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In obtaining in Theorem 4.1 of the original paper, the strong asymptotic decay of the semigroup
exp(−tC−1A) associated with Pr (P ), the argumentation following (4.5) on p. 1060 is incorrect. Also,
with regard to the polynomial decay of the semigroup associated with the model, the conclusion (4.15)
on p. 1061 from (4.14) requires substantiation. Whereas the strong asymptotic stability of the original
model Pr (P ) can be achieved by rectification of the argumentation, it turns out, with regard to the
polynomial stability, that the conclusion (4.15) can only be accomplished when [ψ, φ], the vector of shear
angles, is divergence-free. This requires the analysis of a modification of Pr (P ) in which the constitutive
equations include the equation ∇ · [ψ, φ] = 0 in the domain Ω. For the semigroup associated with the
modified model, Pr (P ′), we are able to establish a decay rate of ( 1

t )
1
2 , which is a faster decay rate than

the rate (1
t )

1
4 achieved for Pr (P ) in the original paper.1

In this situation, we consider the initial-boundary-value problem Pr (P ′)

ρb3

12
[ψ, φ]tt − (1 − ν)D∇ ·

[
ψx

1
2 (ψy + φx)

1
2 (ψy + φx) φy

]

− νD∇ ·
[
ψx + φy 0

0 ψx + φy

]

+ K (∇w + [ψ, φ]) − b3

12
(
(∇ × [h1

1, h
2
1]) × [H1

0 ,H2
0 ]

)
+

b3

12
∇p = 0

ρbwtt − K∇ · (∇w + [ψ, φ]) − b∇h3
1 · [H1

0 ,H2
0 ] = 0

∇ · [ψ, φ] = 0 in Ω
b3

12
(
[h1

1,t, h
2
1,t] + ∇ × (∇ × [h1

1, h
2
1]) − ∇ × ([ψt, φt] × [H1

0 ,H2
0 ])

)
= 0

b(h3
1,t − Δh3

1 − ∇wt · [H1
0 ,H2

0 ]) = 0

∇ · [h1
1, h

2
1] = 0

w = ψ = φ = 0

The online version of the original article can be found under doi:10.1007/s00033-012-0206-z.
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[h1
1, h

2
1] · n = 0,n × (∇ × [h1

1, h
2
1]) = 0,

∂h3
1

∂n
= 0 on ∂Ω

ψ|t=0 = ψ0, ψt|t=0 = ψ1, φ|t=0 = φ0, φt|t=0 = φ1,

w|t=0 = w0, wt|t=0 = w1,
[
h1

1, h
2
1, h

3
1

] |t=0 =
[
h1,0

1 , h2,0
1 , h3,0

1

]
in which (∇×[h1

1, h
2
1])×[H1

0 ,H2
0 ] = [H2

0 (∇×[h1
1, h

2
1]),−H1

0 (∇×[h1
1, h

2
1])]. As in [7] Ω is a simply connected

domain in R
2 with smooth boundary ∂Ω, say of class C2, and n is the unit outward normal vector. For

the meaning of the physical parameters in Pr (P ′), the reader is referred to the original paper [7].
A moment of reflection shows that the system of coupled partial differential (PDEs) in [ψ, φ], w and

[h1
1, h

2
1], h

3
1, is, as a consequence of the condition ∇ · [ψ, φ] = 0 in Ω, reduced to the system

ρb3

12
[ψtt, φtt] − D

(
1 − ν

2

)
Δ[ψ, φ] + K(∇w + [ψ, φ])

− b3

12
(
(∇ × [h1

1, h
2
1]) × [H1

0 ,H2
0 ]

)
+

b3

12
∇p = 0

ρbwtt − KΔw − b∇h3
1 · [H1

0 ,H2
0 ] = 0 in Ω

∇ · [ψ, φ] = 0
b3

12
(
[h1

1,t, h
2
1,t] + ∇ × (∇ × [h1

1, h
2
1]

) − [H1
0 ,H2

0 ] · ∇[ψt, φt]
)

= 0

b
(
h3

1,t − Δh3
1 − ∇wt · [H1

0 ,H2
0 ]

)
= 0

∇ · [h1
1, h

2
1] = 0

with [H1
0 ,H2

0 ] · ∇[ψt, φt] = ([H1
0 ,H2

0 ] · ∇)[ψt, φt]—the replacement of the dissipative term ∇ × ([ψt, φt] ×
[H1

0 ,H2
0 ]) in Pr (P ′) by [H1

0 ,H2
0 ] · ∇[ψt, φt] will be instrumental in establishing the polynomial stability

of the model.
The model Pr (P ′), with observance of the above comment, is, in the presence of the term ∇p, p the

unknown pressure, together with the equation ∇ · [ψ, φ] = 0, more intricate than Pr (P ) and serves as a
model for the magnetoelastic interaction of an elastically incompressible, electrically conducting Mindlin–
Timoshenko plate and an instationary magnetic field. To see this, we note that by the Hecky–Mindlin
hypothesis (see [7, p.1051]), i.e.

[[u1, u2](x, y, z, t), u3(x, y, t)] = [z[ψ, φ](x, y, t), w(x, y, t)]

ui, i = 1, 2, 3, the components of the displacement u in the Lamé system, incompressibility of the plate
would require

0 = ∇ · [u1, u2, u3] = ∇x,y,z · [zψ, zφ,w] = z∇x,y · [ψ, φ], |z| ≤ b

2
Hence, ∇ · [ψ, φ] = 0 expresses the incompressibility of the plate material.2

It is clear that, since Pr (P ′) is different from Pr (P ), the question of unique solvability has to be
investigated afresh. To consider the problem in the framework of semigroup theory, we will need abstract
spaces and operators. For the sake of clarity, we provide all the spaces and operators even where they
coincide with spaces and operators used in the treatment of the original Pr (P ).

We shall use the following spaces:
Hm(Ω),m ≥ 1, denotes the usual Sobolev spaces of order m endowed with norms ‖·‖m,Ω or equivalent

norms as will be indicated. H0(Ω) denotes the Hilbert space L2(Ω) with norm ‖ · ‖0,Ω. Since no confusion
can arise, ‖ · ‖m,Ω will also denote the norm in (Hm(Ω))n, n = 2, 3.

Hσ := {f : f ∈ (L2(Ω))2,∇ · f = 0 in Ω, f · n = 0 on ∂Ω}. Hσis equipped with the usual ‖ · ‖0,Ω norm.

2The author is indebted to Michael Pokojovy from the University of Texas at El Paso, Texas, USA, for an informative
discussion on this and other aspects of the work.
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V 1
σ := {u:u = [u, v, w] ∈ (H1

0 (Ω))3,∇ · [u, v] = 0 in Ω}. The space V 1
σ with elements [ψ, φ,w] is

endowed with the scalar product

(1 − ν)D
(
(ψx, ψ̂x)0,Ω + (φy, φ̂y)0,Ω

)

+
(

1 − ν

2

)
D

(
(ψy + φx, ψ̂y + φ̂x)0,Ω

)

+ K
(
(ψ, ψ̂)0,Ω + (φ, φ̂)0,Ω + (wx, ŵx)0,Ω + (wy, ŵy)0,Ω

)

= a′
(
[ψ, φ,w]; [ψ̂, φ̂, ŵ]

)

and the norm ‖[ψ, φ,w]‖V 1
σ

= (a′([ψ, φ,w]))
1
2 ∀ [ψ, φ,w], [ψ̂, φ̂, ŵ] ∈ V 1

σ , which is equivalent to the usual
‖ · ‖1,Ω norm.

V 2
σ := {[h1

1, h
2
1, h

3
1]: [h

1
1, h

2
1, h

3
1] ∈ ((H1(Ω))2 ∩ Hσ) × H1(Ω)}.V 2

σ is endowed with the ‖ · ‖1,Ω norm.

Hσ := V 1
σ × (L2(Ω))3 × (Hσ × L2(Ω)). The energy space Hσ will be equipped with the usual product

norm.
The following operators will be needed. We agree that when the action, in a possibly different space,

of an operator Ai is different from the action of the corresponding operator in [7], we will use the notation
A′

i:
A′

1: D(A′
1) → (L2(Ω))3, (A′

1[ψ, φ,w], [ψ̂, φ̂, ŵ])0,Ω := a′([ψ, φ,w]; [ψ̂, φ̂, ŵ])
D(A′

1) = {[ψ, φ,w] ∈ V 1
σ ;A′

1[ψ, φ,w] ∈ (L2(Ω))3}
A2: D(A2) → (L2(Ω))2, A2[h1

1, h
2
1] := − b3

12 ((∇ × [h1
1, h

2
1]) × [H1

0 ,H2
0 ])

D(A2) = {f : f ∈ (H1(Ω))2 ∩ Hσ, (∇ × f) × [H1
0 ,H2

0 ] ∈ (L2(Ω))2}
A3: D(A3) → L2(Ω), A3h

3
1 := −b([H1

0 ,H2
0 ] · ∇h3

1)
D(A3) = {g: g ∈ H1(Ω),∇g · [H1

0 ,H2
0 ] ∈ L2(Ω)}

A′
4: D(A′

4) → Hσ, A′
4[ψt, φt] := − b3

12 ([H1
0 ,H2

0 ] · ∇[ψt, φt])
D(A′

4) = {j ∈ (L2(Ω))2; [H1
0 ,H2

0 ] · ∇j ∈ Hσ}
A5: D(A5) → Hσ, A5[h1

1, h
2
1] := b3

12 (∇ × (∇ × [h1
1, h

2
1]))

D(A5) = {m ∈ (H1(Ω))2 ∩ Hσ,∇ × (∇ × m) ∈ Hσ,n × (∇ × m) = 0 on ∂Ω}3

A6: D(A6) → L2(Ω), A6wt := −b[H1
0 ,H2

0 ] · ∇wt

D(A6) = {o ∈ L2(Ω): ∇o · [H1
0 ,H2

0 ] ∈ L2(Ω)}
A7: D(A7) → L2(Ω), A7h

3
1 := −bΔh3

1

D(A7) = {q: q ∈ H1(Ω),Δq ∈ L2(Ω), ∂q
∂n = 0 on ∂Ω}

We now define the operator A′: D(A′) → Hσ by

A′U =

⎡
⎣ 0 −1 0

A′
1 0 [A2, A3]

0 [A′
4, A6] [A5, A7]

⎤
⎦U

U = [[ψ, φ,w], [ψt, φt, wt], [h1
1, h

2
1, h

3
1]] ∈ D(A′) where D(A′) ⊂ Hσ is defined by

D(A′) =
{
U:U ∈ Hσ, [h1

1, h
2
1, h

3
1] ∈ V 2

σ ,A′U ∈ Hσ

}
(3.1)

Note that the description of D(A′) is made precise by the definitions of the operators A′
i, i = 1, 4 and

Aj , j = 2, 3, 5, 6, 7, while in addition we have [ψt, φt, wt] ∈ V 1
σ which furnishes ∇ · [ψt, φt] = 0.

3For the “generalized”s sense in which the boundary conditions are satisfied in the definition of A5 and A7 below, see
e.g. [4, p. 381].
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Finally, we define the canonical operator C in Hσ by

C =

⎡
⎢⎣

1 0 0
0 ρb[ b2

12 , b2

12 , 1] 0
0 0 b

[
b2

12 , b2

12 , 1
]
⎤
⎥⎦

From the point of view of weak formulation, the interactive system of PDEs for the incompressible
magnetoelastic Mindlin–Timoshenko plate can now be considered in the form of the abstract evolution
problem Pr (AEP )′

CU′ + A′U = 0

U(0) = U0 ∈ Hσ Pr (AEP )′

With a view to asserting the existence of a unique C0 semigroup of contractions with generator −C−1A′

for Pr (AEP )′, the only novelty in showing the dissipativity of −C−1A′ by considering the inner product
(A′U, CU)Hσ

is the term
12
b3

(
A2[h1

1, h
2
1], [ψt, φt]

)
0,Ω

= − ((∇ × [h1
1, h

2
1]

) × [H1
0 ,H2

0 ], [ψt, φt]
)
0,Ω

=
(
[h1

1, h
2
1],∇ × ([ψt, φt] × [H0,H

2
0 ])

)
0,Ω

=
(
[h1

1, h
2
1], [H

1
0 ,H2

0 ] · ∇[ψt, φt]
)
0,Ω

= − 12
b3

(A′
4[ψt, φt], [h1

1, h
2
1])0,Ω

by implementing ∇· [ψt, φt] = 0 in the identity ∇×([ψt, φt]× [H0,H
2
0 ]) = [H1

0 ,H2
0 ] ·∇[ψt, φt]− [H1

0 ,H2
0 ]∇·

[ψt, φt].
It follows that (A′U, CU)Hσ

= b3

12‖∇ × [h1
1, h

2
1]‖2

0,Ω + b‖h3
1‖2

0,Ω. The surjectivity of λI + C−1A′ for
λ > 0 may be achieved by proceeding analogously as in the analysis of the classical system of magnetoe-
lasticity [9]. We can now invoke the Lumer–Phillips generation theorem to conclude that −C−1A′ is the
infinitesimal generator of a C0 semigroup of contractions in Hσ. Theorem 3.1 in [7] is now replaced by

Theorem 3.1. Given U0 ∈ Hσ there exists a unique weak solution of Pr (AEP )′ in Hσ, given by U(t) =
exp(−tC−1A′)U0, such that

U ∈ C([0,∞);Hσ)
Moreover, U0 ∈ D(A′) furnishes a unique strong solution such that

U ∈ C([0,∞);D(A′)) ∩ C1([0,∞);Hσ)

Finally, if U0 ∈ D((A′)k), then

U ∈
k⋂

j=0

Ck−j([0,∞);D((A′)j))

Redirecting our attention to Pr (P ′), we need to comment on the existence of a function p such that
[U, p],U the solution constructed in Theorem 3.1, solves Pr (P ′). First, we can invoke the work of Leray
(see e.g. [10, p. 23] and the references therein) to see that, to establish the existence of solutions [U, p]
of the variational form of Pr (P ′), it is sufficient to find only U—the existence of p is then achieved by
making crucial use of (∇p, [ψt, φt])0,Ω = 0 [10, p. 14]. Since the existence of a weak solution of Pr (P ′)
is in turn equivalent to the existence of a C0 semigroup solution exp(−tC−1A′)U0 in Hσ of Pr (AEP )′

[1], we have, by constructing the semigroup exp(−tC−1A′) in Hσ, accomplished the existence of a weak
solution [U, p] = [[ψ, φ,w], [ψt, φt, wt], [h1

1, h
2
1, h

3
1], p] of Pr (P ′), with U unique and p unique up to the

addition of a constant. Regularity of [U, p] can be achieved by assuming more regularity of the data and



ZAMP On the dissipative effect of a magnetic field Page 5 of 9 124

the domain (cf. [10, pp. 267–269]). For example, if ∂Ω is of class C1,1, then the domain D(A′), as defined
in (3.1), can be replaced by the equivalent domain

D(A′) =

⎧⎪⎪⎨
⎪⎪⎩

[ψ, φ,w] ∈ (H2(Ω))3 ∩ V 1
σ , [ψt, φt, wt] ∈ V 1

σ

[h1
1, h

2
1] ∈ (H2(Ω))2 ∩ Hσ,n × (∇ × [h1

1, h
2
1]) = 0 on ∂Ω

h3
1 ∈ H2(Ω), ∂h3

1
∂n on ∂Ω

In this case, we have for U0 ∈ D(A′) a strong solution [U, p] of Pr (P ′) such that

U ∈ C([0,∞);D(A′)) ∩ C1([0,∞);Hσ)

p ∈ C([0,∞);H1(Ω))

We now present the corrected version of Theorem 4.1 in [7].

Theorem 4.1. Assume that Ω is a simply connected domain of R2 with sufficiently smooth boundary ∂Ω.
Then we have:
(i) The semigroup exp(−tC−1A) associated with Pr (P ) is strongly asymptotically stable;
(ii) The semigroup exp(−tC−1A′) associated with Pr (P ′) satisfies:
For any positive integer k, there exists a constant Ck > 0 such that

‖ exp(−tC−1A′)U0‖H ≤ Ck

(
1
t

) k
2

‖U0‖D((A′)k)∀U0 ∈ D((A′)k)

Proof. We present the proof only for k = 1, i.e. for U0 ∈ D(A′) we establish a polynomial decay rate of
order (1

t )
1
2 of the semigroup solution exp(−tC−1A′)U0 of Pr (P ′). The decay rate can then be improved

with higher regularity of the data, i.e. U0 ∈ D((A′)k) will yield a decay rate of order (1
t )

k
2 .

To validate (ii) for the case k = 1, we use as our main tool the resolvent criterion for polynomial
stability of semigroups established by Borichev and Tomilov [3]. Thus, to achieve the polynomial decay
at a rate of (1

t )
1
2 of the semigroup exp(−tC−1A′) associated with Pr (P ′), we need to show that the

following conditions are satisfied:

(H1): iR ∩ σ(−C−1A′) = ∅
(H2): sup

|β|≥1

1
β�

‖(iβ + C−1A′)−1‖L(Hσ) ≤ M for some 
 > 0 (4.1)

where, in our case, 
 = 2 will emerge as the “optimal” (smallest possible) choice.
With regard to (H1), we note that, with our definition of the domain of A′, it is evident that

R(λ;−C−1A′) is compact. Thus, the validity of (H1) in which we may take σ = σp, the point spec-
trum, will furnish the strong stability of exp(−tC−1A′) by invoking Benchimol’s spectral criterion [2]. It
will turn out that the restriction ∇ · [ψ, φ] = 0 is redundant, as the solenoidality property of the shear
angles vector will emerge as a “side” condition (see ff.). Thus, in the validation of (H1) the operator A′

may be replaced by A.

We first validate (H2): Proceeding by a contradiction argument, we assume that (H2) does not hold.
Thus, we assume that sup|β|≥1

1
β� ‖(iβ+C−1A′)−1‖L(Hσ) ≤ M does not hold. Then there exists a sequence

{βn}, βn ∈ R
+, βn → ∞ and {Un} ⊂ D(A′), n = 1, 2, .., such that

‖Un‖Hσ
:= ‖[ψn, φn, wn], [ψ1n, φ1n, w1n], [h1

1n, h2
1n, h3

1n]‖Hσ
= 1 ∀n (4.2)

and, by taking account of the canonical nature of the operator C,

β�
n(iβnC + A′)Un → 0 in Hσ as n → ∞. (4.3)
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This yields

β�
n(iβn[ψn, φn, wn] − [ψ1n, φ1n, w1n]) → 0 in Vσ

β�
n(iβnρ

[
b3

12
ψ1n,

b3

12
φ1n, bw1n

]
+ A′

1[ψn, φn, wn]

+
[
A2[h1

1n, h2
1n], A3h

3
1n

]
) → 0 in (L2(Ω))3

β�
n(iβn

[
b3

12
h1

1n,
b3

12
h2

1n, bh3
1n

]
+ [A′

4[ψ1n, φ1n], A6w1n]

+
[
A5[h1

1n, h2
1n], A7h

3
1n

]
) → 0 in (L2(Ω))3 (4.4)

By taking the inner product in Hσ of (4.3) with Un, where Hσ is now the complexification of Hσ, we
obtain

β�
n

(
iβnρb(

b2

12
‖ψ1n‖2

0,Ω +
b2

12
‖φ1n‖2

0,Ω + ‖w1n‖2
0,Ω) + iβna′([ψn, φn, wn])

)

+ β�
n

(
(A2[h1

1n, h2
1n], [ψ1n, φ1n])0,Ω + (A3h

3
1n, w1n)0,Ω

)

+ β�
n

(
iβnb

(
b2

12
‖h1

1n‖2
0,Ω +

b2

12
‖h2

1n‖2
0,Ω + ‖h3

1n‖2
0,Ω

))

+ β�
n

(
(A′

4[ψ1n, φ1n], [h1
1n, h2

1n])0,Ω + (A6w1n, h3
1n)0,Ω

)
+ β�

n

(
(A5[h1

1n, h2
1n], [h1

1n, h2
1n])0,Ω + (A7h

3
1n, h3

1n)0,Ω

) → 0 (4.5)

As in [7] it turns out that all the interactive terms contribute purely imaginary terms to (4.5). By
taking real parts in (4.5), we obtain

β�
n‖∇ × [h1

1n, h2
1n]‖2

0,Ω + β�
n‖∇h3

1n‖2
0,Ω → 0 (4.6)

which we combine into β�
n‖∇ × [h1

1n, h2
1n, h3

1n]‖2
0,Ω → 0 as n → ∞. By invoking a well-known imbedding

theorem due to Duvaut and Lions [5, Theorem 6.1, p. 358] (see also [6, Lemma 1.6]), we conclude

[h1
1n, h2

1n, h3
1n] → 0 in (H1(Ω))3

[h1
1n, h2

1n, h3
1n] → 0 in Hσ × L2(Ω) (4.7)

By next taking the inner product of the second equation of (4.4) with [ψn, φn, wn] and using the

definitions of A′
1 and Ai, i = 2, 3, while combining terms, as indicated above, and dividing by β

�
2+1
n , we

obtain

β
�
2−1
n

(
(iβnρ

[
b3

12
ψ1n,

b3

12
φ1n, bw1n

]
, [ψn, φn, wn])0,Ω + a′([ψn, φn, wn])

−
((

∇ ×
[

b3

12
h1

1n,
b3

12
h2

1n, bh3
1n

])
× [

H1
0 ,H2

0

]
, [ψn, φn, wn]

)
0,Ω

)
→ 0 (4.8)

Taking 
 = 2 in (4.6) whence we have the convergence in (L2(Ω))3 of the first component of the
last inner product in (4.8), and availing ourselves of the boundedness of [ψn, φn, wn] in (L2(Ω))3 on the
strength of (4.2), furnishes the convergence to zero of this inner product. Hence, we remain with

(iβnρ

[
b3

12
ψ1n,

b3

12
φ1n, bw1n

]
, [ψn, φn, wn])0,Ω + a′([ψn, φn, wn]) → 0 (4.9)
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Division of the third convergence relation of (4.4) by βn renders the convergence relation

βn

(
iβn

[
b3

12
h1

1n,
b3

12
h2

1n, bh3
1n

]
+ ∇ ×

(
∇ × [

b3

12
h1

1n,
b3

12
h2

1n, bh3
1n]

)

− [H1
0 ,H2

0 ] · ∇
[

b3

12
ψ1n,

b3

12
φ1n, bw1n

])
−→ 0 in (L2(Ω))3 (4.10)

Taking the inner product with [H1
0 ,H2

0 ] ·∇[12b3 ψn, 12
b3 φn, 1

b wn] while taking account of (4.7), the bound-
edness of [H1

0 ,H2
0 ] · ∇[ψn, φn, wn] in (L2(Ω))3 on the strength of (4.2) and replacing βn[ψ1n, φ1n, w1n] by

iβ2
n[ψn, φn, wn] in the convergence relation provides

βn

(∇ × (∇ × [h1
1n, h2

1n, h3
1n]), [H1

0 ,H2
0 ] · ∇[ψn, φn, wn]

)
0,Ω

− iβ2
n‖[H1

0 ,H2
0 ] · ∇[ψn, φn, wn]‖2

0,Ω −→ 0 (4.11)

To the inner product in this relation, we apply integration by parts and write the resultant term, after
discarding the boundary terms on the strength of the boundary conditions, as (β2

n(∇ × [h1
1n, h2

1n, h3
1n]),

1
βn

(∇×([H1
0 ,H2

0 ] ·∇[ψn, φn, wn])))0,Ω. Observing that in this inner product the first component converges
to zero in (L2(Ω))3 in view of (4.6), while (4.2), the second convergence relation of (4.4) and elliptic reg-
ularity, renders the second component 1

βn
(∇× ([H1

0 ,H2
0 ] ·∇[ψn, φn, wn])) bounded in (L2(Ω))3 uniformly

in n, we obtain
β2

n‖[H1
0 ,H2

0 ] · ∇[ψn, φn, wn]‖2
0,Ω −→ 0 (4.12)

as n → ∞. This furnishes

β2
n‖[H1

0 ,H2
0 ] · ∇wn‖2

0,Ω → 0

β2
n‖[H1

0 ,H2
0 ] · ∇[ψn, φn]‖2

0,Ω → 0 (4.13)

From these relations, we wish to derive that β2
n‖wn‖2

0,Ω → 0 and β2
n‖[ψn, φn]‖2

0,Ω → 0. This will be
achieved by using carefully chosen multipliers and making crucial use of the condition ∇ · [ψ, φ] = 0.
First, we take the inner product of [H1

0 ,H2
0 ] · ∇wn ≡ ∇ · ([H1

0 ,H2
0 ]wn) with ([H1

0 ,H2
0 ]wn) · x,x = [x, y]

and apply integration by parts to obtain

2(∇ · ([H1
0 ,H2

0 ]wn), ([H1
0 ,H2

0 ]wn) · x)0,Ω = −|[H1
0 ,H2

0 ]|2‖wn‖2
0,Ω

On the strength of the first relation in (4.13) and the boundedness of ([H1
0 ,H2

0 ]wn) · x in L2(Ω),
the inner product on the left-hand side of the above equality converges to zero. Thus, we conclude that
β2

n‖wn‖2
0,Ω → 0 as n → ∞, whence

βnwn → 0 in L2(Ω)

w1n → 0 in L2(Ω) (4.14)

as n → ∞ by applying, in obtaining the second convergence relation, the first convergence relation of
(4.4).

To obtain β2
n‖[ψn, φn]‖2

0,Ω → 0 from the second convergence relation of (4.13), we note that [H1
0 ,H2

0 ] ·
∇[ψn, φn] = [[H1

0 ,H2
0 ] · ∇ψn, [H1

0 ,H2
0 ] · ∇φn].

Thus, by applying the multipliers ([H1
0 ,H2

0 ]ψn) ·x and ([H1
0 ,H2

0 ]φn) ·x to the components of the vector
in the last line of this identity, following the same procedure as before, we obtain

βn[ψn, φn] → 0 in (L2(Ω))2

[ψ1n, φ1n] → 0 in (L2(Ω))2 (4.15)

as n → ∞.
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We now return to (4.9) writing the convergence relation as

i

(
ρ

[
b3

12
ψ1n,

b3

12
φ1n, bw1n

]
, βn [ψn, φn, wn]

)
0,Ω

+ a′([ψn, φn, wn]) → 0 (4.16)

whence by (4.14)–(4.15) we can conclude

a′([ψn, φn, wn]) → 0

as n → ∞. This immediately yields

[ψn, φn, wn] → 0 in (H1
0 (Ω))3 (4.17)

Combination of (4.7), (4.14), (4.15) and (4.17) provides a contradiction with (4.2). Thus, we have
verified condition (H2).

It remains to validate condition (H1) in which we now replace A′ by A as defined in [7]. Since
0 ∈ ρ(−C−1A), as is easily shown by using standard elliptic PDE theory (see e.g. [8, Theorem 2.1]) and
−C−1A is compact, we need to consider only the possibility of purely imaginary eigenvalues. Assuming
iβ ∈ σ(−C−1A), β �= 0, there exists a non-trivial eigenfunction U,U ∈ D(A), such that

(iβC + A)U = 0

Taking U = [[ψ0, φ0, w0], [ψ1, φ1, w1], [h1
1, h

2
1, h

3
1]], we have the system

iβ [ψ0, φ0, w0] − [ψ1, φ1, w1] = 0

iβρ

[
b3

12
ψ1,

b3

12
, φ1, bw1

]
+ A1 [ψ0, φ0, w0] +

[
A2

[
h1

1, h
2
1

]
, A3h

3
1

]
= 0

iβ

[
b3

12
h1

1,
b3

12
h2

1, bh
3
1

]
+ [A4 [ψ1, φ1] , A6w1] +

[
A5

[
h1

1, h
2
1

]
, A7h

3
1

]
= 0 (4.18)

Since in the validation of (H2) we did not use the condition βn → ∞, but rather its consequence, viz.
βn is bounded away from zero, we can proceed completely analogously as before, with the role of the
sequences {βn} and {Un} now taken over by, respectively, the eigenvalue iβ and the eigenfunction U, to
obtain [h1

1, h
2
1, h

3
1] = 0 and the “side” conditions

β2‖[H1
0 ,H2

0 ] · ∇w0‖2
0,Ω = 0

β2‖∇ × ([ψ0, φ0] × [H1
0 ,H2

0 ])‖2
0,Ω = 0 (4.19)

Application of the multiplier ([H1
0 ,H2

0 ]w0)·x to the first equation of (4.19), i.e. multiplication of ([H1
0 ,H2

0 ]·
∇w0) = (∇ · ([H1

0 ,H2
0 ]w0)) by ([H1

0 ,H2
0 ]w0) · x and integration over Ω, as before, furnishes

0 = 2β2(∇ · ([H1
0 ,H2

0 ]w0), ([H1
0 ,H2

0 ]w0) · x)0,Ω

= −β2|[H1
0 ,H2

0 ]|2‖w0‖2
0,Ω

whence we conclude w0 = 0 = w1. Since U ∈ D(A), it follows that Δw0 = 0. The third component of the
second equation of (4.18) corresponding to the equation iβρbw1−∇·([ψ0, φ0]+∇w0) = 0 in turn provides
the additional “side” condition ∇ · [ψ0, φ0] = 0. Next, by applying the multipliers ([H1

0 ,H2
0 ]ψ0) · x and

([H1
0 ,H2

0 ]φ0) ·x to the second equation of (4.19), in which, on the strength of ∇· [ψ0, φ0] = 0, the term in
the norm sign satisfies ∇ × ([ψ0, φ0] × [H1

0 ,H2
0 ]) = [H1

0 ,H2
0 ] · ∇[ψ0, φ0] = [[H1

0 ,H2
0 ] · ∇ψ0, [H1

0 ,H2
0 ] · ∇φ0],

we conclude, by proceeding componentwise, in exactly the same way as in the attainment of w0 = 0 = w1,
that ψ0 = 0 = ψ1. Combining this with [h1

1, h
2
1, h

3
1] = 0, we have a contradiction with the non-triviality of

the eigenfunction U, showing that −C−1A has no imaginary eigenvalues. Condition (H1) is now verified,
and the proof of Theorem 4.1 is complete. �
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Remark. (i) The need for the additional condition ∇ · [ψ, φ] = 0 in Theorem 4.1 should be seen in the
context of the fact that the interaction between the magnetic and elastic fields in Pr (P ) involves a uniform
magnetic field [H1

0 ,H2
0 ] in the dissipative term ∇ × ([ψt, φt, wt] × [H1

0 ,H2
0 ]) = [H1

0 ,H2
0 ] · ∇[ψt, φt, wt] −

[H1
0 ,H2

0 ]∇x,y,z · [ψt, φt, wt] = [H1
0 ,H2

0 ] ·∇[ψt, φt, wt]− [H1
0 ,H2

0 ]∇x,y · [ψt, φt] in the PDE for the magnetic
field [h1

1, h
2
1, h

3
1]. The effect of this is manifested in the intricacy of proceeding from the “side” conditions

(4.13) to the convergence of [ψn, φn, wn] to zero in (H1
0 (Ω))3.

(ii) Since in the proof of Theorem 4.1, condition (H1) could be verified without having to assume
∇ · [ψ, φ] = 0, as the condition emanated as a “side” condition in the verification of (H1) by a contradic-
tion argument, the property of strong asymptotical stability of the semigroup exp(−tC−1A) associated
with Pr (P ) is attained without having to impose the solenoidality condition of the shear force vector.
The author is indebted to Marcio Ferreira for this observation.
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