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1. Introduction

The onset of thermal convection for both clear fluids (see [7,20]) and fluids saturating porous materials
(see [19,25]) has been widely studied by many scientists—in the past as nowadays—due to its relevant
applications in different fields, such as geophysics (geothermal reservoirs, geological storage of carbon
dioxide), astrophysics (pore water convection within carbonaceous chondrite parent bodies), engineering
and industrial process (water treatment process, nuclear waste disposal, chemical reactor engineering,
and the storage of heat-generating materials such as grain and coal) (see [14] and references therein). In
[1,19] numerical studies of fluid flows through porous media have been performed; then in [5,6,12] the
onset of convection in anisotropic porous media under various assumptions has been analyzed. Moreover,
[13,31] investigated clear fluid flows with pressure dependent viscosity, while [21–23] deal with the same
problem but through porous media. Finally, [11,20,24,30] analyze the onset of convection of a binary
mixture in a porous medium, of a non-Newtonian fluid between two vertical plate, of a fluid saturating
a porous medium under LTNE assumption and of fluids saturating rotating porous media, respectively.

However, in recent times, double-porosity materials have attracted the attention of a large number of
researchers. A double-porosity material is also referred to as bidisperse porous medium (BDPM): it has
the normal pore structure, but the solid skeleton has cracks or fissures in it. In particular, a BDPM is
composed of clusters of large particles that are agglomerations of small particles, there are macropores
between the clusters and micropores within them, and in particular the macropores are referred to as
f-phase, while the remainder of the structure is referred to as p-phase. The reason of this nomenclature
is that one can think of the f-phase as being a fracture phase, the p-phase as a porous phase [17].

Let ϕ be the porosity of the macropores and ε be the porosity of the micropores, thus (1 − ϕ)ε is the
fraction of volume occupied by the micropores, ϕ + (1 − ϕ)ε is the fraction of volume occupied by the
fluid, (1 − ε)(1 − ϕ) is the fraction of volume occupied by the solid skeleton.

The fundamental theory for thermal convection in bidisperse porous media can be found in [15–17].
The study of bidisperse convection has a large number of practical applications, such as industrial

ones, for example in order to design heat pipes (as reported in [14], since the bidisperse wick structure
significantly increases the area available for liquid film evaporation, it has been proposed for use in the
evaporator of heat pipes), or medical ones, in fact brain and human bones may be modeled as bidisperse
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porous media (in particular, the analysis of the onset convection in a BDPM allows to understand and
model interstitial fluid flow in bones or to develop tissue engineering strategy for bone defects [25,26]).
Since in bidisperse porous media the convection occurs at higher Rayleigh numbers, the heat transfer in
BDPM due to the convective movement is delayed, and for this reason BDPM are significantly better
used in thermal insulation problems and thermal management problem (such as cooling of data centers)
than simple porous materials [8,9,17].

As reported in [27], bidisperse porous media are increasingly important in the chemical engineering
field and regarding anisotropic materials, while anisotropic single porosity media have been widely studied
by several authors (see for example [5,12,18]), anisotropic bidisperse porous materials may have much
more potentials, since they offer many possibilities to design manmade materials for heat transfer or
insulation problems, for oil recovery from underground reservoir, for nuclear waste recovery and so on (see
[3,10,28,29] and references therein). Therefore, in the present, we allow fully anisotropic permeabilities
in both f-phase and p-phase.

The key role of rotation on the onset of thermal convection in porous materials has been pointed
out by many authors in view of its practical applications in geophysics and in engineering (food process
industry, chemical process industry, centrifugal filtration processes, rotating machinery) [30], hence the
study of thermal convection in rotating BDPM may be necessary and useful as well, see for instance [2,4],
which deal with the onset of convection in a horizontal layer of rotating isotropic BDPM, according to
Darcy’s law and taking into account the Vadasz term, respectively, or [3], which analyzes the onset of
convection in a horizontally isotropic rotating BDPM.

Envisaging a rotating machinery constituted by an engineered fully anisotropic bidisperse porous
material, the aim of this paper is to analyze the onset of thermal convection in an anisotropic bidisperse
porous medium uniformly rotating about a vertical axis, through linear and nonlinear stability theory. The
plan of the paper is as follows. The mathematical model and the associated perturbation equations are
introduced in Sect. 2. In Sect. 3 the strong version of the principle of exchange of stabilities is proved and
the linear instability analysis of the thermal conduction solution is performed, to determine the steady
instability threshold. In Sect. 4, the nonlinear stability analysis of the thermal conduction solution is
performed, proving the coincidence between the linear and the nonlinear stability thresholds with respect
to the L2-norm. In Sect. 5, in order to analyze the influence of rotation and of anisotropic permeability on
the onset of convection, numerical simulations are presented. The paper ends with a conclusions section,
in which all the results are collected.

2. The mathematical model

Let Oxyz be a reference frame with fundamental unit vectors i, j,k (k pointing vertically upward) and let
L be a layer of an anisotropic bidisperse porous medium, saturated by an homogeneous incompressible
fluid heated from below. Let us assume that the layer L—of thickness d—rotates about the vertical axis
z, with constant angular velocity Ω = Ωk and that the temperature in the macropores (Tf ) and the
temperature in the micropores (Tp) are the same, i.e., T f = T p = T .

Let us assume that the axes (x, y, z) are the principal axes of the permeability, so the permeability
tensors in the macropores and in the micropores may be written as

Kf = diag(Kf
x ,Kf

y ,Kf
z ) = Kf

z Kf∗,

Kp = diag(Kp
x,Kp

y ,Kp
z ) = Kp

z Kp∗,

Kf∗ = diag(k1, k2, 1), Kp∗ = diag(h1, h2, 1),
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where

k1 =
Kf

x

Kf
z

, k2 =
Kf

y

Kf
z

,

h1 =
Kp

x

Kp
z
, h2 =

Kp
y

Kp
z
.

In the Oberbeque–Boussinesq approximation and extending the Darcy’s Law in order to include the
Coriolis term in the momentum equations for the micropores and the macropores, the governing equations
for thermal convection are [2,27]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vf =
1
μ
Kf ·

[
−ζ(vf − vp) − ∇pf + �F αgTk − 2�F Ω

ϕ
k × vf

]
,

vp =
1
μ
Kp ·

[
−ζ(vp − vf ) − ∇pp + �F αgTk − 2�F Ω

ε
k × vp

]
,

∇ · vf = 0,

∇ · vp = 0,

(�c)m
∂T

∂t
+ (�c)f (vf + vp) · ∇T = kmΔT.

(1)

where

ps = P s − �F

2
|Ω × x|2, s = {f, p}

are the reduced pressures, x = (x, y, z), vs = seepage velocity for s = {f, p}, ζ = interaction coefficient
between the f-phase and the p-phase, g = −gk = gravity, μ = fluid viscosity, �F = reference constant
density, α = thermal expansion coefficient, c = specific heat, cp = specific heat at a constant pressure,
(�c)m = (1 − ϕ)(1 − ε)(�c)sol + ϕ(�c)f + ε(1 − ϕ)(�c)p, km = (1 − ϕ)(1 − ε)ksol + ϕkf + ε(1 − ϕ)kp =
thermal conductivity (the subscript sol is referred to the solid skeleton).

To (1), the following boundary conditions are appended

vs · n = 0 on z = 0, d, s = {f, p}
T = TL on z = 0,

T = TU on z = d,

(2)

where n is the unit outward normal to the impermeable horizontal planes delimiting the layer and
TL > TU .

The problem (1)-(2) admits the steady state (conduction solution):

vf = 0, vp = 0, T = −βz + TL, β =
TL − TU

d
.

Defining {uf ,up, θ, πf , πp} a perturbation to the steady solution, the evolution equations for the pertur-
bation fields are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uf =
1
μ
Kf ·

[
−ζ(uf − up) − ∇πf + �F αgθk − 2�F Ω

ϕ
k × uf

]
,

up =
1
μ
Kp ·

[
−ζ(up − uf ) − ∇πp + �F αgθk − 2�F Ω

ε
k × up

]
,

∇ · uf = 0,

∇ · up = 0,

(�c)m
∂θ

∂t
+ (�c)f (uf + up) · ∇θ = (�c)fβ(wf + wp) + kmΔθ.

(3)
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where uf = (uf , vf , wf ), up = (up, vp, wp). Using the following non-dimensional parameters

x∗ =
x
d

, t∗ =
t

t̃
, θ∗ =

θ

T̃
,

us∗ =
us

ũ
, πs∗ =

πs

P̃
, for s = {f, p},

η =
ϕ

ε
, γ1 =

μ

Kf
z ζ

, γ2 =
μ

Kp
z ζ

,

where the scales are given by

ũ =
km

(�c)fd
, t̃ =

d2(�c)m

km
, P̃ =

ζkm

(�c)f
, T̃ =

√
βkmζ

(�c)f�F αg

and introducing the Taylor number T and the thermal Rayleigh number R, respectively, given by

T =
2�F ΩKf

z

ϕμ
, R =

√

βd2(�c)f�F αg

kmζ
,

the resulting non-dimensional perturbation equations, omitting all the asterisks, are
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

γ1(Kf )−1uf + (uf − up) = −∇πf + Rθk − γ1T k × uf ,

γ2(Kp)−1up − (uf − up) = −∇πp + Rθk − ηγ1T k × up,

∇ · uf = 0,

∇ · up = 0,
∂θ

∂t
+ (uf + up) · ∇θ = R(wf + wp) + Δθ,

(4)

under the initial conditions

us(x, 0) = us
0(x), πs(x, 0) = πs

0(x), θ(x, 0) = θ0(x),

with ∇ · us
0 = 0, for s = {f, p}, and the boundary conditions

wf = wp = θ = 0 on z = 0, 1. (5)

The above equations are defined in {(x, y, z, t) ∈ R
4|z ∈ (0, 1), t > 0}.

In the sequel, we will suppose that the perturbation fields are periodic in the x and y directions of

period
2π

l
and

2π

m
, respectively, and we will denote by

V =
[
0,

2π

l

]
×

[
0,

2π

m

]
× [0, 1]

the periodicity cell.

3. Instability analysis

In this section we will perform linear instability analysis of the basic solution, to this aim let us first
linearise the perturbation Eq. (4), i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

γ1(Kf )−1uf + (uf − up) = −∇πf + Rθk − γ1T k × uf ,

γ2(Kp)−1up − (uf − up) = −∇πp + Rθk − ηγ1T k × up,

∇ · uf = 0,

∇ · up = 0,
∂θ

∂t
= R(wf + wp) + Δθ,

(6)
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Since the system (6) is autonomous, we seek solutions which have time-dependence like eσt, i.e., solutions
of form

us(t,x) = eσtus(x),

θ(t,x) = eσtθ(x),

πs(t,x) = eσtπs(x),

(7)

with σ ∈ C and s = {f, p}. By virtue of (7), (6) becomes
⎧
⎪⎨

⎪⎩

γ1(Kf )−1uf + (uf − up) = −∇πf + Rθk − γ1T k × uf ,

γ2(Kp)−1up − (uf − up) = −∇πp + Rθk − ηγ1T k × up,

σθ = R(wf + wp) + Δθ.

(8)

Let ∗ be the complex conjugate of a field. Multiplying (8)1 by uf∗, (8)2 by up∗ and (8)3 by θ∗, integrating
each equation over the periodic cell V and adding the resulting equations, one obtains

σ‖θ‖2 = −γ1(Mfuf ,uf∗) − γ2(Mpup,up∗)

− ‖uf − up‖2 − ‖∇θ‖2

+ R[(θ, wf∗ + wp∗) + (wf + wp, θ∗)]

− γ1T (k × uf ,uf∗) − ηγ1T (k × up,up∗).

(9)

where Mf = (Kf )−1 and Mp = (Kp)−1, while (·, ·) and ‖ · ‖ are inner product and norm on the Hilbert
space L2(V ), respectively. Setting σ = σr + iσi, the imaginary part of equation (9) is

σi‖θ‖2 = −γ1T (k × uf ,uf∗) − ηγ1T (k × up,up∗). (10)

Applying the same procedure to the complex conjugate of (8), multiplying by uf ,up, θ one gets

σi‖θ‖2 = −γ1T (k × uf∗,uf ) − ηγ1T (k × up∗,up). (11)

Adding (10) and (11), one obtains

2σi‖θ‖2 = 0 ⇒ σi = 0 ⇒ σ ∈ R

and hence the strong version of the principle of exchange of stabilities holds: if the convection sets in, it
arises necessary via a stationary motion (steady convection).
To determine the instability threshold for the onset of stationary convection, let us consider system (8)
with σ = 0, i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1
k1

uf + uf − up = −πf
x + γ1T vf ,

γ1
k2

vf + vf − vp = −πf
y − γ1T uf ,

γ1w
f + wf − wp = −πf

z + Rθ,
γ2
h1

up + up − uf = −πp
x + ηγ1T vp,

γ2
h2

vp + vp − vf = −πp
y − ηγ1T up,

γ2w
p + wp − wf = −πp

z + Rθ,

uf
x + vf

y + wf
z = 0,

up
x + vp

y + wp
z = 0,

Rwf + Rwp + Δθ = 0.

(12)
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From system (1), one obtains

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uf =
1
D

{
Hπp

x + γ1T (L + η)πf
y + [L(b + 1) − (c + 1)]πf

x + γ1T Nπp
y

}
,

up =
1
D

{
Hπf

x + γ1T (ηK + 1)πp
y + [K(d + 1) − (a + 1)]πp

x + γ1T Mπf
y

}
,

vf =
1
D

{
Gπp

y − γ1T (L + η)πf
x + [L(a + 1) − (d + 1)]πf

y − γ1T Mπp
x

}
,

vp =
1
D

{
Gπf

y − γ1T (ηK + 1)πp
x + [K(c + 1) − (b + 1)]πp

y − γ1T Nπf
x

}
,

(13)

where A is the coefficients matrix of system (12)1,2–(12)4,5 and

a =
γ1
k1

, b =
γ1
k2

, c =
γ2
h1

, d =
γ2
h2

,

H = (b + 1)(d + 1) − 1 − η(γ1T )2,

G = (a + 1)(c + 1) − 1 − η(γ1T )2,

K = (a + 1)(b + 1) + (γ1T )2,

L = (d + 1)(c + 1) + η2(γ1T )2,

M = (d + 1) + η(a + 1),

N = (c + 1) + η(b + 1),

D = det(A) .

Hence, differentiating equations (13) with respect to z and equations (12)3–(12)6 with respect to x and
y, by virtue of the incompressible conditions (12)7–(12)8, differentiating with respect to z, i.e.,

uf
xz + vf

yz = −wf
zz,

up
xz + vp

yz = −wp
zz,

(14)

one obtains the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1w
f
xx + a2w

f
yy + Dwf

zz + a3w
p
xx + a4w

p
yy + c1w

f
xy

−c1γ̂2w
p
xy + Ra5θxx + Ra6θyy + Rc1θxy = 0,

b1w
f
xx + b2w

f
yy + b3w

p
xx + b4w

p
yy + Dwp

zz + c1γ̂1w
f
xy

−c1w
p
xy + Rb5θxx + Rb6θyy − Rc1θxy = 0,

Rwf + Rwp + Δθ = 0.

(15)
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where γ̂s = γs + 1, for s = 1, 2 and

a1 = H − γ̂1[L(b + 1) − (c + 1)],

a2 = G − γ̂1[L(a + 1) − (d + 1)],

a3 = −γ̂2H + L(b + 1) − (c + 1),

a4 = −γ̂2G + L(a + 1) − (d + 1),

a5 = H + L(b + 1) − (c + 1),

a6 = G + L(a + 1) − (d + 1),

b1 = −γ̂1H + K(d + 1) − (a + 1),

b2 = −γ̂1G + K(c + 1) − (b + 1),

b3 = H − γ̂2[K(d + 1) − (a + 1)],

b4 = G − γ̂2[K(c + 1) − (b + 1)],

b5 = H + K(d + 1) − (a + 1),

b6 = G + K(c + 1) − (b + 1),

c1 = γ1T (N − M).

By virtue of periodicity of perturbation fields in the horizontal directions x and y, taking into account the
boundary conditions (5), since {sin(nπz)}n∈N is a complete orthogonal system for L2([0, 1]), employing
normal modes solutions [7]:

wf = W f
0 sin(nπz)ei(lx+my),

wp = W p
0 sin(nπz)ei(lx+my),

θ = Θ0 sin(nπz)ei(lx+my),

(16)

from (15) one obtains
⎧
⎪⎨

⎪⎩

h11W
f
0 + h12W

p
0 + Rh13Θ0 = 0,

h21W
f
0 + h22W

p
0 + Rh23Θ0 = 0,

RW f
0 + RW p

0 − ΛnΘ0 = 0.

(17)

where Λn = n2π2 + l2 + m2 and

h11 = a1l
2 + a2m

2 + Dn2π2 + c1lm,

h12 = a3l
2 + a4m

2 − c1γ̂2lm,

h13 = a5l
2 + a6m

2 + c1lm,

h21 = b1l
2 + b2m

2 + c1γ̂1lm,

h22 = b3l
2 + b4m

2 + Dn2π2 − c1lm,

h23 = b5l
2 + b6m

2 − c1lm.

Finally, requiring a zero determinant for (17), the linear instability threshold for the onset of stationary
convection is:

R2
L = min

n,l,m

Λn(h11h22 − h12h21)
h12h23 − h13h22 − h11h23 + h21h13

(18)

where both numerator and denominator of the right hand side of (18) are positive. The minimization
(18) is numerically analyzed in Sect. 5.
Let us point out that
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(i) assuming h1 = h2 = h, k1 = k2 = k (horizontally isotropic case) and for T → 0, i.e., in the absence
of rotation, we get

R2
L = min

n,a2

Γ̂Λn

a2

a4ΓΓ̂−1 + n4π4 + a2n2π2K̂Γ̂−1

a2(4 + γ1 + γ2) + n2π2(γ1
k + γ2

h + 4)

where a2 = l2 + m2 and

K̂ =
[
γ1 + γ2 +

γ1
k

+
γ2
h

+ γ1γ2

(1
k

+
1
h

)]
,

Γ = γ1γ2 + γ1 + γ2,

Γ̂ =
γ1
k

+
γ2
h

+
γ1
k

γ2
h

,

that coincides with the instability threshold found in [29];
(ii) the case of a non-rotating layer of isotropic bidisperse porous medium (assuming hs = ks = 1 for

s = 1, 2 and as T → 0) leads to

R2
L = min

n,a2

Λ2

a2

γ1γ2 + γ1 + γ2
γ1 + γ2 + 4

that is the same threshold found in [8].

4. Nonlinear stability

In order to study the influence of rotation on the nonlinear stability of the conduction solution, since
the Coriolis terms in momentum equations are antisymmetric, instead of applying the standard energy
method, let us apply the differential constraint approach (see [5,11,24]).
To this end, let us set

E(t) =
1
2
‖θ‖2,

I(t) = (wf + wp, θ),

D(t) = ‖∇θ‖2,

(19)

and by virtue of (4)5, one obtains

dE

dt
=

(
R

I

D
− 1

)
D . (20)

Setting

1
RE

= max
H∗

I

D
(21)

with

H∗ = {(wf , wp, θ) ∈ (H1)3|wf = wp = θ = 0 on z = 0, 1;

periodic in x, y with periods 2π/l, 2π/m;D < ∞;

verifying (15)1,2}
the space of kinematically admissible solutions. The variational problem (21) is equivalent to the following
variational problem:

1
RE

= max
H

I +
∫

V

λg1 dV +
∫

V

ψg2 dV

D
, (22)
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where λ(x) and ψ(x) are Lagrange multipliers and

g1 ≡R−1(a1w
f
xx + a2w

f
yy + Dwf

zz + a3w
p
xx + a4w

p
yy + c1w

f
xy − c1γ̂2w

p
xy) + a5θxx + a6θyy + c1θxy,

g2 ≡R−1(b1wf
xx + b2w

f
yy + b3w

p
xx + b4w

p
yy + Dwp

zz + c1γ̂1w
f
xy − c1w

p
xy) + b5θxx + b6θyy − c1θxy,

(23)

H = {(wf , wp, θ) ∈ (H1)3|wf = wp = θ = 0 on z = 0, 1;

periodic in x, y with periods 2π/l, 2π/m;D < ∞}.

By virtue of Poincaré inequality, since

D ≥ π2‖θ‖2,

from (20) one obtains that condition R < RE guarantees the global nonlinear stability of the conduction
solution with respect to the L2-norm, according to the following inequality

E(t) ≤ E(0) exp
[R − RE

RE
t
]
.

Remark 1. Multiplying (8)1 by uf , (8)2 by up, integrating over the period cell V and adding the resulting
equations, one finds

γ1

∫

V

[ 1
k1

(uf )2 +
1
k2

(vf )2 + (wf )2
]

dV + γ2

∫

V

[ 1
h1

(up)2 +
1
h2

(vp)2 + (wp)2
]

dV

+ ‖uf − up‖2 = R(θ, wf + wp).

(24)

Setting k̂ = max(k1, k2, 1) and ĥ = max(h1, h2, 1) and using the generalized Cauchy inequality on the
right-hand side of (24), one obtains

γ1

k̂
‖uf‖2 +

γ2

ĥ
‖up‖2 ≤ R2

( k̂

γ1
+

ĥ

γ2

)
‖θ‖2 (25)

and hence condition R < RE guarantees that ‖uf‖2 → 0 and ‖up‖2 → 0 as t → ∞, too.

In order to solve the variational problem (22), let us consider the associated Euler–Lagrange equations:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

RE(wf + wp) + RE(a5λxx + a6λyy + c1λxy + b5ψxx + b6ψyy − c1ψxy) + 2Δθ = 0,

REθ + a1λxx + a2λyy + Dλzz + c1λxy + b1ψxx + b2ψyy + c1γ̂1ψxy = 0,

REθ + a3λxx + a4λyy − c1γ̂2λxy + b3ψxx + b4ψyy + Dψzz − c1ψxy = 0,

a1w
f
xx + a2w

f
yy + Dwf

zz + a3w
p
xx + a4w

p
yy + c1w

f
xy − c1γ̂2w

p
xy + RE(a5θxx + a6θyy + c1θxy) = 0,

b1w
f
xx + b2w

f
yy + b3w

p
xx + b4w

p
yy + Dwp

zz + c1γ̂1w
f
xy − c1w

p
xy + RE(b5θxx + b6θyy − c1θxy) = 0.

(26)

Defining the operators

Δf ≡ a1∂xx + a2∂yy + D∂zz,

Δ∗
p ≡ a3∂xx + a4∂yy,

Δ∗
f ≡ b1∂xx + b2∂yy,

Δp ≡ b3∂xx + b4∂yy + D∂zz,

L1 ≡ a5∂xx + a6∂yy,

L2 ≡ b5∂xx + b6∂yy.
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and taking 2Δ of (26)2,3,4,5, the Euler–Lagrange equations become
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RE(wf + wp) + RE(L1λ + c1λxy + L2ψ − c1ψxy) = −2Δθ,

2ΔΔfλ + 2c1Δλxy + 2ΔΔ∗
fψ + 2c1γ̂1Δψxy = −2REΔθ,

2ΔΔ∗
pλ − 2c1γ̂2Δλxy + 2ΔΔpψ − 2c1Δψxy = −2REΔθ,

2ΔΔfwf + 2c1Δwf
xy + 2ΔΔ∗

pw
p − 2c1γ̂2Δwp

xy

+2REL1Δθ + 2REc1Δθxy = 0,

2ΔΔ∗
fwf + 2c1γ̂1Δwf

xy + 2ΔΔpw
p − 2c1Δwp

xy

+2REL2Δθ − 2REc1Δθxy = 0

(27)

Eliminating variable θ and setting

M1 ≡ 2ΔΔf + 2c1Δ∂xy − R2
EL1 − R2

Ec1∂xy,

M2 ≡ 2ΔΔ∗
f + 2c1γ̂1Δ∂xy − R2

EL2 + R2
Ec1∂xy,

M3 ≡ 2ΔΔ∗
p − 2c1γ̂2Δ∂xy − R2

EL1 − R2
Ec1∂xy,

M4 ≡ 2ΔΔp − 2c1Δ∂xy − R2
EL2 + R2

Ec1∂xy,

N1 ≡ −RE(L1 + c1∂xy)2,

N2 ≡ −R2
E(L1 + c1∂xy)(L2 − c1∂xy),

N3 ≡ −R2
E(L2 − c1∂xy)2,

one obtains
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−R2
Ewf − R2

Ewp + M1λ + M2ψ = 0,

−R2
Ewf − R2

Ewp + M3λ + M4ψ = 0,

M1w
f + M3w

p + N1λ + N2ψ = 0,

M2w
f + M4w

p + N2λ + N3ψ = 0.

(28)

By employing normal modes

wf = W f
0 sin(nπz)ei(lx+my),

wp = W p
0 sin(nπz)ei(lx+my),

(29)

and choosing [6,11]

λ = λ0 sin(nπz)ei(lx+my),

ψ = ψ0 sin(nπz)ei(lx+my),
(30)

from (28) one obtains
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−R2
EW f

0 − R2
EW p

0 + (2Λnh11 + R2
Eh13)λ0 + (2Λnh21 + R2

Eh23)ψ0 = 0,

−R2
EW f

0 − R2
EW p

0 + (2Λnh12 + R2
Eh13)λ0 + (2Λnh22 + R2

Eh23)ψ0 = 0,

(2Λnh11 + R2
Eh13)W

f
0 + (2Λnh12 + R2

Eh13)W
p
0 − R2

Eh2
13λ0 − R2

Eh13h23ψ0 = 0,

(2Λnh21 + R2
Eh23)W

f
0 + (2Λnh22 + R2

Eh23)W
p
0 − R2

Eh13h23λ0 − R2
Eh2

23ψ0 = 0.

(31)

Requiring a zero determinant for (31) we find

R2
E = R2

L,

and hence the global nonlinear stability threshold and the linear instability threshold coincide and sub-
critical instabilities do not exist.
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Table 1. Critical R2
L, l, m for increasing T and h1 = 10, h2 = 1, k1 = 0.1, k2 = 1, η = 0.2, γ1 = 10, γ2 = 50

R2
L l m T

342.0314 0.8681 2.9868 0
342.1650 0.8683 2.9874 0.1
355.1930 0.8845 3.0385 1
606.4105 1.2509 3.5844 5
1096.6 2.1500 2.5456 10
4476.3 4.4554 0 50
12228 6.2551 0 100

Table 2. Critical R2
L, l, m for increasing T and h1 = 0.1, h2 = 1, k1 = 10, k2 = 1, η = 0.2, γ1 = 10, γ2 = 50

R2
L l m T

216.7792 2.0756 0 0
219.6234 2.0991 0 0.1
416.4060 3.2100 0 1
594.6478 3.7883 0.9462 1.5
795.6823 4.2006 1.5401 2
1653 3.8717 2.8998 4
1808.9 2.4736 3.1779 4.5
1860.3 0 3.2761 5
1988.1 0 3.1874 10
3408.4 0 3.9766 100

5. Numerical simulations

We now present numerical results to solve (18), in order to analyze the asymptotic behavior of R2
L with

respect to T , hi, ki, for i = 1, 2, i.e., to study the influence of rotation and anisotropic permeability on
the onset of convection. As regards the physical parameters, in all numerical simulations, we have chosen
a set of values analogous to those ones fixed in [27], in order to compare our results with those ones
obtained in [27], to stress the influence of rotation and anisotropy on the onset of convection.

In all the computations, we have performed, the minimum of R2
L with respect to n is attained at n = 1.

Each of the following tables and figures show the stabilizing effect of rotation on the onset of convection.
Table 1 shows that for large values of the Taylor number T and when h1 >> k1, m becomes zero,
this means that, as rotation increases, the convection cells become rolls with the axis in the y-direction.
Table 2 shows a transition from convection patterns as rolls along y-axis (m = 0 for very small T ) to
convection patterns as rolls along x-axis (l = 0), as the rotation increases and for h1 << k1. For these
physical values, the asymptotic behavior of R2

L with respect to T is shown in Fig. 1. We can also observe
that, as T increases, R2

L increases more slowly when h1 << k1 then h1 >> k1.
Let us point out that bi-dimensional convection cells (rolls along x-axis for l = 0 and rolls along y-axis

for m = 0) were already found in [27] as an effect of anisotropic macropermeability and micropermeability
in absence of rotation.

From Table 3, we numerically find out that for parameters {h1 = 1, h2 = 0.1, k1 = 1, k2 = 10, η =
0.2, γ1 = 2, γ2 = 0.2} the critical value of m is mainly zero, except for very small values of the Taylor
number T ∈ [0, 3), for which l and m are both nonzero, i.e., for very little rotation of the layer, three-
dimensional convection cells are expected.

As a matter of fact, the wavelengths in the x and y directions are x̂ = 2π
l and ŷ = 2π

m . The condition
ŷ/x̂ = 0 implies l = 0, this means that the convective fluid motion occurs in the y and z directions
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(a) (b)

Fig. 1. a Critical Rayleigh number R2
L as function of the Taylor number T for h1 = 10, h2 = 1, k1 = 0.1, k2 = 1, η =

0.2, γ1 = 10, γ2 = 50. b Critical Rayleigh number R2
L as function of the Taylor number T for h1 = 0.1, h2 = 1, k1 = 10, k2 =

1, η = 0.2, γ1 = 10, γ2 = 50

Table 3. (a): critical R2
L, l, m for increasing T . (b): critical Rayleigh number R2

L as function of the Taylor number T .
For h1 = 1, h2 = 0.1, k1 = 1, k2 = 10, η = 0.2, γ1 = 2, γ2 = 0.2

(a)
R2

L l m T

16.5555 3.1416 0.0334 0
16.5570 3.1415 0.0413 0.01
16.7028 3.1399 0.3139 0.1
19.7124 3.1420 1.3606 0.5
26.4272 3.2505 2.1111 1
42.8398 3.6375 2.1076 2
50.3892 3.8240 0.1504 2.5
54.2050 3.8079 0.0011 2.8
56.6389 3.8030 0 3
79.6444 3.9576 0 5
152.0288 4.8151 0 10
1815 10.0471 0 50
6581.4 14.1637 0 100

(b)
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Table 4. Critical R2
L, l, m for quoted values of h1 (a) and for quoted values of h2 (b). Table a:

h2 = 0.9, k1 = 0.2, k2 = 1.1, η = 0.2, γ1 = 0.9, γ2 = 1.8, T = 10. Table b:
h1 = 3.3, k1 = 0.2, k2 = 1.1, η = 0.2, γ1 = 0.9, γ2 = 1.8, T = 10

(a)
R2

L l m h1

72.0664 0 3.9779 0.1
80.3593 0 4.2133 0.5
87.5331 0 4.4002 1
99.4378 0.0023 4.6828 2.5
101.3657 1.8730 4.0969 3
101.9684 2.2477 3.7690 3.3
102.5416 3.0110 2.3960 5
101.6569 3.2416 1.0423 7
101.4029 3.2703 0.5478 7.5
101.1561 3.2772 0.0030 8
100.4043 3.2598 0 10
97.6476 3.1953 0 100

(b)
R2

L l m h2

77.2756 3.0012 0 0.1
93.7839 3.2485 0 0.5
97.2253 3.2919 0.0025 0.6
99.9532 3.0972 2.1071 0.7
101.9684 2.2477 3.7690 0.9
101.6923 1.4139 4.3715 1
98.0214 0 4.5583 1.5
92.1505 0 4.3049 5
90.7919 0 4.2441 10
89.5334 0 4.1871 100

(the solution is a function of y and z), i.e., the convection cells are rolls in the x-direction. Instead, the
condition ŷ/x̂ → ∞ implies m = 0 and the convective fluid motion occurs in the x and z directions, so
the cells are rolls in the y-direction [27].

Tables 4 and 5 exhibit the influence of anisotropy parameters for both macropores and micropores on
the onset of convection, and the values of h1, h2, k1, k2 are fixed such that the permeability ratios in the
macropores and micropores are different, in particular we set {h1 = 3.3, h2 = 0.9, k1 = 0.2, k2 = 1.1} (see
[27]) and we vary hs, ks for s = 1, 2 in turn to see how each parameter affects the Rayleigh number. As
in [27], we numerically find out a very complex relationship between the macro and micro permeability
parameters and the critical Rayleigh and wave numbers. For increasing h1, h2, k1, k2, we can see a similar
trend, i.e., R2

L increases up to a maximum before decreasing. From 4(a) and from 5(a), we can see a first
transition from rolls along x-axis to three-dimensional cells and then another transition to rolls along
y-axis, while 4(b) and 5(b) displays a mirror behavior with respect to 4(a) and 5(a) , respectively.

In Fig. 2 the critical Rayleigh number R2
L is represented as function of the Taylor number T for h1 =

0.1, 1, 5, 10 and the others parameters are fixed as h2 = 0.9, k1 = 0.2, k2 = 1.1, η = 0.2, γ1 = 0.9, γ2 = 1.8,
with the aim to graphically analyze the values shown in Table 4a.
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Table 5. Critical R2
L, l, m for quoted values of k1 (a) and for quoted values of k2 (b). Table a:

h1 = 3.3, h2 = 0.9, k2 = 1.1, η = 0.2, γ1 = 0.9, γ2 = 1.8, T = 10. Table b:
h1 = 3.3, h2 = 0.9, k1 = 0.2, η = 0.2, γ1 = 0.9, γ2 = 1.8, T = 10

(a)
R2

L l m k1

58.9329 0 4.4430 0.05
77.3354 0 4.7150 0.1
91.5765 0.0028 4.7810 0.15
101.9684 2.2477 3.7690 0.2
106.2647 3.3934 0.3203 0.25
106.2066 3.4023 0 0.3
106.0864 3.4078 0 0.5
105.9929 3.4121 0 1
105.9159 3.4157 0 5
105.9061 3.4162 0 10

(b)
R2

L l m k2

66.4721 3.8969 0 0.1
87.3683 3.6711 0 0.3
96.2862 3.5414 0.0011 0.5
101.1517 2.7734 3.0504 0.8
101.9684 2.2477 3.7690 1.1
102.1598 1.5167 4.3633 2
101.8944 0.7318 4.6887 5
101.7847 0.3533 4.7594 8
101.7447 0.0135 4.7805 10
101.5976 0.0017 4.7825 100
101.5829 0.0016 4.7827 103

Fig. 2. Critical Rayleigh number R2
L as function of the Taylor number T for h1 = 0.1, 1, 5, 10 and h2 = 0.9, k1 = 0.2, k2 =

1.1, η = 0.2, γ1 = 0.9, γ2 = 1.8

6. Conclusions

The onset of thermal convection in a horizontal layer of anisotropic BDPM, uniformly rotating about
a vertical axis and uniformly heated from below, has been analyzed, according to Darcy’s law in both
micropores and macropores. In particular, it has been proved that:
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• the strong version of the principle of exchange of stabilities holds, and hence, when the convection
arises, it sets in through a stationary motion;

• the linear instability threshold and the global nonlinear stability threshold in the L2−norm coincide:
this is an optimal result since the stability threshold furnishes a necessary and sufficient condition
to guarantee the global (i.e., for all initial data) nonlinear stability.

Moreover, it has been numerically analyzed the influence of the rotation and the influence of the anisotropy
on the onset of convection.
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