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Abstract. We propose a phase-field theory for enriched continua. To generalize classical phase-field models, we derive the
phase-field gradient theory based on balances of microforces, microtorques, and mass. We focus on materials where second
gradients of the phase field describe long-range interactions. By considering a nontrivial interaction inside the body, described
by a boundary-edge microtraction, we characterize the existence of a hypermicrotraction field, a central aspect of this
theory. On surfaces, we define the surface microtraction and the surface-couple microtraction emerging from internal surface
interactions. We explicitly account for the lack of smoothness along a curve on surfaces enclosing arbitrary parts of the
domain. In these rough areas, internal-edge microtractions appear. We begin our theory by characterizing these tractions.
Next, in balancing microforces and microtorques, we arrive at the field equations. Subject to thermodynamic constraints,
we develop a general set of constitutive relations for a phase-field model where its free-energy density depends on second
gradients of the phase field. A priori, the balance equations are general and independent of constitutive equations, where the
thermodynamics constrain the constitutive relations through the free-energy imbalance. To exemplify the usefulness of our
theory, we generalize two commonly used phase-field equations. We propose a ‘generalized Swift–Hohenberg equation’—a
second-grade phase-field equation—and its conserved version, the ‘generalized phase-field crystal equation’—a conserved
second-grade phase-field equation. Furthermore, we derive the configurational fields arising in this theory. We conclude with
the presentation of a comprehensive, thermodynamically consistent set of boundary conditions.
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1. Introduction

In this work, we propose a phase-field theory for enriched continua. This continuum framework extends
and complements the work by Fried and Gurtin [1,2] and Gurtin [3]. However, we base our theory on
Fosdick’s approach [4,5] to derive it. We generalize the Swift–Hohenberg equation [6]—the second-grade
phase-field equation—and its conserved version—the phase-field crystal equation. We build our theory
on balances of microforces and microtorques while accounting for ‘rough’ arbitrary parts. Additionally,
we present the configurational fields arising in this theory with its balance.

Brazovskǐı [7] introduced the free-energy functional that delivers the equations of Swift–Hohenberg
and phase-field-crystal. In the literature, these equations are typically found in the following form of
gradient flows

ϕ̇ = −δΨ
δϕ

and ϕ̇ = divgrad
(

δΨ
δϕ

)
, (1)

where ϕ is the phase field (left: nonconserved case, right: conserved case) and Ψ a free-energy functional
depending on (ϕ, gradϕ, grad2ϕ).

The outline of the work is as follows. In Sect. 2, to derive this continuum theory, we allow for different
types of interactions between adjacent arbitrary parts P occurring inside the body B to characterize
the primitive and fundamental contact microforce fields. Parts P of the body B are arbitrary and may
exhibit a lack of smoothness on their boundaries ∂P along a curve C ⊂ ∂P. Thus, by balancing these
traction fields, we arrive at the field equations of the phase-field gradient theory. In Sect. 3, we present
the virtual power theorem. In Sect. 4, we derive the thermodynamic laws, in the form of the energy
balance and the free-energy imbalance to derive suitable constitutive equations. In Sect. 5, we introduce
the nonconserved second-grade phase-field equation, its specialization to the Swift–Hohenberg equation,
and the configurational fields with its balance equation. In Sect. 6, we aim at the conserved second-grade
phase-field equation by augmenting the nonconserved version with a balance of mass and emulate the
developments of Sect. 5. In Sect. 7, we derive thermodynamically consistent boundary conditions for
both, the nonconserved and conserved cases. In Sect. 8, we summarize this work. In “Appendix A,” we
present the mathematical identities used to derive this theory.
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2. Fundamental fields and field equations

The continuum theory by Fried and Gurtin [1,2] and Gurtin [3] represents a turning point in phase-field
theories. In this collection of papers, Fried and Gurtin describe these phenomena from a mechanistic
standpoint and derived the ‘generalized Allen–Cahn (Ginzburg–Landau)’ and the ‘generalized Cahn–
Hilliard’ equations by introducing a balance of microforces. Their work makes explicit the underlying
‘forces’ that dictate the evolution of phase fields. Herein, we denote these equations as first-grade phase-
field descriptions. In this section, we characterize the fundamental fields, based on Fosdick’s approach [5],
and derive the field equations that yield the phase-field gradient theory.

2.1. Fundamental fields

Throughout what follows, B denotes a fixed region of a three-dimensional point space E . P ⊆ B is
an arbitrarily fixed subregion of B with a closed boundary surface ∂P oriented by an outward unit
normal n. The surface ∂P can lose its smoothness along a curve, namely an internal-edge C. Analyzing a
neighborhood of an internal-edge C, two smooth surfaces ∂P± are defined. Thus, the limiting unit normals
of ∂P± at C are denoted by the pair {n+,n−}, which characterizes the internal-edge C. Equivalently, the
limiting outward unit tangent-normal of ∂P± at C is {ν+,ν−}. As a notational agreement, C is oriented
by the unit tangent t := t+ such that ν+ := t+ × n+. Irrespectively of the surface S being a boundary
of P the internal-edge remains a feature of the surface and not part of P. Furthermore, the body B and
all its parts are open sets in E . Figure 1 depicts the part under discussion.

To unfold the implications of considering arbitrary parts P that lack of smoothness at an internal-edge
C arising in this theory, we begin by discussing the interaction of a smooth open surface S ⊆ P with a
boundary-edge ∂S and its adjacent parts of P, that is P\S. Here, S is oriented by a unit normal n with
a boundary-edge ∂S oriented by the unit tangent t. Boundary-edges ∂S are equipped with an intrinsic
Darboux frame, composed by the unit tangent t, unit normal n, and outward unit tangent-normal ν,
where ν := t × n. Understanding the underlying mechanical interactions of a boundary-edge ∂S allows
us to further the understanding of an internal-edge C. Figure 2 depicts a smooth open surface (left) and
a nonsmooth open surface (right), which will serve to study boundary- and internal-edge interactions.

Fig. 1. Arbitrary fixed part P ⊆ B with closed boundary surface ∂P oriented by an outward unit normal n . The boundary
surface ∂P lacks of smoothness along an internal-edge C. The pair {n+, n−} characterizes the internal-edge C which in

turn is oriented by the unit tangent t, where t := n+ × ν+ = −n− × ν−
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(A)Smooth open surface S oriented by a unit normal n with
a boundary-edge ∂S oriented by a tangent unit t.

(B)Nonsmooth open surface S oriented by a unit normal n
with a boundary-edge ∂S oriented by a tangent unit t and an

internal-edge C defined by the unit normals {n+,n−} and

oriented by the unit tangent t := t+.

Fig. 2. Surfaces

Before developing the field equations of the phase-field gradient theory, we describe the set of interac-
tions of adjacent parts of B and the resulting fundamental fields as follows.
(i) Surface microtraction The surface microtraction ξS := ξS(x, t;n,L) represents a microforce per unit
area, acting on an oriented surface S ⊂ B at x ∈ S. It depends on S through the pair {n,L}, its outward
unit normal n and its curvature tensor L (or the negative surface gradient of the unit normal, −gradSn).
On the opposite side of S, S∗, the surface microtraction ξ∗

S := ξ∗
S(x, t;n,L) is defined. We say that ξ∗

S is
the intrinsic counterpart of ξS . Each of these surface microtractions are developed by the contact of each
side of a surface S with the adjacent parts of B.
(ii) Surface-couple microtraction The surface-couple microtraction �S := �S(x, t;n) represents a micro-
torque per unit area, acting on an oriented surface S ⊂ B at x ∈ S. It depends on S through its outward
unit normal n. On the opposite side of S, S∗, the surface-couple microtraction �∗

S := �∗
S (x, t;n) is

defined. We say that �∗
S is the intrinsic counterpart of �S . Each of these surface-couple microtractions

are also developed by the contact of each side of a surface S with the adjacent parts of B.
(ii) Boundary-edge microtraction The boundary-edge microtraction τ∂S := τ∂S(x, t;ν,n) represents a
microforce per unit length, acting on an boundary-edge ∂S of an open oriented surface S ⊂ B at x ∈ ∂S.
It depends on S through the pair {ν,n}, its outward unit tangent-normal ν and its unit normal n. The
boundary-edge microtraction is developed by the contact of a boundary-edge ∂S with the adjacent parts
of B\S. The analysis of the boundary-edge microtraction and its definition is intrinsic to the study of
open oriented surfaces. Thus, the boundary-edge microtraction does not contribute to balances that are
reckoned on arbitrary parts P. However, the boundary-edge microtraction characterizes the internal-edge
microtraction and more importantly, it supports the existence of a hypermicrostress field.
(iv) Internal-edge microtraction The internal-edge microtraction τC := τC(x, t;n+,n−) represents a micro-
force per unit length, acting on an internal-edge C of a nonsmooth oriented surface S ⊂ B at x ∈ C ⊂ S.
It depends on S through the pair {n+,n−}, its unit normals defined at each smooth part of S. The
internal-edge microtraction is developed by the contact of an internal-edge C with the adjacent parts of
B\S.
(v) External microforce The external microforce γ := γ(x, t) represents a body microforce per unit
volume, acting on the body B. It is developed by external causes, outside of B.

In accounting for the surface-couple, the boundary-edge, and the internal-edge microtractions, in
addition to the conventional surface microtraction and the external microforce, we obtain a general second-
grade phase-field theory. Conversely, first-grade phase-field theories introduced by Fried and Gurtin [1,2]
and Gurtin [3] are recovered when these additional microtraction fields are neglected.
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2.2. Differential relations on evolving surfaces

We began our theory by assuming the body B to be fixed, and so any other part P and surface S.
However, let the surfaces depicted in Fig. 2 undergo deformation from S to y(S) =: Sε. This motion
is somewhat arbitrary but smooth and needed to characterize variationally the contact microforce and
microtorque fields arising from the interactions between adjacent parts. We then parameterize the motion
from S to Sε, with a one-parameter family of smooth invertible mappings, such that

yε := x + εu(x), ε ∈ [0, 1], (2)

with x ∈ S, yε|ε=0 = x, yε|ε=1 = y, yε(S) =: Sε ⊂ B, ∀ ε ∈ [0, 1], and the displacement u sufficiently
smooth. Quantities with the subscript ε live on Sε.

Defining the parameterized deformation gradient of this motion by

F := gradyε|ε=1 and F ε := gradyε, (3)

the unit tangent and unit normal at yε on Sε, respectively, are

tε =
1

|F εt|F εt and nε =
1

|F −�
ε n|F

−�
ε n, (4)

where (·)� represents the transposition. The curvature tensor L is

L := −gradSn = −(gradn)P and P := 1 − n ⊗ n, (5)

and the determinant of the deformation gradient J := det(F ). In a Darboux frame, the following relations
hold,

dtε

dε

∣∣∣
ε=0

=
∂u

∂s
−

(
∂u

∂s
· t

)
t, (6a)

dnε

dε

∣∣∣
ε=0

= −(gradSu)�n, (6b)

dνε

dε

∣∣∣
ε=0

= −
(

∂u

∂s
· ν

)
t + (gradSu)�n × t, (6c)

dLε

dε

∣∣∣
ε
= gradS ((gradSu)�n) − LgradSu + L(gradSu)�n ⊗ n, (6d)

d|F εt|
dε

∣∣∣
ε=0

= gradu : t ⊗ t, (6e)

d(|F −�
ε n|)
dε

∣∣∣
ε=0

= −gradu : n ⊗ n, (6f)

d(J |F −�
ε n|)

dε

∣∣∣
ε=0

= divSu. (6g)

In “Appendix A,” we detail the derivations leading to the relations (6), which we use in this section.
With these identities, we have suitable machinery to characterize variationally all types of microtractions
we introduce in our description.

2.3. Analysis on a smooth open oriented surface S

To characterize boundary-edge microtractions, we postulate that the following surface balance of micro-
forces holds on a smooth open oriented surface S ⊂ B,

H(S) :=
∫
S

(ξS + ξ∗
S) da +

∫
∂S

τ∂S ds = 0, ∀S ⊂ B and t, (7)
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where the functional H on Sε specializes to

H(Sε) =
∫
Sε

(ξSε + ξ∗
Sε) daε +

∫
∂Sε

τ∂Sε dsε. (8)

The first variation of H on S, which in turn is linear on u, will serve us to characterize the boundary-
edge microtraction and, consequently, will provide evidence of the existence of a hypermicrostress field.
Thus, in what follows we analyze

δH(S)[u] = 0, (9)
where

δH(S)[u] :=
d
dε

H(Sε)|ε=0, ∀ smooth u(x) and ∀S ⊂ B. (10)

2.3.1. Boundary-edge microtraction characterization and its implications: part 1. In analyzing the second
integral in (8), let

F(Sε) :=
∫

∂Sε

τ∂Sε dsε =
∫
∂S

τ∂S(yε, t;νε,nε)|F εt|ds, (11)

be a functional on Sε. Additionally, let τ∂Sx , τ∂Sν , and τ∂Sn be the intrinsic partial derivatives of τ∂S with
respect to x, ν, and n, respectively. The partial derivative τ∂Sx needs not any additional characterization.
The remainder derivatives, τ∂Sν and τ∂Sn , need further understanding as follows.

Remark 1. (Characterization of the partial intrinsic derivatives of the boundary-edge micro-
traction) Let α(ε) and β(ε) be smooth parametric orthonormal-vector-valued functions of ε ∈ [0, 1],
that is, α(ε),β(ε) : [0, 1] �→ Unit1 and α(ε) · β(ε) = 0 ∀ ε ∈ [0, 1], where α(0) := ν and β(0) := n.
Thus, d

dε (α(ε) · α(ε)) |ε=0 = 2α′(0) · ν = 0 and d
dε (β(ε) · β(ε)) |ε=0 = 2β′(0) · n = 0, or α′(0) ⊥ ν and

β′(0) ⊥ n. Furthermore, α′(0) and β′(0) can be specified as any vectors perpendicular to both n and ν.
We then characterize the partial intrinsic derivatives of the boundary-edge microtraction

d
dε

τ∂S(x, t;α(ε),β(ε))
∣∣∣
ε=0

=: (τ∂Sν (x, t;ν,n)) · α′(0) + (τ∂Sn (x, t;ν,n)) · β′(0). (12)

Analyzing each component, we can state that

(τ∂Sν (x, t;ν,n)) · α′(0) = (τ∂Sν (x, t;ν,n)) · (1 − n ⊗ n − ν ⊗ ν)α′(0), (13a)

(τ∂Sn (x, t;ν,n)) · β′(0) = (τ∂Sn (x, t;ν,n)) · (1 − n ⊗ n − ν ⊗ ν)β′(0), (13b)

we then conclude that τ∂Sν and τ∂Sn align with t, that is,

τ∂Sν (x, t;ν,n) = (1 − n ⊗ n − ν ⊗ ν)τ∂Sν (x, t;ν,n), (14a)

τ∂Sn (x, t;ν,n) = (1 − n ⊗ n − ν ⊗ ν)τ∂Sn (x, t;ν,n). (14b)

Thus,
τ∂Sν · ν = τ∂Sν · n = τ∂Sn · ν = τ∂Sn · n = 0. (15)

�

With Remark 1 and the identities in (6), the first variation of F reads

δF(S)[u] =
∫
∂S

[(
τ∂Sx

dyε

dε
+ τ∂Sν

dνε

dε
+ τ∂Sn

dnε

dε

)
|F εt| + τ∂S

d|F εt|
dε

]
ε=0

ds

=
∫
∂S

(
τ∂S

∂u

∂s
· t + τ∂Sx · u − (τ∂Sν · t)

∂u

∂s
· ν − τ∂Sn · (gradS(u · n) + LPu)

)
ds

1‘Unit’ is a vector space where all elements have unit norm.
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=
∫
∂S

[(
τ∂Sx +

∂

∂s
((τ∂Sν · t)ν + (τ∂Sn · t)n − τ∂St)

)
· u − τ∂Sn · LPu

]
ds

−
∫
∂S

∂

∂s
[((τ∂Sν · t)ν + (τ∂Sn · t)n − τ∂St) · u] ds, (16)

where the conditions τ∂Sn = (1 − n ⊗ n − ν ⊗ ν)τ∂Sn and τ∂Sν = (1 − n ⊗ n − ν ⊗ ν)τ∂Sν are used (cf.
remark 1). The integral

∫
∂S

∂
∂s (·) ds represents a jump condition at x ∈ ∂S if the t is discontinuous at x.

We thus can explicitly write
�(τ∂Sν · t)ν + (τ∂Sn · t)n − τ∂St� = 0, (17)

at x, where �·� = (·)+ − (·)− implies a jump condition, ‘before-after’ the discontinuity of t following the
direction of t. To unfold the implications of the jump (17), two particular scenarios are analyzed as follow.

Remark 2. (Scenarios of a nonsmooth edge ∂S) There are two particular scenarios to be considered
when it comes to analyzing a nonsmooth edge ∂S. Consider a unit tangent t discontinuous at some x
of ∂S. Then, in the first scenario, the unit normal n is continuous and the unit tangent-normal ν is
discontinuous, while alternatively in the second scenario, n is discontinuous, but the unit tangent-normal
ν is continuous.

To illustrate both scenarios, one can imagine two particular cases. In the first scenario, imagine a
square surface. The unit normal n is continuous everywhere, but at the corners the unit tangent t and
the unit tangent-normal ν are discontinuous. In the second scenario, imagine half of a cone. The unit
tangent-normal ν is continuous everywhere, but at its vertex the unit normal n and the unit tangent t
are discontinuous. �

Bearing in mind Remarks 1 and 2, we are led to speculate about the existence of a hypermicrostress
tensor field as follows.

Theorem 1. (Existence of a hypermicrostress tensor field) The interaction between an edge ∂S of a smooth
open oriented surface S and the adjacent parts of B\S invokes the existence of a linear transformation
Σ(x, t) ∈ Lin2, denoted as the hypermicrostress tensor field in B for all (x, t).

Proof. Consider the two particular scenarios on nonsmooth edge ∂S described in Remark 2:
(i) First Scenario: t and ν are discontinuous at some x of ∂S while n is continuous;
(ii) Second Scenario: t and n are discontinuous at some x of ∂S while ν is continuous.

The inner product of the jump (17) with t+ yields, in the first scenario,

τ∂S(x, t;ν+,n) = − [
(τ∂Sν (x, t;ν−,n) · t−)ν− · t+ − τ∂S(x, t;ν−,n)t− · t+

]
, (18)

and considering that t+ · ν− = t− · ν+ and t+ · t− = ν− · ν+, we arrive at

τ∂S(x, t;ν+,n) = − [
(τ∂Sν (x, t;ν−,n) · t−)t− − τ∂S(x, t;ν−,n)ν−] · ν+, (19)

whereas, in the second scenario,

τ∂S(x, t;ν,n+) = − [
(τ∂Sn (x, t;ν,n−) · t−)n− · t+ − τ∂S(x, t;ν,n−)t− · t+

]
, (20)

and considering that t+ · n− = t− · n+ and t+ · t− = n− · n+, we arrive at

τ∂S(x, t;ν,n+) = − [
(τ∂Sn (x, t;ν,n−) · t−)t− − τ∂S(x, t;ν,n−)n−] · n+. (21)

In the first scenario, by keeping t− fixed and consequently ν− fixed as well, the boundary-edge micro-
traction τ∂S is linear in ν, that is,

τ∂S(x, t;ν,n) := a · ν, a := a(x, t;n), and a · n = 0, ∀n,ν ∈ Unit, n · ν = 0, (22)

2‘Lin’ is a vector space where all elements are linear transformations.
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alternatively, in the second scenario, by keeping t− fixed and consequently n− fixed as well, the boundary-
edge microtraction τ∂S is linear on n, that is,

τ∂S(x, t;ν,n) := b · n, b := b(x, t;ν), and b · ν = 0, ∀n,ν ∈ Unit, n · ν = 0. (23)

To encompass conditions (22) and (23) into a single one, we let {e1,e2,e3 := n} be a orthonormal basis
and drop the dependency on x and t. Combining (22)1 and (23)1, we have that

(a(n) · eα)eα = (b(eα) · n)eα,

= (eα ⊗ b(eα))n, (24)

where the index α goes from 1 to 2, leaving out the unit normal e3 = n from the set eα. Now, noting
that (24) is a(n), the boundary-edge microtraction τ∂S(x, t;ν,n) = a(n)ν can be specified as

τ∂S(x, t;ν,n) = ν · (eα ⊗ b(eα))n. (25)

Next, we express b(eα) in a fixed orthonormal basis e′
i, such that b(eα) = b′

i(eα)e′
i. By using this generic

but fixed orthonormal basis, the boundary-edge traction τ∂S(x, t;ν,n) assumes the forms

τ∂S(x, t;ν,n) = ν · (b′
i(eα)eα ⊗ e′

i︸ ︷︷ ︸
Σ(x,t)

)n. (26)

Therefore, based on the jump condition (17) there exists a linear transformation Σ(x, t) ∈ Lin, denoted
as the hypermicrostress tensor field in B for all (x, t), such that

τ∂S(x, t;ν,n) := ν · Σ(x, t)n, (27)

�

Next, for the surface microtraction, we characterize a jump condition throughout the surface based
on a surface balance of microforces and Theorem 1 as follows.

Proposition 1. (Surface microtraction: jump condition throughout the surface) Consider a smooth open
surface S oriented by a unit normal n with boundary-edge ∂S. Let ξS := ξS(x, t;n,L) and ξ∗

S :=
ξ∗

S(x, t;n,L) be the surface microtractions defined on opposite sides of S and τ∂S := τ∂S(x, t;ν,n) the
boundary-edge microtraction defined on boundary-edge ∂S. In balancing these microforces on S while
accounting for (27) from Theorem 1, the following jump condition is obtained.

− ξ∗
S = ξS + divS(P Σn), (28)

Proof. We postulate the surface balance of microforces on a smooth surface S as follows∫
S

(ξS + ξ∗
S) da +

∫
∂S

τ∂S ds = 0, ∀S ⊂ B and t. (29)

Next, consider the surface divergence theorem on a smooth open surface S,∫
S

divS(Pg) da =
∫
∂S

g · ν ds, (30)

for any vector field g on S. Thus, with the expression for the boundary-edge microtraction (27) in the
surface balance of microforces (29) and applying the surface divergence theorem for smooth open surfaces,
we are led to ∫

S
(ξS + ξ∗

S + divS(P Σn)) da = 0. (31)

While by localizing it, we arrive at the statement of this proposition, where divS(P Σn) represents a jump
condition throughout the surface S from one side to the other. �
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Now, recalling the variational setting of the proof of the Cauchy theorem [4], we establish that there
exists a microstress-like field ζ such that

− ξ∗
S(x, t;n,L) = ζ(x, t) · n, (32)

while the surface microtraction (28) becomes

ξS(x, t;n,L) = ζ(x, t) · n − divS(P Σn). (33)

Note that, in the absence of higher-order effects, such as the hypermicrostress Σ, we recover the micro-
traction presented by Fried and Gurtin [1], that is, ξS(x, t;n) = ζ(x, t) · n.

2.3.2. Boundary-edge microtraction characterization and its implications: part 2. In analyzing the first
integral in (8), for the point we wish to make, it is enough to analyze ξS instead of ξS + ξ∗

S . So, let

G(Sε) :=
∫
Sε

ξSε daε =
∫
S

ξS(yε, t;nε,Lε)J |F −�
ε n|da, (34)

be a functional on Sε. Additionally, let ξSx , ξSn , and ξSL be the intrinsic partial derivatives of ξS with
respect to x, n, and L, respectively. The partial derivative ξSx needs not any additional characterization.
The remainder derivatives, ξSn and ξSL , need further understanding as follows.

Remark 3. (Characterization of the partial intrinsic derivatives of the surface microtraction)
Let β(ε) and B(ε) be smooth parametric orthonormal-vector- and symmetric-tensor-valued functions of
ε ∈ [0, 1], that is, β(ε) : [0, 1] �→ Unit, B(ε) : [0, 1] �→ Sym3, and B(ε)β(ε) = 0 ∀ ε ∈ [0, 1], where
β(0) := n and B(0) := L. Thus, d

dε (B(ε) · β(ε)) |ε=0 = B′(0)n + Lβ′(0) = 0. We then characterize the
partial intrinsic derivatives of the surface microtraction as

d
dε

ξS(x, t;β(ε),B(ε))
∣∣∣
ε=0

=: (ξSn (x, t;n,L)) · β′(0) + (ξSL (x, t;n,L)) : B′(0). (35)

Analyzing each component, we conclude that4

ξSn · n = 0, ξSL · n = 0, and ξSL : W = 0, ∀W ∈ Skw. (36)

�

Thus, the first variation of G(Sε) is

δG(S)[u] =
∫
S

[(
ξSx

dyε

dε
+ ξSn

dnε

dε
+ ξSL

dLε

dε

)
J |F −�

ε n| + ξS
dJ |F −�

ε n|
dε

]
ε=0

da

=
∫
S

(
ξS divSu + ξSx · u − ξSn · (gradSu)�n

+ ξSL : (gradS ((gradSu)�n) − LgradSu + L(gradSu)�n ⊗ n)
)

da. (37)

Consider the surface divergence theorem∫
S

divS(Pg) da =
∫
∂S

g · ν ds, (38)

for any vector field g on S, and the identity

divSg = divS(Pg) + divS((g · n)n) = divS(Pg) − 2Kg · n, (39)

3‘Sym’ is a vector space where all elements are symmetric tensors, that is, invariant under a permutation of its vector
arguments.

4‘Skw’ is a vector space where all elements are skew-symmetric tensors, that is, it alternates sign under a permutation
of its vector arguments.
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with K := − 1
2divSn. Using (38) and (39), and the partial intrinsic derivatives from Remark 3, we arrive

at

δG(S)[u] =
∫
S

(ξSx − gradSξS − 2ξSKn + divS(n ⊗ ξSn ) + divS(n ⊗ divSξSL ) + divS((ξSLL)�)) · u da

+
∫
∂S

[(ξSν − (ξSn · ν)n − (divSξSL · ν)n − (ξSLL)�ν) · u + (ξSLν) · (gradSu)�n] ds. (40)

Although this integral does have a contribution on ∂S, it does not characterize a jump condition. Thus,
the surface microtraction does not affect the proof of (27).

2.3.3. Surface balance of microtorques. With the boundary-edge microtraction expression (27) and the
surface microtraction jump (28), we determine the surface-couple microtraction jump across a smooth
open oriented surface S as follows.

Proposition 2. (Surface-couple microtraction: jump condition throughout the surface) Consider a smooth
open surface S with boundary ∂S. Let �S := �S(x, t;n) and �∗

S := �S(x, t;n) be the surface-couple
microtractions defined on opposite sides of S. In balancing these microtorques with the microtorques pro-
voked by all the microtractions on S while accounting for (27) from Theorem 1 and (28) from Proposition
1, the following jump condition is obtained,

− �∗
S = �S + P Σn, (41)

Proof. We postulate the surface balance of microtorques on S as follows∫
S

(�S + �∗
S) da +

∫
S

(ξS + ξ∗
S)r da +

∫
∂S

τ∂Sr ds = 0, ∀S ⊂ B and t, (42)

being r := x − o a vector, where o is a fixed reference point.
Using the boundary-edge microtraction (27) and the jump condition for surface microtraction (28),

the surface balance of microtorques (42) becomes∫
S

(�S + �∗
S) da −

∫
S

r divS(P Σn) da +
∫
∂S

r(ν · Σn) ds = 0. (43)

Next, with the surface divergence theorem for smooth open surfaces (30) and the identity

divS(r ⊗ P Σn) = P Σn + r divS(P Σn), (44)

the surface balance of microtorques (42) specializes further to∫
S

(�S + �∗
S + P Σn) da = 0, (45)

and localizing it, to arrive at the statement of this proposition, where P Σn represents a jump condition
across the surface S. �

2.4. Analysis on a nonsmooth open oriented surface S

Applying Fosdick’s procedure [5], we proved that the boundary-edge microtraction invokes the existence
of a hypermicrostress field. Moreover, the boundary-edge microtraction is linear on ν and n through the
hypermicrostress. Next, we study the surface balance of microforces and microtorques on a nonsmooth
open oriented surface S with boundary ∂S while considering the lack of smoothness of S along C.



ZAMP Phase-field gradient theory Page 11 of 33 45

2.4.1. Surface balance of microforces. Having characterized the boundary-edge microtraction (27) and
the surface microtraction jump (28), we determine the internal-edge microtraction on a nonsmooth open
oriented surface S as follows.

Proposition 3. (Internal-edge microtraction) Consider a nonsmooth open surface S with boundary ∂S and
an internal-edge C. Let ξS := ξS(x, t;n,L) and ξ∗

S := ξ∗
S(x, t;n,L) be the surface microtractions defined

on opposite sides of S, τ∂S := τ∂S(x, t;ν,n) and τC := τC(x, t;n+,n−) the boundary- and internal-edge
microtractions, respectively. In balancing these microforces on S while accounting for (27) from Theorem
1 and (28) from Proposition 1, the following representation for the internal-edge microtraction is obtained,

τC = {{ν · Σn}}, (46)

where {{ν · Σn}} := ν+ · Σn+ + ν− · Σn−.

Proof. We postulate the surface balance of microforces on S as follows∫
S

(ξS + ξ∗
S) da +

∫
∂S

τ∂S ds +
∫
C

τC ds = 0, ∀S ⊂ B and t. (47)

Owing to the lack of smoothness at an internal-edge C, the surface divergence theorem over a closed
surface exhibits a surplus, that is, ∫

S
divS(Pg) da =

∫
C

{{g · ν}}ds, (48)

where {{g · ν}} := g+ · ν+ + g− · ν−, for any smooth vector field g on S with limiting values g+ and g−

on C. For open surfaces, the surface divergence theorem (48) reads∫
S

divS(Pg) da =
∫
∂S

g · ν ds +
∫
C

{{g · ν}}ds, (49)

for any vector field g on S.
By the surface divergence theorem (49) with the boundary-edge microtraction (27) and the jump

condition for the surface microtraction (28) between opposite sides of S, the surface balance of micro-
forces (47) specializes to ∫

C
(τC − {{ν · Σn}}) ds = 0, (50)

and localizing it, we arrive at the statement of this proposition. �

2.5. Analysis on an arbitrary part P

On an arbitrary part P, we postulate the partwise balance of microforces as follows∫
P

(π + γ) dv +
∫

∂P
ξS da +

∫
C

τC ds = 0, ∀P ⊆ B and t, (51)

where π and γ are the internal and external microforces densities. We also postulate the partwise balance
of microtorques on an arbitrary part P, which reads∫

P
((π + γ)r − ξ) dv +

∫
∂P

(ξSr + �S) da +
∫
C

τCr ds = 0, ∀P ⊆ B and t, (52)

where ξ is a microstress and r = x − o a vector for a fixed point o.
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2.5.1. Pointwise microforce balance. Substituting the internal-edge microtraction (46) and the surface
microtraction representation (33) into the partwise balance of microforces (51), and applying the surface
divergence theorem for nonsmooth closed surfaces (48), we obtain∫

P
(π + γ) dv +

∫
∂P

ζ · n da = 0. (53)

Using the volume divergence theorem followed by localization, we obtain the following pointwise balance
of microforces

divζ + π + γ = 0. (54)

2.5.2. Pointwise microtorque balance. Substituting the internal-edge microtraction (46) and the surface
microtraction representation (33) into the partwise balance of microtorques (52), we obtain∫

P
(r(π + γ) − ξ) dv +

∫
∂P

(r(ζ · n − divS(P Σn)) + �S) da +
∫
C

r{{ν · Σn}}ds = 0, (55)

while considering the identity,

divS(r ⊗ P Σn) = Σn − (n ⊗ n)Σn + r divS(P Σn), (56)

and applying the surface divergence theorem for nonsmooth closed surfaces (48), we arrive at∫
P

(r(π + γ) − ξ) dv +
∫

∂P
((r ⊗ ζ + Σ)n + �S − (n ⊗ n)Σn) da = 0. (57)

Now, applying the volume divergence theorem, we obtain the following representation∫
P

r(divζ + π + γ) dv +
∫
P

(ζ + divΣ − ξ) dv +
∫

∂P
(�S − (n ⊗ n)Σn) ds = 0, (58)

where the first integral is zero by the pointwise balance of microforces (54). Thus, the partwise balance
of microtorques yields ∫

P
(ζ + divΣ − ξ) dv +

∫
∂P

(�S − (n ⊗ n)Σn) ds = 0. (59)

To annihilate the second integral, the surface-couple microtraction is assumed to have the form

�S = (n ⊗ n)Σn, (60)

yielding the partwise balance of microtorques∫
P

(ζ + divΣ − ξ) dv = 0. (61)

Localizing this expression, we arrive at the pointwise balance of microtorques

ζ = ξ − divΣ. (62)

We can now rewrite the surface microtraction (33) as

ξS = (ξ − divΣ) · n − divS(P Σn). (63)

Furthermore, accounting for the pointwise microtorque balance (62) into the pointwise balance of micro-
forces (54), we arrive at the field equation of the phase-field gradient theory, which reads

div(ξ − divΣ) + π + γ = 0. (64)
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Espath et al. [8,9] also derived this equation. For convenience, we define the hypermicrotraction and its
relation with the surface-couple microtraction

σS := n · Σn, �S := σSn. (65)

Remark 4. (On the symmetry of the hypermicrostress) There are some evidences that suggest that
the hypermicrostress should be symmetric, and we list them as follows.
evidence (i) Recalling that the internal-edge microtraction has the representation τC = {{ν · Σn}} and

since n± and ν± live in the same plane, (n+ ⊗ ν+ + n− ⊗ ν−) ∈ Sym, only the symmetric
part of the hypermicrostress contributes to the internal-edge microtraction, that is,

{{ν · Σn}} = {{ν · sym(Σ)n}}; (66)

evidence (ii) Recalling that the surface-couple microtraction has the representation �S = (n ⊗ n)Σn,
only the symmetric part of the hypermicrostress contributes to it, that is,

(n ⊗ n)Σn = (n ⊗ n) sym(Σ)n; (67)

evidence (iii) Given that P skw(Σ)n = skw(Σ)n and with the following identity

divS(A�n) = n · divSA − A : L, (68)

which holds for any tensor field A defined on S, then

divS(skw(Σ)n) = n · divS(skw(Σ)�) = −n · divS(skw(Σ)) (69)

and
n · (n ⊗ n : (grad(skw(Σ))) = 0, (70)

we obtain
− n · div(skw(Σ)) = divS(P (skw(Σ))n). (71)

Thus, recalling that the surface microtraction has the representation ξS = (ξ − divΣ) · n −
divS(P Σn), only the symmetric part of the hypermicrostress contributes to it, that is,

(ξ − divΣ) · n − divS(P Σn) = (ξ − div(sym(Σ))) · n − divS(P (sym(Σ))n) (72)

evidence (iv) Recalling that the field equation of the phase-field gradient theory reads div(ξ − divΣ) +
π +γ = 0, only the symmetry part of the hypermicrostress contributes to it, since div 2Σ =
div 2(sym(Σ)).

�
2.5.3. Action-reaction principle. An important consequence of the representations of the microtractions
is that the surface microtraction and the surface-couple microtraction are local at any point x on S and
any time t and that the internal-edge microtraction is local at any point x on C and any time t. Moreover,
we state that ξS depends on S through the unit normal n and the curvature tensor L of S at x, and �S
depends on S through n (cubically), whereas τC depends on C through the unit normals {n+,n−} (or
equivalently through the unit tangent-normals {ν+,ν−}).

Next, letting −S (−C) denote the surface S (internal-edge C) oriented by −n ({−n+,−n−}), with
reference to (5), −S has curvature tensor −L, we see that⎧⎪⎨

⎪⎩
ξS(x, t;−n,−L) = −ξS(x, t;n,L),

�S(x, t;−n) = −�S(x, t;n),

τC(x, t;−n+,−n−) = −τC(x, t;n+,n−).

(73)

The relations (73)1,2 make explicit the action-reaction principle in terms of microtractions between two
smooth surfaces endowed with opposite unit normals and opposite curvature tensors at a point. Con-
versely, the relation (73)3 presents the action-reaction principle between two parts of the same oriented
nonsmooth surface divided by an internal-edge, which in turn is defined by a pair of discontinuous unit
normals at a point.
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3. Power balance

Once the theory is built upon balances of fundamental fields, the ‘principle of virtual powers’ becomes a
theorem. We thus state this theorem as follows.

Theorem 2. (The virtual power theorem) Assuming that the external virtual power is expended by the
following conjugate pairs

(i) Body microforce power per unit volume: {γ, χ} on P;
(ii) Surface microtraction power per unit area: {ξS , χ} on ∂P;
(iii) Surface-couple microtraction power per unit area: {�S ,ω} on ∂P, with ω := gradχ;
(iv) Internal-edge microtraction power per unit length: {τC, χ} on C ⊂ ∂P,

together with the assumption that the field equation (64) is satisfied, the virtual power balance∫
P

(−πχ+ξ ·gradχ+Σ : grad2χ) dv =
∫
P

γχdv+
∫

∂P

(
ξSχ+σS

∂χ

∂n

)
da+

∫
C

τCχ ds, ∀P ⊆ B and t,

(74)
holds for any scalar smooth and admissible virtual field χ.

Proof. By using the hypermicrotraction representation (65)1 of the surface-couple microtraction, the
virtual power expended by pair {�S ,ω} becomes

(�S ,ω) = (�S , gradχ),

= (σSn, gradχ),

= (σS , gradχ · n),

= (σS , ∂χ/∂n). (75)

Then, summing up the partwise power expenditures (i)-(iv), we arrive at the external virtual power

Vext(P;χ) :=
∫
P

γχdv +
∫

∂P

(
ξSχ + σS

∂χ

∂n

)
da +

∫
C

τCχ ds. (76)

Aided by the volume divergence and surface divergence theorems, and with the internal-edge microtraction
(46), surface-couple microtraction (60), surface microtraction (63), and the field equation (64) of the
phase-field gradient theory, we are led from the external virtual power (76) to the internal virtual power

Vint(P;χ) :=
∫
P

(−πχ + ξ · gradχ + Σ : grad2χ) dv. (77)

The virtual power balance, that is, the balance between the external and internal powers,

Vext(P;χ) = Vint(P;χ) (78)

holds for any arbitrary part P and any choice of the virtual field χ. �

Note that the actual power expenditures are

Wext(P) :=
∫
P

γϕ̇ dv +
∫

∂P

(
ξSϕ̇ + σS

∂ϕ̇

∂n

)
da +

∫
C

τCϕ̇ ds, (79)

and

Wint(P) :=
∫
P

(−πϕ̇ + ξ · grad ϕ̇ + Σ : grad2ϕ̇) dv. (80)
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4. Thermodynamics

4.1. First and second laws of thermodynamics

The first two laws of thermodynamics for a continuum consist of balance of energy and an entropy imbal-
ance that is frequently referred to as the Clausius–Duhem inequality. Following Truesdell and Noll [10,
§79], these laws have the respective forms5⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˙∫
P

ε dv = Wext(P) −
∫

∂P
q · n da +

∫
P

r dv,

˙∫
P

η dv ≥ −
∫

∂P

q

ϑ
· nda +

∫
P

r

ϑ
dv,

(81)

where ε and η represent the internal-energy density and entropy density, q is the heat flux, r is the heat
supply, and ϑ > 0 is the absolute temperature.

Since, by (78), Wext(P) = Wint(P), we may substitute the expression (76) defining the power expended
on P by external agencies on the right-hand side of the energy balance (81)1 by the expression (77) defining
the internal power of P. The result of localizing both of (81) is⎧⎨

⎩
ε̇ = −πϕ̇ + ξ · grad ϕ̇ + Σ : grad2ϕ̇ − divq + r,

η̇ ≥ −div
q

ϑ
+

r

ϑ
.

(82)

Important to what follows is the free-energy density

ψ := ε − ϑη. (83)

Then, since (82)2 may be written as

η̇ ≥ − 1
ϑ

divq +
1
ϑ2

q · gradϑ +
r

ϑ
, (84)

if we multiply this equation by ϑ and subtract it from (82)1, we arrive at the pointwise free-energy
imbalance

ψ̇ + ηϑ̇ + πϕ̇ − ξ · grad ϕ̇ − Σ : grad2ϕ̇ +
1
ϑ

q · gradϑ ≤ 0. (85)

4.2. Pointwise and partwise free-energy imbalances for isothermal processes

Applications in which thermal changes are negligible are encompassed by the present framework when
attention is restricted to isothermal processes, namely to processes in which

ϑ = ϑ0 ≡ constant. (86)

For such processes, the expression (83) for the free-energy density specializes to

ψ = ε − ϑ0η (87)

and the pointwise free-energy imbalance (85) has the simple form

ψ̇ + πϕ̇ − ξ · grad ϕ̇ − Σ : grad2ϕ̇ ≤ 0. (88)

5The idea of using a virtual-power principle to generate an appropriate form of the external power expenditure in the
energy balance was originated by Gurtin [11, §6].
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Further, if we multiply (82)2 by ϑ0 and subtract it from (82)1, we arrive at a partwise free-energy
imbalance

˙∫
P

ψ dv ≤ Wext(P) (89)

requiring that the temporal increase in free energy of P be less than or equal to the power expended by
external agencies on P.

The imbalance (89) is often the implicit starting point of most purely mechanical theories. Of course,
the pointwise imbalance (88) may be derived as a direct consequence of (89), the power balance (78), and
the expression (77) for the internal power without introducing the notion of temperature; in that sense,
the imbalance stands on its own as a starting point for the development of purely mechanical theories.

5. Nonconserved second-grade phase field equation

We hereafter restrict attention to purely mechanical processes governed by the isothermal version (88)
of the pointwise free-energy imbalance. Guided by the presence of the power conjugate pairings πϕ̇,
ξ · grad ϕ̇, and Σ : grad2ϕ̇ in that inequality, we consider a class of constitutive equations that delivers
the free-energy density ψ, internal microforce π, microstress ξ, and hypermicrostress Σ at each point x
in B and each instant t of time in terms of the values of the phase field ϕ, its first and second gradients
gradϕ and grad2ϕ, and its time rate ϕ̇ at that point and time.

We do not prescribe a constitutive equation for the external microforce γ but instead allow it to
be chosen in any way that is needed to ensure the satisfaction of the field equation (64). Arguments
introduced by Coleman and Noll [12] can then be adapted to show that for the dissipation inequality (88)
to be satisfied in all processes it is necessary and sufficient to require that:

• The free-energy density ψ is given by a constitutive response function ψ̂ that is independent of ϕ̇:

ψ = ψ̂(ϕ, gradϕ, grad2ϕ). (90)

• The microstress ξ and hypermicrostress Σ are given by constitutive response functions ξ̂ and Σ̂
that derive from the response function ψ̂:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ξ = ξ̂(ϕ, gradϕ, grad2ϕ) =

∂ψ̂(ϕ, gradϕ, grad2ϕ)
∂(gradϕ)

,

Σ = Σ̂(ϕ, gradϕ, grad2ϕ) =
∂ψ̂(ϕ, gradϕ, grad2ϕ)

∂(grad2ϕ)
.

(91)

• The internal microforce π is given by a constitutive response function π̂ that splits additively into
a contribution derived from the response function ψ̂ and a dissipative contribution that, in contrast
to ψ̂, ξ̂, and Σ̂, depends on ϕ̇ and must be consistent with a residual dissipation inequality:⎧⎪⎨

⎪⎩
π = π̂(ϕ, gradϕ, grad2ϕ, ϕ̇) = −∂ψ̂(ϕ, gradϕ, grad2ϕ)

∂ϕ
+ πdis(ϕ, gradϕ, grad2ϕ, ϕ̇),

πdis(ϕ, gradϕ, grad2ϕ, ϕ̇)ϕ̇ ≤ 0.

(92)

In view of the constitutive restrictions (90)–(92), the response function for the free-energy density serves
as a thermodynamic potential for the microstress, the hypermicrostress, and the equilibrium contribution
to the internal microforce. A complete description of the response of a material belonging to the class in
question thus consists of providing scalar-valued response functions ψ̂ and πdis. Whereas ψ̂ depends only
on ϕ, gradϕ, and grad2ϕ, πdis depends also on ϕ̇. Moreover, πdis must satisfy the residual dissipation
inequality (92)2 for all choices of ϕ, gradϕ, grad2ϕ, and ϕ̇.
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5.1. Nonconserved second-grade phase-field equation

We now detail the logic of the derivation that leads us to define the Swift–Hohenberg equation as a
particular case of the nonconserved second-grade phase-field equation. Thus, we here generalize the Swift–
Hohenberg equation and fit this description within the second-grade phase-field framework we built in
this section.

Using (91) and (92) in the field equation (64), we obtain an evolution equation

−πdis(ϕ, gradϕ, grad2ϕ, ϕ̇)

= div
(

∂ψ̂(ϕ, gradϕ, grad2ϕ)
∂(gradϕ)

−div
(

∂ψ̂(ϕ, gradϕ, grad2ϕ)
∂(grad2ϕ)

))

−∂ψ̂(ϕ, gradϕ, grad2ϕ)
∂ϕ

+ γ, (93)

for the phase field.
We refer to (93) as a ‘nonconserved second-grade phase-field equation.’

5.1.1. Swift–Hohenberg equation. In particular, we choose ψ̂ and πdis according to{
ψ̂(ϕ, gradϕ, grad2ϕ) = f(ϕ) + 1

2λ(ϕ2 − 2�2|gradϕ|2 + �4(tr(grad2ϕ))2),

πdis(ϕ, gradϕ, grad2ϕ, ϕ̇) = −βϕ̇,
(94)

where f is a function of ϕ, and λ > 0, � > 0, β > 0 are problem-specific-constants. Here, f and λ
carry dimensions of energy per unit volume, � carries dimensions of length, and β carries dimensions of
(dynamic) viscosity. Granted that ψ̂ and πdis are as defined in (94), the thermodynamic restrictions (91)
and (92) yield

ξ = −2λ�2gradϕ, Σ = λ�4(ϕ)1, π = −f ′(ϕ) − λϕ − βϕ̇, (95)
where  = divgrad denotes the Laplacian and a superposed prime denote differentiation with respect
to ϕ. Using the particular constitutive relations (95) in the field equation (64), we obtain the Swift–
Hohenberg [6] equation

βϕ̇ = −λ(1 + �2)2ϕ − f ′(ϕ) + γ. (96)

5.2. Configurational fields

Configurational forces are primitive entities that describe the motion of interfaces as well as the thermo-
dynamics of their evolution. These forces are associated with the integrity of the material structure and
the evolution of defects. Moreover, configurational forces expand power associated with the transfer of
matter. Now, we recall the configurational balance presented by Fried [13], for a part P∫

∂P
Cnda +

∫
P

(f + e) dv = 0, (97)

which renders after localization the following pointwise version

divC + f + e = 0, (98)

where C is the configurational stress tensor (Eshelby stress tensor) while f and e are the internal and
external forces.

The transfer of matter defines kinematic processes which characterize the power expended by the
configurational forces. Thus, we first establish how configurational forces expand power in an immaterial
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migrating arbitrary part P ′, where υ is the migrating boundary velocity defined on ∂P ′, letting n′

denote the outward unit normal. We consider that the migrating boundary ∂P ′ may exhibit a lack of
smoothness along a curve C′ with limiting normals {n+,n−}. Furthermore, the configurational traction
Cn′ is assumed to be power conjugate to υ on ∂P ′.

We now use the external virtual power (76), where γ, ξS , and τC are conjugates to the virtual field χ,
while σS is conjugate to ∂χ/∂n′. Thus, we set as virtual fields the advective terms

ϕ̇ + gradϕ · υ and
˙(

∂ϕ

∂n′

)
+ grad

∂ϕ

∂n′ · υ, (99)

to follow the motion of ∂P ′.
Next, with the surface microtraction (63) and the hypermicrotraction (65)1, consider the following

identities
ξS(ϕ̇ + gradϕ · υ) = ((ξ − divΣ) · n′ − divS(P Σn′))(ϕ̇ + gradϕ · υ)

= ξSϕ̇ + gradϕ ⊗ (ξ − divΣ)n′ · υ + Σn′ · gradS(gradϕ · υ) − divS(P Σn′ gradϕ · υ),
(100)

and

σS

(
∂ϕ̇

∂n′ + grad
∂ϕ

∂n′ · υ

)
= σS

∂ϕ̇

∂n′ + n′ · Σn′
(

grad
∂ϕ

∂n′ · υ

)
. (101)

Now, bearing in mind that gradϕ · gradSυ = 0 together with the surface divergence theorem on a
nonsmooth closed surface (48), we are led to the following external configurational power

Wext(P ′) =
∫
P′

γϕ̇ dv +
∫

∂P′

(
C + gradϕ ⊗ (ξ − divΣ) + (grad2ϕ)�Σ

)
n′ · υ da

+
∫

∂P′

(
ξSϕ̇ + σS

∂ϕ̇

∂n′

)
da +

∫
C′

τCϕ̇ ds. (102)

Since the nature of the motion of ∂P ′ involves only the normal component υ · n′, the power must be
indifferent to the tangential component of υ, implying

C + gradϕ ⊗ (ξ − divΣ) + (grad2ϕ)�Σ =: α, (103)

where α is a scalar field.
Thus, we can express the second integral of (102) as∫

∂P′

αυ · n′ da. (104)

Appealing to the free-energy imbalance (89) for a migrating arbitrary part P ′ with a velocity υ, we can
state that

˙∫
P′

ψ dv =
∫
P′

ψ̇ dv +
∫

∂P′

ψυ ·n′ da ≤
∫
P′

γϕ̇ dv +
∫

∂P′

αυ ·n′ da+
∫

∂P′

(
ξSϕ̇ + σS

∂ϕ̇

∂n′

)
da+

∫
C′

τCϕ̇ ds, (105)

leading to ∫
P′

ψ̇ dv ≤
∫
P′

γϕ̇ dv +
∫

∂P′

(α − ψ)υ · n′ da +
∫

∂P′

(
ξSϕ̇ + σS

∂ϕ̇

∂n′

)
da +

∫
C′

τCϕ̇ ds, (106)

which implies that α = ψ. Having α and with equation (103), we determine the configurational stress.
Invoking (91), (92)1, and (98), we determine the internal and external configurational forces. Thus, the
explicit form of the configurational stress tensor is

C = ψ1 − gradϕ ⊗ (ξ − divΣ) − (grad2ϕ)�Σ, (107)
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while the internal and external configurational forces

f = −πdis gradϕ and e = −γ gradϕ, (108)

respectively.

6. Conserved second-grade phase field

We here extend our theory to the case where the phase field represents the concentration of a conserved
species with chemical potential μ, flux j, and external rate of species production s, while continuing to
restrict attention to isothermal processes. Following Gurtin’s derivation of the Cahn–Hilliard equation [3,
§3], we therefore supplement the field equation (64) by a partwise species balance

˙∫
P

ϕ dv =
∫
P

s dv −
∫

∂P
j · n da. (109)

After localizing it, we obtain the pointwise version of the species balance

ϕ̇ = s − divj (110)

Moreover, we augment the partwise free-energy imbalance (89) to account for the rate at which energy
is transferred to P due to species transport, yielding

˙∫
P

ψ dv ≤ Wext(P) +
∫
P

μsdv −
∫

∂P
μj · nda. (111)

Localizing (111) and using the field equation (64) and the pointwise species balance (110) to eliminate the
external microforce γ and rate of species production s, we arrive at the pointwise free-energy imbalance

ψ̇ + (π − μ)ϕ̇ − ξ · grad ϕ̇ − Σ : grad2ϕ̇ + j · gradμ ≤ 0. (112)

Adding grad2ϕ and Σ to the lists (ϕ, gradϕ, μ, gradμ) and (ψ, ξ, π, j) of independent and dependent
constitutive variables considered by Gurtin [3, §3], we find that the local inequality (112) is satisfied in
all processes if and only if:

• The free-energy density ψ is given by a constitutive response function ψ̂ that is independent of μ
and gradμ:

ψ = ψ̂(ϕ, gradϕ, grad2ϕ). (113)

• The microstress ξ and hypermicrostress Σ are given by constitutive response functions ξ̂ and Σ̂
that derive from the response function ψ̂:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ξ = ξ̂(ϕ, gradϕ, grad2ϕ) =

∂ψ̂(ϕ, gradϕ, grad2ϕ)
∂(gradϕ)

,

Σ = Σ̂(ϕ, gradϕ, grad2ϕ) =
∂ψ̂(ϕ, gradϕ, grad2ϕ)

∂(grad2ϕ)
.

(114)

• The internal microforce π is given by a constitutive response function π̂ that differs from the chemical
potential by a contribution derived from the response function ψ̂:

π = π̂(ϕ, gradϕ, grad2ϕ, μ) = μ − ∂ψ̂(ϕ, gradϕ, grad2ϕ)
∂ϕ

. (115)
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• Granted that the species flux j depends smoothly on the gradient gradμ of the chemical potential
μ, it is given by a constitutive response function ĵ of the form

j = ĵ(ϕ, gradϕ, grad2ϕ, μ, gradμ) = −M(ϕ, gradϕ, grad2ϕ, μ, gradμ)gradμ, (116)

where the mobility tensor M must obey the residual dissipation inequality

gradμ · M(ϕ, gradϕ, grad2ϕ, μ, gradμ)gradμ ≥ 0 (117)

for all choices of ϕ, gradϕ, grad2ϕ, μ, and gradμ.
In contrast to the theory previously developed for a phase field that is not a conserved species, a complete
description of the response of a material belonging to the present class consists of providing a scalar-valued
response function ψ̂ and a tensor-valued response function M . Whereas ψ̂ depends only on ϕ, gradϕ,
and grad2ϕ, M may depend also on μ and gradμ. Moreover, M must satisfy the residual dissipation
inequality (117) for all choices of ϕ, gradϕ, grad2ϕ, μ, and gradμ.

6.1. Conserved second-grade phase-field equation

We now detail the logic of the derivation that leads us to define the phase-field crystal equation as a
particular case of the conserved second-grade phase-field equation. Thus, we here generalize the phase-
field crystal equation and fit this description within the conserved second-grade phase-field framework
we built in this section.

Importantly, using (114) and (115) in the field equation (64) generates the following expression

μ = div
(

div
(

∂ψ̂(ϕ, gradϕ, grad2ϕ)
∂(grad2ϕ)

)
− ∂ψ̂(ϕ, gradϕ, grad2ϕ)

∂(gradϕ)

)
+

∂ψ̂(ϕ, gradϕ, grad2ϕ)
∂ϕ

− γ, (118)

for the chemical potential which, in conjunction with the constitutive relation (116) for the species flux
and the pointwise species balance (110), yields an evolution equation

ϕ̇ = div(M(ϕ, gradϕ, grad2ϕ, μ, gradμ)gradμ) + s, (119)

for the phase field. Due to the dependence of the response function ψ̂ on grad2ϕ, μ as determined by
(118) involves fourth-order spatial derivatives of ϕ and (119) thus includes sixth-order spatial derivatives
of ϕ.

In analogy to the comment immediately after the equation (93), this suggests the possibility of referring
to (119) with μ given by (118) as a ‘conserved second-grade phase-field equation.’

6.1.1. Phase-field crystal equation. Mimicking the assumptions leading from (93) to the Swift–Hohenberg
equation (96), we choose the definition of ψ̂ to be

ψ̂(ϕ, gradϕ, grad2ϕ) = f(ϕ) + 1
2λ(ϕ2 − 2�2|gradϕ|2 + �4(tr(grad2ϕ))2), (120)

In addition, we stipulate that the mobility tensor depends at most on ϕ and is isotropic, so that

M(ϕ, gradϕ, grad2ϕ, μ, gradμ) = M, M > 0. (121)

Then, (114) and (116) give

ξ = −2λ�2gradϕ, Σ = λ�4(ϕ), j = −Mgradμ, (122)

while (118) specializes to
μ = f ′(ϕ) + λ(1 + �2)2ϕ − γ. (123)

Combining (122)3 and (123) and using the resulting expression in the pointwise species balance (119),
we obtain the phase-field crystal equation

ϕ̇ = div
(
Mgrad(f ′(ϕ) + λ(1 + �2)2ϕ − γ)

)
. (124)
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6.2. Configurational fields

In accounting for species transport, species migration and the associated energy flow that occur in con-
junction with the motion of the migrating part P ′ must be considered. The partwise species balance (109)
is rewritten as

˙∫
P′

ϕ dv −
∫

∂P′

ϕυ · n′ da =
∫
P′

s dv −
∫

∂P′

j · n′ da, (125)

where the free-energy imbalance for a migrating volume P ′ (106) is specialized from (111), becoming∫
P′

ψ̇ dv −
∫

∂P′

μϕυ · n′ da

≤
∫
P′

γϕ̇ dv +
∫
P′

μsdv +
∫

∂P′

(
ξSϕ̇ + σS

∂ϕ̇

∂n′

)
da

+
∫

∂P′

(α − ψ)υ · n′ da −
∫

∂P′

μj · n′ da +
∫
C′

τCϕ̇ ds. (126)

Thus, the expressions (100) and (126) yield the explicit form of the configurational stress tensor, the
internal and external configurational forces, for the generalized conserved second-grade phase-field equa-
tion,

C = (ψ−μϕ)1−gradϕ⊗(ξ−divΣ)−(grad2ϕ)�Σ, f = ϕgradμ, and e = −γ gradϕ. (127)

7. Boundary conditions

7.1. Nonconserved second-grade phase field

We here extend Fried and Gurtin’s [14,15] procedure, also exploited by Duda et al. [16] for the Cahn–
Hilliard equation, to determine thermodynamically consistent boundary conditions by tailoring the surface
balances of microforces and microtorques. In taking the surface S in expressions (29) and (42) (while
including the terms relative to the internal-edge microtraction) to the limit such that the surface coincides
with the boundary, S ⊆ ∂B, the surface ξS , surface-couple �S , boundary-edge τ∂S , and internal-edge τC
microtractions happen to represent external actions, ξSenv, �Senv, τ∂Senv, and τCenv, respectively, from
the environment of B. That is, in this limit the surface balances of microforces (29) and the surface
balances of microtorques (42) become∫

S
(ξSenv + ξ∗

S) da +
∫
∂S

τ∂Senv ds +
∫
C

τCenv ds = 0, ∀S ⊆ ∂B and t, (128)

and∫
S

(�Senv + �∗
S ) da +

∫
S

(ξSenv + ξ∗
S)r da +

∫
∂S

τ∂Senvr ds +
∫
C

τCenvr ds = 0, ∀S ⊆ ∂B and t, (129)

respectively.
With (28) and (63), we arrive at the following representation for the surface microtraction on S∗

ξ∗
S = −(ξ − divΣ) · n. (130)
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Rewriting identity (56), with (41) and (60), we obtain the following representation for the surface-couple
microtraction on S∗

�∗
S = −Σn = −divS(r ⊗ P Σn) − (n ⊗ n)Σn + r divS(P Σn). (131)

From the surface balance of microtorques (129), with the representations (130), (131), the surface diver-
gence theorem on nonsmooth open surfaces (49), and uncoupling (129), we are led to∫

∂S
(τ∂Senv − ν · Σn)r ds = 0, ∀ ∂S ⊂ S and t, (132)

∫
C

(τCenv − {{ν · Σn}})r ds = 0, ∀ C ⊂ S and t, (133)

and∫
S

((ξSenv − (ξ − divΣ) · n + divS(P Σn)) + (�Senv − (n ⊗ n)Σn)) r da = 0, ∀S ⊆ ∂B and t.

(134)
Localizing expressions (132) and (133), we obtain the explicit representations of τ∂Senv and τCenv. Re-
placing τ∂Senv and τCenv in the surface balance of microforces (128) and localizing it, we arrive at the
representation of ξSenv. Finally, with ξSenv, τ∂Senv and τCenv in (134) and localizing it, we are led to
�Senv. Thus, the explicit form of the environmental microtractions is

on Snat

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξSenv = (ξ − divΣ) · n − divS(P Σn),

�Senv = (n ⊗ n)Σn or σenv = n · Σn,

τCenv = {{ν · Σn}},

τ∂Senv = ν · Σn.

(135)

The relations (135) represent the first set of suitable boundary conditions, where ξSenv, σenv, τ∂Senv, and
τCenv are given on S. In the variational context, these are natural boundary conditions on Snat.

Next, we require that the temporal increase in free energy of S to be zero. This implies in particular
that the power expended on S be great or equal than zero. We express the partwise surface free-energy
imbalance as

Wsurf(S∗) + Wenv(S) ≥ 0. (136)

The power expended on S∗ by the surface ξ∗
S and surface-couple �∗

S microtractions is given by

Wsurf(S∗) =
∫
S

(ξ∗
Sϕ̇ + �∗

S · grad ϕ̇) da

= −
∫
S

(ϕ̇(ξ − divΣ) · n + Σn · grad ϕ̇) da,

= −
∫
S

(
((ξ − divΣ) · n − divS(P Σn))ϕ̇ + divS(ϕ̇P Σn) + n · Σn

∂ϕ̇

∂n

)
da,

= −
∫

S

(
ξSϕ̇ + σS

∂ϕ̇

∂n

)
da −

∫
∂S

τ∂Sϕ̇ ds −
∫

C
τCϕ̇ ds. (137)

Thus, with (137) expression (136) becomes

−
∫

S

(
ξSϕ̇ + σS

∂ϕ̇

∂n

)
da −

∫
∂S

τ∂Sϕ̇ ds −
∫

C
τCϕ̇ ds + Wenv(S) ≥ 0. (138)
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For passive environments, the quantities ξSenv, σenv, τ∂Senv, and τCenv are equal zero and so do the
power expenditure exerted by the environment Wenv(S). However, we consider a more general setting
and allow for non-homogeneous boundary conditions. Thus, we set the external power to be

Wenv(S) =
∫

S

(
ξSenvϕ̇env + σenv

∂ϕ̇env

∂n

)
da +

∫
∂S

τ∂Senvϕ̇env ds +
∫

C
τCenvϕ̇env ds, (139)

where ϕ̇env and ∂ϕ̇env/∂n are the limits of the time derivative of the environmental phase field and its
normal derivative at S. Accounting for expression (139), the partwise surface free-energy imbalance (138)
renders∫

S

(
ξSenvϕ̇env − ξSϕ̇ + σenv

∂ϕ̇env

∂n
− σS

∂ϕ̇

∂n

)
da+

∫
∂S

(τ∂Senvϕ̇env−τ∂Sϕ̇) ds+
∫

C
(τCenvϕ̇env − τCϕ̇) ds ≥ 0.

(140)
Since ξSenv = ξS , σenv = σS , τ∂Senv = τ∂S , and τCenv = τC, uncoupling the integral on different parts
followed by localization, we obtain the following pointwise conditions

(ϕ̇env − ϕ̇)ξSenv +
(

∂ϕ̇env

∂n
− ∂ϕ̇

∂n

)
σenv ≥ 0, (ϕ̇env − ϕ̇)τ∂Senv ≥ 0, and (ϕ̇env − ϕ̇)τCenv ≥ 0. (141)

Expressions in (141) will serve us to design suitable boundary conditions for this continuum mechanical
theory. In what follows, we propose some classes of boundary conditions. We focus on the uncouple case
where

(ϕ̇env−ϕ̇)ξSenv ≥ 0,

(
∂ϕ̇env

∂n
− ∂ϕ̇

∂n

)
σenv ≥ 0, (ϕ̇env−ϕ̇)τ∂Senv ≥ 0, and (ϕ̇env−ϕ̇)τCenv ≥ 0,

(142)
which is sufficient but not necessary to guarantee the inequality direction of (141).

The second possible set of boundary conditions is given by the trivial solution of (142) when used as
an equality, that is, the assignment

on Sess

⎧⎨
⎩

ϕ̇env = ϕ̇,

∂ϕ̇env

∂n
=

∂ϕ̇

∂n
.

(143)

These are essential boundary conditions on Sess. Note that, Sess ∩ Snat = ∅.
The third possible set of boundary conditions is given if ϕ̇env and ∂ϕ̇env/∂n are prescribed, while

ξSenv = ξS , σenv = σS , τ∂Senv = τ∂S , and τCenv = τC are given by

on Smix

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξSenv = a (ϕ̇env − ϕ̇) ,

σenv = b

(
∂ϕ̇env

∂n
− ∂ϕ̇

∂n

)
,

τ∂Senv = c (ϕ̇env − ϕ̇) ,

τCenv = d (ϕ̇env − ϕ̇) ,

(144)

with a, b, c, d > 0. Combining ξSenv = ξS , σenv = σS , τ∂Senv = τ∂S , and τCenv = τC from (135) with (144),
we obtain the mixed boundary conditions on Smix.

7.2. Boundary conditions for the classical Swift–Hohenberg equation

As for the classical Swift–Hohenberg equation, although the essential boundary conditions (143) remain
the same, the natural (135) and mixed (144) boundary conditions can be specialized. For the choice (94)1
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of ψ̂, (95)1,2 yield ξ · n = −2λ�2∂ϕ/∂n, n · divΣ = λ�4∂(ϕ)/∂n, P Σn = λ�4ϕPn = 0, n · Σn =
λ�4ϕ, and ν · Σn = λ�4ϕν · n = 0. Thus, the natural boundary conditions (135) read

on Snat

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− 1
2λ�2

ξSenv =
∂ϕ

∂n
+

�2

2
∂(ϕ)

∂n
,

1
λ�4

σenv = ϕ,

τ∂Senv = 0,

τCenv = 0,

(145)

while the mixed boundary conditions (144), when taking into account (145), become

on Smix

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2λ�2

a (ϕ̇env − ϕ̇) =
∂ϕ

∂n
+

�2

2
∂(ϕ)

∂n
,

1
λ�4

b

(
∂ϕ̇env

∂n
− ∂ϕ̇

∂n

)
= ϕ,

τ∂Senv = 0,

τCenv = 0.

(146)

7.3. Conserved second-grade phase field

In addition to the surface balances of microtractions (128) and microtorques (129), we supplement the
system with the partwise surface species balance on S∫

S
(jenv − j · n) da = 0, (147)

which by localization renders
jenv + j · n = 0. (148)

Here, jenv represents the transfer of mass from the environment into S.
As we augmented the partwise free-energy imbalance (89) with the energy transfer rate to P due to

species transport to arrive at (111), we augment (136) with
∫

S μj · nda to obtain

Wsurf(S∗) + Wenv(S) +
∫

S
μj · n da ≥ 0. (149)

Analogously, (139) is augmented to become

Wenv(S) =
∫

S

(
ξSenvϕ̇env + σenv

∂ϕ̇env

∂n
+ jenvμenv

)
da +

∫
∂S

τ∂Senvϕ̇env ds +
∫

C
τCenvϕ̇env ds, (150)

where μenv is the limit of the environmental chemical potential at S. The surface free-energy imbalance,
under the assumptions that led to (140), from expression (149) while accounting for (150), we arrive at∫

S

(
ξSenvϕ̇env − ξSϕ̇ + σenv

∂ϕ̇env

∂n
− σS

∂ϕ̇

∂n
+ jenvμenv + μj · n

)
da

+
∫

∂S
(τ∂Senvϕ̇env − τ∂Sϕ̇) ds +

∫
C

(τCenvϕ̇env − τCϕ̇) ds ≥ 0. (151)

Following the same procedure that led to (141)1 and taking into account the pointwise surface species
balance (148), we obtain the following additional inequality,

jenv(μenv − μ) + (ϕ̇env − ϕ̇)ξSenv +
(

∂ϕ̇env

∂n
− ∂ϕ̇

∂n

)
σenv ≥ 0. (152)
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Note that, (141)2,3 remain the same. For the sake of simplicity, we opt to split and study (152) term by
term as we did in (142). Thus, the only additional condition is

jenv(μenv − μ) ≥ 0. (153)

The first additional natural boundary condition arises from the pointwise surface species balance (148),

j · n = −jenv on Snat, (154)

where jenv is prescribe and μenv is obtained from using (153) as an equality. Conversely, from (153), we
obtain trivially the essential boundary condition,

μ = μenv on Sess, (155)

where μenv is prescribed and jenv is computed from the pointwise surface species balance (148).
A mixed boundary condition is obtained by prescribing μenv and evaluating the transfer of mass from

the environment with
jenv = e (μenv − μ) on Smix, (156)

with e > 0. Finally, accounting for the pointwise surface species balance (148), the expression (154) is
rendered as

j · n = c (μenv − μ) on Smix. (157)

7.4. Boundary conditions for the classical phase-field crystal equation

For the choice (121) of M , (122)3 yields j · n = −M(ϕ)∂μ/∂n where μ is given by (123). Thus, the
particular versions of the natural, essential, and mixed boundary conditions (154), (155), and (157) that
pertain to the classical phase-field crystal equation (119) are

M(ϕ)
∂(λ(1 + �2)2ϕ + f ′(ϕ))

∂n
= −jenv (158)

on Snat,
λ(1 + �2)2ϕ + f ′(ϕ) = μenv, (159)

on Sess,

M(ϕ)
∂(λ(1 + �2)2ϕ + f ′(ϕ))

∂n
= e

(
μenv − λ(1 + �2)2ϕ + f ′(ϕ)

)
(160)

on Smix, respectively.

8. Summary

The continuum mechanical theory we introduce in this paper allows us to describe the underlying me-
chanical interactions which yield popular phase-field models such as the Swift–Hohenberg and phase-field
crystal equations. We also recognize and account for the lack of smoothness in arbitrary parts which
renders additional interactions between different parts. In considering these interactions, we generalize
these phase-field models. We summarize the results as follows.

Remark 5. (Summary of results independent of constitutive relations) The fundamental fields
and the field equations are

(i) Surface microtraction on S:

ξS = (ξ − divΣ) · n − divS(P Σn).

(ii) Surface microtraction on the opposite side of S:

−ξ∗
S = (ξ − divΣ) · n.
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(iii) Surface-couple microtraction on S:

�S = (n ⊗ n)Σn.

(iv) Surface-couple microtraction on the opposite side of S:

−�∗
S = Σn.

(v) Boundary-edge microtraction on ∂P:

τ∂S = ν · Σn.

(vi) Internal-edge microtraction on C:
τC = {{ν · Σn}}.

(vii) Hypermicrotraction (not a fundamental field) on S:

σS := n · Σn =⇒ �S = σSn.

(viii) Balance of microforces on a part P:

divζ + π + γ = 0.

(ix) Balance of microtorques on a part P:

ζ = ξ − divΣ.

(x) Species balance:
ϕ̇ = −divj + s.

(xi) The virtual power balance on a part P:∫
P

(−πχ + ξ · gradχ + Σ : grad2χ) dv

︸ ︷︷ ︸
Vint(P;χ)

=
∫
P

γχ dv +
∫

∂P

(
ξSχ + σS

∂χ

∂n

)
da +

∫
C

τCχ ds

︸ ︷︷ ︸
Vext(P;χ)

,

∀P ⊆ B and t,

where χ is a smooth and admissible scalar virtual field and ∂χ/∂n its normal derivative.
(xii) Configurational balance:

divC + f + e = 0.

(xiii) Configurational fields, for a nonconserved phase field:

C = ψ1 − gradϕ ⊗ (ξ − divΣ) − (grad2ϕ)�Σ, f = −πdis gradϕ, and e = −γ gradϕ.

(xiv) Configurational fields, for a conserved phase field:

C = (ψ − μϕ)1 − gradϕ ⊗ (ξ − divΣ) − (grad2ϕ)�Σ, f = ϕgradμ, and e = −γ gradϕ.

(xv) Natural boundary conditions:

on Snat

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξSenv = (ξ − divΣ) · n − divS(P Σn),

�Senv = (n ⊗ n)Σn or σenv = n · Σn,

τ∂Senv = ν · Σn,

τCenv = {{ν · Σn}}.

(xvi) Essential boundary conditions:

on Sess

⎧⎨
⎩

ϕ̇env = ϕ̇,

∂ϕ̇env

∂n
=

∂ϕ̇

∂n
.
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(xvii) Mixed boundary conditions:

on Smix

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(ξ − divΣ) · n − divS(P Σn) = a (ϕ̇env − ϕ̇) ,

n · Σn = b

(
∂ϕ̇env

∂n
− ∂ϕ̇

∂n

)
,

ν · Σn = c (ϕ̇env − ϕ̇) ,

{{ν · Σn}} = d (ϕ̇env − ϕ̇) ,

with a, b, c, d > 0.
(xviii) Natural boundary conditions for conserved species:

j · n = −jenv on Snat.

(xix) Essential boundary conditions for conserved species:

μ = μenv on Sess.

(xx) Mixed boundary conditions for conserved species:

j · n = e (μenv − μ) on Smix,

with e > 0. �
Remark 6. (Constitutive relations) For a nonconserved phase field, Internal microforce, microstress,
and hypermicrostress:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

π = π̂(ϕ, gradϕ, grad2ϕ, ϕ̇) = −∂ψ̂(ϕ, gradϕ, grad2ϕ)
∂ϕ

+ πdis(ϕ, gradϕ, grad2ϕ, ϕ̇),

ξ = ξ̂(ϕ, gradϕ, grad2ϕ) =
∂ψ̂(ϕ, gradϕ, grad2ϕ)

∂(gradϕ)
,

Σ = Σ̂(ϕ, gradϕ, grad2ϕ) =
∂ψ̂(ϕ, gradϕ, grad2ϕ)

∂(grad2ϕ)
.

For a conserved phase field, Chemical potential, mass flux, internal microforce, microstress, and hyper-
microstress:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ = div
(

div
(

∂ψ̂(ϕ, gradϕ, grad2ϕ)
∂(grad2ϕ)

)
− ∂ψ̂(ϕ, gradϕ, grad2ϕ)

∂(gradϕ)

)
+

∂ψ̂(ϕ, gradϕ, grad2ϕ)
∂ϕ

,

j = ĵ(ϕ, gradϕ, grad2ϕ, μ, gradμ) = −M(ϕ, gradϕ, grad2ϕ, μ, gradμ)gradμ,

π = π̂(ϕ, gradϕ, grad2ϕ, μ) = μ − ∂ψ̂(ϕ, gradϕ, grad2ϕ)
∂ϕ

,

ξ = ξ̂(ϕ, gradϕ, grad2ϕ) =
∂ψ̂(ϕ, gradϕ, grad2ϕ)

∂(gradϕ)
,

Σ = Σ̂(ϕ, gradϕ, grad2ϕ) =
∂ψ̂(ϕ, gradϕ, grad2ϕ)

∂(grad2ϕ)
.

�
In the fields of nonlinear continuum mechanics and rational thermodynamics, the phase-field gradient

theory may be applied to model processes involving spatiotemporal pattern formation, disclinations,
grain boundaries, defects, crystal growth, glass formation, plasticity, among uncountable others. Although
general, this theory may be enhanced in various aspects. We may consider inertial contributions to the
balances on surfaces as well as on volumes. Also, the coupling with deformation and heat transfer may be
incorporated. Last but not least, allowing flux relaxation to model finite speed signals may be desirable
in the unsteady state of pattern formation.
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Appendix A: Identities

Let u be a sufficiently smooth displacement field inducing the motion S �→ Sε. Parameterizing the
evolution of S, and letting

yε := x + εu(x), ε ∈ [0, 1], (161)
with x ∈ B and Sε := yε(S), we define the deformation gradient

F := gradyε|ε=1 and F ε := gradyε, (162)

or equivalently
F = 1 + gradu and F ε = (1 − ε)1 + εF . (163)

Quantities with the subscript ε refer to the deformed configuration, whereas quantities without the sub-
script live on the reference or undeformed configuration. The point x represents a point in the undeformed
configuration S, whereas yε represents its mapping onto the deformed configuration Sε. The function yε

is a—one-parameter family—parameterization, which linearizes the mapping x �→ yε along the displace-
ment u. Thus, F is the total deformation gradient, while F ε is the parameterized deformation gradient.
Finally, let J := detF .

Gurtin et al. [17, (equations (6.15) and (8.4))] present deformations laws for the unit tangent and
unit normal vectors of a surface undergoing deformation from S to Sε. These vectors preserve their norm
under the following transformations

tε =
1

|F εt|F εt, (164a)

nε =
1

|F −�
ε n|F

−�
ε n, (164b)

http://creativecommons.org/licenses/by/4.0/
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while the elements of length ds, area da, and volume dv, [17, (equations (7.14), (8.20), and (8.9))]
transform with

dsε = |Ft|ds + o(ds)6, (165a)

daε = J |F −�n|da + o(da), (165b)

dvε = J dv + o(dv). (165c)

Additionally, it is useful to express the gradient of u and its projection on S as

gradu =
∂u

∂n
⊗ n + gradSu and gradSu = (gradu)P , (166)

where
∂u

∂s
= (gradu)t,

∂u

∂n
= (gradu)n, and

∂u

∂ν
= (gradu)ν. (167)

It is also convenient to express a vector a as a = (a · t)t + (a · n)n + (a · ν)ν. Finally, we denote the
curvature tensor by L := −gradSn while the mean curvature by L := − 1

2divSn.
We here aim at computing the following derivatives

dnε

dε

∣∣∣
ε=0

,
dtε

dε

∣∣∣
ε=0

,
dνε

dε

∣∣∣
ε=0

,
dLε

dε

∣∣∣
ε=0

,

d(|F εtε|)
dε

∣∣∣
ε=0

,
d(Jε|F −�

ε nε|)
dε

∣∣∣
ε=0

, and
dJε

dε

∣∣∣
ε=0

.

(168)

The last three quantities (168)5,6,7 represent, respectively, the rate of change of elements of length, area,
and volume.

In order to compute the inverse of the deformation gradient, by Neumann series [18], given the invert-
ible second-order tensor A and the second-order tensor B, we define the following identity

(A + εB)−1 = (A(1 + εA−1B))−1

= (1 + εA−1B)−1A−1

= (1 − εA−1B + ε2A−1BA−1B − . . .)A−1

= (A−1 − εA−1BA−1) + O(ε2). (169)

and letting A := (1 − ε)1 and B := F , we arrive at

F −1
ε = ((1 − ε)1 + εF )−1

= (1 − ε)−11 − ε(1 − ε)−11F (1 − ε)−11 + O(ε2)

= (1 − ε)−11 − ε(1 − ε)−2F + O(ε2). (170)

When it comes to analyzing A−1, with A = (1 − ε)1, we restrict our analysis to the range [0, 1[ without
loss of generality.

To determine the rate of change of the unit normal with respect to ε in (168)1 when a surface undergoes
deformation from S �→ Sε, we establish the following identities. The rate of change of the inverse of the
deformation gradient with respect to ε is

d(F −1
ε )

dε

∣∣∣
ε=0

=
1

(1 − ε)2
1
∣∣∣
ε=0

− 1 + ε

(1 − ε)3
F

∣∣∣
ε=0

+
dO(ε2)

dε

∣∣∣
ε=0

,

= 1 − F = −gradu, (171)

6o(�) has the usual connotation lim
�→∞

o(�)�−1 = 0 as well as O(�) is defined such that lim
�→∞

O(�)�−1 = c, with c > 0.
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while the unit normal presents the following rate of change

d(F −�
ε n)
dε

∣∣∣
ε=0

= −(gradu)�n. (172)

Although it does not preserve its norm. Thus, to determine the rate of change of inverse of the norm of
the normal, |F −�

ε n|−1, we first compute

d(F −1
ε F −�

ε )
dε

∣∣∣
ε=0

=
d
dε

[
1

(1 − ε)2
1 +

ε2

(1 − ε)4
FF� − ε

(1 − ε)3
(F� + F )

]
ε=0

+
dO(ε2)

dε

∣∣∣
ε=0

,

=
[

2
(1 − ε)3

1 + 2ε
1 + ε

(1 − ε)5
FF� − 1 + 2ε

(1 − ε)4
(F� + F )

]
ε=0

+
dO(ε2)

dε

∣∣∣
ε=0

,

= 21 − (F� + F ) = −2 sym(gradu), (173)

to compute the rate of change of the norm, |F −�
ε n| =

√
F −1

ε F −�
ε : n ⊗ n,

d(
√

F −1
ε F −�

ε : n ⊗ n)

dε

∣∣∣
ε=0

= −sym(gradu) : n ⊗ n, (174)

to arrive at
d(|F −�

ε n|−1)
dε

∣∣∣
ε=0

= sym(gradu) : n ⊗ n = gradu : n ⊗ n. (175)

Now, with expressions (172) and (175), we obtain the rate of change of the unit normal which preserves
the norm

dnε

dε

∣∣∣
ε=0

= (gradu : n ⊗ n)n − (gradu)�n = −(gradSu)�n. (176)

To determine the rate of change of the unit tangent with respect to ε in (168)2 when a surface undergoes
deformation from S �→ Sε, we establish the following identities. The unit tangent presents the following
rate of change

d(F εt)
dε

∣∣∣
ε=0

= (gradu)t. (177)

Again, this rate does not preserve its norm. Thus, to determine the rate of change of the inverse of the
norm, |F εt|−1, we establish that

d(F�
εF ε)

dε

∣∣∣
ε=0

=
d
dε

[
(1 − ε)21 + ε2F�F + ε(1 − ε)(F� + F )

]
ε=0

,

= [−2(1 − ε)1 + 2εF�F + (1 − 2ε)(F� + F )]ε=0 ,

= −21 + (F� + F ) = 2sym(gradu), (178)

to compute the rate of change of the norm, |F εt| =
√

F�
εF ε : t ⊗ t,

d(
√

F�
εF ε : t ⊗ t)
dε

∣∣∣
ε=0

= sym(gradu) : t ⊗ t, (179)

to arrive at
d(|F εt|−1)

dε

∣∣∣
ε=0

= −sym(gradu) : t ⊗ t = −gradu : t ⊗ t. (180)

Thus, from expressions (177) and (180), we determine the rate of change of the unit tangent which
preserves the norm

dtε

dε

∣∣∣
ε=0

= −(gradu : t ⊗ t)t + (gradu)t,

=
(

−t ⊗ ∂u

∂s
+ gradu

)
t = −

(
∂u

∂s
· t

)
t +

∂u

∂s
. (181)
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From the definition of the unit tangent-normal ν := t × n, we determine the rate of change (168)3,
using (181) and (176), we obtain the change of rate of the unit tangent-normal

dνε

dε

∣∣∣
ε=0

=
dtε

dε

∣∣∣
ε=0

× n + t × dnε

dε

∣∣∣
ε=0

,

= −
((

∂u

∂s
· t

)
t − ∂u

∂s

)
× n + (gradSu)�n × t. (182)

With the following

(gradSu)�n = gradS(u · n) − (gradSn)�u = gradS(u · n) + LPu, (183)
∂u

∂s
=

(
∂u

∂s
· t

)
t +

(
∂u

∂s
· n

)
n +

(
∂u

∂s
· ν

)
ν, (184)

and
(gradS(u · n) + LPu) × t = ((gradS(u · n) + LPu) · ν)n, (185)

we find the following alternative representations for the rate of change of nε, tε, and νε with respect to
ε,

dnε

dε

∣∣∣
ε=0

= −gradS(u · n) − LPu, (186a)

dtε

dε

∣∣∣
ε=0

=
(

∂u

∂s
· n

)
n +

(
∂u

∂s
· ν

)
ν, (186b)

dνε

dε

∣∣∣
ε=0

= −
(

∂u

∂s
· ν

)
t + ((gradS(u · n) + LPu) · ν) n. (186c)

We now aim at reckoning the rates of change (168)5,6,7 of the differential elements of length (165a),
area (165b), and volume (165c). The rates of change are given as follows. The rate of change of the
differential element of length is

d|F εt|
dε

∣∣∣
ε=0

= gradu : t ⊗ t, (187)

while the rate of change of the differential element of volume is
dJ

dε

∣∣∣
ε=0

=
d
dε

((F εt × F εn) · F εν)
∣∣∣
ε=0

= gradu : (t ⊗ t + n ⊗ n + ν ⊗ ν) = divu, (188)

and, finally, the rate of change of the differential element of area is

d(J |F −�
ε n|)

dε

∣∣∣
ε=0

= divSu. (189)

Finally, we parameterize the curvature tensor L as Lε := −gradSεnε on Sε. We can write the gradient
on Sε as

gradnε =: gradxnε = (gradyε
nε)gradxyε, or gradyε

nε = gradxnε(gradxyε)
−1, (190)

and keeping the use of the deformation gradient

gradyε
nε = gradxnε(F −1

ε ). (191)

Thus, we rewrite the curvature tensor as

Lε = −gradnε(F −1
ε )(1 − nε ⊗ nε). (192)

We can now compute the first variation of the curvature tensor as
dLε

dε

∣∣∣
ε
= grad ((gradSu)�n) (1 − n ⊗ n) + gradngradu(1 − n ⊗ n)

− gradn ((gradSu)�n ⊗ n + n ⊗ (gradSu)�n)
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= gradS ((gradSu)�n) − LgradSu + L(gradSu)�n ⊗ n, (193)

where we use the fact that n ⊗ (gradSu)�n = (n ⊗ n)gradSu.
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