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Abstract. This paper concerns the lower bound decay rate of global solution for compressible Navier–Stokes–Korteweg
system in three-dimensional whole space under the H4 × H3 framework. At first, the lower bound of decay rate for the

global solution converging to constant equilibrium state (1, 0) in L2-norm is (1 + t)−
3
4 if the initial data satisfy some

low-frequency assumption additionally. Furthermore, we also show that the lower bound of the k(k ∈ [1, 3])th-order spatial

derivatives of solution converging to zero in L2-norm is (1 + t)−
3+2k

4 . Finally, it is proved that the lower bound of decay

rate for the time derivatives of density and velocity converging to zero in L2-norm is (1 + t)−
5
4 .
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1. Introduction

In this paper, we are concerned with the lower bounds of decay rate for the global solution to the
compressible Navier–Stokes–Korteweg system in three-dimensional whole space:{

ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u) − μΔu − (μ + ν)∇divu + ∇P (ρ) = κρ∇Δρ,
(1.1)

where t ≥ 0 is time, x ∈ R
3 is spatial coordinate and the unknown functions ρ = ρ(x, t) and u =

(u1, u2, u3)(x, t) represent density and velocity, respectively. The pressure P (ρ) is a smooth function in
a neighborhood of 1 with P ′(1) > 0. The constant viscosity coefficients μ and ν satisfy the following
physical conditions: μ > 0, 2μ + 3ν ≥ 0. The constant capillary coefficient κ satisfies κ > 0. To complete
the system (1.1), the initial data are given by

(ρ, u)(x, t)|t=0 = (ρ0(x), u0(x)). (1.2)

Furthermore, as the space variable tends to infinity, we assume

lim
|x|→∞

(ρ0 − 1, u0)(x) = 0. (1.3)

Korteweg-type models, supposing that the energy of the fluid depends on standard variables and the
gradient of the density, are based on an extended version of nonequilibrium thermodynamics. The Navier–
Stokes–Korteweg model, describing the dynamics of a liquid–vapor mixture with diffuse interphase and
being used to model the motion of compressible fluid with capillary effect of materiel, originals from the
work of van der Waals [23] and Korteweg [17], and the modern form was derived by Dunn and Serrin
[8]. It should be noted that the system (1.1) will reduce to the well-known compressible Navier–Stokes
system if the capillary coefficient satisfies κ = 0.
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There are many studies on the well-posedness of solutions to the compressible fluid models of Korteweg
type. For the one-dimensional case, many researchers have studied extensively; refer to [3,5] and the
references therein. Charve and Haspot [3] obtained the global strong solution in the case of Saint-Venant
viscosity coefficients. Chen et al. [5] obtained the global existence of classical solutions with large initial
data away from vacuum for the isothermal compressible fluid of Korteweg type under the condition
that the viscosity coefficient and capillarity coefficient are dependent on the density. For the multi-
dimensional case, Hattori and Li [12] showed the local existence of smooth solution with large initial data
for the isothermal compressible fluid models of Korteweg type in R

2. Later, Hattori and Li [13] showed
the global existence of smooth solution with small initial perturbation for the isothermal compressible
fluid models of Korteweg type in high dimensions in some Sobolev space. Danchin and Desjardins in [7]
showed the existence and uniqueness of suitably smooth solutions in critical Besov space. This result was
improved by Haspot [11] by showing the global existence of weak solution, while the initial data belong
to the energy space. Bresch et al. [2] obtained global weak solutions for the isothermal Korteweg model
in a periodic or strip domain without smallness of assumption on the initial data when the viscosity μ
and the capillarity coefficient κ are dependent on the density. For more results about the well-posedness
result, the readers can refer to [1,4,6,14–16,18,20,21] and the references therein.

The study for the asymptotic behavior of solution to the compressible Navier–Stokes–Korteweg equa-
tions has attracted many scholars’ attention. First of all, the researchers in [20,24,25] established the
time decay rates for the global solution under the HN (N ≥ 3),H2 and H1 framework, respectively. More
precisely, Wang and Tan [25] established the global existence of solution and built the time convergence
rates for the case k = 0, 1,

‖∇k(ρ − 1)(t)‖HN+1−k + ‖∇ku(t)‖HN−k ≤ C(1 + t)− 3+2k
4 . (1.4)

Later, Gao et al. [10] proved that the convergence rates (1.4) come true when k ∈ [0, N ] with N ≥ 3,
which will be showed in Theorem 1.1. In order to obtain fast time convergence rates for the higher-order
spatial derivatives of solution, Tan and Zhang [22] considered the case of initial data belonging to some
negative Sobolev space rather than general L1 space. More precisely, if the initial data (ρ0 − 1, u0) ∈
(HN+1 ∩ Ḣ−s) × (HN ∩ Ḣ−s) (N ≥ 3 and s ∈ [

0, 3
2

)
), they established time decay rates

‖∇k(ρ − 1)(t)‖HN+1−k + ‖∇ku(t)‖HN−k ≤ C(1 + t)− s+k
2 ,

where k = 0, 1, 2, . . . , N − 1. On the other hand, Li [18], Wang and Wang [24] studied the time decay
rates of smooth solution and strong solutions under the smallness assumption on the potential external
force in some Sobolev space, respectively. It should be noted that the decay rate (1.4) is called “optimal”
in the sense that this rate of solution for the nonlinear part coincide with the decay rate of linearized
one. Thus, the aim of this paper is devoted to providing lower bounds of decay rate (coincide with upper
rate) for the global solution itself and its derivatives. In other words, this implies that the decay rate (1.4)
obtained in [25] is really optimal.

Notation In this paper, the symbol ∇k with an integer k ≥ 0 stands for the usual any spatial derivatives
of order k. For example, we define ∇kv = {∂α

x vi||α| = k, i = 1, 2, 3} , v = (v1, v2, v3). We also denote
the Fourier transform F(f) := f̂ . Denote by Λs the pseudo-differential operator defined by Λsf =
F−1(|ξ|sf̂(ξ)). Denote L2(R3) and Hs(R3) as the usual Lebesgue space and Sobolev space. For the sake
of simplicity, we write

∫
fdx :=

∫
R3 fdx and ‖(A,B)‖X := ‖A‖X + ‖B‖X .

First of all, we recall the main results obtained in [10,25] in the following:

Theorem 1.1. [10,25] Assume that the initial data ρ0 − 1 ∈ HN+1 and u0 ∈ HN for any integer N ≥ 3
and there exists a small constant δ > 0 such that

‖ρ0 − 1‖HN+1 + ‖u0‖HN ≤ δ, (1.5)
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then the solution (ρ, u) of (1.1)–(1.3) satisfies for all t ≥ 0

‖(ρ − 1)(t)‖2HN+1 + ‖u(t)‖2HN +

t∫
0

(‖∇ρ(s)‖2HN+1 + ‖∇u(s)‖2HN )ds

≤ C(‖ρ0 − 1‖2HN+1 + ‖u0‖2HN ). (1.6)

Furthermore, if ‖(ρ0 − 1, u0)‖L1 is finite additionally, then it holds on

‖∇α(ρ − 1)(t)‖HN+1−α + ‖∇αu(t)‖HN−α ≤ C(1 + t)− 3+2α
4 , (1.7)

for all α ∈ [0, N ]. Here, C is a positive constant independent of time.

Next, we establish the lower bound of time decay rates for the global solution of (1.1)–(1.3) only under
the H4 × H3 framework for the sake of simplicity.

Theorem 1.2. Denote 	0 := ρ0 − 1 and m0 := ρ0u0. Assume that the Fourier transform F(	0,m0) =
(	̂0, m̂0) satisfies

|	̂0| ≥ c0, m̂0 = 0, 0 ≤ |ξ| 	 1, (1.8)
with c0 a positive constant. Then, the global solution (ρ, u) obtained in Theorem 1.1 has the decay rates
for all t ≥ t∗

c1(1 + t)− 3+2k
4 ≤ ‖∇k(ρ − 1)(t)‖L2 ≤ C1(1 + t)− 3+2k

4 , k = 0, 1, 2, 3; (1.9)

c1(1 + t)− 3+2k
4 ≤ ‖∇ku(t)‖L2 ≤ C1(1 + t)− 3+2k

4 , k = 0, 1, 2, 3. (1.10)

Here, t∗ is a positive large time, and c1 and C1 are two positive constants independent of time.

Remark 1.1. The lower bounds of decay rates (1.9), (1.10) for the derivatives of density and velocity to
the compressible Navier–Stokes–Korteweg system are obtained for the first time.

Remark 1.2. Although we only establish the time decay rates under the H4 ×H3 framework in Theorem
1.2, the method used here can be applied to the HN+1 × HN (N ≥ 3)-framework. Under the condition
(1.8), the global classical solution (ρ, u) of the system (1.1) has the decay rates for all t ≥ t∗

c1(1 + t)− 3+2k
4 ≤ ‖∇k(ρ − 1)(t)‖L2 ≤ C1(1 + t)− 3+2k

4 , k ∈ [0, N ];

c1(1 + t)− 3+2k
4 ≤ ‖∇ku(t)‖L2 ≤ C1(1 + t)− 3+2k

4 , k ∈ [0, N ].

Here, t∗ is a positive large time, and c1 and C1 are two positive constants independent of time.

Remark 1.3. It should be pointed out that under the H3-framework, the decay rates (1.9) and (1.10)
for the global solution to the compressible Navier–Stokes equations can only be obtained under the
condition that k = 0, 1 (see [9]). However, these decay rates for the solution to the Navier–Stokes–
Korteweg equations can be obtained when k = 0, 1, 2, 3. The difference here is the appearance of Korteweg
term κρ∇Δρ that will obtain enough dissipation for the density.

Finally, we will establish the lower bounds of decay rates for the time derivatives of solution to the
compressible Navier–Stokes–Korteweg system (1.1).

Theorem 1.3. Assume the condition (1.8) holds on, then the global classical solution (ρ, u) obtained in
Theorem 1.1 satisfies for all t ≥ t∗

c2(1 + t)− 5
4 ≤ ‖∂tu(t)‖L2 ≤ C2(1 + t)− 5

4 . (1.11)

Furthermore, if there exists a small constant δ1 such that ‖u0‖L1 ≤ δ1, it holds on for all t ≥ t∗

c2(1 + t)− 5
4 ≤ ‖∂tρ(t)‖L2 ≤ C2(1 + t)− 5

4 . (1.12)

Here, t∗ is a positive large time, and c2 and C2 are two positive constants independent of time.
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Remark 1.4. The lower bounds of decay rates for the time derivatives of density and velocity for the
compressible Navier–Stokes–Korteweg system in the L2 norm are obtained for the first time.

Now we make comments on the analysis of this paper. At first, we give the lower bound of decay rate
for the higher-order spatial derivative of solution to the compressible Navier–Stokes–Korteweg equations
(1.1). Define U and Ul as the solution to the nonlinear and linearized problems, respectively. Define
Uδ := U − Ul, then we have for any integer k

‖∇kU‖L2 ≥ ‖∇kUl‖L2 − ‖∇kUδ‖L2 .

For αl,k < αδ,k, if the solutions Ul and Uδ satisfy

‖∇kUl‖L2 ≥ Cl,k(1 + t)−αl,k , ‖∇kUδ‖L2 ≤ Cδ,k(1 + t)−αδ,k , (1.13)

where Cl,k and Cδ,k are positive constants independent of time. For large time t, it holds on

‖∇kU‖L2 ≥ Cl,k(1 + t)−αl,k − Cδ,k(1 + t)−αδ,k ≥ C(1 + t)−αl,k ,

where C is a positive constant that independent of time. It is easy to obtain the lower bound of decay
rate for the linearized part by applying the spectral analysis to the semigroup for the linearized Navier–
Stokes–Korteweg system (2.4); see Proposition 2.1 in Sect. 2. Therefore, it is significant to obtain upper
bound of decay rate of ∇kUδ. To achieve this goal, we establish the energy estimates, see (2.21) and (2.22)
in Lemma 2.2. Then, with the help of the upper bound decay estimate (1.7), the upper bound of decay
rate for Uδ can be obtained. While taking the case k ≥ 1 into account, we utilize the Fourier Splitting
method developed by Schonbek [19] to obtain the upper bound of decay rate for ∇kUδ.

Next, the upper and lower bounds of decay rate for the time derivative of velocity can be obtained by
using the equation and lower bound of first-order spatial derivative. If we use the transport equation to
obtain the lower bound of decay rate for the time derivative of density, we need to get the lower bound
for the quantity divergence of velocity(i.e., divu). To achieve this target, we need to assume the smallness
for the initial velocity in L1.

The rest of this paper is organized as follows. In Sect. 2, we establish the lower bound of decay rate
for the solution itself and derivative, and then, we establish the upper and lower bounds of decay rate for
the time derivatives of solution. In Sect. 3, we prove technical estimates used in Sect. 2.

2. Lower bounds of decay for spatial derivative

In this section, we will address the lower bound of decay rates for the solution itself and its derivative.
To this end, the upper decay rates for the difference between the nonlinear and linearized parts will be
established. Finally, we address the upper decay rate of solution for the higher-order spatial derivative.

2.1. Lower bounds of decay for spatial derivative

In this subsection, we will establish optimal time decay rates of solution for the compressible Navier–
Stokes–Korteweg equations (1.1)-(1.3). Let us denote 	 := ρ−1,m := ρu. For simplicity, we take P ′(1) =
1; then, we rewrite (1.1) in the perturbation form as follows:{

	t + divm = 0,

mt − μΔm − (μ + ν)∇divm + ∇	 − κ∇Δ	 = −divS,
(2.1)

where the function S = S(	, u) is defined as

S = (	 + 1)u ⊗ u + μ∇(	u) + (μ + ν)div(	u)I3×3

+(P (1 + 	) − P (1) − 	)I3×3 − κ	∇2	 +
1
2
κ|∇	|2I3×3. (2.2)
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The initial data are given as

(	,m)(x, t)|t=0 = (	0,m0)(x) → (0, 0) as |x| → ∞. (2.3)

In order to obtain the lower decay estimate, we need to analysis the linearized part:{
∂t	l + divml = 0,

∂tml − μΔml − (μ + ν)∇divml + ∇	l − κ∇Δ	l = 0,
(2.4)

with the initial data

(	l,ml)(x, t)|t=0 = (	0,m0)(x) → (0, 0) as |x| → ∞. (2.5)

Here, we assume initial data for the linearized system (2.4) is the same as the original problem (2.1).

Proposition 2.1. Let 	0 ∈ H4(R3)
⋂

L1(R3), m0 ∈ H3(R3)
⋂

L1(R3). Assume that the Fourier transform
F(	0,m0) = (	̂0, m̂0) satisfies |	̂0| ≥ c0, |m̂0| = 0, 0 ≤ |ξ| 	 1 with c0 a positive constant, then there
exists a positive large time t∗ such that for t ≥ t∗, we have for s = 0, 1, 2, 3,

‖∇s	l(t)‖L2 ≥ c(1 + t)−( 3
4+

s
2 );

‖∇sml(t)‖L2 ≥ c(1 + t)−( 3
4+

s
2 ), (2.6)

where c is a positive constant independent of time t.

Proof. By virtue of the semigroup theory for evolution equation, the solution (	l,ml) of the linearized
problem (2.4), (2.5) can be expressed by

Ut = BU, U(0) = U0, (2.7)

where U = (	l,ml)t and

B =
[

0 −div
−∇ + κ∇Δ μΔ + (μ + ν)∇div

]
. (2.8)

Applying Fourier transform to Eq. (2.7), it holds on

Ût = A(ξ)Û , Û(0) = Û0, (2.9)

where

A(ξ) =
[

0 −iξt

−iξ − iκ|ξ|2ξ −μ|ξ|2I3×3 − (μ + ν)ξξt

]
. (2.10)

Then by computation, we obtain the Fourier transform Ĝ(ξ, t) of Green’s function G(x, t) = etB as
follows:

Ĝ(ξ, t) =

⎡
⎣ λ+eλ−t−λ−eλ+t

λ+−λ−
− iξt(eλ+t−eλ−t)

λ+−λ−

− iξ(1+κ|ξ|2)(eλ+t−eλ−t)
λ+−λ−

λ+eλ+t−λ−eλ−t

λ+−λ−
· ξξt

|ξ|2 + e−λ0t
(
I − ξξt

|ξ|2
)

⎤
⎦ , (2.11)

where

λ0 = −μ|ξ|2 (double),

λ+ = −1
2
(2μ + ν)|ξ|2 +

1
2
i
√

4(1 + κ|ξ|2)|ξ|2 − (2μ + ν)2|ξ|4,

λ− = −1
2
(2μ + ν)|ξ|2 − 1

2
i
√

4(1 + κ|ξ|2)|ξ|2 − (2μ + ν)2|ξ|4.
Thus, we can obtain the expression for 	̂l(ξ, t) and m̂l(ξ, t) as follows,

	̂l(ξ, t) =
λ+eλ−t − λ−eλ+t

λ+ − λ−
	̂l0 − iξt(eλ+t − eλ−t)

λ+ − λ−
m̂l0, (2.12)
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and

m̂l(ξ, t) = − iξ(1 + κ|ξ|2)(eλ+t − eλ−t)
λ+ − λ−

	̂l0 +
[
λ+eλ+t − λ−eλ−t

λ+ − λ−
· ξξt

|ξ|2 + e−λ0t

(
I − ξξt

|ξ|2
)]

m̂l0. (2.13)

Then it is easy to verify that

	̂l(ξ, t) ∼
⎧⎨
⎩ e− 1

2 (2μ+ν)|ξ|2t cos(bt)|	̂l0| + O(1)e− 1
2 (2μ+ν)|ξ|2t sin (bt)

b
|ξ|2|	̂l0|, |ξ| 	 1,

O(1)e−R0|ξ|2t|	̂l0|, |ξ| 
 1,

(2.14)

and

m̂l(ξ, t) ∼
{

e− 1
2 (2μ+ν)|ξ|2t sin(bt)|	̂l0|, |ξ| 	 1,

O(1)e−R0|ξ|2t|	̂l0|, |ξ| 
 1,
(2.15)

where

b =
1
2

√
4(1 + κ|ξ|2)|ξ|2 − (2μ + ν)2|ξ|4 ∼ |ξ| + O(|ξ|3), |ξ| 	 1,

R0 is a positive constant. By Parseval’s theorem, for s = 0, 1, 2, 3, it holds on

‖∇s	l‖2L2 =
∫

|ξ|≤η

|ξ|2s|	̂l|2dξ +
∫

|ξ|≥η

|ξ|2s|	̂l|2dξ

≥ 1
2

∫
|ξ|≤η

e−(2μ+ν)|ξ|2t|ξ|2s cos2(bt)|	̂l0|2dξ−C

∫
|ξ|≤η

e−(2μ+ν)|ξ|2t|ξ|2s+4 sin2(bt)
b2

|	̂l0|2dξ

− Ce−2R0η2t,

where η is a small but fixed positive constant. Due to the fact that b ∼ |ξ| + O(|ξ|3) as |ξ| 	 1, it holds
on ∫

|ξ|≤η

e−(2μ+ν)|ξ|2t|ξ|2s+4 sin2(bt)
b2

|	̂l0|2dξ ≤ Ct−(s+ 5
2 ).

Employing the mean value formula, we get

cos(|ξ| + O(|ξ|3)) = cos(|ξ|t) + O(|ξ|3t);
then, we have

cos2(|ξ| + O(|ξ|3)) ≥ 1
2

cos2(|ξ|t) − O([|ξ|3t]2),
which, together with the above inequality, we obtain that∫

|ξ|≤η

e−(2μ+ν)|ξ|2t|ξ|2s cos2(bt)|	̂l0|2dξ

≥ C

∫
|ξ|≤η

e−(2μ+ν)|ξ|2t|ξ|2s cos2(|ξ|t)dξ − C

∫
|ξ|≤η

e−(2μ+ν)|ξ|2t|ξ|2s|ξ|6t2dξ

=: I1 − I2. (2.16)

By direct computation, we have ∫
|ξ|≤η

e−(2μ+ν)|ξ|2t|ξ|2s|ξ|6t2dξ ≤ Ct−(s+ 5
2 ); (2.17)
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therefore, we only need to consider the lower bound of I1. We claim that the following estimate (which
will be proved in Sect. 3),

I1 ≥ Ct−( 3
2+s). (2.18)

Substituting the estimate (2.17) and (2.18) into (2.16), one arrives at∫
|ξ|≤η

e−(2μ+ν)|ξ|2t|ξ|2s cos2(bt)|	̂0|2dξ ≥ Ct−( 3
2+s).

Hence, we can easily obtain that for s = 0, 1, 2, 3,

‖∇s	l‖2L2 ≥ C(1 + t)−( 3
2+s),

where C is a positive constant independent of time. Similarly, we can also derive that for s = 0, 1, 2, 3,

‖∇sml‖2L2 ≥ C(1 + t)−( 3
2+s),

with C a positive constant independent of time. Therefore, we finish the proof of this proposition. �

In order to obtain the lower bound for the solution of the compressible Navier–Stokes–Korteweg
equation (2.1), we need to address the upper decay rate for the difference between the nonlinear and
linearized part. Hence, let us denote

	δ := 	 − 	l,mδ := m − ml,

then they satisfy the following system{
∂t	δ + divmδ = 0,

∂tmδ − μΔmδ − (μ + ν)∇divmδ + ∇	δ − κ∇Δ	δ = −divS,
(2.19)

with the zero initial data
(	δ,mδ)(x, t)|t=0 = (0, 0). (2.20)

Here, the force term is defined in (2.2). Now we will establish the decay rate for the solution (	δ,mδ) of
equation (2.19) in the following.

Lemma 2.2. For any smooth solution (	δ,mδ) of the equation (2.19), it holds on
d
dt

(‖∇l(	δ,mδ)‖2H3−l + κ‖∇l+1	δ‖2H3−l) + C‖∇l+1mδ‖2H3−l

≤ C‖∇l(	, u)‖2H3−l(‖∇	‖2H2 + ‖∇u‖2H2) + C‖∇	‖2H1(‖∇4	‖2H1 + ‖∇4u‖2L2), (2.21)

and
3∑

k=l

d
dt

∫
∇lmδ · ∇l+1	δdx + ‖∇l+1	δ‖2H3−l +

1
2
κ‖∇l+2	δ‖2H3−l

≤ C‖∇l+1mδ‖2H3−l + C‖∇l(	, u)‖2H3−l(‖∇	‖2H2 + ‖∇u‖2H2)

+C‖∇	‖2H1(‖∇4	‖2H1 + ‖∇4u‖2L2), (2.22)

where l = 0, 1, 2, 3.

The above inequalities (2.21) and (2.22) in Lemma 2.2 will be proved later in Sect. 3. Multiplying
inequality (2.22) by a small constant δ and adding with (2.21), together with the decay rates (1.7), we
get for all t ≥ 0,

d
dt

E3
l (t) +

δ

2
‖∇l+1	δ‖2H3−l +

δ

2
κ‖∇l+2	δ‖2H3−l + C‖∇l+1mδ‖2H3−l

≤ C(1 + t)−(4+l) + C(1 + t)− 5
2 (‖∇4	‖2H1 + ‖∇4u‖2L2), (2.23)
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where l = 0, 1, 2, 3. Here, the energy E3
l (t) is defined by

E3
l (t) := ‖∇l(	δ,mδ)‖2H3−l + κ‖∇l+1	δ‖2H3−l + δ

3∑
k=l

∫
∇kmδ · ∇k+1	δdx. (2.24)

Due to the smallness of δ, there are two constants C∗ and C∗(independent of time) such that

C∗(‖∇l	δ(t)‖2H4−l + ‖∇lmδ(t)‖2H3−l) ≤ E3
l (t) ≤ C∗(‖∇l	δ(t)‖2H4−l + ‖∇lmδ(t)‖2H3−l). (2.25)

Now we establish the upper bound decay rate of solution (	δ,mδ) for the equation (2.19).

Lemma 2.3. Under the assumptions in Theorem 1.1, the smooth solution (	δ,mδ) of equation (2.19)
satisfies

‖∇l	δ(t)‖H4−l + ‖∇lmδ(t)‖H3−l ≤ C(1 + t)− 5+2l
4 , (2.26)

where l = 0, 1, 2, 3. Here, C is a constant independent of time.

Proof. We will take the strategy of induction to give the proof of estimate (2.26). Taking l = 0 in (2.23),
then we have

d
dt

E3
0 (t) + C(‖∇	δ‖2H4 + ‖∇mδ‖2H3) ≤ C(1 + t)−4 + C(1 + t)− 5

2 (‖∇4	‖2H1 + ‖∇4u‖2L2).

Obviously, the dissipation term ‖∇	δ‖2H4 + ‖∇mδ‖2H3 cannot control the energy term E3
0 (t) in above

inequality. Thus, we add both sides of the above inequality with term ‖(	δ,mδ)‖2L2 and get

d
dt

E3
0 (t) + C(‖	δ‖2H5 + ‖mδ‖2H4)

≤ ‖(	δ,mδ)‖2L2 + C(1 + t)−4 + C(1 + t)− 5
2 (‖∇4	‖2H1 + ‖∇4u‖2L2). (2.27)

By virtue of the Duhamel principle formula and estimate (1.7), we have

‖(	δ,mδ)(t)‖L2 ≤
t∫

0

(1 + t − τ)− 5
4 (‖|ξ|−1F(divS)‖L∞ + ‖divS‖L2)dτ

≤
t∫

0

(1 + t − τ)− 5
4 (‖S‖L1 + ‖divS‖L2)dτ

≤ C

t∫
0

(1 + t − τ)− 5
4 (1 + τ)− 3

2 dτ

≤ C(1 + t)− 5
4 , (2.28)

where we have used Sobolev inequality to get

‖S‖L1 + ‖divS‖L2

≤ ‖	 + 1‖L∞‖u‖L2‖u‖L2 + ‖∇	‖L2‖u‖L2 + ‖	‖L2‖∇u‖L2 + ‖	‖L2‖	‖L2

+‖	‖L2‖∇2	‖L2 + ‖∇	‖L2‖∇	‖L2 + ‖1 + 	‖L∞‖u‖L∞‖∇u‖L2 + ‖u‖2L∞‖∇	‖L2

+‖∇2(	u)‖L2 + ‖∇div(	u)‖L2 + ‖∇(	∇2	)‖L2 + ‖	∇	‖L2

≤ C‖∇(	, u)‖H1‖(	, u)‖L2 + C‖	‖2L2 + C‖∇	‖2L2 + C‖∇(	, u)‖2H1 + C‖∇	‖H1‖∇3	‖L2

≤ C(1 + t)− 3
2 .

Using (2.27), (2.28) and equivalent relation (2.25), one arrives at
d
dt

E3
0 (t) +

C

C∗ E3
0 (t) ≤ C(1 + t)− 5

2 + C(1 + t)− 5
2 (‖∇4	‖2H1 + ‖∇4u‖2L2),
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which implies

E3
0 (t) ≤ C

t∫
0

e− C
C∗ (t−τ)(1 + τ)− 5

2 dτ + C

t∫
0

e− C
C∗ (t−τ)(1 + τ)− 5

2 (‖∇4	‖2H1 + ‖∇4u‖2L2)dτ.

It is easy to obtain that
t∫

0

e− C
C∗ (t−τ)(1 + τ)− 5

2 dτ ≤ C(1 + t)− 5
2 ,

where we have used the fact that
e− C

C∗ t ≤ C(1 + t)− 5
2 ,

for some constant C > 0, and
t∫

0

e− C
C∗ (t−τ)(1 + τ)− 5

2 dτ

≤ C

t∫
0

(1 + t − τ)− 5
2 (1 + τ)− 5

2 dτ

= C

t
2∫

0

+

t∫
t
2

(1 + t − τ)− 5
2 (1 + τ)− 5

2 dτ

≤ C

(
1 +

t

2

)− 5
2

t
2∫

0

(1 + τ)− 5
2 dτ +

(
1 +

t

2

)− 5
2

t∫
t
2

(1 + t − τ)− 5
2 dτ

≤ C(1 + t)− 5
2 . (2.29)

In the sequel, we only need to deal with the term
t∫

0

e− C
C∗ (t−τ)(1 + τ)− 5

2 (‖∇4	‖2H1 + ‖∇4u‖2L2)dτ.

We claim the estimate(which will be proved in Sect. 3),
t∫

0

e− C
C∗ (t−τ)(1 + τ)− 5

2 (‖∇4	‖2H1 + ‖∇4u‖2L2)dτ ≤ C(1 + t)− 5
2 . (2.30)

Hence, we can easily obtain that

‖	δ(t)‖2H4 + ‖mδ(t)‖2H3 ≤ C(1 + t)− 5
2 . (2.31)

We now assume that the decay rate (2.26) holds on for the case k = l, i.e.,

‖∇l	δ(t)‖H4−l + ‖∇lmδ(t)‖H3−l ≤ C(1 + t)− 5+2l
4 , (2.32)

for l = 1, 2. Then, we should verify that the estimate (2.26) holds on for the case k = l + 1. Indeed, we
replace l by l + 1 in (2.23) to obtain that

d
dt

E3
l+1(t) + C(‖∇l+2	δ‖2H3−l + ‖∇l+2mδ‖2H2−l)

≤ C(1 + t)−(5+l) + C(1 + t)− 5
2 (‖∇4	‖2H1 + ‖∇4u‖2L2). (2.33)
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For some constant R defined below, denoting the time sphere (see [19])

S0 :=

{
ξ ∈ R

3
∣∣ |ξ| ≤

(
R

1 + t

) 1
2
}

,

it follows immediately

‖∇l+2	δ‖2H3−l ≥ R

1 + t
‖∇l+1	δ‖2H3−l − R2

(1 + t)2
‖∇l	δ‖2H3−l ;

‖∇l+2mδ‖2H2−l ≥ R

1 + t
‖∇l+1mδ‖2H2−l − R2

(1 + t)2
‖∇lmδ‖2H2−l . (2.34)

By substituting (2.34) into (2.33), we can easily get

d
dt

E3
l+1(t) +

CR

1 + t
(‖∇l+1	δ‖2H3−l + ‖∇l+1mδ‖2H2−l)

≤ CR2

(1 + t)2
(‖∇l	δ‖2H3−l +‖∇lmδ‖2H2−l) + C(1 + t)−(5+l) + C(1 + t)− 5

2 (‖∇4	‖2H1 + ‖∇4u‖2L2)

≤ CR2(1 + t)− 9+2l
2 + C(1 + t)−(5+l) + C(1 + t)− 5

2 (‖∇4	‖2H1 + ‖∇4u‖2L2),

where we have used the assumption (2.32). Notice that the term E3
l+1(t) is equivalent to the norm

‖∇l+1	δ‖2H4−l + ‖∇l+1mδ‖2H3−l ; hence, we obtain

d
dt

E3
l+1(t) +

CR

C∗(1 + t)
E3

l+1(t)

≤ CR2(1 + t)− 9+2l
2 + C(1 + t)−(5+l) + C(1 + t)− 5

2 (‖∇4	‖2H1 + ‖∇4u‖2L2).

Choosing R = C∗(l + 4)/C and multiplying the above inequality by (1 + t)l+4, we obtain that

d
dt

[(1 + t)l+4E3
l+1(t)] ≤ C(1 + t)− 1

2 + C(1 + t)l+ 3
2 (‖∇4	‖2H1 + ‖∇4u‖2L2). (2.35)

We claim that the following estimate holds on (which will be proved in Sect. 3),
t∫

0

(1 + τ)l+ 3
2 (‖∇4	(τ)‖2H1 + ‖∇4u(τ)‖2L2)dτ ≤ C, (2.36)

which together with (2.35) yields directly

E3
l+1(t) ≤ C(1 + t)− 7+2l

2 .

Then, due to the fact that the term E3
l+1(t) is equivalent to the norm ‖∇l+1	δ‖2H4−l + ‖∇l+1mδ‖2H3−l , we

obtain

‖∇l+1	δ‖2H4−l + ‖∇l+1mδ‖2H3−l ≤ C(1 + t)− 7+2l
2 .

Thus, by the general step of induction, we have given the proof for (2.26). �

Finally, we establish the lower bound estimates.

Lemma 2.4. Under all the assumptions of Theorem 1.2, the solution (ρ, u) of equation (1.1) has the
following estimate

‖∇k(ρ − 1)(t)‖L2 ≥ C(1 + t)− 3+2k
4 , k = 0, 1, 2, 3;

‖∇ku(t)‖L2 ≥ C(1 + t)− 3+2k
4 , k = 0, 1, 2, 3,

(2.37)

for all t ≥ t∗, where t∗ is a positive constant.
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Proof. Recall the definition

	δ = 	 − 	l, mδ = m − ml,

we have
‖	l‖L2 = ‖	 − 	δ‖L2 ≤ ‖	‖L2 + ‖	δ‖L2 ,

which, together with estimates (2.6) and (2.26), yields directly

‖	(t)‖L2 ≥ ‖	l(t)‖L2 − ‖	δ(t)‖L2

≥ C1(1 + t)− 3
4 − C2(1 + t)− 5

4

≥ C1(1 + t)− 3
4 − C2

(1 + t)
1
2
(1 + t)− 3

4 .

Choosing t ≥ 4C2
2−C2

1
C2

1
, it holds on

‖	(t)‖L2 ≥ C(1 + t)− 3
4 .

Similarly, using estimates (2.6) and (2.26), we also have

‖∇k	(t)‖L2 ≥ C(1 + t)− 3+2k
4 , k = 1, 2, 3;

‖∇km(t)‖L2 ≥ C(1 + t)− 3+2k1
4 , k = 0, 1, 2, 3. (2.38)

Finally, we establish the lower decay rate for the velocity. Using decay estimate (1.7) and Morse inequality,
we get

‖∇km‖L2 ≤ ‖∇ku‖L2 + ‖∇k(	u)‖L2

≤ ‖∇ku‖L2 + C‖	‖L∞‖∇ku‖L2 + C‖u‖L∞‖∇k	‖L2

≤ ‖∇ku‖L2 + C(1 + t)− 9+2k
4 ,

which, together with (2.38), yields directly

‖∇ku‖L2 ≥ ‖∇km‖L2 − C(1 + t)− 9+2k
4 ≥ C(1 + t)− 3+2k

4 .

Therefore, we complete the proof of lemma. �

2.2. Upper and lower bounds of decay for time derivative

In this subsection, we will establish the upper and lower bounds for the time derivatives of density and
velocity. In [25], Wang and Tan have rewriten (1.1) in the perturbation form as{

	t + divu = G1,

ut − μΔu − (μ + ν)∇divu + ∇	 − κ∇Δ	 = G2,
(2.39)

where 	 = ρ − 1, and the function Gi(i = 1, 2) is defined as⎧⎨
⎩

G1 = −	divu − u · ∇	,

G2 = −u · ∇u − 	

	 + 1
(μΔu + (μ + ν)∇divu) −

(
P ′(	 + 1)

	 + 1
− 1

)
∇	.

The initial data are given as

(	, u)(x, t)|t=0 = (	0, u0)(x) → (0, 0) as |x| → ∞. (2.40)

Now, we establish the upper and lower bounds of decay rate for the time derivative of solution in the
L2 norm. The lower decay rate estimate for the time derivative of density and velocity can be obtained
by using the method in [9]. However, we still give the estimate in detail due to the appearance of the
Korteweg term.
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Lemma 2.5. Under the assumptions in Theorem 1.2, the global solution (	, u) of equation (2.39) has the
following estimate

C(1 + t)− 5
4 ≤ ‖∂t	(t)‖L2 ≤ C(1 + t)− 5

4 ;

C(1 + t)− 5
4 ≤ ‖∂tu(t)‖L2 ≤ C(1 + t)− 5

4 , (2.41)

for all t ≥ t∗ with t∗ a positive constant. Here, C is a positive constant independent of time.

Proof. At first, we establish upper bound time decay rate for ∂t	 and ∂tu in the L2 norm. With the help
of the equation (2.39), we can easily obtain

‖∂t	‖L2 ≤ C‖divu‖L2 + ‖G1‖L2 ,

and
‖∂tu‖L2 ≤ C‖Δu‖L2 + C‖∇divu‖L2 + C‖∇	‖L2 + C‖∇Δ	‖L2 + ‖G2‖L2 .

By virtue of Sobolev’s inequality and time decay rate (1.7), we have

‖G1‖L2 ≤ ‖	divu‖L2 + ‖u · ∇	‖L2

≤ C‖	‖L∞‖divu‖L2 + C‖u‖L∞‖∇	‖L2

≤ C(1 + t)− 5
2 , (2.42)

and

‖G2‖L2 ≤ C‖u · ∇u‖L2 + C

∥∥∥∥ 	

1 + 	
Δu

∥∥∥∥
L2

+ C

∥∥∥∥ 	

1 + 	
∇divu

∥∥∥∥
L2

+ C

∥∥∥∥
(

P ′(1 + 	)
1 + 	

− 1
)

∇	

∥∥∥∥
L2

≤ ‖u‖L∞‖∇u‖L2 +
∥∥∥∥ 1

1 + 	
‖L∞

∥∥∥∥ 	‖L∞‖∇2u‖L2 +
∥∥∥∥ 1

1 + 	

∥∥∥∥
L∞

‖∇	‖L6‖∇	‖L3

+
∥∥∥∥ 1

1 + 	
‖L∞

∥∥∥∥ 	‖L∞‖∇	‖L2

≤ C(1 + t)− 5
2 . (2.43)

Then, we can easily derive that

‖∂t	‖L2 ≤ C(1 + t)− 5
4 ,

and

‖∂tu‖L2 ≤ C(1 + t)− 5
4 .

Next, we establish lower bound time decay rate for ∂tu in the L2 norm. Using the momentum equation
in (2.39), we have

‖∇	‖L2 ≤ ‖∂tu‖L2 + C‖∇2u‖L2 + C‖∇Δ	‖L2 + ‖G2‖L2 .

With the help of the inequality (2.43), we can get for all t ≥ t∗,

‖∂tu‖L2 ≥ C(1 + t)− 5
4 − C(1 + t)− 7

4 − C(1 + t)− 9
4 − C(1 + t)− 5

2 ≥ C(1 + t)− 5
4 . (2.44)

Finally, we establish lower bound time decay rate for ∂t	 in the L2 norm. To achieve this target, we use
the transport equation in (2.39) to obtain

‖divu‖L2 ≤ ‖∂t	‖L2 + ‖G1‖L2 ;

hence, together with the inequality (2.42), we obtain

‖∂t	‖L2 ≥ ‖divu‖L2 − C(1 + t)− 5
2 . (2.45)

Now, we need to establish the lower bound decay rate for ‖divu‖L2 . Notice the differential relation
Δ = ∇div − ∇ × ∇×, we get

‖∇u‖2L2 = ‖divu‖2L2 + ‖∇ × u‖2L2 .
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And hence, one arrives at

‖divu‖L2 ≥ C‖∇u‖L2 − C‖∇ × u‖L2 ≥ C(1 + t)− 5
4 − C‖∇ × u‖L2 , (2.46)

which implies that we need to establish upper bound decay rate for ‖∇×u‖L2 . To this end, applying the
operator ∇× to both sides of the equation (2.39), we arrive at

∂t(∇ × u) − μΔ(∇ × u) = ∇ × G2.

Using Sobolev’s inequality, uniform bound (1.6) and decay rate (1.7), we have

‖G2‖L1 + ‖G2‖L2

≤ C‖u · ∇u‖L1 + C

∥∥∥∥ 	

1 + 	
Δu

∥∥∥∥
L1

+ C

∥∥∥∥ 	

1 + 	
∇divu

∥∥∥∥
L1

+ C

∥∥∥∥
(

P ′(1 + 	)
1 + 	

− 1
)

∇	

∥∥∥∥
L1

+C‖u · ∇u‖L2 + C

∥∥∥∥ 	

1 + 	
Δu

∥∥∥∥
L2

+ C

∥∥∥∥ 	

1 + 	
∇divu

∥∥∥∥
L2

+ C

∥∥∥∥
(

P ′(1 + 	)
1 + 	

− 1
)

∇	

∥∥∥∥
L2

≤ C‖u‖L2‖∇u‖L2 + C

∥∥∥∥ 	

1 + 	

∥∥∥∥
L∞

‖	‖L2‖∇2u‖L2 + C

∥∥∥∥ 	

1 + 	

∥∥∥∥
L∞

‖	‖L2‖∇2	‖L2

+C‖u‖L3‖∇u‖L6 + C

∥∥∥∥ 	

1 + 	

∥∥∥∥
L∞

‖	‖L3‖∇2u‖L6 + C

∥∥∥∥ 	

1 + 	

∥∥∥∥
L∞

‖	‖L3‖∇2	‖L6

≤ C‖(	, u)‖H1‖∇(	, u)‖H2

≤ Cδ(1 + t)− 5
4 . (2.47)

By virtue of the Duhamel principle formula and (2.47), we get

‖∇ × u‖L2 ≤ C(1 + t)− 5
4 (‖Λ−1F(∇ × u0)‖L∞ + ‖Λ−1F(∇ × u0)‖L2)

+C

t∫
0

(1 + t − τ)− 5
4 (‖Λ−1F(∇ × G2)‖L∞ + ‖Λ−1F(∇ × G2)‖L2)dτ

≤ C(1 + t)− 5
4 (‖u0‖L1 + ‖u0‖L2) + C

t∫
0

(1 + t − τ)− 5
4 (‖G2‖L1 + ‖G2‖L2)dτ

≤ C(δ + δ1)(1 + t)− 5
4 + Cδ

t∫
0

(1 + t − τ)− 5
4 (1 + τ)− 5

4 dτ

≤ C(δ + δ1)(1 + t)− 5
4 ,

which, together with estimates (2.45) and (2.46), yields directly

‖∂t	‖L2 ≥ C(1 + t)− 5
4 − C(δ + δ1)(1 + t)− 5

4 − C(1 + t)− 5
2 ,

where the positive constant C on right-hand side of the above inequality depends on c0 given in Proposition
2.1, but not on δ and δ1. Then, by virtue of the smallness of δ and δ1, we have for t ≥ t∗,

‖∂t	‖L2 ≥ C(1 + t)− 5
4 .

Therefore, we complete the proof of this lemma. �

3. Proof of some technical estimates

In this section, we will establish the claim estimates that have been used in Sect. 2. That is to say, we
will establish the claim estimates (2.18), (2.21), (2.22), (2.30) and (2.36).
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Proof of inequality (2.18). Let ζ = ξ
√

t, we obtain

I1 = C

∫
|ξ|≤η

e−(μ+ν)|ξ|2t|ξ|2s cos2(|ξ|t)dξ

= Ct−( 3
2+s)

∫
|ζ|≤ηt

1
2

e−(μ+ν)|ζ|2 |ζ|2s cos2(|ζ|t 1
2 )dζ

= Ct−( 3
2+s)

ηt
1
2∫

0

e−(μ+ν)R2
R2s+2 cos2(Rt

1
2 )dR

≥ Ct−( 3
2+s)

[ ηt
π ]−1∑
k=0

kπ+ π
3√

t∫
kπ+ π

6√
t

e−(μ+ν)R2
R2s+2 cos2(Rt

1
2 )dR

≥ Ct−( 3
2+s)

[ 2η
√

t
π ]+1∑

k=[ η
√

t
π ]+1

kπ+ π
3√

t∫
kπ+ π

6√
t

e−(μ+ν)R2
R2s+2dR

≥ Ct−( 3
2+s),

where there exits a positive large time t∗ such that for t ≥ t∗, we can obtain

e−(μ+ν)R2 ≥ e
−(μ+ν)

(
kπ+ π

3√
t

)2

≥ e
−(μ+ν)

(
([ 2η

√
t

π
]+1)π+ π

3√
t

)2

≥ C,

with C a positive constant that independent of time. �

Proof of inequality (2.21). Multiplying the first and second equations of (2.19) by 	δ and mδ, respectively,
it holds on

1
2

d
dt

∫
(|	δ|2 + |mδ|2)dx + μ

∫
|∇mδ|2dx + (μ + ν)

∫
|divmδ|2dx − κ

∫
∇Δ	δ · mδdx =

∫
S · ∇mδdx.

Due to the fact that P ′(1) = 1, we can use the Taylor expression formula to get

P (1 + 	) − P (1) − 	 ∼ 	2,

which, together with Sobolev’s inequality, yields directly

‖S‖L2 ≤ C‖(	, u)‖H2(‖∇	‖H1 + ‖∇u‖L2),

where the symbol ∼ represents the equivalent relation. By virtue of integrating by parts and using the
transport equation, it is easy to get∫

∇Δ	δ · mδdx = −1
2

d
dt

∫
|∇	δ|2dx.

Then, we get

d
dt

(‖(	δ,mδ)‖2L2 + κ‖∇	δ‖2L2) + μ‖∇mδ‖2L2 + ν‖divmδ‖2L2dx ≤ C‖(	, u)‖2H2(‖∇	‖2H1 + ‖u‖2L2).
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Applying the equation (2.19), it is easy to obtain for k = 1, 2, 3,
d
dt

‖∇k(	δ,mδ)‖2L2 + μ‖∇k+1mδ‖2L2 + (μ + ν)‖∇kdivmδ‖2L2 − κ

∫
∇k+1Δ	δ · ∇kmδdx

≤ ‖∇kS‖L2‖∇k+1mδ‖L2 .

At first, we estimate the term
∫ ∇k+1Δ	δ · ∇kmδdx for k = 1, 2, 3. Using integration by parts and

transport equation, we can obtain∫
∇k+1Δ	δ · ∇kmδdx = −1

2
d
dt

∫
|∇k+1	δ|2dx.

Now we give the estimates for ‖∇kS‖2L2 , k = 1, 2, 3. Indeed, when k = 1, we apply Sobolev’s inequality
to obtain

‖∇((1 + 	)u ⊗ u)‖L2 ≤ C‖1 + 	‖L∞‖u‖L∞‖∇u‖L2 + C‖u‖2L∞‖∇	‖L2

≤ C(1 + ‖∇u‖H1)‖∇u‖H1‖∇(	, u)‖L2

≤ C‖∇u‖H1‖∇(	, u)‖L2 .

Similarly, we also have for k = 1,

‖∇2(	u)‖L2 + ‖∇div(	u)‖L2 ≤ C‖∇(	, u)‖H1‖∇2(	, u)‖L2 .

By the same way, we have

‖∇(	∇2	)‖L2 ≤ C‖∇2	‖L2‖∇2	‖H1 + C‖∇	‖H1‖∇3	‖L2 ,

and
‖∇|∇	|2‖L2 ≤ C‖∇2	‖L2‖∇2	‖H1 .

By virtue of the Taylor expression formula, we get

∇(P (1 + 	) − P (1) − 	) = P ′(1 + 	)∇	 − P ′(1)∇	 ∼ 	∇	,

where we have used the fact that P ′(1) = 1. Then, we use Sobolev’s inequality to obtain

‖∇(P (1 + 	) − P (1) − 	)‖L2 ≤ C‖∇	‖H1‖∇	‖L2 .

Thus, it holds on for k = 1,

‖∇S‖L2 ≤ C‖∇(	, u)‖H1(‖∇	‖H2 + ‖∇u‖H1).

Then, we use Cauchy inequality to get
d
dt

(‖∇(mδ, 	δ)‖2L2 + κ‖∇2	δ‖2L2) + μ‖∇2mδ‖2L2 ≤ C‖∇(	, u)‖2H1(‖∇2	‖2H1 + ‖∇u‖2H1).

Notice that

∇2(P (1 + 	) − P (1) − 	) = P ′′(1 + 	)∇	∇	 + P ′(1 + 	)∇2	 − P ′(1)∇2	

∼ ∇	∇	 + 	∇2	,

and

∇3(P (1 + 	) − P (1) − 	)
= 2P ′′′(1 + 	)∇	∇	∇	 + 2P ′′(1 + 	)∇2	∇	 + P ′(1 + 	)∇3	 − P ′(1)∇3	

∼ ∇	∇	∇	 + ∇	∇2	 + 	∇3	.

Next, employing Sobolev’s inequality, it is easy to get

‖∇2S‖L2 ≤ C‖∇2(	, u)‖H1(‖∇	‖H2 + ‖∇u‖H1) + C‖∇	‖H1‖∇4	‖L2 ,

and
‖∇3S‖L2 ≤ C‖∇3(	, u)‖L2(‖∇	‖H2 + ‖∇u‖H1) + C‖∇	‖H1(‖∇5	‖L2 + ‖∇4u‖L2).
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Then, we obtain the following estimates

d
dt

(‖∇2(mδ, 	δ)‖2L2 + κ‖∇3	δ‖2L2) + μ‖∇3mδ‖2L2

≤ C‖∇2(	, u)‖2H1(‖∇	‖2H2 + ‖∇u‖2H1) + C‖∇	‖2H1‖∇4	‖2L2 ,

and
d
dt

(‖∇3(mδ, 	δ)‖2L2 + κ‖∇4	δ‖2L2) + μ‖∇4mδ‖2L2

≤ C‖∇3(	, u)‖2L2(‖∇	‖2H2 + ‖∇u‖2H1) + C‖∇	‖2H1(‖∇5	‖2L2 + ‖∇4u‖2L2).

Therefore, we complete the proof of claim estimate (2.21). �

Proof of inequality (2.22). Taking k(k = 0, 1, 2, 3)th spatial derivatives to the second equation of (2.19)
and multiplying the equation by ∇k+1	δ, then we have∫

∂t∇kmδ · ∇k+1	δdx +
∫

|∇k+1	δ|2dx − κ

∫
∇k+1Δ	δ · ∇k+1	δdx

=
∫

(μ∇kΔmδ + (μ + ν)∇k+1divmδ) · ∇k+1	δdx −
∫

∇kdivS · ∇k+1	δdx.

Using the first equation of (2.19), it holds on∫
∂t∇kmδ · ∇k+1	δdx =

d
dt

∫
∇kmδ · ∇k+1	δdx −

∫
∇kmδ · ∇k+1∂t	δdx

=
d
dt

∫
∇kmδ · ∇k+1	δdx +

∫
∇kmδ · ∇k+1divmδdx

=
d
dt

∫
∇kmδ · ∇k+1	δdx −

∫
|∇kdivmδ|2dx.

After integration by part, it holds on∫
∇k+1Δ	δ · ∇k+1	δdx = −

∫
|∇k+2	δ|2dx.

Thus, we combine the above three equalities to obtain

d
dt

∫
∇kmδ · ∇k+1	δdx +

∫
|∇k+1	δ|2dx + κ

∫
|∇k+2	δ|2dx

=
∫

|∇kdivmδ|2dx −
∫

∇kdivS · ∇k+1	δdx +
∫

(μ∇kΔmδ + (μ + ν)∇k+1divmδ) · ∇k+1	δdx,

which, together with integration by parts and Cauchy inequality, yields directly

d
dt

∫
∇kmδ · ∇k+1	δdx +

∫
|∇k+1	δ|2dx +

1
2
κ

∫
|∇k+2	δ|2dx ≤ C(‖∇k+1mδ‖2L2 + ‖∇kS‖2L2),

which implies (2.22). Therefore, we complete proof of claim estimate (2.22). �

Proof of inequality (2.30). It is easy to see that
t∫

0

e− C
C∗ (t−τ)(1 + τ)− 5

2 (‖∇4	‖2H1 + ‖∇4u‖2L2)dτ ≤
t∫

0

e− C
C∗ (t−τ)(‖∇4	‖2H1 + ‖∇4u‖2L2)dτ.

In [10], the following estimate holds on

d
dt

F3
l (t) + C(‖∇l+1	‖2H4−l + ‖∇l+1u‖2H3−l) ≤ 0, l = 0, 1, 2, 3, (3.1)
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where

F3
l (t) := ‖∇l	‖2H4−l + ‖∇lu‖2H3−l + δ

3∑
k=l

∫
∇ku · ∇k+1	dx,

and δ is a small positive number. By multiplying the inequality (3.1) with l = 3 by e
C

C∗ t, it holds on
d
dt

(e
C

C∗ tF3
3 (t)) + Ce

C
C∗ t(‖∇4	‖2H1 + ‖∇4u‖2L2)

≤ Ce
C

C∗ t(‖∇3	‖2H1 + ‖∇3u‖2L2);

then, by integrating about time over [0, t], similar to (2.29), one arrives at

F3
3 (t) +

t∫
0

e− C
C∗ (t−τ)(‖∇4	(τ)‖2H1 + ‖∇4u(τ)‖2L2)dτ

≤ Ce− C
C∗ tF3

3 (0) + C

t∫
0

e− C
C∗ (t−τ)(‖∇3	(τ)‖2H1 + ‖∇3u(τ)‖2L2)dτ

≤ Ce− C
C∗ t(‖∇3	0‖2H1 + ‖∇3u0‖2L2) + C

t∫
0

e− C
C∗ (t−τ)(‖∇3	(τ)‖2H1 + ‖∇3u(τ)‖2L2)dτ

≤ Ce− C
C∗ t + C

t∫
0

e− C
C∗ (t−τ)(1 + τ)− 9

2 dτ

≤ Ce− C
C∗ t + (1 + t)− 9

2

≤ C(1 + t)− 9
2 ,

where we utilize decay estimate (1.7). Therefore, we complete proof of claim estimate (2.30). �

Proof of inequality (2.36). Replacing l by l + 1 in (3.1), and then multiplying both sides by (1 + t)l+ 3
2 ,

one arrives at
d
dt

[(1 + t)l+ 3
2 F3

l+1(t)] + C(1 + t)l+ 3
2 (‖∇l+2	‖2H3−l + ‖∇l+2u‖2H2−l)

≤ C(1 + t)l+ 1
2 F3

l+1(t).

The integration of the above inequality with respect to time over [0, t] implies that
t∫

0

(1 + τ)l+ 3
2 (‖∇l+2	(τ)‖2H3−l + ‖∇l+2u(τ)‖2H2−l)dτ

≤ CF3
l+1(0) + C

t∫
0

(1 + τ)l+ 1
2 E3

l+1(τ)dτ

≤ C + C

t∫
0

(1 + τ)l+ 1
2 (1 + τ)− 5+2l

2 dτ

≤ C,

where we used the estimate F3
l (t) ≤ C(1+ t)− 3+2l

2 for l = 0, 1, 2, 3. Therefore, we complete proof of claim
estimate (2.36). �
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