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Abstract. In hypoelastic constitutive models, an objective stress rate is related to the rate of deformation through an
elasticity tensor. The Truesdell, Jaumann, and Green–Naghdi rates of the Cauchy and Kirchhoff stress tensors are examples
of the objective stress rates. The finite element analysis software ABAQUS uses a co-rotational frame which is based on
the Jaumann rate for solid elements and on the Green–Naghdi rate for shell and membrane elements. The user subroutine
UMAT is the platform to implement a general constitutive model into ABAQUS, but, in order to update the Jacobian
matrix DDSDDE in UMAT, the model must be expressed in terms of the Jaumann rate of the Kirchhoff stress tensor. This
study aims to formulate and implement various hypoelastic constitutive models into the ABAQUS UMAT subroutine. The
developed UMAT subroutine codes are validated using available solutions, and the consequence of using wrong Jacobian
matrices is elucidated. The UMAT subroutine codes are provided in the “Electronic Supplementary Material” repository
for the user’s consideration.
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1. Introduction

Hypoelasticity is a rate form of elastic material model [1], in which an objective stress rate is linearly
related to the rate of deformation by means of a fourth-order elasticity tensor which, in general, is not
obtainable from a strain energy density. Originally, Dienes [2] showed that the zero-graded hypoelastic
model, i.e. a hypoelastic model with constant isotropic elasticity tensor, exhibits oscillation in simple
shear, if it is constructed based on the Jaumann rate of the Cauchy stress. However, zero-graded hypoe-
lastic models which are based on the Truesdell or Green–Naghdi rates do not suffer this problem [3].
We remark that the definition of elements in ABAQUS is based on the Jaumann rate for solid elements
[4] and on the Green–Naghdi rate for structural elements (shells, membranes, beams, trusses) [5,6], as
mentioned in the ABAQUS Theory Manual, Section 1.5.3 [7].

This study aims to formulate and implement various hypoelastic constitutive models into the ABAQUS
UMAT (user material) subroutine. To attain this, it is essential to express the elasticity tensor of the
hypoelastic model in terms of the elasticity tensor which relates the Jaumann rate of the Kirchhoff stress
tensor to the rate of deformation. According to Pinsky et al. [8], such relations seemed difficult to be
constructed for models associated with the Green–Naghdi stress rates; however, the kinematical relations
provided in Mehrabadi and Nemat-Nasser [9] enable us to establish such connections.

The study starts with a review of some basic definitions, the concept of objective rate and the structure
of hypoelastic constitutive models. Next, the relations between the elasticity tensors of various hypoelastic

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00033-020-01335-3)
contains supplementary material, which is available to authorized users.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-020-01335-3&domain=pdf
https://doi.org/10.1007/s00033-020-01335-3


156 Page 2 of 23 Palizi, Federico and Adeeb ZAMP

models and the elasticity tensor relating the Jaumann rate of the Kirchhoff stress to the rate of defor-
mation are constructed. Next, the formulation behind such UMAT-subroutine variables as the consistent
Jacobian (DDSDDE), stress array (STRESS), incremental strain array (DSTRAN), and incremental rotation
matrix (DROT) is discussed. The understanding of the formulation is required to properly update the con-
sistent Jacobian and the Cauchy stress in various hypoelastic constitutive models. Various simulations,
including simple shear and uniaxial extension, are considered in ABAQUS, and the numerical solutions
of the hypoelastic models are validated through the available solutions.

The models considered in this study are zero-graded models based on the Jaumann, Truesdell, and
Green–Naghdi rates of the Cauchy and Kirchhoff stress tensors. However, development of UMAT sub-
routine codes for advanced hypoelastic constitutive equations follows the same steps. As an example of
such advanced hypoelastic models, we refer the Reader to the hypoelasticity theory established by Freed
[10], later refined in [11], for modelling the passive response of soft biological tissues.

2. Theoretical background

The notation follows essentially that traced by Truesdell and Noll [1] and Marsden and Hughes [12], but a
simplified treatment in Cartesian coordinates is adopted throughout, following that by Bonet and Wood
[13] or Bonet et al. [14], to which we refer the Reader for detailed definitions and proofs.

2.1. Basic definitions

The three-dimensional Euclidean space is denoted S and a material body is identified with a reference
configuration B, which is regarded as an open subset of S [12,15].1 The motion of the body B is described
by the configuration map, which is defined, at each time t, by

φ( ·, t) : B → S : X �→ x = φ(X, t), (1)

where the material point X denotes the position of a particle in the reference configuration B and the
spatial point x = φ(X, t) is the current placement of point X at time t. The placement or configuration
of the body B at time t is denoted

Bt ≡ φ(B, t). (2)

The codomain restriction to Bt ≡ φ(B, t) of the configuration map φ( ·, t) is required to be invertible,
continuous, and differentiable along with its inverse, i.e. a diffeomorphism.

The deformation gradient F is a two-point tensor [12], mapping material vectors M attached at point
X into spatial vectors m = FM attached at the spatial point x and is defined, in components, as

FiJ =
∂φi

∂XJ
≡ φi,J . (3)

The determinant J = det F of the deformation gradient F describes the local change of volume and,
due to the requirement of invertibility and regularity of φ, it must be strictly positive. Cauchy’s polar
decomposition theorem allows to express the deformation gradient F as

F = R U = V R, (4)

where U and V are symmetric and positive definite tensors and R is a proper orthogonal tensor. Moreover,
the right stretch tensor U is completely material, the left stretch tensor V is completely spatial and the

1An open subset of an Euclidean space is a trivial manifold and is the simplest possible definition of material body.
The hypothesis of an open B simplifies the requirements for differentiability of the coordinate charts on B and of the
configuration map φ.
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rotation tensor R is, like F , a two-point tensor. The right and left Cauchy–Green deformation tensors
are completely material and completely spatial, respectively, and are defined as

C = F T F ≡ U2, b = F F T ≡ V 2. (5)

The Eulerian spatial velocity v is defined as the vector field such that

v(x, t) = v(φ(X, t), t) = φ̇(X, t), (6)

where φ̇(X, t) ≡ (∂tφ)(X, t) is the Lagrangian spatial velocity at x = φ(X, t). The gradient of the spatial
velocity field v with respect to the spatial coordinates xi, i.e.2

� = gradv ≡ ∇v, (7)

is called the velocity gradient and has components �ij = vi,j . The symmetric and skew-symmetric parts
of the velocity gradient are the rate of deformation d and the spin or vorticity tensor w, respectively:

d =
1
2
(� + �T ), w =

1
2
(� − �T ). (8)

The skew-symmetric tensor

Ω = Ṙ RT , (9)

where R is the two-point rotation tensor of the polar decomposition (4) of F , is called rigid spin [6]. Its
skew-symmetry can be easily shown by taking the time derivative of R RT = i, where i is the spatial
identity tensor. It can also be shown that the spin tensor w and the rigid spin tensor Ω are related by
(see, e.g. [13] or [14])

w = Ω + 1
2 R

(
U̇ U−1 − U−1 U̇

)
RT . (10)

There are two cases for which w and Ω coincide. The first case is when the motion is rigid and F = R,
U = I, U̇ = 0 and � = w (or, equivalently, d = 0). The second case is when the (normalised) eigenvectors
of U remain constant during the motion, which implies that U̇ has the same eigenvectors and thus
commutes with U .

The fundamental measure of stress in continuum mechanics is the Cauchy stress σ, which linearly
relates the unit normal vector n at a point on the boundary ∂Rt of an arbitrary region Rt ≡ φ(R, t),
subset of the current configuration Bt ≡ φ(B, t), to the corresponding surface traction vector tn , i.e.

tn = σ n. (11)

The Cauchy stress σ is power-conjugated to the rate of deformation d (or, equivalently, to the velocity
gradient �), in the sense that the internal power (or deformation power) in an arbitrary region Rt is given
by

Pint =
∫

Rt

σ : d dυ. (12)

Another measure of stress, often employed in numerical applications, is the Kirchhoff stress τ , which is
obtained by pulling the integral (12) on Rt back to the referential region R, subset of B by means of the
theorem of the change of variables, i.e.

Pint =
∫

R
J σ : d dV =

∫

R
τ : d dV, (13)

2We denote by a small nabla, ∇, the gradient with respect to the spatial coordinates xi and by a large nabla, ∇, the
gradient with respect to the material coordinates XI . These are both proper gradients, in the sense that they are covariant
derivatives, as opposed to the deformation gradient, which is simply a derivative or, more precisely, a tangent map (see
Section 1.3 in the book by Marsden and Hughes [12].
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from which we obtain the relation

τ = J σ. (14)

2.2. Objective stress rates

The principle of material frame indifference states that the constitutive equations must be form-invariant
under changes of the frame of reference, i.e. under arbitrary rototranslations [1,16]. The regular substantial
time derivative of a spatial measure of stress, such as the Cauchy stress, is not frame-indifferent, as we
shall briefly show now. Let us denote the substantial time derivative by a superposed dot, i.e.

σ̇ ≡ Dtσ, σ̇ij ≡ Dtσij = σij,k vk + ∂tσij . (15)

Under a spatial rotation Q, the stress transforms as

σ̃ = Q σ QT . (16)

Therefore, the rate σ̇ transforms as (see, e.g. [13,14])

˙̃σ = Q̇ σ QT + Qσ̇ QT + Q σ Q̇T , (17)

which does not preserve the form of the transformation (16). In contrast, it can be shown [13,14] that
the rate of deformation d is frame-indifferent.

Objective stress rates have been introduced precisely to overcome the problem suffered by stress rates
and are all essentially based on the use of Lie derivatives, as elegantly shown by Marsden and Hughes [12]:
the Oldroyd rate is precisely a Lie derivative, the Jaumann rate is a linear combination of Lie derivatives,
the Green–Naghdi rate is modelled after a linear combination of Lie derivatives, and finally, the Truesdell
rate (of the Cauchy stress) is a Lie derivative involving the volume form (or volume element). In this
work, we use the objective rates below, in the notation of Bonet and Wood [13].
Truesdell Rate of the Cauchy Stress:

σ◦ = σ̇ − σ �T − � σ + (tr d)σ, (18)

Truesdell Rate of the Kirchhoff Stress (also called Oldroyd rate [17] and coincident with the Lie derivative
of the Kirchhoff stress [13]):

τ ◦ = τ̇ − τ �T − � τ , (19)

Jaumann Rate of the Cauchy Stress:

σ� = σ̇ + σ w − w σ, (20)

Jaumann Rate of the Kirchhoff Stress:

τ� = τ̇ + τ w − w τ , (21)

Green–Naghdi Rate of the Cauchy Stress:

σ� = σ̇ + σ Ω − Ωσ, (22)

Green–Naghdi Rate of the Kirchhoff Stress:

τ� = τ̇ + τ Ω − Ω τ . (23)

The proof of objectivity and non-objectivity of various kinematic and stress variables can be found in
Sections 4.15 and 5.6 of Bonet and Wood [13] or Bonet et al. [14]. A more extensive discussion is provided
in Chapter 1, Box 6.1 of the book by Marsden and Hughes [12], who also make the distinction between
objectivity with respect to isometries (i.e. rototranslations), which coincides with frame indifference, and
objectivity with respect to diffeomorphisms, which coincides with the condition of covariance.
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2.3. Co-rotational frames

As discussed in Sect. 2.2, the definition of objective rates such as Truesdell, Jaumann, and Green–Naghdi
is based on the notion of Lie derivative. Here, we show that, in an appropriate co-rotational frame, the
components of the Jaumann and Green–Naghdi stress rates can be expressed as the time rate of the
components of the stress (see also Section 1.5.3 of ABAQUS Theory Manual [7]).

A time-dependent basis {eα}3α=1 is co-rotational with respect to the spin tensor w if it transforms
following Poisson’s Theorem3 locally, i.e. according to the value of the spin tensor w at the point consid-
ered:

ėα = w eα = eα wT = −eα w. (24)

Considering that w = wμν eμ ⊗ eν and using the properties of the tensor product, Eq. (24) reads

ėα = wμν(eμ ⊗ eν)eα = wμα eμ = −wαμ eμ. (25)

In this w-co-rotational frame, the Cauchy stress σ (exactly the same considerations can be made for the
Kirchhoff stress τ ) reads

σ = σαβeα ⊗ eβ , (26)

and thus its substantial time derivative is

σ̇ ≡ (σαβ eα ⊗ eβ )̇
= σ̇αβ eα ⊗ eβ + σαβ ėα ⊗ eβ + σαβ eα ⊗ ėβ

= σ̇αβ eα ⊗ eβ + σαβ (wμα eμ) ⊗ eβ + σαβ eα ⊗ (−wβν eν)
= σ̇αβ eα ⊗ eβ + wμα σαβ eμ ⊗ eβ − σαβ wβν eα ⊗ eν , (27)

where we used Eq. (25). Switching indices μ and α in the second term and ν and β in the third term, we
have

(σαβ eα ⊗ eβ )̇ = σ̇αβ eα ⊗ eβ + wαμ σμβ eα ⊗ eβ − σαν wνβ eα ⊗ eβ , (28)

and, solving for σ̇αβ eα ⊗ eβ , we obtain

σ̇αβ eα ⊗ eβ = (σαβ eα ⊗ eβ )̇ + σαν wνβ eα ⊗ eβ − wαμ σμβ eα ⊗ eβ . (29)

On the right-hand side of Eq. (29), we recognise the Jaumann rate of the Cauchy stress, i.e.

σ� = (σ�)αβ eα ⊗ eβ

= (σαβ eα ⊗ eβ )̇ + σαν wνβ eα ⊗ eβ − wαμ σμβ eα ⊗ eβ . (30)

Therefore, comparing Eqs. (29) and (30), we finally obtain that, in this w-co-rotational basis, the com-
ponents of the Jaumann rate are equal to the (substantial) time derivatives of the components of the
stress, i.e.

(σ�)αβ = σ̇αβ . (31)

Analogously, if we define a basis {eα}3α=1 that is co-rotational with respect to the rigid spin tensor Ω, in
the sense that

ėα = Ω eα = eα ΩT = −eα Ω, (32)

we can show that, in this Ω-co-rotational basis, the components of the Green–Naghdi rate equal the
(substantial) time derivatives of the components of the stress, i.e.

(σ�)αβ = σ̇αβ . (33)

3This definition of co-rotational frame is remnant of what happens in rigid body mechanics, when � ≡ w . In this case,
the basis vectors cp fixed to the body transform according to Poisson’s Theorem, i.e. ċp = ω × cp, where the angular

velocity ω is the axial vector associated with the spin tensor w , i.e. w cp = ω × cp.
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2.4. Linearisation of the deformation

Linearisation is essential in finite element formulations [13]. The linearisation of the deformation about
a specific configuration map φ entails the evaluation of the deformation gradient F and of all derived
quantities, after a perturbation is applied to φ. We call this perturbation an infinitesimal displacement,4

which we denote δu when seen as a function of the material point X and δu when seen as a function of
the spatial point x, i.e.

(δu)(X, t) = (δu)(x, t). (34)

The perturbed configuration map is thus

φ̆(X, t) = φ(X, t) + (δu)(X, t). (35)

The deformation gradient of the perturbed configuration map φ̆ is given by (see Section 4.2 in the book
by Marsden and Hughes [12])

F̆ (X, t) = F (X, t) + ∇(δu)(X, t), (36)

where F is the deformation gradient of the unperturbed φ and we recall that the large nabla, ∇, denotes
the gradient performed with respect to the referential coordinates XI . It is helpful to express (36) as a
multiplicative decomposition [19]. Indeed, by definition of inverse, we have

F̆ (X, t) =
[
i + ∇(δu)(X, t)F −1(x, t)

]
F (X, t). (37)

Then, the transformation rule for the gradient states that

∇(δu)(x, t) = ∇(δu)(X, t)F −1(x, t), (38)

where we recall that the small nabla, ∇, denotes the gradient with respect to the spatial coordinates xi.
Therefore, we can write (37) as

F̆ (X, t) = [i + ∇(δu)(x, t)] F (X, t), (39)

where

(δF )(x, t) = i + ∇(δu)(x, t), (40)

is the deformation gradient mapping from the configuration Bt = φ(B, t) to the perturbed configuration
B̆t = φ̆(B, t). Finally, the multiplicative decomposition equivalent to (36) is given by (39) and (40) as

F̆ (X, t) = (δF )(x, t) F (X, t). (41)

In the following, we shall need to perform the linearisation in time, i.e. considering the relative infini-
tesimal displacement between the configuration Bt = φ(B, t) at time t and the configuration Bs = φ(B, s)
at time s > t. In this case, the perturbed configuration map φ̆ and the perturbed deformation gradient
F̆ are replaced by the configuration map φ( ·, s) and deformation gradient F ( ·, s) at time s > t. Thus,
we have

φ(X, s) = φ(X, t) + (δu)s(X, t), (42)

and

F (X, s) = F (X, t) + ∇(δu)s(X, t), (43)

where the subscript s emphasises that the relative displacement (δu)s(X, t) = φ(X, s) − φ(X, t) points to
φ(X, s). Passages analogous to those seen above yield

F (X, s) = (δF )s(x, t) F (X, t), (44)

4Technically, an infinitesimal displacement field starting from a configuration φ is a tangent vector at φ, considered as
a point in the manifold of the configurations of the body [12,18].
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where the relative deformation gradient (δF )s(x, t) is given by

(δF )s(x, t) = i + ∇(δu)s(x, t), (45)

We note that this treatment is based on the concept of relative deformation, for which we refer the Reader
to the treatise by Eringen [20].

2.5. Hypoelasticity

Hypoelasticity describes a class of elastic materials defined in rate-form. Truesdell and Noll [1] proved
that the general forms of hypoelastic constitutive equation must necessarily be given by

s� = C : d, (46)

where s� is an objective rate of a stress tensor s, which could be either the Cauchy stress σ or the
Kirchhoff stress τ , d is the rate of deformation and C is the fourth-order elasticity tensor, which, in
general, depends on the stress s, i.e. C = Ĉ(s).

As mentioned in Sect. 1, in this study, the hypoelastic constitutive equations are assumed to be zero-
graded, which means that the fourth-order elasticity tensor C is isotropic and independent of the stress,
i.e. can be expressed as

C ≡ C
0 = λ i ⊗ i + 2μ i ⊗ i, (47)

where the superscript zero stands for zero-graded material, λ and μ are Lamé’s constants, i is the spatial
identity tensor with components δij (the Kronecker delta), and the special tensor product ⊗ is defined
by Curnier et al. [21] and is such that the component representation of (47) is

Cijkl ≡ C
0
ijkl = λ δijδkl + 2μ

[
1
2 (δikδjl + δilδjk)

]
. (48)

Given the Young’s modulus E and the Poisson’s ratio ν, the Lamé’s constants can be calculated via the
well-known relations

λ =
Eν

(1 + ν)(1 − 2ν)
, μ =

E

2(1 + ν)
. (49)

3. Hypoelasticity in ABAQUS user subroutine UMAT

A clear understanding of variables provided by the UMAT subroutine is essential to properly implement
constitutive models into ABAQUS. In this section, we shall discuss the essential theoretical and numerical
aspects of the UMAT-subroutine variables. It should be noted that, also for the case of a hyperelastic
material, which is described by a strain energy density, the Jacobian matrix of the UMAT subroutine
DDSDDE should be updated based on a particular rate-form equation. In this sense, the treatment below
holds for both hyperelastic and hypoelastic models.

3.1. UMAT-subroutine variable DDSDDE

Based on Section 1.1.44 of ABAQUS User Subroutines Reference Guide [7], in order to implement a
hyperelastic material, for which the Cauchy stress tensor is explicitly expressed in terms of the deformation
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gradient and other kinematic variables, it is necessary to evaluate the consistent Jacobian matrix DDSDDE.
This is defined as the matrix representing the fourth-order tensor D featuring in the expression5

τ̇ = J (D : d − σ w + w σ). (50)

Equation (50) can be promptly justified by using the definition (14) of Kirchhoff stress τ to eliminate
the Cauchy stress σ and the definition (21) of Jaumann rate τ� of the Kirchhoff stress, i.e.

τ� = J D : d. (51)

If we define C
τ �

as the fourth-order tensor relating τ� to d, i.e.

τ� = C
τ �

: d, (52)

comparison of Eqs. (51) and (52) yields

D = J−1
C

τ �
. (53)

A similar formulation is employed for the Jacobian matrix in hypoelastic materials, i.e. for rate-form
constitutive models. As we shall show later in Sect. 4, the employment of the consistent Jacobian matrix
DDSDDE based on Eq. (53) results in convergence, while other Jacobian matrices may give rise to slow
convergence [6,22] or even divergence.

In order to implement a hypoelastic model into UMAT subroutine, it is essential to relate the elasticity
tensor of the hypoelastic model to the fourth-order tensor D of Eq. (53), represented by the consistent
Jacobian matrix DDSDDE. Below, we report the tensor D that must be used for each choice of hypoelastic
formulation (proofs provided in “Appendix A”).
Truesdell Rate of the Cauchy Stress:

Dijkl = C
σ◦
ijkl + σikδjl + σjlδik, (54)

Truesdell Rate of the Kirchhoff Stress:

Dijkl = J−1
C

τ ◦
ijkl + σikδjl + σjlδik, (55)

Jaumann Rate of the Cauchy Stress:

Dijkl = C
σ�
ijkl + σijδkl, (56)

Jaumann Rate of the Kirchhoff Stress, i.e. the point of departure, Eq. (53):

Dijkl = J−1
C

τ �
ijkl, (57)

Green–Naghdi Rate of the Cauchy Stress:

Dijkl = C
τ �
ijkl − σimBmjkl + σjmBimkl + σijδkl, (58)

Green–Naghdi Rate of the Kirchhoff Stress:

Dijkl = J−1
C

τ �
ijkl − σimBmjkl + σjmBimkl. (59)

In the expressions above, we used

Bijkl =
3∑

α,β=1

λβ − λα

λβ + λα
(bα)ik(bβ)jl, (60)

5The ABAQUS Theory Manual [7] uses δτ , δd and δw in place of τ̇ , d and w . We prefer keeping τ̇ , d and w , also
because δd and δw should really be written d δt and w δt, in order to preserve consistency of the physical units between
left- and right-hand sides of Eq. (50).
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where λα are the principal stretches (eigenvalues of the left-stretch tensor V , so that λ2
α are the eigenvalues

of the left Cauchy–Green deformation b), and

bα =
3∏

β=1,β �=α

b − λ2
βi

λ2
α − λ2

β

(61)

are the eigenprojections of the left Cauchy–Green deformation b, with i being the spatial second-order
identity tensor, as seen earlier. The proof of Eqs. (54), (55), and (56) can also be found in Wooseok et
al. [23] and the proof of Eqs. (58) and (59) is based on the relation.

Ω = w +
3∑

α,β=1

λβ − λα

λβ + λα
bαdbβ , (62)

the derivation of which can be found in Mehrabadi and Nemat-Nasser [9], and also Zhou and Tamma
[24].

3.2. UMAT-subroutine variables DSTRAN and DROT

The UMAT-subroutine variables DSTRAN and DROT contain the components of the incremental strain
and incremental rotation, respectively, between the configuration Bn = φ(B, tn) at time tn and the
configuration Bn+1 = φ(B, tn+1) at time tn+1.

The incremental deformation is evaluated following the procedure outlined in Sect. 2.4 and employs
a midpoint formula [25] considering the configuration Bn+1/2 = φ(B, tn+1/2) at time

tn+1/2 = tn + 1
2 (δt)n = tn + 1

2 (tn+1 − tn), (63)

where tn is the time at the beginning of the increment and (δt)n = tn+1 − tn is the increment from tn
to tn+1. Our goal here is to determine the relative displacement gradient, the midpoint displacement
gradient, the midpoint velocity, and the midpoint velocity gradient. From the midpoint deformation rate,
symmetric part of the midpoint velocity gradient, we shall derive the incremental strain DSTRAN.

The deformation gradient at time tn+1 is obtained as a function of the relative deformation gradient
and of the deformation gradient at time tn, following Eq. (44), as

F (X, tn+1) = (δF )n+1(x, tn) F (X, tn), (64)

with the relative deformation gradient as in Eq. (45), i.e.

(δF )n+1(x, tn) = i + ∇(δu)n+1(x, tn), (65)

where we use the subscript n + 1 in place of tn+1 in (δF )n+1(x, tn) and (δu)n+1(x, tn).
Now, we approximate the displacement between tn and tn+1/2 as half the displacement between tn

and tn+1:

(δu)n+1/2(x, tn) = φ(X, tn+1/2) − φ(X, tn)

� 1
2 (δu)n+1(x, tn) = 1

2 [φ(X, tn+1) − φ(X, tn)] . (66)

Using again Eq. (45) for the relative deformation gradient between tn to tn+1/2 with the displacement (66),
we have

(δF )n+1/2(x, tn) = i + 1
2 ∇(δu)n+1(x, tn), (67)

which, together with Eq. (65), yields the alternative expression

(δF )n+1/2(x, tn) = 1
2 [i + (δF )n+1(x, tn)] . (68)

Similarly, we approximate the displacement between tn+1/2 and tn+1 as

(δu)n+1(x′, tn+1/2) = φ(X, tn+1) − φ(X, tn+1/2)



156 Page 10 of 23 Palizi, Federico and Adeeb ZAMP

� 1
2 (δu)n+1(x, tn) = 1

2 [φ(X, tn+1) − φ(X, tn)] , (69)

where x′ = φ(X, tn+1/2) and it is understood that the displacement 1
2 (δu)n+1(x, tn) must be parallel-

translated from x = φ(X, tn) to x′ = φ(X, tn+1/2). The corresponding incremental deformation gradient
is

(δF )n+1(x′, tn+1/2) = i + 1
2 ∇′(δu)n+1(x, tn). (70)

where ∇′ denotes the gradient operator at x′ = φ(X, tn+1/2), as opposed to the gradient operator ∇ at
x = φ(X, tn).

Using the incremental deformation gradients (δF )n+1(x, tn) and (δF )n+1(x′, tn+1/2), we can write the
multiplicative decomposition

F (X, tn+1) = (δF )n+1(x′, tn+1/2) (δF )n+1/2(x, tn) F (X, tn), (71)

which, comparing with Eq. (64) and using Eqs. (67) and (70), yields

(δF )n+1(x, tn) = (δF )n+1(x′, tn+1/2) (δF )n+1/2(x, tn)

=
[
i + 1

2 ∇′(δu)n+1(x, tn)
] [

i + 1
2 ∇(δu)n+1(x, tn)

]
. (72)

The midpoint displacement gradient ∇′(δu)n+1(x, tn) is evaluated from Eq. (72), considering Eq. (68),
as

∇′(δu)n+1(x, tn) = 4 (δF )n+1(x, tn) [i + (δF )n+1(x, tn)]−1 − 2 i. (73)

The velocity in the configuration Bn+1/2 is approximated by the midpoint discrete derivative

v(x′, tn+1/2) = φ̇(X, tn+1/2) � φ(X, tn+1) − φ(X, tn)
(δt)n

=
δun+1(x, tn)

(δt)n
, (74)

where, again, the parallel translation from x = φ(X, tn) to x′ = φ(X, tn+1/2) is understood. Based on
this approximation, the velocity gradient in the midpoint configuration Bn+1/2 is given by

�(x′, tn+1/2) = ∇′v(x′, tn+1/2) � 1
(δt)n

∇′(δu)n+1(x, tn), (75)

with ∇′(δu)n+1(x, tn) given by Eq. (73). The corresponding deformation rate and spin are

d(x′, tn+1/2) � 1
2 (δt)n

[
∇′(δu)n+1(x, tn) + [∇′(δu)n+1]T (x, tn)

]
, (76a)

w(x′, tn+1/2) � 1
2 (δt)n

[
∇′(δu)n+1(x, tn) − [∇′(δu)n+1]T (x, tn)

]
. (76b)

The infinitesimal strain increment δεn is the tensor corresponding to the UMAT-subroutine variable
DSTRAN and is obtained from the midpoint deformation rate (76a) by multiplying by the time increment
(δt)n:

δεn ≡ d(x′, tn+1/2) (δt)n

= 1
2

[
∇′(δu)n+1(x, tn) + [∇′(δu)n+1]T (x, tn)

]
. (77)

The midpoint spin (76b) is instead used to calculate the incremental rotation tensor Qn corresponding
to the UMAT-subroutine variable DROT, according to the Hughes–Winget algorithm (see Hughes and
Winget [26] and Section 14.10.6 of Neto et al. [25]), as

Qn ≡ [
i − 1

2 (δt)n w(x′, tn+1/2)
]−1 [

i + 1
2 (δt)n w(x′, tn+1/2)

]
, (78)

the usage of which will be explained in the Sect. 3.3.
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3.3. UMAT-subroutine variable STRESS

The stress array STRESS is the key UMAT-subroutine variable that provides the user with the components
of the Cauchy stress tensor at the beginning of an increment. The user is, then, required to update the
STRESS array with the components of the Cauchy stress tensor at the end of the increment. In some cases,
such as that of hyperelastic constitutive models, the user can easily utilise the deformation gradient
at the end of the increment, i.e. UMAT-subroutine variable DFGRD1, to calculate the Cauchy stress
components. However, for rate-dependent constitutive equations, updating the STRESS array requires
careful consideration on part of the user.

ABAQUS uses the Hughes–Winget algorithm to integrate the rate-form constitutive equations and
update the STRESS array (see Section 3.2.2 of ABAQUS Theory Manual [7]). Based on the Hughes–
Winget algorithm, the stress update reads [26]

σn+1 = Qn σn QT
n + C

σ�
n : δεn, (79)

where σn and σn+1 are the Cauchy stress tensor at time tn and tn+1, respectively, Qn is the incremental
rotation tensor and C

σ�
n is the elasticity tensor relating the Jaumann rate σ� of the Cauchy stress to the

rate of deformation d (see Eq. (A.14)). By defining

σ̃n = Qn σn QT
n , (80)

we can write Eq. (79) in the form

σn+1 = σ̃n + C
σ�
n : δεn. (81)

The tensor σ̃n is the quantity corresponding to the UMAT-subroutine variable STRESS (see Section 1.1.44
of the ABAQUS User Subroutines Reference Guide [7]). Based on Eq. (56), relating C

σ�
to the consistent

Jacobian D, we have

C
σ�
n = Dn − σn ⊗ i, (Cσ�

n )ijkl = (Dn)ijkl − (σn)ij δkl, (82)

where Dn and σn are the consistent Jacobian and the stress at the beginning of step n, respectively. Using
Eq. (82), we can write (81) in terms of Dn as

σn+1 = σ̃n + (Dn − σn ⊗ i) : δεn. (83)

The form of the consistent Jacobian Dn depends on the selected hypoelastic model, see Eqs. (54)–(59).

4. Results and discussion

Four simulations are performed in ABAQUS to validate the update procedure of the Cauchy stress array
STRESS and the Jacobian matrix DDSDDE for the hypoelastic constitutive equations. Each model consists
of only one eight-node brick element C3D8 with unit dimensions L = 1 (Fig. 1). The models are divided
into displacement-based models and force-based models. The displacement-based models are used to check
the correctness of the updated Cauchy stress tensor. In these models, the iterative procedure is not
involved and, thus, the Jacobian matrix does not affect the material response. In contrast, in the force-
based models, the implementation of the correct Jacobian matrix plays a crucial part in the convergence
of the analysis. Employing the force-based models serves to validate the Jacobian matrices used in the
hypoelastic constitutive equations and to show the consequences of using a Jacobian matrix that does
not correspond to that required by the element type (for solid elements, that related to the Jaumann
rate).

In ABAQUS, the Static-General step employs the Newton-Raphson method for the iteration. For
the force-based models, the incrementation type is set to automatic, and, for the displacement-based
models, the fixed incrementation type is used. For automatic incrementation, the initial increment size is
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(a) displacement-based, simple-shear

(c) force-based, simple-shear

(b) displacement-based, uniaxial-extension

(d) force-based, uniaxial-extension

Fig. 1. ABAQUS models for checking the correctness of the Cauchy stress array STRESS and the Jacobian matrix DDSDDE
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Fig. 2. Analytical solutions of the Cauchy stress tensor in a material body subjected to simple shear; zero-graded hypoelastic
constitutive equations based on: the Jaumann rate of the Cauchy stress (CASE 1); the Truesdell rate of the Cauchy stress
(CASE 2); and the Green–Naghdi rate of the Cauchy stress (CASE 3)

selected 100 times smaller than the maximum increment size and the minimum increment size is chosen
100 times smaller than the initial increment size.

The hypoelastic constitutive equations used in these four models are based on: (i) the Jaumann rate
of the Cauchy stress, (ii) the Jaumann rate of the Kirchhoff stress, (iii) the Truesdell rate of the Cauchy
stress, (iv) the Truesdell rate of the Kirchhoff stress, (v) the Green–Naghdi rate of the Cauchy stress, and
(vi) the Green–Naghdi rate of the Kirchhoff stress. The constitutive equations are all zero-graded. The
Young’s modulus E and Poisson’s ratio ν are, respectively, set to 20 (with consistent units) and 0.2. We
verified analytically that, for the cases studied, the material parameters E and ν appear linearly in the
expressions of the Cauchy stress and, therefore, varying their magnitude does not introduce any further
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(a) Jaumann rate of the Cauchy or Kirchhoff stress tensors
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(b) Truesdell rate of the Cauchy or Kirchhoff stress tensors
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(c) Green-Naghdi rate of the Cauchy or Kirchhoff stress tensors

Fig. 3. The Cauchy stress components in the displacement-based model subjected to simple shear; zero-graded hypoelastic
constitutive equations based on various rates (a–c); numerical solutions with fixed increment sizes of 0.1 (CASE 1), 0.01
(CASE 2), and 0.001 (CASE 3) in comparison with the analytical solutions (CASE 4)

nonlinearity. Therefore, the conclusions drawn in this section are valid for arbitrary (and, naturally,
physically admissible) values of the Young’s modulus E and the Poisson’s ratio ν.

In the first model (Fig. 1a), the nodes located on the bottom surface of the element are fixed in all
directions, the nodes on the upper surface are fixed in x2 and x3 directions and a displacement equal
to 5 is applied at the upper nodes in x1 direction. This model is a displacement-based model subjected
to simple shear. Using the zero-graded hypoelastic constitutive equations in this model, the numerical
Cauchy stress tensors can be checked with the analytical counterparts provided in [2,3] (see Fig. 2 for
the analytical solutions of the zero-graded hypoelastic constitutive equations under simple shear).

In simple shear, the local volume does not change (i.e. J = 1) and, thus, the Kirchhoff stress tensor
coincides with the Cauchy stress tensor. Therefore, the hypoelastic constitutive equations based on the
Kirchhoff stress tensor are equivalent to those based on the Cauchy stress tensor. Fig. 3 compares the
analytical solutions (CASE 4) with the numerical ones, considering the fixed increment size as 0.1 (CASE
1), 0.01 (CASE 2), and 0.001 (CASE 3). For all hypoelastic constitutive equations, the numerical solutions
corresponding to the increment size of 0.001 lie on the analytical solutions. For the hypoelastic models
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associated with the Jaumann and Green–Naghdi rates, the convergence occurs at the increment size of
0.01 (CASE 2).

In the second model (Fig. 1b), the nodes on the back surface are fixed in all directions; the nodes on
the front surface are fixed in x2 and x3 directions and a displacement equal to 5 is applied in x1 direction.
This model is a displacement-based model subjected to uniaxial extension, which we use to double-check
the update procedure of the Cauchy stress tensor for the zero-graded hypoelastic constitutive equations.
In uniaxial extension, the eigenvectors of the right stretch tensor U remain constant during the motion
and thus the eigenvectors of U̇ coincide with those of U . Consequently, U and U̇ commute and the spin
tensor w reduces to the rigid spin Ω, as can be seen from Eq. (10). Accordingly, in uniaxial extension,
the hypoelastic constitutive equations based on the Jaumann rates show the same mechanical behaviour
as those based on the Green–Naghdi rates. Fig. 4 represents the numerical solutions considering the fixed
increment size as: 0.1 (CASE 1), 0.01 (CASE 2), 0.001 (CASE 3), and 0.0001 (CASE 4). For all hypoelastic
constitutive equations, the increment sizes of 0.01, 0.001, and 0.0001 result in the same responses.

In the third model (Fig. 1c), the bottom nodes are fixed in all directions; by defining a rigid body
constraint, the upper nodes are rigidly constrained to a reference point located at the centre of the
upper surface and a concentrated force in the x1-direction is applied to the reference point. The reason
behind the employment of the rigid constraint is that the application of equal concentrated forces at the
upper nodes does not produce simple shear deformation. This is a force-based model, used to check the
correctness of the Jacobian matrix for the zero-graded hypoelastic constitutive equations.

In this model, the applied force is in equilibrium with the shear Cauchy stress component, i.e. σ12

(Fig. 1c). Noting that the iterative procedure, i.e. the Newton–Raphson method, is unable to pass the
critical points (e.g. snap-through), for each hypoelastic constitutive equation, the value of the applied
force must be selected based on the shear stress response in the displacement-based model under simple
shear. Based on Fig. 3b c, for the hypoelastic constitutive equations associated with the Truesdell and
Green–Naghdi rates, the shear stress is increasing in the course of the simple shear motion and its
maximum value occurs at u1 = 5. Nevertheless, for the hypoelastic constitutive equations associated with
the Jaumann rates, the maximum shear stress occurs at a critical point located at u1 = 1.57 (Fig. 3a).
Employing the zero-graded hypoelastic constitutive equations and the corresponding applied force values
into the model, in Fig. 5, a comparison is provided between the analytical solutions (CASE 4) and the
numerical solutions using the automatic incrementation with maximum increment sizes as: 0.1 (CASE 1),
0.01 (CASE 2), and 0.001 (CASE 3). For all hypoelastic constitutive equations, the maximum increment
size of 0.001 (CASE 3) provides numerical solutions which are located on the analytical solutions. For the
hypoelastic constitutive equations based on the Jaumann and Green–Naghdi rates, even the numerical
solutions associated with the maximum increment size of 0.1 lie on the analytical counterparts (Fig. 5a,
b).

For the fourth model (Fig. 1d), the nodes in the back surface are fixed in all directions, the nodes in
the front surface are restricted in x2 and x3 directions and, in the remaining degrees of freedom (DOFs),
i.e. DOFs in x1 direction at the nodes in the front, equal concentrated forces f1 are applied. This model is
a force-based model subjected to uniaxial extension, used to double-check the correctness of the Jacobian
matrix for the zero-graded hypoelastic constitutive equations.

In this model, the sum of the concentrated forces, i.e. 4f1, is in equilibrium with the normal Cauchy
stress component σ11 (Fig. 1d). Thus, for each hypoelastic constitutive equation, the value of f1 must be
selected based on the response of the stress component σ11 in the displacement-based model subjected to
uniaxial extension (Fig. 4). As is clear from Fig. 4b, for the hypoelastic constitutive equations based on
the Jaumann or Green–Naghdi rates of the Kirchhoff stress tensor, a critical point (snap-through) exists
at u1 = 1.71, whereas the stress component σ11 is increasing during the uniaxial extension motion in
other constitutive equations (Fig. 4a, c, d). In Fig. 6, employing the zero-graded hypoelastic constitutive
equations alongside the proper values of f1, the numerical solutions for the maximum increment sizes
of 0.1 (CASE 1), 0.01 (CASE 2), 0.001 (CASE 3), and 0.0001 (CASE 4) are compared. It is clear from
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Fig. 4. The Cauchy stress components in the displacement-based model subjected to uniaxial extension deformation; zero-

graded hypoelastic constitutive equations based on various rates (a–d); comparing numerical solutions with fixed increment
sizes as: 0.1 (CASE 1), 0.01 (CASE 2), 0.001 (CASE 3), and 0.0001 (CASE 4)
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(a) Jaumann rate of the Cauchy or Kirchhoff stress tensors
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(b) Truesdell rate of the Cauchy or Kirchhoff stress tensors
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(c) Green-Naghdi rate of the Cauchy or Kirchhoff stress tensors

Fig. 5. The Cauchy stress components in the force-based model subjected to simple shear; zero-graded hypoelastic consti-
tutive equations based on various rates (a–c); numerical solutions using automatic incrementation with maximum increment
sizes of 0.1 (CASE 1), 0.01 (CASE 2), and 0.001 (CASE 3) in comparison with analytical solutions (CASE 4)

Fig. 6 that, for all of the hypoelastic constitutive equations, the numerical solutions corresponding to the
maximum increment sizes of 0.01 to 0.0001, i.e. CASE 2 to CASE 4, are the same. For the hypoelastic
constitutive equations associated with the Jaumann or Green–Naghdi rates, even the first case, i.e. the
numerical solutions with the maximum increment size of 0.1 are the same as the rest of the numerical
solutions.

The elasticity tensor C
σ�
n describes the relation between the Jaumann rate of the Cauchy stress and

the rate of deformation (see Eq. (A.14)) and is related to the consistent Jacobian by C
σ�
n = Dn − σn ⊗ i,

via Eq. (56). Since C
σ�
n is used in the Hughes–Winget algorithm [26] to update the stress (Eq. (79)), a

possible coding error is to use C
σ�
n in place of the consistent Jacobian Dn (Eq. (57)). Figure 7 compares
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Fig. 6. The Cauchy stress components in the force-based model subjected to uniaxial extension deformation; zero-graded

hypoelastic constitutive equations based on various rates (a–d); using automatic incrementation with the maximum incre-
ment sizes of 0.1 (CASE 1), 0.01 (CASE 2), 0.001 (CASE 3), and 0.0001 (CASE 4)
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(a) Jaumann or Green-Naghdi rate of the Cauchy stress tensor
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(b) Jaumann or Green-Naghdi rate of the Kirchhoff stress tensor

0 1 2 3 4 5
0

1

2

3

4

5

6

0 1 2 3 4 5
0

1

2

3

4

5

6

σ
1
1
/
E

σ
2
2
/
E

u1 uL/ 1/L

(c) Truesdell rate of the Cauchy stress tensor
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(d) Truesdell rate of the Kirchhoff stress tensor

Fig. 7. The Cauchy stress components in the force-based model subjected to uniaxial extension based on: the correct
Jacobian Dn, based on the Jaumann rate of the Kirchhoff stress from Eq. (57) (CASE 1), and the incorrect version of the

Jacobian, based on the Jaumann rate of the Cauchy stress C
σ �
n = Dn − σn ⊗ i from Eq. (56) (CASE 2). The zero-graded

hypoelastic constitutive equations based on various rates (a–d); using the automatic incrementation with the maximum

increment size of 0.001. Note how the simulation based on the incorrect Jacobian C
σ �
n = Dn − σn ⊗ i fails to converge (the

red dot indicates where the simulation stops)
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the numerical solutions based on the correct Jacobian Dn (CASE 1) and the incorrect Jacobian C
σ�
n =

Dn − σn ⊗ i (CASE 2) for the force-based model subjected to uniaxial extension.
Figure 7 shows how using the wrong Jacobian matrices results in non-convergence of the analyses at

the early stages of the loading. Nevertheless, before the simulation fails to converge and stops (which is
indicated by the red dots in the CASE 2 plots in Fig. 7), the Cauchy stress components are identical
in both cases of the correct and incorrect Jacobian matrices. Therefore, the correctness of the Jacobian
matrix is crucial for the convergence of the analyses, but has no effect on the correctness of the updated
Cauchy stress tensor.

5. Summary

In this study, we implement various hypoelastic constitutive models into the finite element analysis soft-
ware ABAQUS through the user subroutine UMAT. For the formulation of the consistent Jacobian, i.e.
the matrix DDSDDE, ABAQUS uses the elasticity tensor relating the Jaumann rate of the Kirchhoff stress
to the rate of deformation for solid elements and the elasticity tensor relating the Green–Naghdi rate of
the Kirchhoff stress to the rate of deformation for shell elements. Therefore, it is essential to relate the
elasticity tensor of various hypoelastic constitutive models to the elasticity tensor associated with the
consistent Jacobian. In regard to the importance of the consistent Jacobian, it is shown that the usage
of wrong Jacobian matrices would give rise to the non-convergence of the analyses in the early stages of
loading. Additionally, in order to update the Cauchy stress in the various hypoelastic models presented,
the comprehension of ABAQUS co-rotational framework and UMAT-subroutine variables such as STRESS,
DSTRAN, and DROT is essential, and this is why they were all described in detail. The correctness of the
stress array STRESS and Jacobian matrix DDSDDE in the zero-graded hypoelastic constitutive equations is
checked using displacement-based and force-based models subjected to simple shear and uniaxial exten-
sion. This work is aimed at providing a step-by-step guide to the implementation of hypoelastic materials
in ABAQUS, but the procedures shown can be adapted to the modelling of hyperelastic materials as well.
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The constitutive equation of a hypoelastic model based on the Truesdell rate of the Cauchy stress is

σ◦ = σ̇ − σ �T − � σ + ( tr d )σ = C
σ◦

: d, (A.1)

in which the elasticity tensor C
σ◦

is given. Considering the expression of the time derivative of the volume
ratio (a proof can be found, e.g. in Section 4.14 of [14]), i.e.

J̇ = J trd, (A.2)

multiplying Eq. (A.1) by J and employing Eqs. (8), (14) and (21) result in:

τ� = τ̇ + τ w − w τ = JC
σ◦

: d + Jσ d + Jd σ = C
τ �

: d. (A.3)

Now, representing the last equality in index notation, i.e.

JC
σ◦
ijkldkl + Jσimdmj + Jdimσmj = C

τ �
ijkldkl, (A.4)

rewriting Jσimdmj as

Jσimdmj = Jσikδjldkl, (A.5)

and Jdimσmj as

Jdimσmj = Jσjlδikdkl, (A.6)

the following expression will be achieved:

(JC
σ◦
ijkl + Jσikδjl + Jσjlδik)dkl = C

τ �
ijkldkl. (A.7)

Now, based on Eq. (53), we can finally write

C
σ◦
ijkl + σikδjl + σjlδik = Dijkl, (A.8)

which coincides with Eq. (54).
For a hypoelastic model associated with the Truesdell rate of the Kirchhoff stress, the constitutive

equation is

τ ◦ = C
τ ◦

: d. (A.9)

Considering Eqs. (14), (18), (19), and (A.2), we can easily obtain the expression

τ ◦ = Jσ◦. (A.10)

which, substituted into Eq. (A.9), yields

σ◦ = J−1
C

τ ◦
: d = C

σ◦
: d, (A.11)

and, therefore:

J−1
C

τ ◦
ijkl = C

σ◦
ijkl. (A.12)

Now, employing the above relation into Eq. (A.8) leads to,

J−1
C

τ ◦
ijkl + σikδjl + σjlδik = Dijkl, (A.13)

i.e. Eq. (55).
For a hypoelastic model based on the Jaumann rate of the Cauchy stress, the constitutive equation is

σ� = σ̇ + σ w − w σ = C
σ�

: d. (A.14)

Multiplying Eq. (A.14) by J , adding (J tr d )σ to both sides of the equation and employing Eqs. (14)
and (21), we obtain

τ� = τ̇ + τ w − w τ = JC
σ�

: d + (J tr d )σ = C
τ �

: d. (A.15)

Now, expressing the last equality in index notation

JC
σ�
ijkldkl + Jσijdmm = C

τ �
ijkl dkl, (A.16)



ZAMP Consistent numerical implementation of hypoelastic Page 21 of 23 156

rewriting the term Jσijdmm as

Jσijdmm = Jσijδkldkl, (A.17)

and eliminating dkl from both sides of (A.16), we obtain

JC
σ�
ijkl + Jσijδkl = C

τ �
ijkl. (A.18)

Finally, considering Eq. (53), the elasticity tensor C
σ�

of the hypoelastic model, which is known, could
be related to the tensorial version of the consistent Jacobian, i.e.

C
σ�
ijkl + σijδkl = Dijkl. (A.19)

which coincides with Eq. (56).
The constitutive equation of a hypoelastic model based on the Green–Naghdi rate of the Cauchy stress

is

σ� = σ̇ + σ Ω − Ωσ = C
σ�

: d. (A.20)

Based on Eq. (62), we have

σ̇ + σ

(

w +
3∑

α,β=1

λβ − λα

λβ + λα
bα dbβ

)

−
(

w +
3∑

α,β=1

λβ − λα

λβ + λα
bα dbβ

)

σ = C
σ�

: d, (A.21)

from which, rearranging the terms,

C
σ�

: d − σ

(
3∑

α,β=1

λβ − λα

λβ + λα
bα d bβ

)

+

(
3∑

α,β=1

λβ − λα

λβ + λα
bα dbβ

)

σ = σ̇ + σ w − w σ. (A.22)

Now, using Eqs. (20) and (A.14) and index notation, we obtain

C
σ�
ijkldkl − σim

(
3∑

α,β=1

λβ − λα

λβ + λα
(bα)mkdkl(bβ)lj

)

+

(
3∑

α,β=1

λβ − λα

λβ + λα
(bα)ikdkl(bβ)lm

)

σmj = C
σ�
ijkldkl. (A.23)

Employing Eq. (60) and eliminating dkl from both sides, we get

C
σ�
ijkl − σimBmjkl + σjmBimkl = C

σ�
ijkl, (A.24)

and, finally, based on Eq. (A.19), we obtain Eq. (58)

C
σ�
ijkl − σimBmjkl + σjmBimkl + σijδkl = Dijkl. (A.25)

For a hypoelastic model based on the Green–Naghdi rate of the Kirchhoff stress, the constitutive equa-
tion is

τ� = τ̇ + τ Ω − Ω τ = C
σ�

: d. (A.26)

Using Eqs. (14), (21) and (A.2), we obtain

C
σ�
ijkl = J−1

C
τ �
ijkl − σijδkl, (A.27)
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substituting which into Eq. (A.25) yields Eq (59):

J−1
C

τ �
ijkl − σimBmjkl + σmjBimkl = Dijkl. (A.28)
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