more references on this topic).

However, the temperature variations do influence the thermal conductivity and the viscosity coeffi-
cients effectively, even for simple fluids such as pure water [32, Sect. 6].1,2 In many applications in the
engineering, one also aims for effective thermal conductivities in building thermal energy storage materi-
als [21]. Therefore in plenty of physical models, density gradients would influence the motion of the fluids
not only through buoyancy force, but also through the variations of the diffusion coefficients. It is then
interesting to study the well-posedness and regularity problems of the Boussinesq system (1.1)–(1.3).

1.1. Known results

The well-posedness and regularity problems on the two-dimensional Boussinesq equations have attracted
considerable attention from the PDE community. Many interesting mathematical results have been es-
tablished in the past two decades, mainly in the cases with constant thermal diffusivity coefficient κ and
viscosity coefficient μ:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tθ + u · ∇xθ − κΔxθ = 0,

∂tu + u · ∇xu − μΔxu + ∇xΠ = θ �e2,

divx u = 0,

(θ, u) |t=0= (θ0, u0).

(1.4)

If κ = μ = 0, the two-dimensional inviscid Boussinesq equations (1.4) can be compared with the
three-dimensional incompressible axisymmetric Euler equations with swirl, where the buoyancy force
corresponds to the vortex stretching mechanism [35]. The local-in-time well-posedness as well as some

1The absolute viscosity of the water under nominal atmospheric pressure in units of millipascal seconds is given by
1.793 (0◦), 0.547 (50◦), 0.282 (100◦), respectively [32, pp. 6–186]. The thermal conductivity of the water under nominal
atmospheric pressure in units of Watt per meter kelvin is given by 0.5562 (0◦), 0.6423 (50◦), 0.6729 (100◦), respectively
[32, Page 6-214].

2It is common to adapt the exponential viscosity law μ(T ) = C1 exp(C2/(C3+T )) and quasi-constant heat conductivity

law κ(T ) = C4 for the liquids, while the viscosity law μ(T ) = (μ(Tm)) T
Tm

Tm+C5
T+C6

and the thermal conductivity law

κ(T ) = C6μ(T ) for the gases, where T denotes the absolute temperature, Tm denotes the reference temperature, and Cj ,

1 ≤ j ≤ 6 are positive constants [37, I].
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blowup criteria have been well known for decades, see, e.g., [10,11,42]. We mention that an (improved)
lower bound for the lifespan which tends to infinity as the initial temperature tends to a constant (and
correspondingly, as the initial swirl tends to zero for the 3D axisymmetric Euler equations) was given in
[11]. The fundamental global regularity problem for the 2D inviscid Boussinesq equations remains still
open. Recently, an interesting example of finite-energy strong solutions with a finite weighted Hölder
norm in a wedge-shaped domain, which become singular at the origin in finite time, has been given in
[19] (see also an interesting example of solutions in Hölder-type spaces with finite-time singularity for 3D
axisymmetric Euler equations in [18]).

If κ > 0 and μ > 0 are positive constants, on the contrary, the convection terms can be controlled
thanks to the strong diffusion effects, and the global-in-time existence and regularity results can be
established (see, e.g., [7]). Particular interests then raised if only partial dissipation is present, that is,
either κ = 0 whereas μ > 0 or κ > 0 whereas μ = 0 (see, e.g., H.K. Moffatt’s list of the twenty first
century PDE problems [36]). The global-in-time results continue to hold, thanks to a priori estimates in
the Lp-framework as well as the sharp Sobolev embedding inequality in dimension two with a logarithm
correction, which help the partial diffusion terms to control the demanding term ∂x1θ successfully (see
[9,27] and see [24] for less regular cases). Further developments were made for horizontal dissipation cases
(see, e.g., [13]), for vertical dissipation cases (see, e.g., [8]), and for the fractional dissipation cases (see,
e.g., [25,26]). See the review notes [43] and the references therein for more interesting results and sketchy
proofs.

There also have been remarkable progresses in solving the two dimensional Boussinesq equations
(1.1)–(1.3) when the thermal and viscosity diffusion coefficients κ, μ are variable and depend smoothly
on the unknown temperature function θ. In the variational formulation framework, the global-in-time
existence of a solution of (1.1)–(1.3) has been established in [17] [see [20] for a similar formulation of
(1.1)–(1.3)] for the motion of the so-called Bingham fluid (as a non-Newtonian fluid), where κ is a positive
constant, β = 0 and μ depends not only on θ but also on Su/|Su|. The Boussinesq–Stefan model has been
investigated in [38], where the phase transition was taken into account. The global-in-time existence and
the uniqueness of the solutions for (1.1)–(1.3) have been shown in [15,23,33] under Dirichlet boundary
conditions and in [37] under generalized outflow boundary conditions. We remark that the resolution of
the nonhomogeneous Boussinesq system under more physical boundary conditions (e.g., with Dirichlet
boundary conditions only on the inflow part of the boundary while with no prescribed assumptions on
the outflow part) remains unsolved.

Lorca and Boldrini [33] (see also [15,23]) studied the initial-boundary value problem of the Boussinesq
system (1.1)–(1.3) in dimension two and three under the initial condition (1.2) and Dirichlet boundary
conditions, and obtained a global-in-time weak solution

(θ, u) ∈ (
L∞
loc

(
[0,∞);L2(Ω)

))3

as well as a local-in-time unique strong solution

(θ, u) ∈ L∞
loc

(
[0,∞);H2(Ω)

) × (
L∞
loc([0,∞);H1(Ω)

)2
. (1.5)

The remarkable global-in-time existence and uniqueness results of the smooth solutions

(θ, u) ∈ (
L∞
loc

(
[0,∞);Hs(R2)

) ∩ L2
loc

(
[0,∞);Hs+1(R2)

))3
, s > 2 (1.6)

have been successfully established by Wang and Zhang [41], which affirms the propagation of high regular-
ities (without finite time singularity) of the two dimensional Boussinesq flow in the presence of viscosity
variations (see [39] for the case s = 2). We remark that the L2

x-norm of the velocity vector field may grow
in time due to the buoyancy forcing term, even provided with constant diffusion coefficients and smooth
and fast decaying small initial data [6], and hence the norm with respect to the time variable in (1.5)
and (1.6) is only locally in time.

It is still not clear whether there will be finite time singularity for the two-dimensional Boussinesq
flow (1.1)–(1.3) in the presence of viscosity variations while no heat diffusion (i.e., κ = 0, μ = b(θ)),
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and we mention a recent work [2] toward this direction in the case of less heat diffusion (with div(κ∇θ)
replaced by (−Δ)1/2) and the small viscosity variation assumption: |μ − 1| ≤ ε. A closely related ques-
tion would pertain to the global-in-time well-posedness problem of the two-dimensional inhomogeneous
incompressible Navier–Stokes equations with density-dependent viscosity coefficient

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tρ + u · ∇xρ = 0,

∂t(ρu) + divx(ρu ⊗ u) − divx(μSxu) + ∇xΠ = 0,

divx u = 0,

(ρ, ρu)
∣
∣
t=0

= (ρ0,m0).

(1.7)

The global-in-time existence results of weak solutions of (1.7) (see, e.g., [3,31]) as well as the local-in-time
well-posedness results (see, e.g., [28]) have been well known, while the global-in-time regularities still re-
main open (see, e.g., [1,16] for some interesting results under the assumption on the weak inhomogeneity).

To the best of our knowledge, there are no global-in-time regularity propagation results by the two-
dimensional Boussinesq flow with temperature-dependent diffusion coefficients (1.1)–(1.2)–(1.3) in the
low regularity regime

Hs, s < 2,

or in the general Sobolev setting

θ0 ∈ Hsθ
x (R2), u0 ∈ (Hsu

x (R2))2

with different regularity indices sθ and su. In this paper, we are going to investigate the existence,
uniqueness as well as the regularity problems in these general Sobolev functional settings.

To conclude this subsection, let us just mention some recent interesting progresses on the stability of
the stationary shear flow solutions (together with the corresponding striated temperature function) to the
Boussinesq equations (1.4), with full dissipation or partial dissipation, in, e.g., [14,40,44] and references
therein. It should also be interesting to investigate the stability of the stationary striated solutions of the
Boussinesq equations with variable diffusion coefficients (1.1). We mention a recent work in this direction
on the incompressible Navier–Stokes equations with constant density function but with variable viscosity
coefficient [30].

1.2. Main results

We are going to show the global-in-time existence of weak solutions to the Cauchy problem for the
Boussinesq system (1.1)–(1.2)–(1.3) in the whole two-dimensional space R

2 under the low-regularity
initial condition (θ0, u0) ∈ L2(R2)×(L2(R2))2. The uniqueness result holds true if the initial temperature
function becomes smoother (θ0, u0) ∈ H1(R2) × (L2(R2))2. Finally, we will establish the global-in-time
regularity of the solutions in the general Sobolev setting (θ0, u0) ∈ Hsθ (R2) × (Hsu(R2))2 ⊂ H1(R2) ×
(L2(R2))2 with the restriction su − 1 ≤ sθ ≤ su +2. These regularity exponent ranges are optimal for the
existence, uniqueness and regularity results, respectively, by view of the formulations of the Boussinesq
equations (1.1) with temperature-dependent diffusion coefficients (see Remark 1.3 below for more details).

We first define the weak solutions as follows.

Definition 1.1. (Weak solutions) We say that a pair (θ, u) is a weak solution of the Boussinesq equations
(1.1)–(1.3) with the given initial data (θ0, u0) ∈ (L2(R2))3 if the following statements hold:

• The temperature function

θ = θ(t, x) ∈ C
(
[0,∞);L2

x(R2)
) ∩ L2

loc

(
[0,∞);H1

x(R2)
)
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satisfies the initial condition θ|t=0 = θ0, the energy equality

1
2
‖θ(T, ·)‖2L2

x(R
2) +

T∫

0

∫

R2

(κ|∇θ|2)(t, x)dxdt =
1
2
‖θ(0, ·)‖2L2

x(R
2), (1.8)

for all positive times T > 0, and the equation

∂tθ + u · ∇θ − divx(κ∇θ) = 0 (1.9)

in L2
loc([0,∞);H−1

x (R2)).
• The velocity vector field

u = u(t, x) ∈ C
(
[0,∞);

(
L2

x(R2)
)2) ∩ L2

loc

(
[0,∞);

(
H1

x(R2)
)2)

satisfies the initial condition u|t=0 = u0, the divergence-free condition divxu = 0, the energy equality

1
2
‖u(T, ·)‖2L2

x(R
2) +

1
2

T∫

0

∫

R2

(μ|Su|2)(t, x)dxdt

=
1
2
‖u(0, ·)‖2L2

x(R
2) +

T∫

0

∫

R2

(θu2)(t, x)dxdt, ∀T > 0,

(1.10)

and the equation

∂tu + u · ∇xu − divx(μSxu) + ∇xΠ = θ �e2 (1.11)

in L2
loc([0,∞); (H−1

x (R2))2) for some scalar function Π ∈ L2
loc([0,∞) × R

2) with ∇Π ∈ L2
loc([0,∞);

(H−1
x (R2))2) and

∫

B1

Πdx = 0 a.e. t (with B1 denoting the unit disk in R
2).

For any fixed T > 0, p ≥ 1, q ≥ 1, s ≥ 0 and for any fixed (vector-valued) function f : [0, T ]×R
2 
→ R

m,
m ≥ 1, we denote

‖f‖Lp
T Xx

:=
∥
∥‖f(t)‖Xx(R2;Rm)

∥
∥

Lp
t ([0,T ])

with X = Hs or Lq. (1.12)

The functional space Lp([0, T ];Hs(R2; Rm)) consists of all functions f : [0,∞) × R
2 → R

m satisfying
‖f‖Lp

T Hs
x

< ∞. We have the following existence, uniqueness as well as global-in-time regularity results
for the solutions of the Cauchy problem for the Boussinesq equations (1.1)-(1.2)-(1.3) on the whole two-
dimensional space R

2.

Theorem 1.2. (Existence, uniqueness and global-in-time regularity) For any initial data θ0 ∈ L2(R2) and
u0 ∈ (L2(R2))2, there exists a global-in-time weak solution

(θ, u) ∈ C([0,∞); (L2(R2))3) ∩ L2
loc([0,∞); (H1(R2))3)

of the initial value problem (1.1)–(1.2)–(1.3).
If θ0 ∈ H1(R2), u0 ∈ (L2(R2))2 and the functions a ∈ C2

b (R; [κ∗, κ∗]), b ∈ C2
b (R; [μ∗, μ∗]) have finite

first and second derivatives, then the weak solution is indeed unique, and satisfies

θ ∈ C
(
[0,∞);H1(R2)

) ∩ L2
loc

(
[0,∞);H2(R2)

)
,

as well as the following energy estimates for any given T > 0,

‖u‖2L∞
T L2

x
+ ‖∇u‖2L2

T L2
x

≤ C
(
T‖θ0‖2L2 + ‖u0‖2L2

)
, (1.13)

‖θ‖2L∞
T H1

x
+ ‖(∂tθ,∇2θ)‖2L2

T L2
x

≤ C‖θ0‖2H1(1 + ‖∇θ0‖2L2) exp
(
C(T 2‖θ0‖4L2 + ‖u0‖4L2)

)
, (1.14)

where C is a positive constant depending only on ‖a‖Lip, κ∗, κ∗, μ∗.
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Fig. 1. Admissible regularity exponents

Furthermore, the general Hs-regularities can be propagated globally in time in the following sense: For
any initial data (see the gray closed unbounded quadrangle in Fig. 1 for the admissible regularity exponent
range)

(θ0, u0) ∈ Hsθ (R2) × (Hsu(R2))2

with (sθ, su) ∈ {(sθ, su) ⊂ [1,∞) × [0,∞) | su − 1 ≤ sθ ≤ su + 2} (1.15)

and the functions a ∈ C2
b ∩ C [sθ]+1, b ∈ C2

b ∩ C [su]+1, the unique solution (θ, u) stays in

C
(
[0,∞);Hsθ (R2) × (Hsu(R2))2

) ∩ L2
loc

(
[0,∞);Hsθ+1(R2) × (Hsu+1(R2))2

)
. (1.16)

Theorem 1.2 will be proved in Sect. 2. The proof of the existence of weak solutions is rather standard,
and we are going to sketch the proof in Sect. 2.1 for the reason of completeness, as we did not find the
proof in the literature. As mentioned before, some well-posedness results have already been established for
smooth data in the bounded domain case (see (1.5) above in, e.g., [15,17,23,33]) or in smoother functional
frameworks in the whole space case (see (1.6) above in, e.g., [41]). We are going to focus on the proofs
of the uniqueness result and the global-in-time regularity result (in the low regularity regimes) in Sects.
2.2 and 2.3, respectively, where different regularity exponents for different unknowns are permitted. The
commutator estimates as well as the composition estimates in Lemma 2.1 will play an important role,
and the a priori estimates for a general linear parabolic equation in Lemma 2.2 will be of independent
interest.

We conclude this introduction part with several remarks on the results in Theorem 1.2.

Remark 1.3. (Optimality of the regularity exponent ranges in Theorem 1.2) We are going to follow the
standard procedure to show the existence of weak solutions for L2-initial data by use of the a priori
energy (in)equalities (1.8) and (1.10) (see Sect. 2.1 below).

If we take the difference between two different weak solutions (θ1, u1) and (θ2, u2), the difference of
the nonlinear viscosity term div(μSu) in the u-equation will become

div((μ1 − μ2)Su1) + div(μ2S(u1 − u2)),

which stays in L2
loc([0,∞); (H−1(R2))2) provided with

u1 and (u1 − u2) ∈ L2
loc([0,∞); (H1(R2))2),

and μ1 − μ2 ∈ L∞
loc

(
[0,∞);H1(R2)

) ⊂ L∞
loc

(
[0,∞); (L1(R2))′ = BMO(R2)

)
.
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Therefore in order to ensure the L2
x-Estimate for the velocity difference (u1 − u2), we require the H1

x-
Estimate for the temperature difference in (μ1 −μ2). And hence the initial condition θ0 ∈ H1

x (i.e., sθ ≥ 1
above) is required for the proof of the uniqueness result (see Sect. 2.2 below).

Under the lower-regularity assumption θ0 ∈ Hs
x with 0 < s < 1, the coefficients κ, μ are not expected

to be continuous uniformly in time, and hence no uniqueness or Hs-regularity results for θ or Hs1 , s1 > 0-
regularity results for u are expected. Nevertheless with constant diffusion coefficients (e.g., κ = μ = 1),
the uniqueness result for the weak solutions holds true by virtue of the L2

x-energy (in)equalities (similar as
the classical global-in-time well-posedness result for the classical two dimensional incompressible Navier–
Stokes equations). Furthermore, if κ = 1 is a positive constant, then the Hs

x, s ∈ (0, 1)-Estimate for
θ holds true, provided with u ∈ L4

loc(L
4
x(R2))2 (or with u0 ∈ (L2(R2))2), simply by an interpolation

argument between (1.8) and (1.14). Similarly if μ = 1 is a positive constant, then the Hs
x, s > 0-

Estimate for u holds true, provided with θ ∈ L2
loc(H

s−1
x (R2)). Thus with constant diffusion coefficients

(e.g., κ = μ = 1), the Sobolev regularities

(θ0, u0) ∈ (Hs(R2)) × (L2(R2))2 or (L2(R2)) × (Hs(R2))2, 0 < s ≤ 1

can be propagated globally in time, and the admissible regularity exponent set (1.15) extends itself indeed
to the closed set consisting of all nonnegative admissible regularity exponents:

(sθ, su) ∈ {(sθ, su) ⊂ [0,∞) × [0,∞) | su − 1 ≤ sθ ≤ su + 2}.

In order to propagate the Hsθ , sθ ≥ 2-regularity of θ, we require the transport term u · ∇θ in the θ-
equation to be at least in L2

loc([0,∞);Hsθ−1
x ), which requires u ∈ L2

loc([0,∞);Hsθ−1
x ) and hence the initial

assumption u0 ∈ Hsu with the restriction su ≥ sθ−2 (as there is a gain of regularity of oder 1 when taking
L2-norm in the time variable in general). Similarly, in order the propagate the Hsu , su ≥ 2-regularity
of u, we require the viscosity term div(μSu) in the u-equation to be at least in L2

loc([0,∞);Hsu−1
x ),

which requires μSu ∈ L2
loc([0,∞);Hsu

x ) and hence the initial assumption θ0 ∈ Hsθ with the restriction
sθ ≥ su − 1.

Remark 1.4. (Precise Hs
x-Estimates in the high regularity regime) The global-in-time regularity in the

high regularity regime (1.15)–(1.16) follows immediately from the following borderline a priori estimates:
• If θ0 ∈ Hs(R2), u0 ∈ (L2(R2))2 with s ∈ (1, 2] and the function a ∈ C2

b (R), then for s ∈ (1, 2) it
holds

‖θ‖2L∞
T Hs

x
+ ‖∇θ‖2L2

T Hs
x

≤ C(κ∗)‖θ0‖2Hs
x
×

× exp
(
C(κ∗, s, ‖a‖C2 , ‖θ‖L∞

T H1
x
)
(‖∇u‖2L2

T L2
x

+ ‖∇θ‖2L2
T H1

x

))
,

(1.17)

and for s = 2 it holds
‖θ‖2L∞

T H2
x

+ ‖∇θ‖2L2
T H2

x
≤ C(κ∗, ‖a‖C2 , κ∗)‖θ0‖2H2(1 + ‖∇θ0‖2L2)2

× exp
(
C(κ∗, ‖a‖Lip)(‖∇u‖2L2

T L2
x

+ ‖u‖4L4
T L4

x
+ ‖∇θ‖4L4

T L4
x
)
)
.

(1.18)

• If θ0 ∈ H1(R2), u0 ∈ (Hs(R2))2 with s ∈ (0, 2] and the function b ∈ C2
b (R), then for s ∈ (0, 2) it

holds
‖u‖2L∞

T Hs
x

+ ‖∇u‖2L2
T Hs

x
≤ C(μ∗)(‖u0‖2Hs

x
+ T‖θ0‖2L2

x
+ ‖θ‖2

L2
T Hs−1

x
)

× exp
(
C(μ∗, s, ‖b‖C2 , ‖θ‖L∞

T H1
x
)
(‖∇u‖2L2

T L2
x

+ ‖∇θ‖2L2
T H1

x

))
,

(1.19)

and for s = 2 it holds
‖u‖2L∞

T H2
x

+ ‖∇u‖2L2
T H2

x
≤ (‖u‖2L∞

T H1
x

+ ‖∇u‖2L2
T H1

x
) + C(μ∗, ‖b‖C2)×

(1 + ‖Δu0‖2L2
x
)(1 + ‖u‖2L∞

T H1
x

+ ‖∇u‖2L2
T H1

x
)2(1 + ‖θ‖2L∞

T H1
x

+ ‖∇θ‖2L2
T H1

x
)

× exp
(
C(μ∗, ‖b‖C2)(‖(u,∇θ)‖4L4

T L4
x

+ ‖∇2θ‖2L2
T L2

x
)
)
.

(1.20)
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• If θ0 ∈ Hs(R2), u0 ∈ (Hs−2(R2))2 with s > 2 and the function a ∈ C [s]+1, then for s ∈ (2, 3) it
holds

‖θ‖2L∞
T Hs

x
+ ‖∇θ‖2L2

T Hs
x

≤ C(κ∗)‖θ0‖2Hs
x
×

× exp
(
C(κ∗, s, a, ‖θ‖L∞

T L∞
x

)(‖u‖2
L2

T Hs−1
x

+ ‖∇θ‖2L2
T L∞

x
)
)
,

(1.21)

and for s ≥ 3 it holds
‖θ‖2L∞

T Hs
x

+ ‖∇θ‖2L2
T Hs

x
≤ C(κ∗, s)(‖θ0‖2Hs

x
+ ‖∇θ‖2L∞

T L∞
x

‖∇u‖2
L2

T Hs−2
x

)

× exp(C(κ∗, s, a, ‖θ‖L∞
T L∞

x
)(‖∇u‖2L2

T L∞
x

+ ‖∇θ‖2L2
T L∞

x
)).

(1.22)

• If θ0 ∈ Hs−1(R2), u0 ∈ (Hs(R2))2 with s > 2 and the function b ∈ C [s]+1, then for s ∈ (2, 3) it
holds

‖u‖2L∞
T Hs

x
+ ‖∇u‖2L2

T Hs
x

≤ C(μ∗)(‖u0‖2Hs
x

+ T‖θ‖2
L∞

T Hs−1
x

)

× exp(C(μ∗, s, b, ‖θ‖L∞
T L∞

x
)(‖∇u‖2L2

T H1
x

+ ‖∇θ‖2
L2

T Hs−1
x

)),
(1.23)

and for s ≥ 3 it holds
‖u‖2L∞

T Hs
x

+ ‖∇u‖2L2
T Hs

x

≤ C(μ∗)(‖u0‖2Hs
x

+ T‖θ‖2
L∞

T Hs−1
x

+ ‖∇u‖2L∞
T L∞

x
‖∇θ‖2

L2
T Hs−1

x
)×

× exp(C(μ∗, s, b, ‖θ‖L∞
T L∞

x
)(‖∇u‖2L2

T L∞
x

+ ‖∇θ‖2L2
T L∞

x
)).

(1.24)

We are going to prove the above borderline estimates one by one in Sect. 2.3 below.

Remark 1.5. (L2-in time Estimate V.S. L1-in time Estimate) Instead of the classical L∞
t Hs

x ∩ L1
t H

s+2
x -

type estimate in the literature, we derive L∞
t Hs

x∩L2
t H

s+1
x -type estimate here, since, e.g., only the L2

t Ḣ
1
x-a

priori estimate for the velocity vector field is available from the energy estimates (roughly speaking, the
L2

t -in time norm asks less spatial regularity on the coefficients). See Lemma 2.2 below for the a priori
Hs

x, s ∈ (0, 2)-Estimates for a general linear parabolic equation with divergence-free L2
t H

1
x-velocity vector

field, which is of independent interest.
It is in general not true that θ ∈ L1

t H
s+2
x (or u ∈ L1

t H
s+2
x ) in the low regularity regime, although it

holds straightforward in the high regularity regime.

Remark 1.6. (Remarks on the smoothness assumptions on the functions a, b) It is common to assume
smooth heat conductivity law and viscosity law [37, I] in fluid models.

The Lipschitz continuity assumption a, b ∈ Lip is enough for the H1 × L2-Estimates (1.13)–(1.14) in
Theorem 1.2. As for the uniqueness result, due to the following Ḣ1

x-Estimate for the difference of the
diffusion coefficinets

‖∇(a(θ1) − a(θ2))‖L2
x

≤ ‖(a′(θ1) − a′(θ2))∇θ1‖L2
x

+ ‖a(θ2)∇(θ1 − θ2)‖L2
x

≤ ‖a′‖Lip‖∇θ1‖L4
x
‖θ1 − θ2‖L4

x
+ ‖a‖L∞‖∇(θ1 − θ2)‖L2

x
,

the Lipschitz continuity assumptions a′, b′ ∈ Lip are required.
The dependence on the function a of the constants C in (1.21)–(1.22) reads precisely as [similarly for

the constants in (1.23)–(1.24)]

sup
k=0,··· ,[s]+1

sup
|y|≤c‖θ‖L∞

T L∞
x

∣
∣ d

dyk
a(y)

∣
∣,

and hence only a ∈ C [s]+1 (instead of a ∈ C
[s]+1
b ) is required.

For the integer regularity exponents, we can simply derive the energy estimates by integration by
parts (instead of the application of the commutator estimates or the composition estimates in Lemma 2.1
below), such that the requirement for a ∈ C [sθ ]+1 and b ∈ C [su]+1 can be relaxed, see, e.g., (1.18), (1.20).
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2. Proofs

Recall the Cauchy problem for the two-dimensional Boussinesq equations (1.1)–(1.3)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tθ + u · ∇θ − div(κ∇θ) = 0,

∂tu + u · ∇u − div(μSu) + ∇Π = θ �e2,

div u = 0,

(θ, u) |t=0= (θ0, u0),

(2.1)

where κ = a(θ) ∈ L∞(R; [κ∗, κ∗]), μ = b(θ) ∈ L∞(R; [μ∗, μ∗]) with κ∗, κ∗, μ∗, μ∗ four positive constants.
We are going to show the existence, uniqueness as well as the global-in-time regularity results in

Theorem 1.2 in Sects. 2.1, 2.2 and 2.3, respectively.
Recall the definition of the ‖ · ‖Lq

T Xx
-norm in (1.12). The Gagliardo–Nirenberg’s inequality

‖f‖L4
T L4

x(R
2) ≤ C‖f‖ 1

2
L2

T L2
x(R

2)
‖∇f‖ 1

2
L2

T L2
x(R

2)
(2.2)

as well as the equivalence relations between the norms

‖Su‖2L2
x(R

2) = 2‖∇u‖2L2
x(R

2) if divu = 0,

‖Δη‖L2
x(R

2) ∼ ‖∇2η‖L2
x(R

2)

(2.3)

will be used freely in the proof.

2.1. Existence of weak solutions if (θ0, u0) ∈ (L2(R2))3

We will follow the standard procedure to show the existence of the weak solutions under the initial
condition

(θ0, u0) ∈ L2(R2) × (L2(R2))2,

namely
Step 1 We construct a sequence of approximate solutions, which satisfy the energy estimates uniformly.
Step 2 We show the convergence of this approximate solution sequence to a weak solution and study the

property of the weak solution.
We are going to sketch the proof and pay attention to the low-regularity assumptions.
Step 1: Construction of approximate solutions with uniform bounds

We use the Friedrich’s method to construct a sequence of approximate solutions. We consider the
following system of (θn, un)

⎧
⎪⎨

⎪⎩

∂tθn + Pn(un · ∇θn) − Pn div(κn∇θn) = 0,

∂tun + PnP(un · ∇un) − PnP div(μnSun) = P(θn �e2),

un(0, x) = Pnu0(x), θn(0, x) = Pnθ0(x),
(2.4)

where κn = a(θn) and μn = b(θn). The operator Pn, n ∈ N, is the low-frequency cutoff operator which is
defined as follows

Pnf(x) = F−1(�Bn
(ξ)Ff(ξ))(x),

where Bn ⊂ R
2 is the disk with center at 0 and radius n, and F ,F−1 are the standard Fourier and inverse

Fourier transformations. The operator P in (2.4) denotes the Leray–Helmholtz projector on R
2, which

decomposes the tempered distributions v ∈ S ′(R2; R2) into div-free and curl-free parts as follows

v = ∇⊥V1 + ∇V2, (2.5)
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where

∇⊥V1 = −∇⊥(−Δ)−1∇⊥ · v =: Pv, ∇V2 = −∇(−Δ)−1∇ · v = (1 − P)v

with ∇⊥ = (∂x2 , −∂x1)
T . Notice that P maps Lp(R2; R2) into itself for any p ∈ (1,∞) and it is commu-

tative with the projection operator Pn.
We define the Banach spaces L2

n and L2,σ
n as following

L2
n(R2) = {f ∈ L2(R2) | f = Pnf},

L2,σ
n (R2) = {f ∈ (L2

n(R2))2 | divx(f) = 0}.

The system (2.4) turns out to be an ordinary differential equation system in L2
n(R2) × L2,σ

n (R2). Indeed,
the following estimates hold

‖Pn(un · ∇θn) − Pn div(κn∇θn)‖L2
x

≤ Cn3(‖un‖L2
x

+ κ∗)‖θn‖L2
x
,

‖PnP(un · ∇un) − PnP div(μnSun)‖L2
x

≤ Cn3(‖un‖L2
x

+ μ∗)‖un‖L2
x
.

Hence, for any n ∈ N, there exists Tn > 0 such that the system (2.4) has a solution (θn, un) ∈
C([0, Tn];L2

n(R2)) × C([0, Tn];L2,σ
n (R2)).

We take the L2(R2)-inner product of Eq. (2.4)1 and θn to derive
1
2

d

dt

∫

R2

θ2n +
∫

R2

κn|∇θn|2 = 0.

Then, the following uniform estimate for (θn) holds
1
2
‖θn‖2L∞

T L2
x

+ κ∗‖∇θn‖2L2
T L2

x
dt ≤ 1

2
‖Pnθ0‖2L2

x
≤ 1

2
‖θ0‖2L2

x
, ∀T > 0. (2.6)

Similarly, we take the L2(R2)-inner product of Eq. (2.4)2 and un to derive

1
2

d
dt

‖un‖2L2
x

+
1
2
‖μnSun‖2L2

x
≤ ‖θn‖L2

x
‖un‖L2

x
≤ 1

2

(

T‖θn‖2L2
x

+
1
T

‖un‖2L2
x

)

,

for all positive times T > 0, and thus by Gronwall’s inequality we arrive at the following uniform estimate
for (un) (noticing ‖Sun‖2L2

x
= 2‖∇un‖2L2

x
)

1
2
‖un‖2L∞

T L2
x

+ μ∗‖∇un‖2L2
T L2

x
≤ e

2
(T‖θ0‖2L2

x
+ ‖u0‖2L2

x
), ∀T > 0. (2.7)

Thus, the approximate solutions (θn, un) exist for all positive times.
Step 2: Passing to the limit

By the above uniform bounds (2.6)–(2.7), there exists a subsequence, still denote by (θn, un), converg-
ing weakly to a limit (θ, u) ∈ L∞

loc([0,∞); (L2
x)3) ∩ L2

loc([0,∞); (H1
x)3):

θn
∗
⇀ θ in L∞

loc([0,∞);L2(R2)), ∇θn ⇀ ∇θ in L2
loc([0,∞); (L2(R2))2),

un
∗
⇀ u in L∞

loc([0,∞); (L2(R2))2), ∇un ⇀ ∇u in L2
loc([0,∞); (L2(R2))4).

Since by the Gagliardo–Nirenberg’s inequality (θn, un) is a bounded sequence in L4
T L4

x for any T > 0, the
sequence of the time derivatives (∂tθn, ∂tun) is bounded in L2

T (H−1
x ) [by use of the equations in (2.4)],

and hence {(θn, un)} is relatively compact in Lp
T L2

x(BR) for any fixed disk BR ⊂ R
2 and p ∈ [1,∞),

which implies the pointwise convergence (up to a subsequence)

θn → θ, un → u for almost every t ∈ R
+, x ∈ R

2,

as well as the convergence of the nonlinear terms (noticing, e.g., unϕ → uϕ in L4
T L4

x for fixed ϕ ∈
C∞

c ((0, T ) × R
2))

unθn → uθ, un ⊗ un → u ⊗ u in D′((0, T ) × R
2) and hence weakly in L2

T L2
x.
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Consequently, κn = a(θn) → κ = a(θ) and μn = b(θn) → μ = b(θ) almost everywhere and

κn∇θn ⇀ κ∇θ, μnSun ⇀ μSu in L2
T L2

x.

Thus, the equation (noticing Pn → Id as an operator from Hs(R2) to itself)

∂tθ + div(uθ) − div(κ∇θ) = 0 holds in L2
loc((0,∞);H−1

x (R2)),

and we can test it by θ ∈ L2
loc([0,∞);H1

x) to arrive at the energy equality (1.8) for θ, such that θ|t=0 = θ0
and θ ∈ C([0,∞);L2

x) hold true.
Similarly, the equation

∂tu + Pdiv(u ⊗ u − μSu) = P(θ�e2) holds in L2
loc((0,∞); (H−1

x (R2))2), (2.8)

and we can test it by the divergence-free velocity field u ∈ L2
loc((0,∞); (H1

x(R2))2) to arrive at the energy
equality (1.10), which implies u ∈ C([0,∞); (L2

x(R2))2) and u|t=0 = u0. We take the solution Π of the
Poisson equation

ΔΠ = div(1 − P)(θ�e2 − div(u ⊗ u − μSu)) (2.9)

under the renormalization condition
∫

B1

Πdx = 0, such that

∇Π = (1 − P)(θ�e2 − div(u ⊗ u − μSu)) ∈ L2
loc((0,∞); (H−1

x (R2))2),

and the equation (1.11) holds in L2
loc((0,∞); (H−1

x (R2))2).

2.2. Energy estimates and uniqueness of the weak solutions if (θ0, u0) ∈ H1(R2) × (L2(R2))2

We first introduce a scalar function η, which is given in terms of the temperature function as follows
(recalling now κ = a(θ) ∈ C2

b (R; [κ∗, κ∗]))

η = A(θ), with A(z) :=

z∫

0

a(α) dα the primitive function of a. (2.10)

As A′(θ) = a(θ) ≥ κ∗ > 0, the function A is invertible and we can write

θ = A−1(η), (2.11)

where (A−1)′(η) = 1
a(A−1(η)) ≤ 1

κ∗ . We have the following equivalence relations3

κ∗‖θ‖L2
x

≤ ‖η‖L2
x

≤ κ∗‖θ‖L2
x
,

κ∗‖∇θ‖L2
x

≤ ‖∇η‖L2
x

= ‖a(θ)∇θ‖L2
x

≤ κ∗‖∇θ‖L2
x
,

κ∗‖∂tθ‖L2
x

≤ ‖∂tη‖L2
x

= ‖a(θ)∂tθ‖L2
x

≤ κ∗‖∂tθ‖L2
x
,

‖∇2η‖L2
x

≤ ‖a‖Lip‖∇θ‖2L4
x

+ κ∗‖∇2θ‖L2
x

≤ (
C‖a‖Lip‖∇θ‖L2

x
+ κ∗)‖∇2θ‖L2

x
,

‖∇2θ‖L2
x

≤ ‖a‖Lip
κ3∗

‖∇η‖2L4
x

+
1
κ∗

‖∇2η‖L2
x

≤
(

C
‖a‖Lip

κ3∗
‖∇η‖L2

x
+

1
κ∗

)

‖∇2η‖L2
x
.

(2.12)

3We can easily compute

∇η = a(θ)∇θ, ∇θ =
1

a(A−1(η))
∇η,

∇2η = a′(θ)∇θ ⊗ ∇θ + a(θ)∇2θ, ∇2θ = − a′(A−1(η))

a3(A−1(η))
∇η ⊗ ∇η +

1

a(A−1(η))
∇2η.
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That is,

θ(t, ·) ∈ Hk
x (R2) ⇔ η(t, ·) ∈ Hk

x (R2), k = 0, 1, 2. (2.13)

Let (θ, u) ∈ C([0,∞); (L2(R2))3) ∩ L2
loc([0,∞); (H1(R2))3) be a weak solution of the Cauchy problem

(2.1) in the sense of Definition 1.1 with

∂tθ + u · ∇θ − div(κ∇θ) = 0 holding in L2
loc([0,∞);H−1

x (R2)). (2.14)

Since Y := L∞
t,x([0,∞)×R

2)∩L2
loc([0,∞);H1

x(R2)) is an algebra (in the sense that the product of any two
elements in Y still belongs to Y ), we can multiply the above θ-equation by κ = a(θ) (with a(θ)−a(0) ∈ Y ),
to arrive at the parabolic equation for η = A(θ) ∈ C([0,∞);L2(R2)) ∩ L2

loc([0,∞);H1(R2)):

∂tη + u · ∇η − κΔη = 0 holding in the dual space Y ′. (2.15)

We are going to derive the H1-Estimate for η (and hence for θ4) as well as the L2-Estimate for u
first. Then, we will show the uniqueness result of the weak solutions by considering the difference of two
possible weak solutions. The procedure is standard (see, e.g., Sect. 2 [29]) and we are going to sketch the
proof.

H1 × L2-Estimate for (θ, u)
By virtue of the energy equalities (1.8) and (1.10) and the derivation of the uniform estimates (2.6)

and (2.7), we have the L2-Estimate

‖θ‖2L∞
T L2

x
+ ‖∇θ‖2L2

T L2
x

≤ C(κ∗)‖θ0‖2L2 , (2.16)

and the L2-Estimate (1.13) for u. By Gagliardo–Nirenberg’s inequality (2.2) it holds

‖u‖L4
T L4

x
≤ C(μ∗)

(√
T‖θ0‖L2 + ‖u0‖L2

)
. (2.17)

We assume a priori that the function η is smooth and decay sufficiently fast at infinity. We test the
η-equation (2.15) by Δη to derive by integration by parts that

1
2

d
dt

∫

R2

|∇η|2dx +
∫

R2

κ|Δη|2dx =
∫

R2

u · ∇ηΔηdx ≤ ‖u‖L4
x
‖∇η‖L4

x
‖Δη‖L2

x
.

By Gagliardo–Nirenberg’s inequality (2.2), the equivalence ‖Δη‖L2
x(R

2) ∼ ‖∇2η‖L2
x(R

2) and Young’s in-
equality we arrive at

1
2

d
dt

∫

R2

|∇η|2dx +
κ∗
2

∫

R2

|Δη|2dx ≤ C(κ∗)‖u‖4L4
x
‖∇η‖2L2

x
.

Gronwall’s inequality gives

‖∇η(T )‖2L2
x

+ ‖∇2η‖2L2
T L2

x
≤ C(κ∗)‖∇η0‖2L2

x
exp

(
C(κ∗)‖u‖4L4

T L4
x

)

for any positive time T > 0. Thus by the η-equation

‖∂tη‖L2
T L2

x
= ‖u · ∇η − κΔη‖L2

T L2
x

≤ ‖u‖L4
T L4

x
‖∇η‖L4

T L4
x

+ κ∗‖Δη‖L2
T L2

x

≤ C(κ∗, κ∗)‖∇η0‖L2
x
exp

(
C(κ∗)‖u‖4L4

T L4
x

)
.

By virtue of the equivalence relation (2.12):

‖∇θ‖2L∞
T L2

x
+ ‖∇2θ‖2L2

T L2
x

≤ C(κ∗, ‖a‖Lip)
(
‖∇η‖2L∞

T L2
x

+
(
1 + ‖∇η‖2L∞

T L2
x

)
‖∇2η‖2L2

T L2
x

)

4The introduction of the η-function makes the derivation of the H1-Estimate for θ straightforward (and possible).
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and (2.16)-(2.17), we have the a priori H1-Estimate (1.14) for θ:

‖θ‖2L∞
T H1

x
+ ‖∇θ‖2L2

T H1
x

+ ‖∂tθ‖2L2
T L2

x

≤ C(κ∗, ‖a‖Lip, κ∗)‖θ0‖2H1

(
1 + ‖∇θ0‖2L2

)
exp

(
C(κ∗)‖u‖4L4

T L4
x

)
.

(2.18)

Therefore, both the parabolic equations (2.14) and (2.15) for θ and η hold in L2
loc([0,∞);L2(R2)). A

standard density argument ensures the H1-Estimate (1.14) for θ, and hence θ ∈ C([0,∞);H1
x(R2)).

Proof of the uniqueness
Let (θ1, u1,Π1) and (θ2, u2,Π2) be two weak solutions of the Cauchy problem (2.1) with the same

initial data (θ0, u0) ∈ H1(R2)× (L2(R2))2, which satisfy the energy estimates (1.13)–(1.14). Recall (2.10)
for the definition of the function A, and we set

η1 = A(θ1), η2 = A(θ2).

We consider the difference

(η̇, u̇,∇Π̇) = (η1 − η2, u1 − u2,∇Π1 − ∇Π2),

which lies in
(
C([0,∞);H1(R2)) ∩ L2

loc([0,∞);H2(R2))
)

× (
C([0,∞); (L2(R2))2) ∩ L2

loc([0,∞); (H1(R2))2)
) × L2

loc([0,∞); (H−1(R2))2)
)
.

It satisfies the following Cauchy problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tη̇ + u1 · ∇η̇ − κ1Δη̇ = κ̇Δη2 − u̇ · ∇η2,

∂tu̇ + u1 · ∇u̇ − div(μ1Su̇) + ∇Π̇ = θ̇ �e2 − u̇ · ∇u2 + div(μ̇Su2),
div u̇ = 0,

(η̇0, u̇0) = (0, 0),

(2.19)

where

κ1 = a(θ1), μ1 = b(θ1), θ̇ = θ1 − θ2, κ̇ = a(θ1) − a(θ2), μ̇ = b(θ1) − b(θ2).

Similarly as in (2.12) we have the following equivalence relationships

κ∗‖θ̇‖L2
x

≤ ‖η̇‖L2
x

≤ κ∗‖θ̇‖L2
x
,

‖∇η̇‖L2
x

≤ ‖a‖Lip‖∇θ1‖L4
x
‖θ̇‖L4

x
+ κ∗‖∇θ̇‖L2

x
,

‖∇θ̇‖L2
x

≤ ‖a‖Lip
κ3∗

‖∇η1‖L4
x
‖η̇‖L4

x
+

1
κ∗

‖∇η̇‖L2
x
,

(2.20)

and correspondingly we have

‖(κ̇, μ̇)‖H1
x

≤ C(‖(a, b)‖Lip, ‖(a′, b′)‖Lip, κ∗)(‖∇η1‖L4
x
‖η̇‖L4

x
+ ‖η̇‖H1

x
)

≤ C(‖(a, b)‖Lip, ‖(a′, b′)‖Lip, κ∗)(1 + ‖∇η1‖L4
x
)‖η̇‖H1

x
.

(2.21)

We are going to sketch the derivation of the H1 × L2-Estimate for (η̇, u̇).
(i) L2 estimate of η̇. We take the L2(R2)-inner product between (2.19)1andη̇ to derive

1
2

d
dt

∫

R2

|η̇|2 +
∫

R2

κ1|∇η̇|2 ≤
∫

R2

|η̇∇κ1 · ∇η̇| + |η̇u̇ · ∇η2| + |κ̇Δη2η̇|. (2.22)

The right hand side can be bounded by

‖η̇‖L4
x
‖∇κ1‖L4

x
‖∇η̇‖L2

x
+ ‖∇η2‖L2

x
‖u̇‖L4

x
‖η̇‖L4

x
+ ‖Δη2‖L2

x
‖κ̇‖L4

x
‖η̇‖L4

x

≤ C(‖a‖Lip)
(
‖∇θ1‖L4

x
‖η̇‖ 1

2
L2

x
‖∇η̇‖ 3

2
L2

x
+ ‖∇η2‖L2

x
‖u̇‖ 1

2
L2

x
‖∇u̇‖ 1

2
L2

x
‖η̇‖ 1

2
L2

x
‖∇η̇‖ 1

2
L2

x
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+ ‖Δη2‖L2
x
‖θ̇‖ 1

2
L2

x
‖∇θ̇‖ 1

2
L2

x
‖η̇‖ 1

2
L2

x
‖∇η̇‖ 1

2
L2

x

)

≤ κ∗
2

‖∇η̇‖2L2
x

+
μ∗
4

‖∇u̇‖2L2
x

+ C(‖a‖Lip, κ∗, μ∗)
(
‖∇θ1‖4L4

x
+ ‖∇η2‖2L2

x
+ ‖Δη2‖2L2

x

)
× (‖η̇‖2L2

x
+ ‖u̇‖2L2

x

)
.

(ii) L2 estimate of u̇.
We take the L2 inner product of the equation (2.19)2 and u̇ to derive

1
2

d
dt

∫

R2

|u̇|2 +
1
2

∫

R2

μ1|Su̇|2 ≤
∫

R2

|θ̇u̇| + |u̇|2|∇u2| + |μ̇Su2 : ∇u̇|. (2.23)

The right hand side can be bounded by

‖u̇‖L2
x
‖θ̇‖L2

x
+ ‖u̇‖2L4

x
‖∇u2‖L2

x
+ ‖μ̇‖H1

x
‖Su2 : ∇u̇‖H−1

x

which, by use of the Sobolev embedding L1(R2) ↪→ H−1(R2), is bounded by
μ∗
4

‖∇u̇‖2L2
x

+ C(‖a‖Lip, κ∗, μ∗)(1 + ‖∇u2‖2L2
x
)(‖u̇‖2L2

x
+ ‖η̇‖2L2

x
)

+ C(μ∗)‖∇u2‖2L2
x
‖μ̇‖2H1

x
.

(iii) L2 estimate of ∇η̇.
We take the L2 inner product of Eq. (2.19)1andΔη̇ to derive

1
2

d
dt

∫

R2

|∇η̇|2 +
∫

R2

κ1|Δη̇|2 ≤
∫

R2

|u1 · ∇η̇Δη̇| + |u̇ · ∇η2Δη̇| + |κ̇Δη2Δη̇|

By L1(R2) ↪→ H−1(R2) again, the right hand side is bounded similarly by
κ∗
2

‖Δη̇‖2L2
x

+
μ∗
4

‖∇u̇‖2L2
x

+ C(κ∗, μ∗)
(
‖u1‖4L4

x
+ ‖∇η2‖4L4

x

) (
‖u̇‖2L2

x
+ ‖∇η̇‖2L2

x

)

+ C(κ∗)‖Δη2‖2L2
x
‖κ̇‖2H1

x
.

To conclude, by virtue of the above estimates and (2.21), we have the following inequality
d
dt

(
‖η̇‖2H1

x
+ ‖u̇‖2L2

x

)
+ ‖∇u̇‖2L2

x
+ ‖∇η̇‖2H1

x

≤ C (‖(a, b)‖Lip, ‖(a′, b′)‖Lip, κ∗, μ∗) B(t)
(
‖u̇‖2L2

x
+ ‖η̇‖2H1

x

)
,

where

B(t) =
(
‖∇θ1‖4L4

x
+ ‖∇η2‖2L2

x
+ ‖Δη2‖2L2

x
+ 1 + ‖∇u2‖2L2

x
+ ‖u1‖4L4

x
+ ‖∇η2‖4L4

x

)

× (
1 + ‖∇η1‖L4

x

) ∈ L1
loc([0,∞)).

Gronwall’s inequality implies then η̇ = 0 and u̇ = 0. The uniqueness of the weak solutions follows.

2.3. Propagation of the general Hs-regularities

After the derivation of the a priori Hs
x, s ∈ (0, 2)-Estimate for a general linear parabolic equation in Sect.

2.3.1, we are going to derive the precise Hs
x-Estimates (1.17)–(1.24) in Remark 1.4 in the subsequent

subsections:
• In Sect. 2.3.2 the global-in-time Hs

x(R2) × (L2
x(R2))2, s ∈ (1, 2)-regularities [i.e., (1.17)] will be

established, where the endpoint case s = 2 [i.e., (1.18)] will be treated separately.
• In Sect. 2.3.3, the global-in-time H1

x(R2) × (Hs
x(R2))2, s ∈ (0, 2)-regularities [i.e., (1.19)] will be

established, where the endpoint case s = 2 [i.e., (1.20)] will be treated separately.
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• In Sect. 2.3.4 the global-in-time Hs
x(R2) × (Hs−2

x (R2))2 [i.e., (1.21)–(1.22)] and Hs−1
x × (Hs

x(R2))2,
s > 2-regularities [i.e., (1.23)–(1.24)] will be established, respectively.

As far as the borderline estimates (1.17)–(1.24) are established, the global-in-time regularity (1.16) follows
immediately.

For readers’ convenience, we recall here briefly the Littlewood–Paley dyadic decomposition and the
definition of the Hs(Rn)-norms (see, e.g., Chapter 2 in the book [4] for more details). We fix a nonin-
creasing radial function χ ∈ C∞

c (B 4
3
) with χ(x) = 1 for x ∈ B1, where Br ⊂ R

n denotes the ball centered
at 0 with radius r. We define the function ϕ(ξ) = χ( ξ

2 ) − χ(ξ) and ϕj(ξ) = ϕ(2−jξ) with j ≥ 0. We do
the Littlewood–Paley decomposition in the following way

g = Δ−1g +
∑

j≥0

Δjg, (2.24)

where

F(Δ−1g)(ξ) = χ(ξ)F(g)(ξ), F(Δjg)(ξ) = ϕj(ξ)F(g)(ξ), j ≥ 0,

and F denotes the Fourier transform. We have the following Bernstein’s inequalities for some universal
constant C (depending only on n)

‖Δ−1g‖L2(Rn) ≤ C‖g‖L2(Rn),

C−12j‖Δjg‖L2(Rn) ≤ ‖∇(Δjg)‖L2(Rn) ≤ C2j‖Δjg‖L2(Rn), ∀j ≥ 0. (2.25)

Let s ≥ 0 and p, r ≥ 1. We define the nonhomogeneous Besov spaces Bs
p,r(R

n) as the spaces consisting
of all tempered distributions g ∈ S ′(Rn) satisfying

‖g‖Bs
p,r(R

n) =
∥
∥
(
2js‖Δjg‖Lp(Rn)

)

j≥−1

∥
∥

lr
< ∞.

The inhomogeneous Sobolev spaces Hs(Rn) = Bs
2,2(R

n) can be defined by

Hs(Rn) =

⎧
⎪⎨

⎪⎩
g ∈ S ′(Rn) | ‖g‖Hs(Rn) =

⎛

⎝

∫

Rn

(1 + |ξ|2) s
2 |F(g)(ξ)|2 dξ

⎞

⎠

1/2

< ∞

⎫
⎪⎬

⎪⎭
,

where the Hs(Rn)-norm reads in terms of Littlewood–Paley decomposition as follows

‖g‖Hs(Rn) ∼ ‖g‖L2(Rn) +

⎛

⎝
∑

j≥0

22js‖Δjg‖2L2(Rn)

⎞

⎠

1
2

. (2.26)

It is straightforward to derive the following interpolation inequality

‖u‖Htσ ≤ C‖u‖1−σ
Ht0 ‖u‖σ

Ht1 , where tσ = (1 − σ)t0 + σt1, σ ∈ [0, 1]. (2.27)

We are going to use the following known estimates to control the nonlinear terms in the Boussinesq
system (1.1).

Lemma 2.1. We have the following commutator, product, and composition estimates.
(1) [12, Proposition 2.4] In the low regularity regime where (s, ν) ∈ R

2 satisfy

−1 < s < ν + 1, and − 1 < ν < 1,

the following commutator estimate holds true (in R
2):

‖(
2js‖[φ,Δj ]∇ψ‖L2(R2)

)

j≥1
‖l1 ≤ C‖∇φ‖Hν(R2)‖∇ψ‖Hs−ν(R2), (2.28)

where C is a constant depending only on s, ν.
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(2) [4, Lemma 2.100] For any s > 0, the following commutator estimate holds true

‖(
2js‖[φ,Δj ]∇ψ‖L2(Rn)

)

j≥1
‖l2

≤ C
(‖∇φ‖L∞(Rn)‖∇ψ‖Hs−1(Rn) + ‖∇φ‖Hs−1(Rn)‖∇ψ‖L∞(Rn)).

(2.29)

(3) [4, Corollary 2.86] For any s > 0, the following product estimate holds true

‖φψ‖Hs(Rn) ≤ C
(‖φ‖L∞(Rn)‖ψ‖Hs(Rn) + ‖φ‖Hs(Rn)‖ψ‖L∞(Rn)). (2.30)

(4) [4, Theorems 2.87 and Theorem 2.89] For any s > 0 and g ∈ Ck+1 with k = [s] ∈ N, the following
composition estimate holds true

‖∇(g ◦ θ)‖Hs−1(Rn) ≤ C(g, ‖θ‖L∞(Rn))‖∇θ‖Hs−1(Rn). (2.31)

If g ∈ Ck+1
b with k = [s] ∈ N, then the above estimate can be improved in the spatial dimension two

as follows

‖∇(g ◦ θ)‖Hs−1(R2) ≤ C(‖g‖Ck+1 , ‖θ‖H1(R2))‖∇θ‖Hs−1(R2). (2.32)

The commutator estimate (2.28) will present its power in the low regularity regime (see Sects. 2.3.1–
2.3.3 below), and the classical commutator estimate (2.29) will help in the high regularity regime (see
Sect. 2.3.4 below).

The composition estimate (2.32) will help to bound the diffusion coefficients κ, μ in terms of θ in the
low regularity regime, where only H1(R2)-norm (instead of L∞

x -norm) of θ is available.

2.3.1. Estimates for the general parabolic equations. We derive in this paragraph a priori Hs, s ∈ (0, 2)-
Estimates for a general linear parabolic equation, which should be of independent interest.

Lemma 2.2. Let ψ = ψ(t, x) : [0,∞) × R
2 
→ R

m, m ≥ 1 be a smooth solution with sufficiently decay of
the following linear parabolic equation

{
∂tψ + u · ∇xψ − divx(κ∇xψ) = f,

ψ|t=0 = ψ0,
(2.33)

where
• u = u(t, x) : R

+ × R
2 
→ R

2 is a given divergence-free vector field: divxu = 0;
• κ = κ(t, x) : R

+ × R
2 → [κ∗, κ∗] with κ∗, κ∗ ∈ (0,∞);

• f = f(t, x) : R
+ × R

2 
→ R
m denotes the given external force.

Then, the following a priori Hs
x-Estimates for (2.33) holds true:

‖ψ‖2L∞
T Hs

x
+ ‖∇ψ‖2L2

T Hs
x

≤ C(κ∗)
(
‖ψ0‖2Hs

x
+ ‖f‖2

L2
T Hs−1

x

)

× exp
(
C(κ∗, s, ν)(‖∇u‖2L2

T L2
x

+ ‖∇κ‖2/ν

L
2
ν
T Hν

x

+ ‖f‖L1
T H−s

x
)
)

for any s ∈ (0, 2) and ν ∈ (s − 1, 1) ⊂ (−1, 1).

(2.34)

Proof. It is straightforward to derive the following L2
x-Estimate by simply taking the L2(R2) inner product

of the equation (2.33) and ψ itself

‖ψ‖2L∞
T L2

x
+ ‖∇ψ‖2L2

T L2
x

≤ C(κ∗)
(
‖ψ0‖2L2

x
+

T∫

0

〈ψ, f〉Hs
x,H−s

x
dt

)
, ∀s ∈ R. (2.35)

We next consider the a priori estimates for the Hs(R2)-norm. By virtue of the description (2.26) of
the Hs(R2)-norm, we consider the dyadic piece of ψ:

ψj := Δjψ, j ≥ 0. (2.36)



ZAMP On the two-dimensional Boussinesq equations Page 17 of 25 16

where the operator Δj is defined in (2.24). We apply Δj to the linear ψ-equation to derive the equation
for ψj :

∂tψj + u · ∇ψj − div(κ∇ψj) = [u,Δj ] · ∇ψ − div([κ,Δj ]∇ψ) + fj , j ≥ 0. (2.37)

We take the L2 inner product of the equation (2.37) and ψj and make use of divu = 0 and κ ≥ κ∗ to
derive

1
2

d
dt

‖ψj‖2L2
x

+ κ∗‖∇ψj‖2L2
x

≤ ‖ψj‖L2
x
‖[u,Δj ] · ∇ψ‖L2

x

+ ‖∇ψj‖L2
x
‖[κ,Δj ]∇ψ‖L2

x
+ ‖fj‖L2

x
‖ψj‖L2

x
, j ≥ 0.

By use of Bernstein’s inequality (2.25), we have

d
dt

‖ψj‖2L2
x

+ 22j‖ψj‖2L2
x

≤ C(κ∗)‖ψj‖L2
x

(‖[u,Δj ] · ∇ψ‖L2
x

+ 2j‖[κ,Δj ]∇ψ‖L2
x

+ ‖fj‖L2
x

)
,

that is,

d
dt

‖ψj‖L2
x

+ 22j‖ψj‖L2
x

≤ C(κ∗)
(‖[u,Δj ] · ∇ψ‖L2

x
+ 2j‖[κ,Δj ]∇ψ‖L2

x
+ ‖fj‖L2

x

)
, j ≥ 0.

(2.38)

We make use of the commutator estimate (2.28) in Lemma 2.1 to estimate the commutators ‖[u,Δj ] ·
∇ψ‖L2

x
and 2j‖[κ,Δj ]∇ψj‖L2

x
in the above inequality in the following way. Let (lj)j≥0 be a normalized

sequence in �1(N) such that lj ≥ 0 and
∑

j≥0 lj = 1. Then, we have

‖[u,Δj ]∇ψ‖L2 ≤ C(s)lj2j(1−s)‖∇u‖L2
x
‖∇ψ‖Hs−1

x
, for s ∈ (0, 2),

2j‖[κ,Δj ]∇ψ‖L2
x

≤ C(s, ν)lj2j(1−s)‖∇κ‖Hν
x
‖∇ψ‖Hs−ν

x

for ν ∈ (−1, 1), s ∈ (−1, ν + 1).

(2.39)

Therefore, we have

d
dt

‖ψj‖L2
x

+ 22j‖ψj‖L2
x

≤ C(κ∗, s, ν)lj2j(1−s)
(‖∇u‖L2

x
‖∇ψ‖Hs−1

x
+ ‖∇κ‖Hν

x
‖∇ψ‖Hs−ν

x

)
+ C(κ∗)‖fj‖L2

x

for ν ∈ (−1, 1), s ∈ (0, ν + 1), j ≥ 0.

We use Duhamel’s Principle to derive

‖ψj‖L2
x

≤ e−t22j ‖(ψ0)j‖L2
x

+ C(κ∗)

t∫

0

e−(t−τ)22j ‖fj(τ)‖L2
x
dτ

+ C(κ∗, s, ν)2j(1−s)lj

t∫

0

e−(t−τ)22j (‖∇u(τ)‖L2
x
‖∇ψ(τ)‖Hs−1

x

+ ‖∇κ(τ)‖Hν
x
‖∇ψ(τ)‖Hs−ν

x

)
dτ, j ≥ 0.

(2.40)
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We multiply the inequality (2.40) by 2js to derive

2js‖ψj‖L2
x

≤ 2jse−t22j ‖(ψ0)j‖L2
x

+ C(κ∗)2js

t∫

0

e−(t−τ)22j ‖fj‖L2
x
dτ

+ C(κ∗, s, ν)2j lj

t∫

0

e−(t−τ)22j (‖∇u(τ)‖L2
x
‖∇ψ(τ)‖Hs−1

x

+ ‖∇κ(τ)‖Hν
x
‖∇ψ(τ)‖Hs−ν

x

)
dτ, j ≥ 0.

(2.41)

We take L∞([0, T ])-norm in t of (2.41) and the L2([0, T ])-norm in t of 2j ·(2.41), to derive by use of
Young’s inequality that

2js‖ψj‖L∞
T L2

x
+ 2j(s+1)‖ψj‖L2

T L2
x

≤ 2js‖(ψ0)j‖L2
x

+ C(κ∗)2j(s−1)‖fj‖L2
T L2

x

+ C(κ∗, s, ν)lj
∥
∥
∥‖∇u‖L2

x
‖∇ψ‖Hs−1

x
+ ‖∇κ‖Hν

x
‖∇ψ‖Hs−ν

x

∥
∥
∥

L2
T

.
(2.42)

We take square of (2.42) and sum them up for j ∈ N to derive
∑

j≥0

(
22js‖ψj‖2L∞

T L2
x

+ 22j(s+1)‖ψj‖2L2
T L2

x

)

�κ∗,s,ν

∑

j≥0

(
22js‖(ψ0)j‖2L2

x
+ 22j(s−1)‖fj‖2L2

T L2
x

)

+

T∫

0

‖∇u‖2L2
x
‖∇ψ‖2

Hs−1
x

+ ‖∇κ‖2Hν
x
‖∇ψ‖2

Hs−ν
x

dt, j ≥ 0,

that is, by virtue of the L2-Estimate (2.35),

‖ψ‖2L∞
T Hs

x
+ ‖∇ψ‖2L2

T Hs
x

�κ∗,s,ν

(
‖ψ0‖2Hs

x
+ ‖f‖2

L2
T Hs−1

x
+

T∫

0

‖ψ‖Hs
x
‖f‖H−s

x
dt

+

T∫

0

‖∇u‖2L2
x
‖∇ψ‖2

Hs−1
x

+ ‖∇κ‖2Hν
x
‖∇ψ‖2

Hs−ν
x

dt
)
.

We next consider the norm ‖∇ψ‖Hs−ν
x

. By the interpolation inequality (2.27), we have

‖∇ψ‖Hs−ν
x

≤ C‖∇ψ‖ν
Hs−1

x
‖∇ψ‖1−ν

Hs
x

, ν ∈ (0, 1),

which implies by Young’s inequality that

T∫

0

‖∇κ‖2Hν
x
‖∇ψ‖2

Hs−ν
x

dt ≤
T∫

0

‖∇κ‖2Hν
x
‖∇ψ‖2ν

Hs−1
x

‖∇ψ‖2(1−ν)
Hs

x
dt

≤ ε‖∇ψ‖2L2
T Hs

x
+ Cε

T∫

0

‖∇κ‖2/ν
Hν

x
‖∇ψ‖2

Hs−1
x

dt.

To conclude, by taking ε small enough and Gronwall’s inequality, we derive the Hs-Estimate (2.34). �
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2.3.2. Case (θ0, u0) ∈ Hs(R2) × (L2(R2))2, s ∈ (1, 2]. In this subsection, we are going to prove the
Hs-Estimates (1.17) for the unique solution (θ, u) of the Boussinesq equations (1.1) with the initial data
(θ0, u0) ∈ Hs(R2)× (L2(R2))2, s ∈ (1, 2), following exactly the procedure in Sect. 2.3.1. We will pay more
attention on the “nonlinearities” in the equations such as κ = a(θ), u · ∇u when using the commutator
estimates and will sketch the proof.

The endpoint estimate (1.18) for (θ0, u0) ∈ H2(R2) × (L2(R2))2 follows similarly as in the proof for
the H1-Estimate for θ in Sect. 2.2 and we will sketch the proof.

Case (θ0, u0) ∈ Hs(R2) × (L2(R2))2, s ∈ (1, 2)
Similarly as (2.38), we have the following preliminary estimate for θj = Δjθ:

d
dt

‖θj‖L2
x

+ 22j‖θj‖L2
x

≤ C(κ∗)
(‖[u,Δj ] · ∇θ‖L2

x
+ 2j‖[κ,Δj ]∇θ‖L2

x

)
, j ≥ 0. (2.43)

By use of the commutator estimates (2.39) and the action estimate (2.32):

‖∇κ‖Hν ≤ C(‖a‖C2 , ‖θ‖H1)‖∇θ‖Hν for ν ∈ (0, 1),

we derive similar as (2.42)

22js‖θj‖2L∞
T L2

x
+ 22j(s+1)‖θj‖2L2

T L2
x

≤ 22js‖(θ0)j‖2L2
x

+ C(κ∗, s, ν, ‖a‖C2 , ‖θ‖L∞
T H1

x
)(lj)2

T∫

0

(
‖∇u‖2L2

x
‖∇θ‖2

Hs−1
x

+ ‖∇θ‖2Hν
x
‖∇θ‖2

Hs−ν
x

)
dt, 1 < s < ν + 1 < 2.

(2.44)

By using the interpolation inequality (2.27), we have

‖∇θ‖Hν
x
‖∇θ‖Hs−ν

x
≤ C‖∇θ‖1−ν

L2
x

‖∇θ‖ν
H1

x
‖∇θ‖ν

Hs−1
x

‖∇θ‖1−ν
Hs

x
, 0 < ν < 1.

Recall the L2-Estimate (2.16) for θ:

‖θ‖2L∞
T L2

x
+ ‖∇θ‖2L2

T L2
x

≤ C(κ∗)‖θ0‖2L2
x
. (2.45)

Therefore by Young’s inequality, we arrive at

‖θ‖2L∞
T Hs

x
+ ‖∇θ‖2L2

T Hs
x

≤ C(κ∗)‖θ0‖2Hs
x

+ C(κ∗, s, ν, ‖a‖C2 , ‖θ‖L∞
T H1

x
)

T∫

0

(
‖∇u‖2L2

x
+ ‖∇θ‖2H1

x

)
‖∇θ‖2

Hs−1
x

dt,

which, together with Gronwall’s inequality, implies (1.17).

Endpoint case (θ0, u0) ∈ H2(R2) × (L2(R2))2

We recall the function η = A−1(θ) defined in (2.11), and the parabolic η-equation (2.15):

∂tη + u · ∇η − κΔη = 0. (2.46)

We are going to derive the a priori H2-Estimate for η under the conditions

divu = 0, ∇u ∈ L2
loc([0,∞); (L2(R2))4) and ∇κ ∈ L4

loc([0,∞); (L4(R2))2).

We test the above η-equation (2.46) by Δ2η, to arrive at

1
2

d
dt

∫

R2

|Δη|2dx +
∫

R2

κ|∇Δη|2dx = −
∫

R2

(
u · ∇ηΔ2η + ∇κ · ∇ΔηΔη

)
dx.
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By integration by parts, divu = 0 and the embedding L1(R2) ↪→ H−1(R2), we derive

−
∫

R2

u · ∇ηΔ2ηdx =
∫

R2

∇Δη · ∇u · ∇η − ∇u : ∇2ηΔηdx

≤ 4‖∇u‖L2
x

(
‖∇Δη‖L2

x
‖∇η‖H1

x
+ ‖∇2η‖2L4

x

)

≤ κ∗
4

‖∇Δη‖2L2
x

+ C(κ∗)‖∇u‖2L2
x
‖∇η‖2H1

x
.

Similarly, we have

−
∫

R2

∇κ · ∇ΔηΔηdx ≤ ‖∇κ‖L4
x
‖∇Δη‖L2

x
‖Δη‖L4

x

≤ κ∗
4

‖∇Δη‖2L2
x

+ C(κ∗)‖∇κ‖4L4
x
‖Δη‖2L2

x
.

To conclude, we have the following a priori Ḣ2
x-Estimate for η and any positive time T > 0 by Gronwall’s

inequality

‖Δη(T )‖2L2
x

+ ‖∇Δη‖2L2
T L2

x
≤ C(κ∗)

(
‖Δη0‖2L2

x
+ ‖∇u‖2L2

T L2
x
‖∇η‖2L∞

T L2
x

)

× exp
(
C

(
κ∗)(‖∇u‖2L2

T L2
x

+ ‖∇κ‖4L4
T L4

x

))
.

By view of the equivalence relation (2.12) as well as5

‖∇3θ‖L2
T L2

x
≤ C(κ∗, ‖a‖C2)

(
(‖∇η‖2L4

T L4
x

+ ‖∇2η‖L2
T L2

x
)‖∇η‖L∞

T L2
x

+ ‖∇3η‖L2
T L2

x

)
,

we derive the H2-Estimate (1.18) for θ by virtue of the H1-Estimate (2.18):

‖θ‖2L∞
T H2

x
+ ‖∇θ‖2L2

T H2
x

≤ C
(
κ∗, ‖a‖C2 , κ∗

)
‖θ0‖2H2

(
1 + ‖∇θ0‖2L2

)2

× exp
(
C(κ∗, ‖a‖C1)

(
‖∇u‖2L2

T L2
x

+ ‖u‖4L4
T L4

x
+ ‖∇θ‖4L4

T L4
x

))
.

2.3.3. Case (θ0, u0) ∈ H1(R2) × (Hs(R2))2, s ∈ (0, 2]. In this subsection we are going to sketch the
proof of the Hs, s ∈ (0, 2)-Estimate (1.19) for the divergence-free vector field u of the unique solution
(θ, u) to the Boussinesq equations (1.1), under the assumption that θ0 ∈ H1(R2), following the procedure
in Sect. 2.3.1.

We deal with the endpoint case (θ0, u0) ∈ H1(R2) × (H2(R2))2 similarly as for the endpoint case
above.
Case (θ0, u0) ∈ H1(R2) × (Hs(R2))2, s ∈ (0, 2)

Recall (2.5) for the definition of the Leray–Helmholtz projector P such that

Pu = u, P∇Π = 0.

We apply P to the velocity equation (1.1)2 to arrive at

∂tu + P(u · ∇u) − P div(μSu) = P(θ �e2). (2.47)

5It is also straightforward to calculate

∂jklη = a′′(θ)(∂jθ∂kθ∂lθ) + a′(θ)(∂jkθ∂lθ + ∂jl∂kθ + ∂klθ∂jθ) + a(θ)∂jklθ,

∂jklθ =
(
−a′′(A−1(η))

a4(A−1(η))
+

3(a′(A−1(η)))2

a5(A−1(η))

)
∂jη∂kη∂lη

− a′(A−1(η))

a3(A−1(η))

(
∂jkη∂lη + ∂jlη∂lη + ∂klη∂jη

)
+

1

a(A−1(η))
∂jklη.
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We apply Δj to the above equation (2.47) to arrive at the equation for uj := Δju

∂tuj + Pu · ∇uj − P div(μSuj) = P[u,Δj ] · ∇u − Pdiv([μ,Δj ]Su) + P(θj �e2). (2.48)

We take the L2(R2)-inner product between (2.48) and the divergence-free dyadic piece uj = Puj and
follow the similar argument as to arrive at (2.38), to deduce

d
dt

‖uj‖L2
x

+ 22j‖uj‖L2
x

≤ C(μ∗)
(‖[u,Δj ] · ∇u‖L2

x
+ 2j‖[μ,Δj ]∇u‖L2

x
+ ‖θj‖L2

x

)
. (2.49)

By use of the commutator estimate (2.28) in Lemma 2.1 again, we have the following commutator
estimates as in (2.39):

‖[u,Δj ]∇u‖L2
x

≤ Clj2j(1−s)‖∇u‖L2
x
‖∇u‖Hs−1

x
, for s ∈ (0, 2),

2j‖[μ,Δj ]∇u‖L2
x

≤ Clj2j(1−s)‖∇μ‖Hν
x
‖∇u‖Hs−ν

x
, for ν ∈ (−1, 1), s ∈ (−1, ν + 1).

By virtue of the composition estimate (2.32) in Lemma 2.1:

‖∇μ‖Hν
x

≤ C(‖b‖C[ν]+2 , ‖θ‖H1)‖∇θ‖Hν
x
,

we derive similar as (2.42) that, for 0 < s < ν + 1 < 2,

22js‖uj‖2L∞
T L2

x
+ 22j(s+1)‖uj‖2L2

T L2
x

≤ 22js‖(u0)j‖2L2
x

+ C(μ∗)

T∫

0

22j(s−1)‖θj‖2L2
x
dt + C(μ∗, s, ν, ‖b‖C[ν]+2 , ‖θ‖L∞

T H1
x
)(lj)2

×
T∫

0

(
‖∇u‖2L2

x
‖∇u‖2

Hs−1
x

+ ‖∇θ‖2Hν
x
‖∇u‖2

Hs−ν
x

)
dt.

(2.50)

By the interpolation inequality (2.27):

‖∇θ‖Hν
x
‖∇u‖Hs−ν

x
≤ C‖∇θ‖1−ν

L2
x

‖∇θ‖ν
H1

x
‖∇u‖ν

Hs−1
x

‖∇u‖1−ν
Hs

x
, for ν ∈ (0, 1),

and the L2-Estimate (1.13):

‖u‖2L∞
T L2

x
+ ‖∇u‖2L2

T L2
x

≤ C(μ∗)
(
‖u0‖2L2

x
+ T‖θ0‖2L2

x

)
, (2.51)

we arrive at the following by Young’s inequality

‖u‖2L∞
T Hs

x
+ ‖∇u‖2L2

T Hs
x

≤ C(μ∗)
(
‖u0‖2Hs

x
+ T‖θ0‖2L2

x
+ ‖θ‖2

L2
T Hs−1

x

)

+ C(μ∗, s, ν, ‖b‖C2 , ‖θ‖L∞
T H1

x
)

T∫

0

(‖∇u‖2L2
x

+ ‖∇θ‖2H1
x
)‖∇u‖2

Hs−1
x

dt,

which, together with Gronwall’s inequality, implies (1.19).
Endpoint case (θ0, u0) ∈ H1(R2) × (H2(R2))2

We recall the u-equation (2.47) where

div(μSu) = μΔu + ∇μ · Su.

We test (2.47) by the divergence-free vector field Δ2u, to arrive at
1
2

d
dt

∫

R2

|Δu|2dx +
∫

R2

μ|∇Δu|2dx

=
∫

R2

(
−u · ∇uΔ2u + ∇μ · Su · Δ2u − ∇μ · ∇Δu · Δu + ΔθΔu2

)
dx.
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By use of the embedding L1(R2) ↪→ H−1(R2) again, the right hand side can be bounded by

C
(
‖∇u‖2L4

x
+ ‖u‖L4

x
‖∇2u‖L4

x
+ ‖∇2μ‖L2

x
‖∇u‖H1

x
+ ‖∇μ‖L4

x
‖∇2u‖L4

x

)
‖∇Δu‖L2

x

+ ‖Δθ‖L2
x
‖Δu‖L2

x
.

Thus, we have the following a priori Ḣ2
x-Estimate for u and any positive time T > 0 by Young’s inequality

and Gronwall’s inequality

‖Δu(T )‖2L2
x

+ ‖∇Δu‖2L2
T L2

x

≤ C(μ∗)
(
‖Δu0‖2L2

x
+ ‖∇u‖4L4

T L4
x

+ ‖∇2μ‖2L2
T L2

x
‖∇u‖2L∞

T L2
x

+ ‖Δθ‖L2
T L2

x
‖Δu‖L2

T L2
x

)

× exp
(
C

(
μ∗)(‖(u,∇μ)‖4L4

T L4
x

+ ‖∇2μ‖2L2
T L2

x

))
,

which gives (1.20).

2.3.4. Case (θ0, u0) ∈ Hs(R2)×(Hs−2(R2))2 or Hs−1×(Hs(R2))2, s > 2. We are going to use the
estimates in the high regularity regime in Lemma 2.1 to derive the Hs-Estimates (1.21)–(1.22)–(1.23)–
(1.24) in Remark 1.4. Let (l′j)j≥0 be a normalized sequence in �2(N) such that l′j ≥ 0 and

∑
j≥0(l

′
j)

2 = 1.

Case (θ0, u0) ∈ Hs(R2) × (Hs−2(R2))2, s > 2
We can view the transport term u · ∇θ simply as a source term of the θ-equation:

∂tθ − div(κ∇θ) = −u · ∇θ

Then, the preliminary estimate for θj = Δjθ in (2.43) can be replaced by

d
dt

‖θj‖L2
x

+ 22j‖θj‖L2
x

≤ C(κ∗)
(‖(u · ∇θ)j‖L2

x
+ 2j‖[κ,Δj ]∇θ‖L2

x

)
, j ≥ 0.

We apply Lemma 2.1 to derive the following estimates for s > 1:

‖(u · ∇θ)j‖L2
x

≤ Cl′j2
j(1−s)

(‖u‖L∞
x

‖∇θ‖Hs−1
x

+ ‖u‖Hs−1
x

‖∇θ‖L∞
x

)
,

2j‖[κ,Δj ]∇θ‖L2
x

≤ Cl′j2
j(1−s)

(‖∇κ‖L∞
x

‖∇θ‖Hs−1
x

+ ‖∇κ‖Hs−1
x

‖∇θ‖L∞
x

)
.

Therefore, we have the following estimate similarly as in (2.44) for s ∈ (2, 3) by virtue of Hs−1(R2) ↪→
L∞(R2):

22js‖θj‖2L∞
T L2

x
+ 22j(s+1)‖θj‖2L2

T L2
x

≤ 22js‖(θ0)j‖2L2
x

+ C(κ∗, s)(l′j)
2

T∫

0

‖u‖2
Hs−1

x
‖∇θ‖2

Hs−1
x

dt

+ C(κ∗, a, ‖θ‖L∞
T L∞

x
)(l′j)

2

T∫

0

‖∇θ‖2L∞
x

‖∇θ‖2
Hs−1

x
dt, j ≥ 0,

which, together with the L2-Estimate (2.45) and the Gronwall’s inequality, implies (1.21).
For s ≥ 3, we make use of the following commutator estimate

‖[u,Δj ]∇θ‖L2
x

≤ Cl′j2
j(1−s)(‖∇u‖L∞

x
‖∇θ‖Hs−2

x
+ ‖∇u‖Hs−2

x
‖∇θ‖L∞

x
), (2.52)

such that the estimate (1.22) follows.
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Case (θ0, u0) ∈ Hs−1(R2) × (Hs(R2))2, s > 2
We recall the preliminary estimate for uj in (2.49). We apply Lemma 2.1 to derive the following

commutator estimates for s ∈ (2, 3) and ν ∈ (s − 2, 1) ⊂ (0, 1)

‖[u,Δj ]∇u‖L2
x

≤ Clj2j(1−s)‖∇u‖Hν
x
‖∇u‖Hs−1−ν

x
,

2j‖[μ,Δj ]∇u‖L2
x

≤ Cl′j2
j(1−s)(‖∇μ‖L∞

x
‖∇u‖Hs−1

x
+ ‖∇μ‖Hs−1

x
‖∇u‖L∞

x
),

which implies then

22js‖uj‖2L∞
T L2

x
+ 22j(s+1)‖uj‖2L2

T L2
x

≤ 22js‖(u0)j‖2L2
x

+ C(μ∗)

T∫

0

22j(s−1)‖θj‖2L2
x
dt

+ C(μ∗, s, ν)(lj)2
T∫

0

‖∇u‖2Hν
x
‖∇u‖2

Hs−1−ν
x

dt

+ C(μ∗, s, ‖b‖C[s]+1 , ‖θ‖L∞
T H1

x
)(l′j)

2

T∫

0

‖∇θ‖2L∞
x

‖∇u‖2
Hs−1

x
+ ‖∇θ‖2

Hs−1
x

‖∇u‖2L∞
x

dt, j ≥ 0.

This, together with the L2-Estimate (2.51) and Sobolev’s embedding Hs−1(R2) ↪→ L∞(R2), implies (1.23)
where ν ∈ (0, 1) is taken to be a small constant bigger than s − 2.

For s ≥ 3, we use the commutator estimate (2.52) with θ replaced by u, to arrive at (1.24).
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Funct. Anal. 11, 93–110 (1972)
[18] Elgindi, T.: Finite-time singularity formation for C1,α solutions to the incompressible Euler equations on R

3 (2019).
arXiv:1904.04795

[19] Elgindi, T., Jeong, I.: Finite-time singularity formation for strong solutions to the Boussinesq system. Ann. PDE 6,
2524–5317 (2020)
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pressible inhomogeneous fluids. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 52, 52–109, 218–219
(1975)

[29] Liao, X.: A global existence result for a zero Mach number system. J. Math. Fluid Mech. 16, 77–103 (2014)
[30] Liao, X., Zillinger, C.: On variable viscosity and enhanced dissipation. arXiv:2110.10976
[31] Lions, P.L.: Mathematical Topics in Fluid Mechanics, Vol. 1. Oxford Lecture Series in Mathematics and its Applications,

vol. 3, p. xiv+237. The Clarendon Press, New York (1996)
[32] Lide, D. (ed.): CRC Handbook of Chemistry and Physics, Internet Version 2005. CRC Press, Boca Raton (2005).

http://www.hbcpnetbase.com
[33] Lorca, S., Boldrini, J.: The initial value problem for a generalized Boussinesq model. Nonlinear Anal. 36, 457–480 (1999)
[34] Majda, A.: Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes in Mathematics,

vol. 9. AMS/CIAM (2003)

http://arxiv.org/abs/1904.04795
http://arxiv.org/abs/2110.10976
http://www.hbcpnetbase.com


ZAMP On the two-dimensional Boussinesq equations Page 25 of 25 16

[35] Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)
[36] Moffatt, H.K.: Some remarks on topological fluid mechanics. In: Ricca, R.L. (ed.) An Introduction to the Geometry

and Topology of Fluid Flows, pp. 3–10. Kluwer Academic Publishers, Dordrecht (2001)
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