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Abstract. In this paper, we study a diffusive SIRS-type epidemic model with transfer from the infectious to the susceptible
class. Our model includes a general nonlinear incidence rate and spatially heterogeneous diffusion coefficients. We compute
the basic reproduction number R0 of our model and establish the global stability of the disease-free steady state when
R0 < 1. Furthermore, we study the uniform persistence when R0 > 1 and perform a bifurcation analysis for a special case
of our model. Some numerical simulations are presented to illustrate the dynamics of the solutions as the model parameters
are varied.
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1. Introduction

The spread of infectious diseases within human populations is an important topic of research in math-
ematical modelling that has become widely studied in recent times. Many different models, such as the
SI, SIS, SIR and SIRS types, have been proposed to better understand the underlying transmission
mechanism of infections. In these models, the population under study is divided into several classes or
subpopulations, such as susceptible (S), infected (I) and recovered (R).

The incidence rate of a disease, which measures how many people become infected by that disease per
time unit, plays an important role in the dynamics of epidemic models. Traditionally, the incidence rate
has been assumed to be bilinear with respect to the number of susceptible individuals (S) and the number
of infected individuals (I). However, many other functions have been proposed to model the transmission
of infectious diseases. In general, the incidence function can be written in the form F (S, I), where the
function F satisfies some common properties, such as the following:

(A1’) F (S, I) = IF1(S, I) with F, F1 ∈ C1(R2
+).

(A2’) F (0, I) = F (S, 0) = 0 for all S, I ≥ 0.
(A3’) ∂F

∂I (S, 0) > 0 for all S > 0; ∂F1
∂S (S, I) > 0 and ∂F1

∂I (S, I) ≤ 0 for all S, I ≥ 0.
(A4’) There exists a positive constant β such that F (S, I) ≤ βSI for all S, I ≥ 0.

Many specific forms of incidence functions commonly studied in the literature satisfy (A1’)–(A4’).
Some examples are:

• F (S, I) = βSI (bilinear) [1];
• F (S, I) = βSI/(1 + a1I) (saturated with respect to infectives) [2];
• F (S, I) = βSI/(1 + a2S) (saturated with respect to susceptibles) [3];
• F (S, I) = βSI/(1 + k1I + k2S) (Beddington–DeAngelis) [4];
• F (S, I) = βSI/

[
(1 + k1I)(1 + k2S)

]
(Crowley–Martin) [5];
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It should be noted that the above forms of incidence rate are monotone with respect to S, I and
concave with respect to I. On the other hand, non-monotone incidence rates have been used to describe
the effect of media coverage: at the beginning of an epidemic, the population has little awareness of the
preventive measures, so the contact rate increases rapidly. As the population becomes more aware of
risks, they take measures to control the outbreak, so the number of infectious contacts decreases. Some
examples of non-monotone incidence functions are the following:

• F (S, I) = βe−mISI with m > 0 [6];
• F (S, I) = βSI/(1 + aS + bI2) with a, b > 0 [7];
• F (S, I) = βSI/(1 + ω1I + ω2I

2) with ω1, ω2 > 0 [8];
Given the wide variety of forms that have been proposed for the incidence rate, some authors have

opted to study epidemic models that include a general class of incidence functions. This has the advantage
that the results proved for particular models can be generalized to a broader class of models, and the
researchers can focus on other features, such as spatial heterogeneity that could yield more complicated
dynamics or bifurcations.

A SIRS model with transfer from the infected to the susceptible class was studied in [9] using the
system of ordinary differential equations

dS

dt
= Λ − μS − Sf(I) + γ1I + δR,

dI

dt
= Sf(I) − (μ + α + γ1 + γ2)I,

dR

dt
= γ2I − μR − δR,

(1.1)

where S(t), I(t) and R(t) denote the number of susceptible, infected, and recovered individuals at time
t, respectively, and the parameters are interpreted as follows:

• Λ: recruitment rate of susceptible population.
• μ: natural death rate.
• α: disease-induced death rate.
• γ1: transfer rate from the infected class to the susceptible class.
• γ2: transfer rate from the infected class to the recovered class.
• δ: rate of immunity loss.
The authors in [9] considered an incidence function of the form Sf(I) and proved that the threshold

dynamics for model (1.1) is completely determined by the basic reproduction number, which is denoted as
R0. Variants of such model were later studied in [10] and [11] using more general incidence rates, which
take the form f(S, I). The authors in [10,11] showed that the generalized model retains its threshold
dynamics under certain conditions of the parameters.

On the other hand, we should consider that the individuals of the population under study may move
randomly in the space. Several studies on modelling of infectious diseases such as influenza [12], cholera
[13], dengue [14], brucellosis [15] and COVID-19 [16] have highlighted the importance of individual motility
in the dynamics of an outbreak. Thus, it is appropriate to consider epidemic models based on reaction–
diffusion equations, where the moving patterns for susceptible, infected and recovered individuals are
modelled through the diffusion rate of each subpopulation.

Moreover, many communicable diseases occur in a heterogeneous environment due to the differences in
environmental conditions such as humidity, temperature or the varying availability of medical resources.
This has led some researchers to study epidemic models where some of the parameters depend on a
spatial variable x. In particular, the transmission rate of the disease may be represented by a function
that depends not only on the number of susceptible and infected individuals, but also on the spatial
location. For example, a SIRS-type model with diffusion and heterogeneous parameters was studied in
[12] with the incidence function f(x, I)S. Other reaction–diffusion models have been proposed in [17]



ZAMP Dynamics of a reaction–diffusion SIRS model with general... Page 3 of 23 9

using the general incidence function β(x)f(S, I) and in [13] using the function f(x, S, I), which take into
account both the dependence on the spatial variable and the non-linearity with respect to S and I.

A diffusive epidemic model based on system (1.1) was studied by Yang et al. in [18], where the authors
established the global attractiveness of the disease-free equilibrium when R0 < 1 and the persistence
of the disease when R0 > 1. Although the authors in [18] included a general incidence rate of the
form β(x)f(S, I) and spatially variable parameters, they assumed that the diffusion coefficients for the
susceptible, infected and recovered individuals are all equal to a constant D. In reality, there could be
differences in the motility patterns of these subpopulations due to the individuals changing their behaviour
when they get the disease, and the diffusion rate may also vary with the spatial location.

Based on the above discussion, we propose here a diffusive version of the SIRS model (1.1) that
includes three different diffusion coefficients with spatial heterogeneity. The model to be studied is given
by the following system of partial differential equations:

∂tS = ∇ ·
(
dS(x)∇S

)
+ Λ(x) − μ(x)S − F (x, S, I) + γ1(x)I + δ(x)R, x ∈ Ω, t > 0,

∂tI = ∇ ·
(
dI(x)∇I

)
+ F (x, S, I) − (μ + α + γ1 + γ2)(x)I, x ∈ Ω, t > 0,

∂tR = ∇ ·
(
dR(x)∇R

)
+ γ2(x)I − μ(x)R − δ(x)R, x ∈ Ω, t > 0,[

dS(x)∇S(x, t)
]
· n =

[
dI(x)∇I(x, t)

]
· n =

[
dR(x)∇R(x, t)

]
· n = 0, x ∈ ∂Ω, t > 0,

(1.2)

subject to the initial conditions

S(x, 0) = S0(x) ≥ 0, I(x, 0) = I0(x) ≥ 0, R(x, 0) = R0(x) ≥ 0, x ∈ Ω. (1.3)

Here, the variables S(x, t), I(x, t) and R(x, t) represent the number of susceptible, infected, and
recovered individuals, respectively, at position x and time t, while ∇ is the gradient operator. We assume
that the domain Ω is a connected, bounded subset of Rn with smooth boundary ∂Ω. The positive functions
dS(·), dI(·) and dR(·) denote the spatially heterogeneous diffusion coefficients for each subpopulation. The
spatially dependent parameters Λ(·), μ(·), α(·), γ1(·), γ2(·) and δ(·) have the same meaning as for model
(1.1); for biological reasons, they are assumed to be strictly positive (except γ1, which is nonnegative)
and uniformly bounded on Ω. Furthermore, for the model to be well-posed, we assume that

Λ(·), μ(·), α(·), γ1(·), γ2(·), δ(·) ∈ C0(Ω,R).

Based on (A1’)–(A4’), we make the following assumptions on the incidence function F (x, S, I) for
model (1.2):

(A1) F (x, S, I) = IF1(x, S, I) with F, F1 ∈ C1(Ω × R
2
+).

(A2) F (x, 0, I) = F (x, S, 0) = 0 for all x ∈ Ω, S, I ≥ 0.
(A3) ∂F

∂I (x, S, 0) > 0 for all x ∈ Ω, S > 0; ∂F1
∂S (x, S, I) > 0 and ∂F1

∂I (x, S, I) ≤ 0 for all x ∈ Ω, S, I ≥ 0.
(A4) There exists a Hölder continuous function β : Ω → R+ such that F (x, S, I) ≤ β(x)SI for all x ∈ Ω,

S, I ≥ 0.

The rest of this paper is organized as follows. First, in Sect. 2, we prove the existence of bounded
global solutions for our model. Next, in Sect. 3, we compute the basic reproduction number and study
the stability of the disease-free steady state. In Sect. 4, we study the persistence of the model and the
existence of endemic equilibria. In Sect. 5, we perform a bifurcation analysis for a special case of our
model. In Sect. 6, we carry out some numerical simulations. Finally, we provide some concluding remarks
in Sect. 7.

2. Basic properties of the model

Let X := C(Ω,R3) be the Banach space with the supremum norm ‖·‖, and define X
+ := C(Ω,R3

+). Then,
(X,X+) is a strongly ordered space.
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We will now prove the existence of unique global solutions for our model. For that, we introduce the
notation

ψ− := min
x∈Ω

ψ(x), ψ+ := max
x∈Ω

ψ(x),

where ψ is any of Λ, μ, α, γ1, γ2, δ or β.

Theorem 2.1. For every initial value function φ := (φ1, φ2, φ3) ∈ X
+, model (1.2) has a unique solution

U(·, t;φ) =
(
S(·, t;φ), I(·, t;φ), R(·, t;φ)

)
with U(·, 0;φ) = φ defined on [0,∞).

Proof. Define d1(x) = dS(x), d2(x) = dI(x), d3(x) = dR(x), π1(x) = μ(x), π2(x) = μ(x)+α(x)+ γ1(x)+
γ2(x) and π3(x) = μ(x) + δ(x). For i = 1, 2, 3, let Γi(t) : C(Ω,R) → C(Ω,R) be the C0 semigroup
associated with ∇ · (di(·)∇) − πi(·) subject to the Neumann boundary condition. Then,

(
Γi(t)φ

)
(x) =

∫

Ω

Ti(x, y, t)φ(y) dy, ∀t > 0, φ ∈ C(Ω,R),

where Ti(x, y, t) represents the Green function associated with ∇·(di(·)∇)−πi(·) subject to the Neumann
boundary condition. By [19, Corollary 7.2.3], it follows that Γ(t) :=

(
Γ1(t),Γ2(t),Γ3(t)

)
is strongly positive

and compact for each t > 0.
Following [20,21], we can see that there exist constants Mi > 0 (i = 1, 2, 3) such that

‖Γi(t)‖ ≤ Mie
αit for all t ≥ 0, (2.1)

where αi < 0 is the principal eigenvalue of ∇·(di(·)∇)−πi(·) subject to the Neumann boundary condition.
For every initial value function φ =

(
φ1(·), φ2(·), φ3(·)

)
∈ X

+, we define G = (G1, G2, G3) : X+ → X

by

G1(φ)(x) = Λ(x) − F
(
x, φ1(x), φ2(x)

)
+ γ1(x)φ2(x) + δ(x)φ3(x),

G2(φ)(x) = F
(
x, φ1(x), φ2(x)

)
,

G3(φ)(x) = γ2(x)φ2(x).

Then, model (1.2) can be rewritten as the integral equation

U(t) = Γ(t)φ +

t∫

0

Γ(t − s)G(U(s)) ds, (2.2)

where U(t) =
(
S(t), I(t), R(t)

)T . It is easy to see that the subtangential condition in [22, Corollary 4] is
satisfied. Thus, the model has a unique positive solution

(
S(·, t;φ), I(·, t;φ), R(·, t;φ)

)
on [0, τ), where

0 < τ ≤ +∞.
We will now prove that the local solution can be extended to a global one, i.e. τ = +∞.
Suppose by contradiction that τ < +∞. By the theory of abstract functional differential equations

(see [22, Theorem 2]), we know that

‖U(x, t, φ)‖ → +∞ as t → τ. (2.3)

Hence, it suffices to prove that the solution is bounded on Ω × [0, τ). To this end, we define

K(t) =
∫

Ω

[
S(x, t) + I(x, t) + R(x, t)

]
dx.

By the divergence theorem [23, Theorem 3.7] and the homogeneous Neumann boundary conditions,
we have ∫

Ω

∇ ·
(
dS(x)∇S

)
dx = 0,

∫

Ω

∇ ·
(
dI(x)∇I

)
dx = 0,

∫

Ω

∇ ·
(
dR(x)∇R

)
dx = 0.
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Thus,
d
dt

K(t) =
∫

Ω

[
Λ(x) − μ(x)

(
S(x, t) + I(x, t) + R(x, t)

)
− α(x)I(x, t)

]
dx

≤ Λ+|Ω| − μ−K(t), ∀t ∈ [0, τ).

By the comparison principle, there exists a constant N1 > 0 and t1 > 0 such that K(t) ≤ N1 for all
t ∈ [t1, τ). Consequently,

∫

Ω

S(x, t) dx ≤ N1,

∫

Ω

I(x, t) dx ≤ N1,

∫

Ω

R(x, t) dx ≤ N1, ∀t ∈ [t1, τ). (2.4)

Next, denote by τ i
j the eigenvalue of ∇ · (di(·)∇) − πi(·) subject to the Neumann boundary condition

corresponding to the eigenfunction ϕi
j(x), such that τ i

1 > τ i
2 ≥ τ i

3 ≥ · · · ≥ τ i
j ≥ · · · for i = 1, 2, 3. From

[24, Chapter 5], we can write

Ti(x, y, t) =
∑

j≥1

exp
(
τ i
j t
)
ϕi

j(x)ϕi
j(y).

Since ϕi
j is uniformly bounded, there exists ω > 0 such that

Ti(x, y, t) ≤ ω
∑

j≥1

exp
(
τ i
j t
)
, ∀t > 0, x, y ∈ Ω.

For i = 1, 2, 3, define

d−
i := min

x∈Ω
di(x) and π−

i := min
x∈Ω

πi(x).

Denote by ρi
j the eigenvalues of ∇ · (d−

i ∇) − π−
i subject to the Neumann boundary condition, such that

−π−
i = ρi

1 > ρi
2 ≥ ρi

3 ≥ · · · ≥ ρi
j ≥ · · · . Then, −ρi

j and −τ i
j are the j-th eigenvalues of −∇ · (d−

i ∇) + π−
i

and −∇ · (di(·)∇) + πi(·), respectively, subject to the Neumann boundary condition.
For all x ∈ Ω and z ∈ R, we have d−

i z2 ≤ di(x)z2 and π−
i ≤ πi(x). Then, by [25, Theorem 2.4.7],

we know that −ρi
j ≤ −τ i

j for all j = 1, 2, . . ., which implies that ρi
j ≥ τ i

j for all j = 1, 2, . . .. Since ρi
j

decreases like −j2, there exists wi > 0 such that

Ti(x, y, t) ≤ ω
∑

j≥1

exp
(
ρi

jt
)

≤ wi exp
(
ρi
1t
)

= wi exp
(
−π−

i t
)
, ∀t > 0, x, y ∈ Ω, i = 1, 2, 3.

Using (2.2) together with (2.1) and (2.4), we obtain

S(x, t) = Γ1(t)S(x, t1)

+

t∫

t1

Γ1(t − s)
[
Λ(x) − F (x, S(x, t), I(x, t)) + γ1(x)I(x, t) + δ(x)R(x, t)

]
ds

≤ Γ1(t)S(x, t1) +

t∫

t1

Γ1(t − s)
[
Λ(x) + γ1(x)I(x, t) + δ(x)R(x, t)

]
ds

≤ M1e
α1(t−t1) ‖S(·, t1)‖ +

t∫

t1

∫

Ω

T1(x, y, t − s)
[
Λ(x) + γ1(x)I(x, t) + δ(x)R(x, t)

]
dy ds

≤ M1e
α1(t−t1) ‖S(·, t1)‖ +

t∫

t1

w1e
−(t−s)π−

1

⎡

⎣Λ+ + γ+
1

∫

Ω

I(y, s) dy + δ+

∫

Ω

R(y, s) dy

⎤

⎦ ds



9 Page 6 of 23 E. Avila-Vales and Á. G. C. Pérez ZAMP

≤ M1e
α1(t−t1) ‖S(·, t1)‖ +

t∫

t1

w1e
−(t−s)π−

1
(
Λ+ + γ+

1 N1 + δ+N1

)
ds

= M1e
α1(t−t1) ‖S(·, t1)‖ + w1

(
Λ+ + γ+

1 N1 + δ+N1

) 1 − e−(t−t1)π
−
1

π−
1

≤ M1e
−α1t1 ‖S(·, t1)‖ +

w1

(
Λ+ + γ+

1 N1 + δ+N1

)

μ− , ∀t ∈ [t1, τ).

Hence,

‖S(·, t)‖ ≤ M1e
−α1t1 ‖S(·, t1)‖ +

w1

(
Λ+ + γ+

1 N1 + δ+N1

)

μ− =: N2, ∀t ∈ [t1, τ).

From the second equation of (1.2) and assumption (A4), we get

I(x, t) = Γ2(t)I(x, t1) +

t∫

t1

Γ2(t − s)F (x, S(x, t), I(x, t)) ds

≤ Γ2(t)I(x, t1) +

t∫

t1

Γ2(t − s)β(x)S(x, t)I(x, t) ds

≤ M2e
α2(t−t1) ‖I(·, t1)‖ +

t∫

t1

∫

Ω

T2(x, y, t − s)β(x)S(x, t)I(x, t) dy ds

≤ M2e
α2(t−t1) ‖I(·, t1)‖ + w2β

+N1N2
1 − e−(t−t1)π

−
2

π−
2

≤ M2e
−α2t1 ‖I(·, t1)‖ +

w2β
+N1N2

μ− + α− + γ−
1 + γ−

2

, ∀t ∈ [t1, τ).

Hence, we obtain

‖I(·, t)‖ ≤ M2e
−α2t1 ‖I(·, t1)‖ +

w2β
+N1N2

μ− + α− + γ−
1 + γ−

2

=: N3, ∀t ∈ [t1, τ).

Similarly, the third equation of (1.2) yields

R(x, t) = Γ3(t)R(x, t1) +

t∫

t1

Γ3(t − s)γ2(x)I(x, t) ds

≤ M3e
α3(t−t1) ‖R(·, t1)‖ +

t∫

t1

∫

Ω

T3(x, y, t − s)γ2(x)I(x, t) dy ds

≤ M3e
α3(t−t1) ‖R(·, t1)‖ + w3γ

+
2 N1

1 − e−(t−t1)π
−
3

π−
3

≤ M3e
−α3t1 ‖R(·, t1)‖ +

w3γ
+
2 N1

μ− + δ− , ∀t ∈ [0, τ),

and thus,

‖R(·, t)‖ ≤ M3e
−α3t1 ‖R(·, t1)‖ +

w3γ
+
2 N1

μ− + δ− , ∀t ∈ [t1, τ).
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Hence, we conclude that S, I and R are bounded on Ω × [0, τ), which contradicts (2.3). This proves
that τ = +∞. �

In a similar way, we can obtain the following corollary on the boundedness of solutions on [0,∞).

Corollary 2.2. For each solution U(·, t;φ) =
(
S(·, t;φ), I(·, t;φ), R(·, t;φ)

)
of (1.2) with initial value

function φ ∈ X
+, there exist positive constants MS ,MI ,MR independent of initial data such that

lim sup
t→∞

‖S(·, t)‖ ≤ MS , lim sup
t→∞

‖I(·, t)‖ ≤ MI , lim sup
t→∞

‖R(·, t)‖ ≤ MR. (2.5)

Furthermore, the solution semiflow Φt : X+ → X
+ is point dissipative and has a global compact attractor.

Proof. Using the same notation as in the proof of Theorem 2.1 and replacing τ by +∞, we can show
that

MS =
w1

(
Λ+ + γ+

1 N1 + δ+N1

)

μ− , MI =
w2β

+N1MS

μ− + α− + γ−
1 + γ−

2

, MR =
w3γ

+
2 N1

μ− + δ−

satisfy (2.5). From this, it follows that the system is point dissipative. In addition, we know by [26,
Theorem 2.2.6] that the solution semiflow Φt is compact for any t > 0. Then, we have by [27, Theorem
3.4.8] that Φt has a global compact attractor. Consequently, the proof is complete. �

3. Basic reproduction number and stability of the disease-free steady state

In this section, we will study the disease-free dynamics of model (1.2) and determine the basic reproduction
number R0, which is defined as the average number of secondary infections generated by a single infected
individual introduced in a completely susceptible population.

Setting I(x, t) = R(x, t) ≡ 0 in (1.2), we obtain the following equation for the density of susceptible
population in absence of the disease:

∂tS = ∇ ·
(
dS(x)∇S

)
+ Λ(x) − μ(x)S, x ∈ Ω, t > 0,[

dS(x)∇S(x, t)
]
· n = 0, x ∈ ∂Ω, t > 0,

(3.1)

System (3.1) admits a unique positive steady state S0(x), which is globally asymptotically stable (see
[20, Lemma 1]). We will call E0 := (S0(·), 0, 0) ∈ X

+ the disease-free steady state of model (1.2).
Linearizing the equation for the infected population in (1.2) around E0, we obtain

∂tI = ∇ ·
(
dI(x)∇I

)
+
[

∂F
∂I (x, S0, 0) − (μ + α + γ1 + γ2)(x)

]
I, x ∈ Ω, t > 0,[

dI(x)∇I(x, t)
]
· n = 0, x ∈ ∂Ω, t > 0.

(3.2)

Substituting I(x, t) = eλtϕ(x) in the above equation yields the following eigenvalue problem:

λϕ(x) = ∇ ·
(
dI(x)∇ϕ(x)

)
+
[

∂F
∂I (x, S0, 0) − (μ + α + γ1 + γ2)(x)

]
ϕ(x), x ∈ Ω,[

dI(x)∇ϕ(x)
]
· n = 0, x ∈ ∂Ω.

(3.3)

It follows from the standard Krein–Rutman theorem that (3.3) has a principal eigenvalue λ∗(S0) =
s
(
∇ · (dI∇) + ∂F

∂I (·, S0, 0) − (μ + α + γ1 + γ2)
)

corresponding to a positive eigenfunction ϕ∗(x), where
s(A) denotes the spectral bound of a closed linear operator A.

It is well-known that λ∗(S0) is given by the variational characterization

λ∗(S0) = − inf

{∫

Ω

[
dI(x)

∣
∣∇ϕ(x)

∣
∣2 + [(μ + α + γ1 + γ2)(x) − ∂F

∂I
(x, S0, 0)]ϕ2(x)

]
dx :

ϕ ∈ H1(Ω) and
∫

Ω

ϕ2(x) dx = 1

}

.

(3.4)
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Let T2(t) be the semigroup on C(Ω,R) associated with ∇ ·
(
dI∇I

)
− (μ + α + γ1 + γ2). In order to

define the basic reproduction number for our model, we assume that the population is near the disease-
free steady state E0, and introduce infected individuals at time t = 0, where the spatial distribution of
infected population is described by φ2(x). Then, T2(t)φ2(x) is the distribution of infected population as
time evolves. It follows that the distribution of new infections at time t is ∂F

∂I (x, S0, 0)T2(t)φ2(x). Thus,
the distribution of total new infections becomes

L(φ2)(x) :=

∞∫

0

∂F

∂I
(x, S0, 0)T2(t)φ2(x) dt =

∂F

∂I
(x, S0, 0)

∞∫

0

T2(t)φ2(x) dt,

where L is the next infection operator, which maps the initial distribution φ2 of infected individuals to
the distribution of total infected individuals produced during the infection period.

Following [28–31], we define the basic reproduction number for model (1.2) as the spectral radius of
L, that is,

R0 := ρ(L) = sup
0 �=ϕ∈H1(Ω)

⎧
⎪⎪⎨

⎪⎪⎩

∫

Ω

∂F
∂I (x, S0, 0)ϕ2(x) dx

∫

Ω

[
dI(x)

∣
∣∇ϕ(x)

∣
∣2 + (μ + α + γ1 + γ2)(x)ϕ2(x)

]
dx

⎫
⎪⎪⎬

⎪⎪⎭
. (3.5)

Define u = (I, S,R),

F(x, u) =

⎛

⎝
F (x, S, I)

0
0

⎞

⎠ , V(x, u) =

⎛

⎝
(μ + α + γ1 + γ2)(x)I

μ(x)S + F (x, S, I) − Λ(x) − γ1(x)I − δ(x)R
μ(x)R + δ(x)R − γ2(x)I

⎞

⎠ .

Thus, model (1.2) can be rewritten as

∂tui = ∇ ·
(
di(x)∇ui

)
+ Fi(x, u) − Vi(x, u), 1 ≤ i ≤ 3, x ∈ Ω, t > 0,[

di(x)∇ui(x, t)
]
· n = 0, 1 ≤ i ≤ 3, x ∈ ∂Ω, t > 0,

(3.6)

where d1 = dI , d2 = dS and d3 = dR. The disease-free steady state is given by u0(x) =
(
0, S0(x), 0

)
, with

the variables ordered as (I, S,R).
We can immediately verify that assumptions (A1)–(A4) in [31] hold. Moreover, if we define

M0(x) =
(

−μ(x) δ(x)
0 −μ(x) − δ(x)

)
, F0(x) =

∂F

∂I
(x, S0, 0) and V (x) = (μ + α + γ1 + γ2)(x),

then M0(x) and −V (x) are cooperative matrices for all x ∈ Ω, i.e. their off-diagonal elements are non-
negative. Hence, assumptions (A5) and (A6) in [31] also hold, so we can conclude the following result by
[31, Theorem 3.1].

Lemma 3.1. R0 − 1 has the same sign as λ∗. Furthermore, if R0 < 1, then E0 is locally asymptotically
stable for system (1.2).

Before proving the main result of this section, we give the following lemma.

Lemma 3.2. Suppose that U(·, t;φ) =
(
S(·, t;φ), I(·, t;φ), R(·, t;φ)

)
is the solution of system (1.2) with

U(·, 0;φ) = φ ∈ X
+. Then:

(i) For any φ ∈ X
+, we always have S(x, t;φ) > 0 for all t > 0, x ∈ Ω, and

lim inf
t→∞ S(x, t;φ) ≥ Λ−

μ+ + β+MI
, uniformly for x ∈ Ω.

(ii) If there exists t0 ≥ 0 such that I(·, t0;φ) �≡ 0 (respectively, R(·, t0;φ) �≡ 0), then, for t > t0, we have
I(·, t;φ) > 0 (respectively, R(·, t;φ) > 0).
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Proof. By assumption (A4) and Corollary 2.2, we have F (x, S, I) ≤ β+SI ≤ β+MIS for all x ∈ Ω,
S, I ≥ 0. Then, from the first equation of (1.2), we get

∂tS ≥ ∇ ·
(
dS(x)∇S

)
+ Λ− − (μ+ + β+MI) S, x ∈ Ω, t > 0,[

dS(x)∇S(x, t)
]
· n = 0, x ∈ ∂Ω, t > 0.

(3.7)

By the comparison principle, this shows that lim inft→∞ S(x, t;φ) ≥ Λ−/ (μ+ + β+MI) uniformly for
x ∈ Ω.

From system (1.2), we can also get

∂tI ≥ ∇ ·
(
dI(x)∇I

)
− (μ + α + γ1 + γ2)(x)I, x ∈ Ω, t > 0,[

dI(x)∇I(x, t)
]
· n = 0, x ∈ ∂Ω, t > 0.

(3.8)

and
∂tR ≥ ∇ ·

(
dR(x)∇R

)
− (μ + δ)(x)R, x ∈ Ω, t > 0,[

dR(x)∇R(x, t)
]
· n = 0, x ∈ ∂Ω, t > 0.

(3.9)

Using the strong maximum principle (see [32, Proposition 13.1]), part (ii) of the lemma is concluded. �
Next, we give the main result concerning the stability of E0 in terms of the basic reproduction number.

Theorem 3.3. Assume that U(·, t;φ) is the solution of system (1.2) with U(·, 0;φ) = φ ∈ X
+. Then, the

following statements are valid.
(i) If R0 < 1, then the disease-free steady state E0 = (S0, 0, 0) is globally asymptotically stable.
(ii) If R0 > 1, then there exists a constant ε0 > 0 such that any positive solution of (1.2) satisfies

lim sup
t→∞

∥
∥(S(·, t), I(·, t), R(·, t)

)
− (S0, 0, 0)

∥
∥ > ε0.

Proof. (i) By Lemma 3.1, we have λ∗(S0) < 0 when R0 < 1. Thus, there exists a sufficiently small ε
such that λ∗(S0 + ε) < 0. According to Corollary 2.2, there exists a τ1 > 0 such that

S(x, t) ≤ S0(x) + ε, for all t ≥ τ1, x ∈ Ω.

It follows from (A1)–(A3) that

F (x, S, I) = IF1(x, S, I) ≤ IF1(x, S0(x) + ε, I) ≤ I lim
h→0

F1(x, S0(x) + ε, h)

= I lim
h→0

F (x, S0(x) + ε, h) − F (x, S0(x) + ε, 0)
h

= I
∂F

∂I
(x, S0(x) + ε, 0)

for t ≥ τ1. Hence, by the second equation of (1.2), we have

∂tI ≤ ∇ ·
(
dI(x)∇I

)
+
[

∂F
∂I (x, S0(x) + ε, 0) − (μ + α + γ1 + γ2)(x)

]
I, x ∈ Ω, t ≥ τ1,[

dI(x)∇I(x, t)
]
· n = 0, x ∈ ∂Ω, t ≥ τ1.

(3.10)

Let ψ(x) be the eigenfunction corresponding to the principal eigenvalue λ∗(S0 + ε) < 0. Let ξ1 > 0
be such that I(x, τ1) ≤ ξ1ψ(x). By the comparison principle, we get

I(x, t) ≤ ξ1ψ(x)eλ∗(S0(x)+ε)(t−τ1), for all t ≥ τ1, x ∈ Ω.

This yields that limt→∞ I(x, t) = 0 uniformly for x ∈ Ω. Then, the third equation of (1.2) is
asymptotic to

∂tR = ∇ ·
(
dR(x)∇R

)
− (μ + δ)(x)R,

so limt→∞ R(x, t) = 0 uniformly for x ∈ Ω. Moreover, the first equation of (1.2) is asymptotic to

∂tS = ∇ ·
(
dS(x)∇S

)
+ Λ(x) − μ(x)S,

which implies that limt→∞ S(x, t) = S0(x) uniformly for x ∈ Ω. This completes the proof.
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(ii) Assume by contradiction that there exists a positive solution of (1.2) such that

lim sup
t→∞

∥
∥(S(·, t), I(·, t), R(·, t)

)
− (S0, 0, 0)

∥
∥ < ε0.

Then, there exists t1 > 0 such that S0 − ε0 < S(x, t) < S0 + ε0 and 0 < I(x, t) < ε0 for t ≥ t1. It
follows from (A1)–(A3) that

F (x, S, I)
I

= F1(x, S, I) ≥ F1(x, S0 − ε0, ε0) ≥ ∂F

∂I
(x, S0 − ε0, ε0).

Therefore, I(x, t;φ) satisfies

∂tI ≥ ∇ ·
(
dI(x)∇I

)
+
[

∂F
∂I (x, S0 − ε0, ε0) − (μ + α + γ1 + γ2)(x)

]
I, x ∈ Ω, t ≥ t1,[

dI(x)∇I(x, t)
]
· n = 0, x ∈ ∂Ω, t ≥ t1.

(3.11)

For any ε ∈
(
0,minx∈Ω S0(x)

)
, we consider the eigenvalue problem

λϕ(x) = ∇ ·
(
dI(x)∇ϕ(x)

)
+
[

∂F
∂I (x, S0 − ε, ε) − (μ + α + γ1 + γ2)(x)

]
ϕ(x), x ∈ Ω,[

dI(x)∇ϕ(x)
]
· n = 0, x ∈ ∂Ω.

Define Rε as the spectral radius of the operator

Lε : φ → ∂F

∂I
(·, S0 − ε, ε)

∞∫

0

T2(t)φ dt.

Since limε→0 Rε = R0 > 1, we restrict ε to be small enough such that Rε > 1. Hence λ∗
ε :=

s
(
∇ · (dI∇) + ∂F

∂I (·, S0 − ε, ε) − (μ + α + γ1 + γ2)
)

> 0. As a consequence, we can fix a small
ε0 ∈

(
ε,minx∈Ω S0(x)

)
such that λ∗

ε0
> 0.

By assumption, I(x, t) > 0 for all x ∈ Ω and t > 0. Then, by Lemma 3.2(ii), we can choose
a sufficiently small number η > 0 such that I(·, t) ≥ ηφ∗

ε0
(·), where φ∗

ε0
(·) is a strongly positive

eigenfunction corresponding to λ∗
ε0

. Notice that u1(x, t) := η exp
(
λ∗

ε0
(t − t1)

)
φ∗

ε0
(x) is a solution to

the linear system

∂tI = ∇ ·
(
dI(x)∇I

)
+
[

∂F
∂I (x, S0 − ε0, ε0) − (μ + α + γ1 + γ2)(x)

]
I, x ∈ Ω, t ≥ t1,[

dI(x)∇I(x, t)
]
· n = 0, x ∈ ∂Ω, t ≥ t1.

(3.12)

It then follows from (3.11) and the comparison principle that

I(x, t) ≥ η exp
(
λ∗

ε0
(t − t1)

)
φ∗

ε0
(x), for all x ∈ Ω, t ≥ t1.

Since λ∗
ε0

> 0, this implies that I(x, t) is unbounded, which is a contradiction.
�

4. Uniform persistence

We will now study the existence and persistence of the endemic equilibrium for model (1.2).

Theorem 4.1. Suppose that R0 > 1. Then, (1.2) is uniformly persistent in the sense that there exists a
constant ε > 0 such that for any φ ∈ X

+ with φ2(·) �≡ 0, we have

lim inf
t→∞ S(x, t;φ) ≥ ε, lim inf

t→∞ I(x, t;φ) ≥ ε, lim inf
t→∞ R(x, t;φ) ≥ ε, uniformly for x ∈ Ω. (4.1)

Moreover, (1.2) admits at least one endemic equilibrium (S∗, I∗, R∗).
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Proof. Let

W0 = {(φ1, φ2, φ3) ∈ X
+ : φ2 �≡ 0 and φ3 �≡ 0}

and

∂W0 = X
+ \ W0 = {(φ1, φ2, φ3) ∈ X

+ : φ2 ≡ 0 or φ3 ≡ 0}.

By Lemma 3.2(ii), it follows that for any φ ∈ W0, we have I(x, t;φ) > 0 and R(x, t;φ) > 0 for all x ∈ Ω,
t > 0. Hence, ΦtW0 ⊆ W0 for all t ≥ 0.

Define

M∂ = {φ ∈ ∂W0 : Φt(φ) ∈ ∂W0 for all t ≥ 0}
and let ω(φ) be the omega limit set of the orbit O+(φ) := {Φt(φ) : t ≥ 0}. We will now show that
ω(φ) = {(S0(·), 0, 0)} for all φ ∈ M∂ .

For any given φ ∈ M∂ , we have Φt(φ) ∈ ∂W0. It then follows that for each t ≥ 0, either I(·, t;φ) ≡ 0
or R(·, t;φ) ≡ 0. In the case where I(·, t;φ) ≡ 0, we can see that R(x, t;φ) satisfies

∂tR = ∇ ·
(
dR(x)∇R

)
− (μ + δ)(x)R, x ∈ Ω, t > 0,[

dR(x)∇R(x, t)
]
· n = 0, x ∈ ∂Ω, t > 0.

(4.2)

which implies that limt→∞ R(·, t;φ) = 0 uniformly for x ∈ Ω. Thus, for any sufficiently small ε > 0, there
is a t2 > 0 such that R(x, t;φ) < ε for t ≥ t2. Then, from the first equation of (1.2), we can get

∂tS = ∇ ·
(
dS(x)∇S

)
+ Λ(x) − μ(x)S + εδ(x), x ∈ Ω, t > t2,[

dS(x)∇S(x, t)
]
· n = 0, x ∈ ∂Ω, t > t2.

(4.3)

Since ε is arbitrary, this shows that limt→∞ S(x, t;φ) = S0(x). On the other hand, when I(·, t3;φ) �≡ 0
for some t3 ≥ 0, we obtain by Lemma 3.2(ii) that I(x, t;φ) > 0 for all x ∈ Ω, t > t3. Hence, R(·, t;φ) ≡ 0
for all t > t3, but the last equation of (1.2) implies that I(·, t;φ) ≡ 0 for t > t3, which is a contradiction.
Thus, we have proved that ω(φ) = {(S0(·), 0, 0)} for all φ ∈ M∂ . Moreover, since R0 > 1, it follows from
Theorem 3.3(ii) that E0 = (S0, 0, 0) is a uniform weak repeller for W0.

Define a continuous function p : X+ → [0,∞) by

p(φ) := min
{

min
x∈Ω

φ2(x), min
x∈Ω

φ3(x)
}

for φ = (φ1, φ2, φ3) ∈ X
+.

It follows from Lemma 3.2(ii) that p−1(0,∞) ⊆ W0, and p has the property that if p(φ) > 0 or φ ∈ W0

with p(φ) = 0, then p
(
Φt(φ)

)
> 0 for all t > 0. Thus, p is a generalized distance function for the semiflow

Φt : X+ → X
+ (see [33]).

Note that any forward orbit of Φt in M∂ converges to E0. Furthermore, the claim above implies that
E0 is isolated in X

+ and WS(E0) ∩ W0 = ∅, where WS(E0) is the stable set of E0. Moreover, it is clear
that there are no cycles in M∂ from E0 to E0. By [33, Theorem 3], it follows that there exists a constant
η1 > 0 such that min{p(ψ) : ψ ∈ ω(φ)} > η1 for any φ ∈ W0. Hence,

lim inf
t→∞ I(·, t;φ), lim inf

t→∞ R(·, t;φ) ≥ η1 for all φ ∈ W0.

Further, it follows from Lemma 3.2(i) that

lim inf
t→∞ S(·, t;φ) ≥ Λ−

μ+ + β+MI
=: η2 for all φ ∈ W0.

Thus, (4.1) holds by taking ε = min{η1, η2}, which proves the uniform persistence result. By Theorem
3.7 and Remark 3.10 in [34], it follows that Φt : W0 → W0 has a global attractor. It then follows from [34,
Theorem 4.7] that Φt has a steady state (S∗, I∗, R∗) ∈ W0, which is positive by Lemma 3.2(ii). Therefore,
(S∗, I∗, R∗) is an endemic equilibrium of model (1.2). �
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5. Bifurcation analysis

In this section, we will use γ1 (the transfer rate from the infected class to the susceptible class) as the main
bifurcation parameter to perform the bifurcation analysis of model (1.2). To apply the local and global
bifurcation theory by Crandall and Rabinowitz [35], we need to assume that the diffusion coefficient dI

and the parameter γ1 are constant, where dI > 0 and γ1 ≥ 0. However, we still allow all other parameters
and the diffusion rates dS(x) and dR(x) to be spatially variable.

A steady state of model (1.2) is a solution of the elliptic problem

∇ ·
(
dS(x)∇S̃(x)

)
+ Λ(x) − μ(x)S̃(x) − F

(
x, S̃(x), Ĩ(x)

)
+ γ1(x)Ĩ(x)

+δ(x)R̃(x) = 0, x ∈ Ω,

∇ ·
(
dI(x)∇Ĩ(x)

)
+ F

(
x, S̃(x), Ĩ(x)

)
− (μ + α + γ1 + γ2)(x)Ĩ(x) = 0, x ∈ Ω,

∇ ·
(
dR(x)∇R̃(x)

)
+ γ2(x)Ĩ(x) − μ(x)R̃(x) − δ(x)R̃(x) = 0, x ∈ Ω,[

dS(x)∇S̃(x)
]
· n =

[
dI(x)∇Ĩ(x)

]
· n =

[
dR(x)∇R̃(x)

]
· n = 0, x ∈ ∂Ω.

(5.1)

When dI(x) = dI and γ1(x) = γ1 are constant, system (5.1) becomes

∇ ·
(
dS(x)∇S̃(x)

)
+ Λ(x) − μ(x)S̃(x) − F

(
x, S̃(x), Ĩ(x)

)
+ γ1Ĩ(x)

+δ(x)R̃(x) = 0, x ∈ Ω,

dIΔĨ(x) + F
(
x, S̃(x), Ĩ(x)

)
− (μ + α + γ2)(x)Ĩ(x) − γ1Ĩ(x) = 0, x ∈ Ω,

∇ ·
(
dR(x)∇R̃(x)

)
+ γ2(x)Ĩ(x) − μ(x)R̃(x) − δ(x)R̃(x) = 0, x ∈ Ω,[

dS(x)∇S̃(x)
]
· n =

[
dI∇Ĩ(x)

]
· n =

[
dR(x)∇R̃(x)

]
· n = 0, x ∈ ∂Ω.

(5.2)

It is easy to see that (S0(·), 0, 0) is a semi-trivial steady state solution of (5.2). Denote by γ∗
1 the

principal eigenvalue of the eigenvalue problem

dIΔψ(x) +
[

∂F
∂I

(
x, S0(x), 0

)
− (μ + α + γ2)(x)

]
ψ(x) = γ1ψ(x), x ∈ Ω,[

dI∇ψ(x)
]
· n = 0, x ∈ ∂Ω,

(5.3)

associated with a positive eigenfunction ψ0(x), which is uniquely determined by the normalization
maxx∈Ω ψ0(x) = 1. By expression (3.5), we know that R0 is decreasing with respect to γ1. Further-
more, (5.3) with γ1 = γ∗

1 is equivalent to system (3.3) with γ1(x) = γ∗
1 , dI(x) = dI and λ = 0, and

by Lemma 3.1, we have that λ∗ = 0 if and only if R0 = 1. This shows that the condition γ1 = γ∗
1 is

equivalent to R0 = 1.
Next, we define a function

H(x) =
∂F

∂I

(
x, S0(x), 0

)
− (μ + α + γ2)(x). (5.4)

Then, it follows that γ∗
1 = H when H is a constant.

We will now study the case where H is not constant and it could change sign in Ω. Consider the
eigenvalue problem with indefinite weight

Δϕ(x) + ΛH(x)ϕ(x) = 0, x ∈ Ω,[
∇ϕ(x)

]
· n = 0, x ∈ ∂Ω.

(5.5)

It follows from [36, Theorem 4.2] that the problem (5.5) has a nonzero principal eigenvalue Λ0 = Λ0(H)
if and only if H(x) changes sign in Ω and

∫

Ω

H(x) dx �= 0.

It then follows from [36, Proposition 4.4] that the sign of the principal eigenvalue γ∗
1 of the problem

(5.3) is described by the following result.

Lemma 5.1. The following statements hold.

(i) If
∫

Ω

H(x) dx ≥ 0, then γ∗
1 > 0 for all dI > 0.
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(ii) If
∫

Ω

H(x) dx < 0, then

{
γ∗
1 > 0 for all dI < 1

Λ0(H) ,

γ∗
1 < 0 for all dI > 1

Λ0(H) .

We next regard γ1 as a bifurcation parameter and investigate a local branch of positive solutions of
(5.2) that bifurcates from the branch of semi-trivial solutions

{
(S0(·), 0, 0, γ1) : γ1 ≥ 0

}
. We note that

S0(·) is independent of the parameter γ1.

Theorem 5.2. Let

S =
{
(S, I,R, γ1) ∈ X × R+ : (S, I,R, γ1) = (S0(·), 0, 0, γ1)

}
,

be the set of semi-trivial solutions of (5.2), where

X =
{
(u, v, w) ∈ W 2,p(Ω) × W 2,p(Ω) × W 2,p(Ω) :
[
dS(x)∇u(x)

]
· n =

[
dI∇v(x)

]
· n =

[
dR(x)∇w(x)

]
· n = 0, ∀x ∈ ∂Ω

}

for p > n. Then, a branch of positive solutions of (5.2) bifurcates from S if and only if γ1 = γ∗
1 . More

precisely, all positive solutions of (5.2) near (S, I,R, γ1) = (S0, 0, 0, γ∗
1 ) can be parametrized as a smooth

curve

Γ1 =
{

(S, I,R, γ1) =
(
S0 +

(
φ0 + S(s)

)
s,
(
ψ0 + I(s)

)
s,
(
χ0 + R(s)

)
s, γ1(s)

)
∈ X × R+ :

0 < s ≤ ε0

} (5.6)

for some ε0 > 0. Here,
(
S(s), I(s), R(s), γ1(s)

)
is a smooth function of s that satisfies

(
S(0), I(0), R(0), γ1(0)

)
= (0, 0, 0, γ∗

1 ) and
∫

Ω

I(s)ψ0(x) dx = 0, (5.7)

ψ0 > 0 is the principal eigenfunction of (5.3), and φ0, χ0 satisfy

−∇ ·
(
dS(x)∇φ0(x)

)
+ μ(x)φ0(x) =

[
γ∗
1 − ∂F

∂I (x, S0, 0)
]
ψ0(x) + δ(x)χ0(x), x ∈ Ω,

−∇ ·
(
dR(x)∇χ0(x)

)
+ [μ(x) + δ(x)]χ0(x) = γ2(x)ψ0(x) x ∈ Ω,[

dS(x)∇φ0(x)
]
· n =

[
dR(x)∇χ0(x)

]
· n = 0, x ∈ ∂Ω.

(5.8)

Moreover, γ′
1(0) can be calculated by

γ′
1(0) =

L∫

Ω

ψ2
0(x) dx

,

where

L =
∫

Ω

[
1
2

· ∂2f

∂I2

(
x, S0(x), 0

)
ψ3

0(x) +
∂2f

∂S∂I

(
x, S0(x), 0

)
φ0(x)ψ2

0(x)
]

dx. (5.9)

Proof. We begin by making the change of variables u = S̃ − S0, v = Ĩ, w = R̃, so the disease-free steady
state (S̃, Ĩ, R̃) =

(
S0(·), 0, 0

)
is shifted to the origin (u, v, w) = (0, 0, 0).

Let Y = Lp(Ω). Define a mapping G : X × R+ → Y × Y × Y by

G(u, v, w, γ1) =

⎛

⎝
∇ · (dS(x)∇u) + f(u + S0, v, w, γ1)

dIΔv + g(u + S0, v, w, γ1)
∇ · (dR(x)∇w) + h(u + S0, v, w, γ1)

⎞

⎠

=

⎛

⎝
∇ · (dS(x)∇u) + Λ(x) − μ(x)(u + S0) − F (x, u + S0, v) + γ1v + δ(x)w

dIΔv + F (x, u + S0, v) − (μ + α + γ2)(x)v − γ1v
∇ · (dR(x)∇w) + γ2(x)v − μ(x)w − δ(x)w

⎞

⎠ .
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Let f̃(u, v, w, γ1) = f(u + S0, v, w, γ1), g̃(u, v, w, γ1) = g(u + S0, v, w, γ1) and h̃(u, v, w, γ1) = h(u +
S0, v, w, γ1). The Fréchet derivative of G with respect to (u, v, w) at (u, v, w, γ1) = (0, 0, 0, γ1) is given by

G(u,v,w)(0, 0, 0, γ1)[φ, ψ, χ]

=

⎛

⎝
∇ · (dS(x)∇φ) + f̃u(0, 0, 0, γ1)φ + f̃v(0, 0, 0, γ1)ψ + f̃w(0, 0, 0, γ1)χ

dIΔψ + g̃u(0, 0, 0, γ1)φ + g̃v(0, 0, 0, γ1)ψ + g̃w(0, 0, 0, γ1)χ
∇ · (dR(x)∇χ) + h̃u(0, 0, 0, γ1)φ + h̃v(0, 0, 0, γ1)ψ + h̃w(0, 0, 0, γ1)χ

⎞

⎠

=

⎛

⎝
∇ · (dS(x)∇φ) − μ(x)φ +

[
γ1 − ∂F

∂I (x, S0, 0)
]
ψ + δ(x)χ

dIΔψ +
[

∂F
∂I (x, S0, 0) − (μ + α + γ2)(x) − γ1

]
ψ

∇ · (dR(x)∇χ) + γ2(x)ψ − [μ(x) + δ(x)]χ

⎞

⎠ .

In particular,

G(u,v,w)(0, 0, 0, γ∗
1 )[φ, ψ, χ] =

⎛

⎝
∇ · (dS(x)∇φ) − μ(x)φ −

[
∂F
∂I (x, S0, 0) − γ∗

1

]
ψ + δ(x)χ

dIΔψ − γ∗
1ψ + H(x)ψ

∇ · (dR(x)∇χ) + γ2(x)ψ − [μ(x) + δ(x)]χ

⎞

⎠ .

We recall that the positive eigenfunction ψ0 of (5.3) satisfies

dIΔψ0 − γ∗
1ψ0 + H(x)ψ0 = 0.

If we define

χ0 = −
[
∇ · (dR(x)∇) − μ(x) − δ(x)

]−1
γ2(x)ψ0 (5.10)

and

φ0 =
[
∇ · (dS(x)∇) − μ(x)

]−1
[ (

∂F
∂I (x, S0, 0) − γ∗

1

)
ψ0 − δ(x)χ0

]
, (5.11)

we can see that (φ0, ψ0, χ0) satisfies

G(u,v,w)(0, 0, 0, γ∗
1 )[φ0, ψ0, χ0] = 0.

Hence, (φ0, ψ0, χ0) ∈ ker G(u,v,w)(0, 0, 0, γ∗
1 ) \ {0}, so ker G(u,v,w)(0, 0, 0, γ∗

1 ) is non-trivial.
On the other hand, it follows from the definition of γ∗

1 that the principal eigenvalue λ∗ of (3.3) equals
zero when γ1 = γ∗

1 . Since λ∗ = 0 is a simple eigenvalue, the eigenfunction ψ0 is unique up to constant
multiples. Moreover, χ0 and φ0 are uniquely determined by (5.10) and (5.11) for a fixed ψ0. This implies
that ker G(u,v,w)(0, 0, 0, γ∗

1 ) = span {(φ0, ψ0, χ0)}.
It is easy to see that (h1, h2, h3) ∈ range G(u,v,w)(0, 0, 0, γ∗

1 ) if and only if there exists (φ, ψ, χ) ∈ X
such that

h1 = ∇ · (dS(x)∇φ) − μ(x)φ −
[

∂F
∂I (x, S0, 0) − γ∗

1

]
ψ + δ(x)χ,

h2 = dIΔψ − γ∗
1ψ + H(x)ψ,

h3 = ∇ · (dR(x)∇χ) + γ2(x)ψ − [μ(x) + δ(x)]χ.

(5.12)

It follows from the Fredholm alternative theorem that the second equation of the above system is solvable
if and only if

∫

Ω

h2(x)ψ0(x) dx = 0. Then, for the obtained solution ψ, the third equation of (5.12) has a

unique solution

χ =
[
∇ · (dR(x)∇) − μ(x) − δ(x)

]−1[
h3 − γ2(x)ψ

]
.

Then, for such ψ and χ, the first equation of (5.12) has a unique solution

φ =
[
∇ · (dS(x)∇) − μ(x)

]−1
[
h1 +

[
∂F
∂I (x, S0, 0) − γ∗

1

]
ψ − δ(x)χ

]
.
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From this, it follows that the range of G(u,v,w)(0, 0, 0, γ∗
1 ) is given by

range G(u,v,w)(0, 0, 0, γ∗
1 ) =

⎧
⎨

⎩
(h1, h2, h3) ∈ Y 3 :

∫

Ω

h2(x)ψ0(x) dx = 0

⎫
⎬

⎭
.

The above equation defines a constraint on the variable h2. Since there are no constraints on h1 or h3,
the solution to system (5.12) has two degrees of freedom. This shows that dim range G(u,v,w)(0, 0, 0, γ∗

1 ) = 2
and thus, codim rangeG(u,v,w)(0, 0, 0, γ∗

1 ) = 1.
Furthermore, we can calculate

G(u,v,w),γ1(0, 0, 0, γ∗
1 )[φ0, ψ0, χ0]

=

⎛

⎝
f̃u,γ1(0, 0, 0, γ∗

1 )φ0 + f̃v,γ1(0, 0, 0, γ∗
1 )ψ0 + f̃w,γ1(0, 0, 0, γ∗

1 )χ0

g̃u,γ1(0, 0, 0, γ∗
1 )φ0 + g̃v,γ1(0, 0, 0, γ∗

1 )ψ0 + g̃w,γ1(0, 0, 0, γ∗
1 )χ0

h̃u,γ1(0, 0, 0, γ∗
1 )φ0 + h̃v,γ1(0, 0, 0, γ∗

1 )ψ0 + h̃w,γ1(0, 0, 0, γ∗
1 )χ0

⎞

⎠

=

⎛

⎝
ψ0

−ψ0

0

⎞

⎠ ,

where G(u,v,w),γ1 denotes the second partial Fréchet derivative of G with respect to the variables (u, v, w)
and γ1. Similarly, we denote by f̃u,γ1 the second partial derivative of f̃ with respect to u and γ1, and so
on.

Since
∫

Ω

[
− ψ0(x)

]
ψ0(x) dx = −

∫

Ω

[
ψ0(x)

]2 dx < 0, we obtain

G(u,v,w),γ1(0, 0, 0, γ∗
1 )[φ0, ψ0, χ0] /∈ range G(u,v,w)(0, 0, 0, γ∗

1 ).

This allows us to apply the theorem of bifurcation from a simple eigenvalue [35] to conclude that the
set of positive solutions to (5.2) near (S, I,R, γ1) =

(
S0(·), 0, 0, γ∗

1

)
is a curve of the form (5.6). We also

note that the possibility of other bifurcation points different from γ1 = γ∗
1 is excluded by virtue of the

Krein–Rutman theorem. Furthermore, according to the direction of bifurcation formula by Shi [37], we
have

γ′
1(0) = −

〈
l, G(u,v,w),(u,v,w)(0, 0, 0, γ∗

1 )[φ0, ψ0, χ0]2
〉

2
〈
l, G(u,v,w),γ1(0, 0, 0, γ∗

1 )[φ0, ψ0, χ0]
〉 ,

where the linear functional l : Y 2 → R is defined as

〈l, [h1, h2, h3]〉 =
∫

Ω

h2(x)ψ0(x) dx,

while G(u,v,w),(u,v,w) and G(u,v,w),γ1 denote the second partial Fréchet derivatives of G.
By direct calculation, we can see that the second component of

G(u,v,w),(u,v,w)(0, 0, 0, γ∗
1 )[φ0, ψ0, χ0]2

takes the form

G0(x) := g̃uu(0, 0, 0, γ∗
1 )φ2

0 + g̃vv(0, 0, 0, γ∗
1 )ψ2

0 + g̃ww(0, 0, 0, γ∗
1 )χ2

0

+ 2g̃uv(0, 0, 0, γ∗
1 )φ0ψ0 + 2g̃vw(0, 0, 0, γ∗

1 )ψ0χ0 + 2g̃wu(0, 0, 0, γ∗
1 )χ0φ0

=
∂2f

∂I2

(
x, S0(x), 0

)
ψ2

0 + 2
∂2f

∂S∂I

(
x, S0(x), 0

)
φ0ψ0.
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Thus,

γ′
1(0) = −

∫

Ω

G0(x)ψ0(x) dx

2
[
−
∫

Ω

ψ2
0(x) dx

] =
L∫

Ω

ψ2
0(x) dx

,

where L is given by (5.9). This completes the proof. �
Next, we use the global bifurcation theory to give an extension of the local bifurcation branch (5.6).

We define the set of positive solutions of (5.2) as

Σ =
{
(S, I,R, γ1) ∈ X × R+ : (S, I,R, γ1) is a solution of (5.2)with S, I,R, γ1 > 0

}
.

We can thus obtain the following result.

Theorem 5.3. The set of positive solutions of (5.2) with bifurcation parameter γ1 forms a continuum
Σ1 ⊂ X × R+ that bifurcates from the disease-free steady state (S0, 0, 0) when R0 = 1.

Moreover, Σ1 is a connected component of Σ containing the curve Γ1. The projection projγ1
Σ1 of Σ1

into the γ1-axis satisfies

projγ1
Σ1 = [0, γ∗

1 ],

and Σ1 contains a point of the form (Ŝ, Î, R̂, 0), where (Ŝ, Î, R̂) is a positive solution of (5.2) with γ1 = 0.

Proof. For the local bifurcation branch obtained in Theorem 5.2, let Σ1 be any maximal extension in
X ×R+ as a connected set of solutions of (5.2). From the remarks in [38], we can verify that all conditions
in [38, Theorem 4.4] are satisfied. Therefore, Σ1 must satisfy one of the following:

(i) it is not compact; or
(ii) it contains a point (S0, 0, 0, γ̂1) with γ̂1 �= γ∗

1 ; or
(iii) it contains a point (S0 + U, V,W, γ1) where (U, V,W ) �= 0 and (U, V,W ) is in the complement of

span {φ0, ψ0, χ0}.
Since the eigenvalue of (5.3) with positive eigenfunction is unique, it is clear that (ii) cannot occur.
Now, by Theorem 3.3(i), system (5.2) has no positive steady state solutions for R0 < 1, that is,

when γ1 > γ∗
1 . This implies that projγ1

Σ1 ⊂ [0, γ∗
1 ]. On the other hand, due to Theorem 4.1, there

exists a positive steady state for all γ1 < γ∗
1 (which corresponds to R0 > 1). Therefore, we can conclude

that projγ1
Σ1 = [0, γ∗

1 ]. This result, together with the boundedness of solutions, shows that Σ1 must be
compact.

The above discussion implies that case (iii) holds. Then, by a standard argument with the global
bifurcation theorem, we can find a certain (Ŝ, Î, R̂, γ̂1) ∈ Σ1 such that (Ŝ, Î, R̂, γ̂1) is in the boundary of
the set of positive solutions Σ. Since there are no equilibrium states with Ŝ = 0, Î = 0 or R̂ = 0 other
than the disease-free steady state, the only possibility is γ̂1 = 0 and Ŝ, Î, R̂ > 0. Hence, (Ŝ, Î, R̂) is a
positive solution of system (5.2) with γ1 = 0, which completes the proof. �

6. Numerical simulations

In this section, we will perform some numerical simulations for system (1.2) to investigate the dynamics
of the solutions as some of the parameters are varied. For simplicity, we consider the one-dimensional
domain Ω = (0, 20) ⊂ R. We will use the parameter values

Λ = 10, μ = 0.001, α = 0.01, γ1 = 0.02, γ2 = 0.07, δ = 0.02. (6.1)

Furthermore, we consider the saturated incidence function

F (x, S, I) =
βSI

1 + a1(x)I
, (6.2)
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Fig. 1. Time variation of S(x, t), I(x, t) and R(x, t) for system (1.2) with the parameters given in (6.1), dS = dI = dR = 1
and a1(x) ≡ 0.5

where β = 0.0001 and the parameter a1 is a positive function of the spatial variable. This allows us to
study the case when the incidence function saturates more rapidly in some locations, due to the different
measures taken by the population to eradicate the epidemic outbreak. It is readily shown that this form
of incidence function satisfies (A1)–(A4).

Throughout this section, we will use the initial conditions

S0(x) = 9700, I0(x) = 10 exp(−x), R0(x) = 0 for x ∈ [0, 20].

6.1. Effect of heterogeneous saturation rate

We will first study the effect that heterogeneity in the saturation parameter has on the model dynamics.
We define the function a1 : Ω → R+ by a1(x) = 0.5[1 + k sin(2πx/20)], where k ∈ [0, 1] is a number that
represents the magnitude of spatial heterogeneity. The case k = 0 corresponds to a1(x) ≡ 0.5.

Now, we fix the values of the diffusion rates as dS = dI = dR = 1 and plot in Fig. 1 the solutions
to system (1.2) when k = 0, that is, when the incidence rate F (x, S, I) = βSI/(1 + a1I) is independent
of x. In this case, the densities of susceptible, infected and recovered populations converge to positive
constants.

If we increase the heterogeneity by choosing k = 0.95 while keeping all other parameter values as
before, we obtain the solutions plotted in Fig. 2. Here, the values of S(x, t), I(x, t) and R(x, t) tend to a
non-homogeneous endemic equilibrium as t → ∞.

Lastly, we plot the spatial distribution of susceptible, infected and recovered populations at t = 1000
for k = 0, 0.5, 0.8, 0.95 in Fig. 3. We can see that greater heterogeneity in the saturation parameter results
in higher values of infected and recovered populations.
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Fig. 2. Time variation of S(x, t), I(x, t) and R(x, t) for system (1.2) with the parameters given in (6.1), dS = dI = dR = 1
and a1(x) = 0.5[1 + 0.95 sin(2πx/20)]

6.2. Effect of varying the diffusion rates

We will consider now the effects of using different diffusion rates for system (1.2) while keeping all other
parameter values fixed. Here, we assume that a1(x) = 0.5[1 + 0.95 sin(2πx/20)] and other parameters are
taken as in (6.1).

Suppose first that the diffusion rate of infected population is fixed as dI = 1, while the diffusion
rates of susceptible and recovered populations are both equal to some constant D. Figure 4a depicts the
distribution of S, I and R at t = 1000 for several values of D. The figure shows that reducing the value
of the diffusion rates dS = dR = D contributes to reducing the infected population levels.

Next, we make some simulations assuming that the diffusion rates dS , dI and dR are all equal to D.
In this case, the spatial distribution of solutions is shown in Fig. 4b. Our simulations show that reducing
the diffusion rate in all three subpopulations results in greater heterogeneity for the distribution of the
infected; however, the density of infected population actually increases at certain locations for lower values
of D. Hence, restricting the motility for all individuals does not necessarily reduce the total number of
infections.
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Fig. 3. Spatial distribution of S(x, t), I(x, t) and R(x, t) at t = 1000 for system (1.2) with dS = dI = dR = 1 and
a1(x) = 0.5[1 + k sin(2πx/20)] for several values of k. The other parameter values are given in (6.1)

6.3. Simulations of bifurcation when varying the transfer rate from infected to susceptible

We will now simulate the bifurcation dynamics of our model when the parameter γ1 is varied. Here, we
fix the parameter values

Λ = 10, μ = 0.001, α = 0.01, γ2 = 0.07, δ = 0.02, dS = dI = dR = 1,

F (x, S, I) =
βSI

1 + a1(x)I
, a1(x) = 0.5

[
1 + 0.95 sin

(
2πx

20

)]
(6.3)

and let γ1 vary from 0 to 0.8.
Using the same initial conditions as before, we obtain the distribution of susceptible, infected and

recovered individuals shown in Fig. 5 for t = 4000. We can see that for γ1 ∈ [0, 0.6], the solution tends to
a positive endemic steady state, which corresponds to the case when R0 > 1. As we increase the value
of γ1, the infected population decreases. The basic reproduction number crosses unity at a certain value
γ∗
1 ∈ (0.6, 0.8), and there is no endemic equilibrium for γ1 > γ∗

1 . Figure 5 shows that the solutions of the
model tend to the disease-free steady state (E0 = (104, 0, 0)) when γ1 = 0.8.

7. Conclusions

We proposed a diffusive SIRS epidemic model that generalizes several previously studied models in the
literature, such as [9–11,18]. In particular, we extended the results obtained by Yang et al. in [18]by
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Fig. 4. Spatial distribution of S(x, t), I(x, t) and R(x, t) at t = 1000 for system (1.2) with the parameters given in (6.1),
a1(x) = 0.5[1 + 0.95 sin(2πx/20)] and several values for the diffusion rates. a dS = D, dI = 1, dR = D, where D varies from

1 to 0.01. b dS = dI = dR = D, where D varies from 1 to 0.01

considering a model with three different diffusion rates, dS(x), dI(x) and dR(x), which may vary depending
on the location of individuals. Moreover, our model assumes that the incidence function takes the general
form F (x, S, I), which includes many different types of nonlinear or non-monotone functions and allows
for spatial heterogeneity.

We established the threshold dynamics for model (1.2) with respect to the basic reproduction number:
the disease-free steady state is globally asymptotically stable when R0 < 1, while the disease persists and
an endemic equilibrium appears when R0 > 1.

Furthermore, we performed a bifurcation analysis for model (1.2) in the case when the diffusion
coefficient of infected population and the rate of transfer from infected to susceptible classes are constant.
We used the theory by Crandall and Rabinowitz [35,37,38] to determine the type of bifurcation that
occurs when the basic reproduction number crosses unity. From Theorems 5.2 and 5.3, we can infer that
the model always undergoes a forward bifurcation at R0 = 1, and the existence of endemic equilibria is
completely ruled out when R0 is less than one.

We also carried out some simulations to illustrate the effects of heterogeneity on the dynamics of
model (1.2). We used, as an example, the incidence rate of the form F (x, S, I) = βSI/[1+a1(x)I], which
does not meet the assumptions considered in [18] but is included by our general model. Our examples
show that a larger variation in the incidence rate may increase the number of infections in the population.
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Fig. 5. Spatial distribution of S(x, t), I(x, t) and R(x, t) at t = 4000 for system (1.2) with the parameter values given in
(6.3) and several values for γ1
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