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Abstract. We study the large time asymptotics of solutions to the Cauchy problem for the nonlinear nonlocal Schrödinger
equation with critical nonlinearity

{
i∂t

(
u − ∂2

xu
)
+ ∂2

xu − a∂4
xu = λ |u|2 u, t > 0, x ∈ R,

u (0, x) = u0 (x) , x ∈ R,

where a > 1
5
, λ ∈ R. We continue to develop the factorization techniques which was started in papers Hayashi and Naumkin

(Z Angew Math Phys 59(6):1002–1028, 2008) for Klein–Gordon, Hayashi and Naumkin (J Math Phys 56(9):093502, 2015)
for a fourth-order Schrödinger, Hayashi and Kaikina (Math Methods Appl Sci 40(5):1573–1597, 2017) for a third-order
Schrödinger to show the modified scattering of solutions to the equation. The crucial points of our approach presented here
are based on the L2-boundedness of the pseudodifferential operators.
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1. Introduction

We study the large time asymptotics of solutions to the Cauchy problem for the nonlinear nonlocal
Schrödinger equation with a critical nonlinearity in one-dimensional case{

i∂t

(
u − ∂2

xu
)

+ ∂2
xu − a∂4

xu = λ |u|2 u, t > 0, x ∈ R,
u (0, x) = u0 (x) , x ∈ R,

(1.1)

where a > 1
5 , λ ∈ R. Equation (1.1 ) can be considered as a particular form of the higher-order nonlinear

Schrödinger equation introduced by [30] to describe the nonlinear propagation of pulses through optical
fibers. Also it arises in the context of high-speed soliton transmission in long-haul optical communication
system [12]. Equation (1.1) represents the propagation of pulses by taking higher dispersion effects into
account than those given by the Schrödinger equation (see [14,22,27,31,34]).

Multiplying Eq. (1.1) by the operator
(
1 − ∂2

x

)−1, we rewrite it in the pseudodifferential form{
i∂tu − Λu = λ

(
1 − ∂2

x

)−1
(
|u|2 u

)
, t > 0, x ∈ R,

u (0, x) = u0 (x) , x ∈ R,
(1.2)

where the linear pseudodifferential operator Λ =
(
1 − ∂2

x

)−1 (−∂2
x + a∂4

x

)
is characterized by its symbol

Λ (ξ) = ξ2+aξ4

1+ξ2 .

As far as we know, there are no results on the large time asymptotics of solutions of the Cauchy problem
(1.1). The difficulty of the small data scattering problem lies in the slow time decay rate of the L∞-norm
of solutions to the linear problem. So the problem on the large time asymptotic behavior becomes more
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difficult for low space dimensions and low order of the nonlinearity. Comparing the time decay rates of
the main term and the remainder terms of the nonlinearity in (1.1), we find that this equation represents
critical behavior for large time. Indeed, below we will prove the modified scattering of solutions to (1.1
). On the other hand, the higher-order nonlinear local or homogeneous Schrödinger equations have been
widely studied recently. For the local and global well-posedness of the Cauchy problem, we refer to [4,5,29]
and references cited therein. The dispersive blow-up was obtained in [1], [2]. The Cauchy problem for
the higher-order nonlinear Schrödinger equations was intensively studied by many authors. The existence
and uniqueness of solutions to (1.1) were proved in [15,23–26,28,33], and the smoothing properties of
solutions were studied in [8,10,11,23–26].

In the case of a = 1, we find that Λ = −∂2
x, and (1.2) is the well-known cubic nonlinear Schrödinger

equation studied by many authors, see [6,17] and references cited therein. So we exclude the case a = 1
from our consideration here. Final value problem for (1.2) with a = 1 was studied by Ozawa [32], where
the modified wave operator was constructed. Modified scattering of the initial value problem (1.2) with
a = 1 was obtained in [16] by using MDFM decomposition of the free Schrödinger evolution group U1 (t)
(a = 1) called as the factorization techniques. More precisely, we have the identity

U1 (t) φ =
1√
4πit

∫
R

e− (x−y)2

4it φ (y) dy =
1√
4πit

e− x2
4it

∫
R

e−i xy
t e− y2

4it φ (y) dy

= MDFMφ, (1.3)

where M = e− x2
4it is called the multiplication factor, Dφ = 1√

2it
φ

(
x
t

)
is called the dilation operator and

F is the Fourier transformation defined by Fφ = 1√
2π

∫
R

e−ixyφ (y) dy. The identity U1 (t) = MDFM was

used in [21] to state the relation between the operators x + 2it∂x, U1 (t)xU1 (−t) and Mit∂xM. In [16],
we have used the identity

FU1 (−t) |u|2 u = FU1 (−t) |U1 (t)U1 (−t)u|2 U1 (t) U1 (−t) u

= FMF−1D−1M |MDFMU1 (−t) u|2 MDFMU1 (−t) u

=
1
2t

FMF−1 |FMU1 (−t)u|2 FMU1 (−t) u,

to decompose the cubic nonlinearity in the form of the sum of the main and the remainder terms

1
2t

|ϕ|2 ϕ + R, with ϕ = FU (−t)u

and it was shown in [16] that R is the remainder term with respect to time decay. However, this method
cannot be applied directly to other dispersive equations since we do not know an explicit representation
for the free evolution group. Later we have used the decomposition of free evolution group (also called
the factorization techniques) in the case of the cubic nonlinear Klein–Gordon equation [18], the inho-
mogeneous fourth-order Schrödinger equation [19] and the third-order Schrödinger equation [20]. In the
present paper, our purpose is to develop this approach (the factorization techniques) for the case of the
evolution group Ua (t) generated by the nonlocal operator with symbol Λ (ξ) = ξ2+aξ4

1+ξ2 , in order to find
the large time asymptotic behavior of solutions. We will decompose the cubic nonlinear term into the
main part and a remainder term

FUa (−t) |u|2 u − 1
2t

|ϕa|2 ϕa,

where ϕa = FUa (−t) u. In order to prove desired estimates, we use the L2- boundedness of the pseudo-
differential operators. This is a crucial point of our approach presented here. Our method can be applied
to higher-dimensional cases which will be considered in a separate paper.



ZAMP Modified scattering for the nonlinear Page 3 of 15 2

To state our results precisely, we introduce Notation and Function Spaces. Lp = {φ ∈ S′; ‖φ‖Lp < ∞}

is the usual Lebesgue space with norm ‖φ‖Lp =
(∫

R

|φ (x)|p dx

) 1
p

for 1 ≤ p < ∞ and ‖φ‖L∞ =

supx∈R
|φ (x)| for p = ∞. The weighted Sobolev space is

Hm,s
p =

{
ϕ ∈ S′; ‖φ‖Hm,s

p
= ‖〈x〉s 〈i∂x〉m

φ‖Lp < ∞
}

,

with m, s ∈ R, 1 ≤ p ≤ ∞, 〈x〉 =
√

1 + x2, 〈i∂x〉 =
√

1 − ∂2
x. Below F stands for the Fourier transform

φ̂(ξ) = 1√
2π

∫
R

e−ixξφ(x)dx, and F−1 is the inverse Fourier transformation F−1φ = 1√
2π

∫
R

eixξφ(ξ)dξ. We

also use the notations Hm,s = Hm,s
2 , Hm = Hm,0. Let C(I;B) be the space of continuous functions

from the time interval I to a Banach space B. Define the free evolution group U (t) = F−1e−itΛ(ξ)F ,

we redefine the dilation operator Dtφ (x) = t−
1
2 φ

(
x
t

)
, the scaling operator (Bφ) (x) = φ (μ (x)), and the

multiplication factor M = e−it(Λ(η)−ηΛ′(η)), where μ (x) is defined as a root of equation

Λ′ (ξ) =
2ξ

(
1 + 2aξ2 + aξ4

)
(1 + ξ2)2

= x.

We note here that M is different from the one used previously in (1.3). We use the same notation for
simplicity.

We are now in a position to state the main result of this paper.

Theorem 1.1. Let the initial data u0 ∈ H1∩H0,1 and a > 1
5 . Assume that the norm 0 < ‖u0‖H1∩H0,1 ≤ ε.

Then, there exists an ε such that (1.1) has a unique global solution u ∈ C
(
[0,∞) ;H1 ∩ H0,1

)
. Moreover,

there exists a unique modified scattering state W+ ∈ L∞ such that the asymptotics

u (t) = DtBM
W+√
iΛ′′ e

− iλ
〈ξ〉2Λ′′ |W+|2 log t + O

(
t−

1
2 −δ

)
(1.4)

is valid for t → ∞ uniformly with respect to x ∈ R, where δ > 0.

Remark 1.1. Large time asymptotics (1.4) can be written more explicitly in the following form

u (t, x) =
W+

(
μ

(
x
t

))
e−it(Λ(μ( x

t ))−μ( x
t )Λ′(μ( x

t )))√
itΛ′′ (μ (

x
t

)) e
− iλ log t

〈μ( x
t )〉2

Λ′′(μ( x
t ))

|W+(μ( x
t ))|2

+ O
(
t−

1
2 −δ

)
.

We note that the main term of the asymptotics differs from the corresponding linear case by the loga-
rithmic oscillation which vanishes in the case of λ = 0.

We organize the rest of our paper as follows. In Sect. 2, we formulate the factorization techniques. We
prove the estimates of the defect operators in the uniform metrics and obtain the estimates for derivatives
of the defect operator and its adjoint by applying the L2-boundedness results for pseudodifferential
operators. We estimate the nonlinearity in Sect. 3. Section 4 is devoted to the proof of a priori estimates
of solutions to the Cauchy problem (1.1) in the norm

‖u‖XT
= sup

t∈[0,T ]

(
‖ϕ̂ (t)‖L∞ + (1 + t)−γ ‖ϕ̂ (t)‖H1∩H0,1

)
, (1.5)

where ϕ̂ (t) = FU (−t) u (t) , γ > 0 is small depending on the size of the data. Finally, we prove Theo-
rem 1.1 in Sect. 5.
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2. Preliminaries

2.1. Factorization techniques

Denote the symbol Λ (ξ) = ξ2+aξ4

1+ξ2 , then the free evolution group has the form U (t) = F−1e−itΛ(ξ)F . We
have

U (t) F−1φ = F−1e−itΛ(ξ)φ (ξ) =
1√
2π

∫
R

eixξ−itΛ(ξ)φ (ξ) dξ

=
1√
2π

M

∫
R

eixξ−it(Λ(ξ)−Λ(η)+ηΛ′(η))φ (ξ) dξ

where

M = e−it(Λ(η)−ηΛ′(η)).

By a direct calculation

Λ′′ (ξ) =
2
(
1 + (6a − 3) ξ2 + 3aξ4 + aξ6

)
(1 + ξ2)3

.

It is clear that Λ′′ (ξ) > 0 if a ≥ 1
2 . We consider the case 0 ≤ a < 1

2 . We put

F (x) = 1 + (6a − 3) x + 3ax2 + ax3, x = ξ2 ≥ 0,

then

F ′ (x) = (6a − 3) + 6ax + 3ax2

and

F
′
(x) < 0 for 0 < x < xa, F

′
(x) > 0 for x > xa, and F ′ (xa) = 0

where xa =
√

1
a − 1−1 ≥ 0. Therefore, F (x) ≥ F (xa) for any x ≥ 0. By a simple computation, we have

F (xa) = 3a − 1 +
√

a − a2 > 0

if a > 1
5 . Therefore under the condition a > 1

5 , we have Λ′′ (ξ) > 0 for all ξ ∈ R. This guaranties Λ′ (ξ) is
monotone increasing function and the unique stationary point μ (x) , defined as a root of equation

Λ′ (ξ) =
2ξ

(
1 + 2aξ2 + aξ4

)
(1 + ξ2)2

= x

for all x ∈ R. Hence, we have

U (t)F−1φ

=
t

1
2√
2π

Dte
−it(Λ(μ)−μΛ′(μ))

∫
R

eitxξ−it(Λ(ξ)−Λ(μ)+μΛ′(μ))φ (ξ) dξ

=
t

1
2√
2π

Dte
−it(Λ(μ)−μΛ′(μ))

∫
R

eitξΛ′(μ)−it(Λ(ξ)−Λ(μ)+μΛ′(μ))φ (ξ) dξ

=
t

1
2√
2π

Dte
−it(Λ(μ)−μΛ′(μ))

∫
R

e−it(Λ(ξ)−Λ(μ)−(ξ−μ)Λ′(μ))φ (ξ) dξ
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=
t

1
2√
2π

BDtM

∫
R

e−it(Λ(ξ)−Λ(η)−(ξ−η)Λ′(η))φ (ξ) dξ.

Now we write the factorization formula U (t) F−1φ = DtBMQφ, where Dtφ = t−
1
2 φ

(
x
t

)
, (Bφ) (x) = φ (μ),

and the defect operator

Q (t) φ =
t

1
2√
2π

∫
R

e−itS(ξ,η)φ (ξ) dξ

with phase function S (ξ, η) = Λ (ξ) − Λ (η) − Λ′ (η) (ξ − η) . Also we need the representation for the
inverse evolution group FU (−t)φ = Q∗MB−1D−1

t , where D−1
t φ = t

1
2 φ (xt), B−1φ = φ (Λ′ (η)) and the

adjoint defect operator

Q∗ (t) φ =
t

1
2√
2π

∫
R

eitS(ξ,η)φ (η) Λ′′ (η) dη.

Indeed we have

Q∗Qφ =
t

1
2√
2π

∫
R

eitS(ξ,η) (Qφ) (η) Λ′′ (η) dη

=
t

2π

∫
R

eitS(ξ,η)

∫
R

e−itS(ξ̃,η)φ
(
ξ̃
)

dξ̃dΛ′ (η)

=
t

2π

∫
R

∫
R

eit(Λ(ξ)−Λ(ξ̃))+itx(ξ−ξ̃)φ
(
ξ̃
)

dξ̃dx

=
1
2π

eitΛ(ξ)

∫
R

∫
R

eix(ξ−ξ̃)e−itΛ(ξ̃)φ
(
ξ̃
)

dξ̃dx

= φ (ξ) .

Define the new dependent variable ϕ̂ = FU (−t)u (t). Since FU (−t) L = i∂tFU (−t) , where L = i∂t −Λ,
applying the operator FU (−t) to Eq. (1.2), we get

i∂tϕ̂ = λ 〈ξ〉−2
t−1Q∗

(
|v|2 v

)
, (2.1)

where v = Qϕ̂. This is our target equation. Our function space is based on the norm defined by (1.5).
For the convenience of the reader, we now state our strategy of the proof of the theorem briefly. By

using the stationary phase method and integration by parts, we estimate v = Qϕ̂ as follows

v (η) = (Qϕ̂ (ξ)) (η) =
1√

iΛ′′ (η)
ϕ̂ (η) + Ct−

1
4 ‖∂ξϕ̂‖L2 (2.2)

in Lemma 2.1 (estimate of the defect operator). This estimate will be justified if we could be able to
obtain the estimate of ‖∂ξϕ̂‖L2 , which requires us to estimate the norm

∥∥∥∂ξQ∗
(
|v|2 v

)∥∥∥
L2

via Eq. (2.1).
In Lemma 2.6 we show that∥∥∥∂ξQ∗

(
|v|2 v

)∥∥∥
L2

≤ C
∥∥∥|v|2 v

∥∥∥
H1

≤ C ‖v‖2
L∞ ‖v‖H1 .

In order to get the estimate of ‖ϕ̂‖L∞ , in Lemma 2.2 we prove the estimate of ‖Q∗φ‖L∞ (estimate of the
adjoint defect operator) with φ = |v|2 v, such as

(Q∗φ (η)) (ξ) =
√

iΛ′′ (ξ)φ (ξ) + Ct−
1
4 ‖∂ηφ‖L2

=
√

iΛ′′ (ξ)φ (ξ) + Ct−
1
4 ‖v‖2

L∞ ‖∂ηv‖L2 .
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This can be considered as the adjoint estimate to (2.2). Furthermore we show the estimate for ‖∂ηv‖L2 =
‖∂ηQϕ̂‖L2 in Lemma 2.5, given by

‖∂ηQϕ̂‖L2 ≤ C ‖ϕ̂‖H1 .

Therefore, the crucial estimates are the following

‖∂ξQ∗φ‖L2 ≤ C ‖φ‖H1 , ‖∂ηQϕ̂‖L2 ≤ C ‖ϕ̂‖H1 .

In order to get these estimates, we use the L2- boundedness of pseudodifferential operators given by
Lemma 2.3 and Lemma 2.4.

2.2. Estimate for the defect operator in the uniform norm

Consider the kernel

A (t, η) =

√
t

2π

∫
R

e−itS(ξ,η)dξ.

To compute the asymptotics of A for large time, we apply the stationary phase method (see [13], p. 110)
to find ∫

R

eitg(y)f (y) dy = eitg(y0)f (y0)

√
2π

t |g′′ (y0)|e
i π
4 sgng′′(y0) + O

(
t−

3
2

)
(2.3)

for t → ∞, where the stationary point y0 is defined by the equation g′ (y0) = 0. By virtue of formula
(2.3), we get

A (t, η) =
1√

iΛ′′ (η)

(
1 + O

(
t−1

))

as t → ∞.
In the next lemma, we estimate the defect operator Q in the uniform norm.

Lemma 2.1. The estimate |Qφ − Aφ| ≤ Ct−
1
4 ‖∂ξφ‖L2 is valid for all t ≥ 1.

Proof. By a simple calculation, we have

Qφ − Aφ =

√
t

2π

∫
R

e−itS(ξ,η) (φ (ξ) − φ (η)) dξ.

Integration by parts via identity

e−itS(ξ,η) = H1∂ξ

(
(ξ − η) e−itS(ξ,η)

)
,

where

H1 = (1 − it (ξ − η) ∂ξS (ξ, η))−1
,

yields

Qφ − Aφ = Ct
1
2

∫
R

e−itS(ξ,η) (φ (ξ) − φ (η)) (ξ − η) ∂ξH1dξ

+ Ct
1
2

∫
R

e−itS(ξ,η) (ξ − η)H1∂ξφ (ξ) dξ.
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Note that Λ′′ (ξ) = O (1) . Also we have

∂ξS (ξ, η) = Λ′ (ξ) − Λ′ (η) = (ξ − η)

1∫
0

Λ′′ (η + (ξ − η) z) dz = O (ξ − η) .

Hence the estimate follows

|H1| + |(ξ − η) ∂ξH1| ≤ C

1 + t (ξ − η)2
.

Therefore by Hardy and Cauchy–Schwarz inequalities, we obtain

|Qφ − Aφ| ≤ Ct
1
2

∫
R

( |φ (ξ) − φ (η)|
|ξ − η| + |∂ξφ (ξ)|

) |ξ − η|dξ

1 + t (ξ − η)2

≤ Ct
1
2 ‖∂ξφ‖L2

⎛
⎜⎝

∫
R

(ξ − η)2 dξ(
1 + t (ξ − η)2

)2

⎞
⎟⎠

1
2

≤ Ct−
1
4 ‖∂ξφ‖L2 .

Lemma 2.1 is proved. �

2.3. Estimate for the adjoint defect operator in the uniform norm

We consider the kernel

A∗ (t, ξ) =

√
t

2π

∫
R

eitS(ξ,η)Λ′′ (η) dη.

By virtue of formula (2.3), we obtain the large time asymptotics

A∗ (t, ξ) =
√

iΛ′′ (ξ)
(
1 + O

(
t−1

))
for t → ∞. In the next lemma, we estimate the adjoint defect operator Q∗ in the uniform norm.

Lemma 2.2. The estimate |Q∗φ − A∗φ| ≤ Ct−
1
4 ‖∂ηφ‖L2 is valid for all t ≥ 1.

Proof. As above, we integrate by parts via the identity

eitS(ξ,η) = H2∂η

(
(η − ξ) eitS(ξ,η)

)
,

with

H2 = (1 + it (η − ξ) ∂ηS (ξ, η))−1

and ∂ηS (ξ, η) = Λ′′ (η) (η − ξ) = O (η − ξ) . Then, we find

Q∗φ − A∗φ =

√
t

2π

∫
R

eitS(ξ,η) (φ (η) − φ (ξ)) Λ′′ (η) dη

= Ct
1
2

∫
R

eitS(ξ,η) φ (η) − φ (ξ)
η − ξ

(η − ξ)2 ∂η (H2Λ′′ (η)) dη

+ Ct
1
2

∫
R

eitS(ξ,η) (η − ξ) H2Λ′′ (η) ∂ηφ (η) dη.
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From which via the estimate

|H2Λ′′ (η)| + |(η − ξ) ∂η (H2Λ′′ (η))| ≤ C

1 + t (η − ξ)2
,

and Hardy and Cauchy–Schwarz inequalities, we obtain

|Q∗φ − A∗φ| ≤ Ct
1
2 ‖∂ηφ‖L2

⎛
⎜⎝

∫
R

(η − ξ)2 dη(
1 + t (η − ξ)2

)2

⎞
⎟⎠

1
2

≤ Ct−
1
4 ‖∂ηφ‖L2 .

Lemma 2.2 is proved. �

2.4. Boundedness of pseudodifferential operators

There are many papers devoted to the L2estimates of pseudodifferential operators (see, e.g. [3,7,9]).
Below we will use the following result on the L2boundedness of pseudodifferential operator

a (x,D) φ ≡
∫
R

eixξa (x, ξ) φ̂ (ξ) dξ

(see [9]).

Lemma 2.3. Let the symbol a (x, ξ) be such that

sup
x,ξ∈R

∣∣∂k
x∂l

ξa (x, ξ)
∣∣ ≤ C

for k, l = 0, 1. Then

‖a (x,D) φ‖
L2

x

≤ C ‖φ‖
L2

.

Analogously for the conjugate pseudodifferential operator

a∗ (ξ,D) φ ≡
∫
R

e−ixξa∗ (x, ξ) φ̂ (x)dx

we get the following result.

Lemma 2.4. Let the symbol

sup
x,ξ∈R

∣∣∂k
x∂l

ξa
∗ (x, ξ)

∣∣ ≤ C

for k, l = 0, 1. Then

‖a∗ (ξ,D) φ‖
L2

x

≤ C ‖φ‖
L2

.

2.5. Estimate for derivative of the defect operator

In the next lemma, we estimate a derivative of the defect operator Q.
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Lemma 2.5. The estimate ‖∂ηQφ‖L2 ≤ C ‖φ‖H1 is true for all t ≥ 1.

Proof. We integrate by parts to get

∂ηQφ = Ct
1
2

∫
R

e−itS(ξ,η) (q1 (ξ, η) ∂ξφ (ξ) + q2 (ξ, η) φ (ξ)) dξ,

where

q1 (ξ, η) =
∂ηS (ξ, η)
∂ξS (ξ, η)

and

q2 (ξ, η) = ∂ξ

(
∂ηS (ξ, η)
∂ξS (ξ, η)

)
.

Then, we obtain

∂ηQφ = CMB−1D−1
t

∫
R

eixξq1

(
ξ, μ

(x

t

))
e−itΛ(ξ)∂ξφ (ξ) dξ

+ CMB−1D−1
t

∫
R

eixξq2

(
ξ, μ

(x

t

))
e−itΛ(ξ)φ (ξ) dξ

= CMB−1D−1
t a1 (x,D) F−1e−itΛ∂ξφ + CMB−1D−1

t a2 (x,D) F−1e−itΛφ,

where the symbols a1 (x, ξ) = q1

(
ξ, μ

(
x
t

))
and a2 (x, ξ) = q2

(
ξ, μ

(
x
t

))
. Since

μ (x) = O (x) , μ′ (x) =
1

Λ′′ (μ (x))
= O (1)

,

q1 (ξ, η) =
Λ′′ (η)

1∫
0

Λ′′ (η + (ξ − η) z) dz

= O (1)

and

q2 (ξ, η) = ∂ξ

⎛
⎜⎜⎜⎝

Λ′′ (η)
1∫
0

Λ′′ (η + (ξ − η) z) dz

⎞
⎟⎟⎟⎠ = O (1) ,

we find

sup
x,ξ∈R

∣∣∂k
x∂l

ξaj (x, ξ)
∣∣ ≤ C for k, l = 0, 1, j = 1, 2.

Hence by Lemma 2.3, we get

‖aj (x,D) φ‖
L2

x

≤ C ‖φ‖
L2

.

Thus in view of equalities ∥∥B−1φ
∥∥

L2
= ‖φ‖

L2
,
∥∥D−1

t φ
∥∥

L2
= ‖φ‖

L2

and
∥∥F−1φ

∥∥
L2

= ‖φ‖
L2

, we obtain
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‖∂ηQφ‖
L2

x

≤ C
∥∥B−1D−1

t a1 (x,D) F−1e−itΛ∂ξφ
∥∥

L2

+ C
∥∥B−1D−1

t a2 (x,D) F−1e−itΛφ
∥∥

L2
≤ C ‖∂ξφ‖

L2
+ C ‖φ‖

L2
.

Lemma 2.5 is proved. �

2.6. Estimate for derivative of the adjoint defect operator

Next we prove the estimates for derivatives of adjoint defect operator Q∗.

Lemma 2.6. The estimate ‖∂ξQ∗φ‖L2 ≤ C ‖φ‖H1 is true for all t ≥ 1.

Proof. Integrating by parts, we get

∂ξQ∗φ = Ct
1
2

∫
R

eitS(ξ,η) (q3 (ξ, η) ∂ηφ (η) + q4 (ξ, η) φ (η)) Λ′′ (η) dη,

where

q3 (ξ, η) =
∂ξS (ξ, η)
∂ηS (ξ, η)

and

q4 (ξ, η) =
1

Λ′′ (η)
∂η

(
∂ξS (ξ, η)
∂ηS (ξ, η)

Λ′′ (η)
)

.

Then changing the variable of integration η = μ (x) and after that x = x′
t , we find

∂ξQ∗φ = CeitΛ(ξ)

∫
R

e−ixξq3

(
ξ, μ

(x

t

))
(DtBM∂ηφ) dx

+ CeitΛ(ξ)

∫
R

e−ixξq4

(
ξ, μ

(x

t

))
(DtBMφ) dx.

Denote a∗
3 (ξ, x) = q3

(
ξ, μ

(
x
t

))
and a∗

4 (ξ, x) = q4

(
ξ, μ

(
x
t

))
, then

∂ξQ∗φ = CeitΛ(ξ)
(
a∗

3 (ξ,D) F−1DtBM∂ηφ + a∗
4 (ξ,D) F−1DtBMφ

)
.

We have μ (x) = O (x) , μ′ (x) = 1
Λ′′(μ(x)) = O (1) ,

q3 (ξ, η) =
1

Λ′′ (η)

1∫
0

Λ′′ (η + (ξ − η) z) dz = O (1)

and

q4 (ξ, η) =
1

Λ′′ (η)
∂η

1∫
0

Λ′′ (η + (ξ − η) z) dz = O (1) ,

hence

sup
x,ξ∈R

∣∣∂k
x∂l

ξa
∗
j (ξ, x)

∣∣ ≤ C

for k, l = 0, 1, j = 3, 4. Application of Lemma 2.4 yields∥∥a∗
j (ξ,D) φ

∥∥
L2

x

≤ C ‖φ‖
L2

.
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Then in view of equalities ‖Bφ‖
L2

= ‖φ‖
L2

, ‖Dtφ‖
L2

= ‖φ‖
L2

and
∥∥F−1φ

∥∥
L2

= ‖φ‖
L2

, we find

‖∂ξQ∗φ‖
L2

x

≤ C
∥∥∥a∗

3 (ξ,D) F−1DtBM∂ηφ
∥∥∥

L2

+ C
∥∥∥a∗

4 (ξ,D) F−1DtBMφ
∥∥∥

L2

≤ C ‖∂ηφ‖
L2

+ C ‖φ‖
L2

.

Lemma 2.6 is proved. �

3. Estimates for the nonlinearity

Define the norm

‖u‖XT
= sup

t∈[0,T ]

(
‖ϕ̂ (t)‖L∞ + (1 + t)−γ ‖ϕ̂ (t)‖H1∩H0,1

)
,

where ϕ̂ (t) = FU (−t)u (t) , γ = Cε > 0 is small.

3.1. Asymptotics of the nonlinearity

In the next lemma, we calculate the asymptotic representation for the nonlinearity.

Lemma 3.1. Suppose that ‖u‖XT
≤ Cε. Then the asymptotics

Q∗ |v|2 v =
1

Λ′′ |ϕ̂|2 ϕ̂ + O
(
ε3tγ− 1

4

)

is true for all t ∈ [1, T ], where v = Qϕ̂, ϕ̂ (t) = FU (−t) u (t) .

Proof. Applying Lemma 2.2 with φ = |v|2 v, we find

Q∗ |v|2 v =
√

iΛ′′ |v|2 v + O
(
t−1 ‖v‖3

L∞

)
+ O

(
t−

1
4 ‖v‖2

L∞ ‖∂ηv‖L2

)
.

In view of Lemma 2.1, we have the asymptotics v = 1√
iΛ′′ ϕ̂ + O

(
εtγ− 1

4

)
, and estimate ‖v‖L∞ ≤ Cε.

Then by Lemma 2.5 and condition of the lemma we find ‖∂ηv‖L2 ≤ Cεtγ . Hence, the result of the lemma
follows. Lemma 3.1 is proved. �

3.2. Estimate for derivative of the nonlinearity in Eq. (2.1).

Lemma 3.2. Suppose that ‖u‖XT
≤ Cε. Then, the estimate

∥∥∥∂ξQ∗ |v|2 v
∥∥∥
L2

≤ Cε3tγ is true for all t ≥ 1,

where v = Qϕ̂, ϕ̂ (t) = FU (−t)u (t) , γ = Cε.

Proof. By virtue of Lemma 2.6 with φ = |v|2 v, we get
∥∥∥∂ξQ∗ |v|2 v

∥∥∥
L2

≤ C ‖v‖2
L∞ ‖v‖H1 . Using

Lemma 2.1, we find ‖v‖L∞ ≤ Cε. Then by Lemma 2.5, we obtain the result of the lemma. Lemma 3.2 is
proved. �
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4. A priori estimate of solutions

We state the local existence of solutions to the Cauchy problem (1.1) in the functional space H1 ∩ H0,1

which is shown by the well-known contraction mapping principle.

Theorem 4.1. Assume that the initial data u0 ∈ H1 ∩ H0,1. Then, there exists a time T > 0, which
depends on the norm ‖u0‖H1∩H0,1 , such that (1.1) has a unique solution U (−t) u ∈ C

(
[0, T ] ;H1 ∩ H0,1

)
such that ‖u‖XT

< C. If the norm ‖u0‖H1∩H0,1 is small, then the existence time T ≥ 1.

To prove the global result, we need a priori estimate of the norm ‖u‖XT
uniformly with respect to

T ≥ 1.

Lemma 4.1. Let the initial data u0 ∈ H1 ∩ H0,1 have a small norm ‖u0‖H1∩H0,1 . Then, the estimate
‖u‖XT

< Cε is true for all T ≥ 1.

Proof. Arguing by the contradiction, we can find the first moment of time T > 0, such that ‖u‖XT
= Cε.

By Lemma 3.1 and (2.1) we get

i∂tϕ̂ =
λ

t 〈ξ〉2 Λ′′ |ϕ̂|2 ϕ̂ + O
(
〈ξ〉−2

ε3tγ− 5
4

)
. (4.1)

Multiplying (4.1) by ϕ̂ and taking the real part of the result, we get

∂t |ϕ̂|2 = O
(
〈ξ〉−2

ε3tγ− 5
4

)
|ϕ̂|

from which it follows that

∂t |ϕ̂| = O
(
〈ξ〉−2

ε3tγ− 5
4

)
.

Hence integration in time yields |ϕ̂ (t, ξ)| ≤ |ϕ̂ (0, ξ)| + Cε3 < Cε for all t ∈ [1, T ] . Next we estimate the
norm ‖ϕ̂‖H1 . We have from (2.1)

d
dt

‖ϕ̂ (t)‖2
H1 ≤ Ct−1

∥∥∥Q∗ |v|2 v
∥∥∥
H1

‖ϕ̂ (t)‖H1

and by Lemma 3.2
d
dt

‖ϕ̂ (t)‖H1 ≤ Ct−1
∥∥∥Q∗ |v|2 v

∥∥∥
H1

≤ Cε3tγ−1.

Then integrating in time, we get ‖ϕ̂ (t)‖H1 ≤ ‖ϕ̂ (0)‖H1 +Cε3tγ < Cεtγ for all t ∈ [1, T ]. Also multiplying
(1.1) by u and taking the imaginary part of the result we have

d
dt

(‖u (t)‖L2 + ‖∂xu (t)‖L2) = 0.

Therefore, integration in time gives us ‖ϕ̂ (t)‖H0,1 = ‖u (t)‖H1 ≤ ‖u0‖H1 < Cε. Thus, we get ‖u‖XT
< Cε

for all T > 1. We obtain the desired contradiction. Lemma 4.1 is proved. �

5. Proof of Theorem 1.1

By Lemma 4.1, we see that a priori estimate of the norm ‖u‖XT
≤ Cε is true for all T > 0. Therefore,

the global existence of solutions of the Cauchy problem (1.1) satisfying estimate ‖u‖X∞ ≤ Cε follows by
a standard continuation argument and the local existence Theorem 4.1. Now we turn to the proof of the
asymptotic formula (1.4) for the solutions u of the Cauchy problem (1.1). As in the proof of Lemma 4.1,
we obtain Eq. (4.1)

∂tϕ̂ = − iλ

t 〈ξ〉2 Λ′′ (ξ)
|ϕ̂|2 ϕ̂ + O

(
ε3tγ− 5

4

)
.
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Changing

g (t, ξ) = ϕ̂ (t, ξ) exp

⎛
⎝ iλ

〈ξ〉2 Λ′′ (ξ)

t∫
1

|ϕ̂ (τ, ξ)|2 dτ

τ

⎞
⎠ ,

we get ∂tg = O
(
ε3t−1−δ

)
, where δ = 1

4 − γ. Integrating in time, we find

‖g (t) − g (s)‖L∞ ≤ Cε

t∫
s

τ−1−δdτ ≤ Cεs−δ

for all t > s > 0. Therefore, there exists a unique final state g+ ∈ L∞, such that

‖g (t) − g+‖L∞ ≤ Cεt−δ

for all t > 0. Denote

Φ (t) =

t∫
1

|g (τ)|2 dτ

τ
− |g+|2 log t.

We have

Φ (t) − Φ(s) =

t∫
s

(
|g (τ)|2 − |g (t)|2

) dτ

τ
+

(
|g (t)|2 − |g+|2

)
log

t

s
.

Hence,

‖Φ(t) − Φ(s)‖L∞ ≤ Cε2s−δ

for all t > s > 0. Thus, there exists a unique real-valued function Φ+ , such that Φ+ ∈ L∞ and

‖Φ(t) − Φ+‖L∞ ≤ Cε2t−δ.

Therefore, we obtain
t∫

1

|ϕ̂ (τ)|2 dτ

τ
= Φ(t) + |g+|2 log t = Φ+ + |g+|2 log t + O

(
εt−δ

)
.

Then, we find the asymptotics

ϕ̂ (t) = g+ exp

⎛
⎝− iλ

〈ξ〉2 Λ′′ (ξ)

t∫
1

|ϕ̂ (τ)|2 dτ

τ

⎞
⎠ + O

(
t−δ

)

= g+ exp

(
− iλ

〈ξ〉2 Λ′′ |g+|2 log t − iλ

〈ξ〉2 Λ′′ Φ+

)
+ O

(
t−δ

)

= W+ exp

(
− iλ

〈ξ〉2 Λ′′ |W+|2 log t

)
+ O

(
t−δ

)
,

where

W+ = g+ exp

(
− iλ

〈ξ〉2 Λ′′ Φ+

)
∈ L∞.
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Finally using the factorization formulas for U (t) and the result of Lemma 2.1, we have

u (t) = DtBMQϕ̂ = DtBM
W+√
iΛ′′ exp

(
− iλ

〈ξ〉2 Λ′′ |W+|2 log t

)
+ O

(
t−

1
2 −δ

)
.

This completes the proof of asymptotics (1.4). Theorem 1.1 is proved.
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