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Abstract. We consider a nonlinear viscoelastic rod which is in contact with a foundation along its length and is in contact
with an obstacle at its end. The rod is acted up by body forces and, as a result, its mechanical state evolves. Our aim
in this paper is twofold. The first one is to construct an appropriate mathematical model which describes the evolution of
the rod. The second one is to prove the weak solvability of the problem. To this end, we use arguments on second-order
inclusions with multivalued pseudomonotone operators.
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1. Introduction

Vibration processes and objects or media arise in engineering and everyday life. The vibration of a bridge,
of a window, of a spring or an automotive platform with a low-power active suspension represents only
four simple examples, among others. Vibration produces sounds and could lead to resonance phenomena
which can have destructive effects on the mechanical systems. For this reason, there is a considerable
interest in the modeling, analysis and numerical simulation of such processes. The literature in the field
is extensive.

In the engineering literature, the vibrations are very often studied by considering mechanical systems
based on finite collections of masses, springs, dampers, and rods in frictional or frictionless contact. The
analysis of such systems leads often to nonlinear differential equations or inclusions of second order. The
nonlinearity arises either from the nonlinearity of the constitutive laws involved into the model or from
the contact conditions.

In this work, we study the evolution of a simple mechanical system, consisting of a vibrating rod in
contact with a support along its length, the so-called foundation. The interaction between the rod and
the foundation is modeled with specific interface conditions. The rod is clamped at one end and, in
addition, is in contact with an obstacle, at the other end. The contact is modeled with a subdifferential
condition involving a possible nonconvex potential. We derive a mathematical model describing the above
physical setting which leads to a new and nonstandard problem, expressed in terms of a second-order
differential inclusion. Solving this inclusion, which involves strongly nonlinearities, represents the main
trait of novelty of this paper. In this way, we show how one can apply the rapidly developing theory of
differential inclusions to describe contact processes with rods. We do it in a simple setting that avoids
some complications related to higher dimensions, making the mathematical approach more transparent.
Moreover, these simple settings are of importance since they allow for easier experimental measurements
and identification of the system parameters. These parameter functions then may be used in more realistic
applications.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-016-0718-z&domain=pdf
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Mathematical models describing the evolution of rods in contact with obstacle have been studied by
many authors. For instance, a dynamic unilateral problem for rods was considered in [22], where the
existence of the weak solutions was established and numerical simulations have been provided. Dynamic
contact of two rods was modeled, analyzed and numerically simulated in [16]. The dynamic impact
of two thermoelastic rods can be found in [2] and the quasistatic contact in [3]. In both papers, the
heat exchange between the tips was assumed to depend on the distance or the gap when the rods were
separated. Contact problems with thermo-viscoelastic rods have been discussed in [17,18]. Quasistatic
contact of a elastic-perfectly-plastic rod was studied in [23]. This was, to the best of our knowledge, the
first result for contact of a material with such a constitutive law. We also refer to [1] for a survey of
static and quasistatic frictional contact problems in elasticity.

The rest of the paper is organized as follows. In Sect. 2, we introduce some basic definitions and
preliminaries that will be used in the sequel. In Sect. 3, we describe the physical setting and construct
our mathematical model of contact. It is in a form of a nonlinear inclusion in which the unknown is the
displacement field. Finally, in Sect. 4 we provide the existence result for the inclusion under consideration.
In this way, we prove that the contact problem has a weak solution. The proof of the existence theorem
is based on time discretization technique, the so-called Rothe method, that we present in Sect. 5. It could
also be obtained by using an abstract result recently obtained in [5]. However, for the convenience of the
reader, we made the choice to present a direct proof for our main existence result, Theorem 4.9. We
refer to [14,15] for additional results and methods concerning the discretization of nonlinear evolutionary
problems.

2. Preliminaries

In this section, we briefly present the notation and some preliminary material to be used later in this
paper. More details on the material presented below can be found in the books [10,11,19,20,26].

First, we precise that all linear spaces used in this paper are assumed to be real. Unless it is stated
otherwise, below in this section we denote by X a normed space with the norm ‖·‖X , by X∗ its topological
dual, and 〈·, ·〉X∗×X will represent the duality pairing of X and X∗. The symbol 2X∗

is used to represent
the set of all subsets of X∗. We start with definition of the generalized directional derivative and the
subdifferential in sense of Clarke.

Definition 2.1. Let ϕ : X → R be a locally Lipschitz function. The Clarke generalized directional derivative
of ϕ at the point x ∈ X in the direction v ∈ X is defined by

ϕ0(x; v) = lim sup
y→x,λ↓0

ϕ(y + λv) − ϕ(y)
λ

.

The Clarke subdifferential of ϕ at x is a subset of X∗ given by

∂ϕ(x) = { ζ ∈ X∗ | ϕ0(x; v) ≥ 〈ζ, v〉X∗×X for all v ∈ X }.

In what follows we introduce the notion of coercivity.

Definition 2.2. Let X be a real Banach space and A : X → 2X∗
be a multivalued operator. We say that

A is coercive if either the domain D(A) of A is bounded or D(A) is unbounded and

lim
‖v‖X→∞ v∈D(A)

inf{〈v∗, v〉X∗×X | v∗ ∈ Av}
‖v‖X

= +∞.

We now proceed with the definition of a pseudomonotone operator in both single valued and multi-
valued case.
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Definition 2.3. Let X be a real, reflexive Banach space. A single valued operator A : X → X∗ is called
pseudomonotone, if for any sequence {vn}∞

n=1 ⊂ X such that vn → v weakly in X and lim sup
n→∞

〈Avn, vn −
v〉 � 0, we have 〈Av, v − y〉 � lim inf

n→∞ 〈Avn, vn − y〉 for every y ∈ X.

Definition 2.4. Let X be a real, reflexive Banach space. A multivalued operator A : X → 2X∗
is called

pseudomonotone if the following conditions hold:
1) A has values which are nonempty, weakly compact and convex,
2) A is upper semicontinuous from every finite dimensional subspace of X into X∗ furnished with weak

topology,
3) if {vn}∞

n=1 ⊂ X and {v∗
n}∞

n=1 ⊂ X∗ are two sequences such that vn → v weakly in X, v∗
n ∈ A(vn)

for all n � 1 and lim sup
n→∞

〈v∗
n, vn − v〉 � 0, then for every y ∈ X there exists u(y) ∈ A(v) such that

〈u(y), v − y〉 � lim inf
n→∞ 〈v∗

n, vn − y〉.

We now recall two important results concerning properties of pseudomonotone operators.

Proposition 2.5. Let X be a reflexive Banach space and A1, A2 : X → 2X∗
be pseudomonotone operators.

Then A1 + A2 : X → 2X∗
is a pseudomonotone operator.

Theorem 2.6. Let X be a reflexive Banach space and let A : X → 2X∗
be a coercive, bounded and

pseudomonotone multivalued operator. Then A is surjective, i.e., R(A) = X∗.

Let X be a Banach space and T > 0. We introduce the space BV (0, T ;X) of functions of bounded
total variation on [0, T ]. Let π denote any finite partition of [0, T ] by a family of disjoint subintervals
{σi = (ai, bi)} such that [0, T ] = ∪n

i=1σi. Let F denote the family of all such partitions. Then for a
function x : [0, T ] → X and for 1 ≤ q < ∞, we define a seminorm

‖x‖q
BV q(0,T ;X) = sup

π∈F

{ ∑
σi∈π

‖x(bi) − x(ai)‖q
X

}

and the space

BV q(0, T ;X) = {x : [0, T ] → X| ‖x‖BV q(0,T ;X) < ∞}.

For 1 ≤ p ≤ ∞, 1 ≤ q < ∞ and Banach spaces X, Z such that X ⊂ Z, we introduce a vector space

Mp,q(0, T ;X,Z) = Lp(0, T ;X) ∩ BV q(0, T ;Z).

Then the space Mp,q(0, T ;X,Z) is also a Banach space with the norm given by ‖·‖Lp(0,T ;X)+‖·‖BV q(0,T ;Z).
Next we recall a compactness result, which will be used in the sequel. For its proof, we refer to [15].

Proposition 2.7. Let 1 � p, q < ∞. Let X1 ⊂ X2 ⊂ X3 be real Banach spaces such that X1 is reflexive,
the embedding X1 ⊂ X2 is compact and the embedding X2 ⊂ X3 is continuous. Then the embedding
Mp,q(0, T ;X1,X3) ⊂ Lp(0, T ;X2) is compact.

The following version of Aubin–Celina convergence theorem (see [4]) will be used in what follows.

Proposition 2.8. Let X and Y be Banach spaces, and F : X → 2Y be a multifunction such that

(a) the values of F are nonempty closed and convex subsets of Y ;
(b) F is upper semicontinuous from X into Y endowed with a weak topology.
Let xn, x : (0, T ) → X, yn, y : (0, T ) → Y , n ∈ N, be measurable functions such that xn(t) → x(t) for a.e.
t ∈ (0, T ) and yn → y weakly in L1(0, T ;Y ). If yn(t) ∈ F (xn(t)) for all n ∈ N and a.e. t ∈ (0, T ), then
y(t) ∈ F (x(t)) for a.e. t ∈ (0, T ).

Finally we will need the following discrete Gronwall lemma ([13, Chap. 7]).
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Lemma 2.9. Let T > 0 be given. For a positive integer N we define k = T/N . Assume that {gn}N
n=1 and

{en}N
n=1 are two sequences of nonnegative numbers satisfying

en ≤ cgn + c

n∑
j=1

kej , n = 1, . . . , N

for a positive constant c independent of N or k. Then there exists a positive constant c, independent of
N or k, such that

max
1≤n≤N

en ≤ c max
1≤n≤N

gn.

3. The model

We consider a viscoelastic rod which occupies, in its reference configuration, the interval (0, L) with
L > 0. The rod is attached at its end x = 0 and is in contact with an obstacle at x = L. In addition, it
is contact with a reactive foundation along its length that opposes its deformation. The rod is acted up
by time-dependent body forces of density f . The physical setting is depicted in Fig. 1.

We are interested in the description of the dynamic evolution of the rod in the physical setting above
and in providing the analysis of the corresponding mathematical model. To this end, we denote in what
follows by x and t the spatial and the time variables, respectively. Note that x ∈ [0, L] and t ∈ [0, T ],
where T represents the length of the time interval of interest. Moreover, for a function G = G(x, t), we
use the subscripts x and t for the derivatives with respect to x and t, i.e.,

Gx =
∂G

∂x
, Gt =

∂G

∂t
, Gxx =

∂2G

∂x2
, Gxt =

∂2G

∂x∂t
, Gtt =

∂2G

∂t2
.

Everywhere in this paper, we denote by u = u(x, t) and σ = σ(x, t) the displacement and the stress
function, respectively. We also denote by ε = ε(x, t) the deformation function defined by ε = ux.

We turn now to the construction of our mathematical model, which gathers the equation of motion,
the constitutive law, the boundary conditions and the initial conditions, that we describe in what follows.

First, the equation of motion of the rod is given by

ρ(x)utt(x, t) = σx(x, t) + F(x, t) for all x ∈ [0, L], t ∈ [0, T ]. (3.1)

Here ρ = ρ(x) represents the density of mass in the reference configuration and F = F(x, t) represents
the total force acting on the rod, i.e., the sum of the applied force and the reaction of the foundation.
We assume that the reaction of the foundation has an additive decomposition of the form ψ + ξ, where
the functions ψ and ξ will be described below. Therefore

F(x, t) = f(x, t) + ψ(x, t) + ξ(x, t) for all x ∈ [0, L], t ∈ [0, T ]. (3.2)

Next we assume that

ψ(x, t) = −g(ut(x, t)) for all x ∈ [0, L], t ∈ [0, T ], (3.3)
ξ(x, t) = −h(u(x, t)) for all x ∈ [0, L], t ∈ [0, T ]. (3.4)

Lo
f

foundation
obstacle

Fig. 1. The rod in contact
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where g and h are given nonlinear functions, assumed to be positive for positive argument and negative
for negative argument. This restriction guarantees that the forces ψ and ξ are opposite to the velocity
and the displacement fields, respectively. Note that assumption (3.3) shows that the force ψ depends only
on the velocity field ut which mimics the behavior of a nonlinear viscous damper. Therefore it could be
used to model the friction between the rod and the foundation. In contrast, assumption (3.4) shows that
the force ξ depends only on the displacement field u, which mimics the behavior of a nonlinear elastic
spring. It could be used to model the adhesion between the rod and the foundation.

We now gather the Eqs. (3.1)–(3.4) and assume, for simplicity, that ρ ≡ 1. As a result, we obtain the
balance equation

utt(x, t) + g(ut(x, t)) + h(u(x, t)) = σx(x, t) + f(x, t)
for all x ∈ [0, L], t ∈ [0, T ]. (3.5)

The next step is to prescribe the constitutive law. We assume that the rod is viscoelastic and its
behavior is described with the equation

σ = η|εt|p−2εt + Eε. (3.6)

Here η > 0 is a viscosity coefficient, E > 0 represents the Young modulus and p ≥ 2 is a given coeffi-
cient. Note that (3.6) represents a nonlinear version of the well-known Kelvin–Voigt linear viscoelastic
constitutive law

σ = η̃εt + Eε. (3.7)
Actually, (3.6) could be recovered from (3.7) by assuming that the viscosity coefficient η̃ depends on the
strain rate εt, i.e., η̃ = η̃(εt) = η|εt|p−2. Such kind of dependence is justified from physical point of view
since it can be observed to various materials like polymers and pastes, as explained in [24], for instance.
In addition, it makes the resulting boundary value problem more difficult from mathematical point of
view, since it introduces a strong nonlinearity into the model.

We now replace ε = ux in (3.6) to see that

σ = η|uxt|p−2uxt + Eux, (3.8)

then we substitute this equality in the balance Eq. (3.5) to find that

utt(x, t) − (η|uxt|p−2uxt)x − Euxx + g(ut(x, t)) + h(u(x, t)) = f(x, t)
for all x ∈ [0, L], t ∈ [0, T ]. (3.9)

We now describe the boundary conditions. First of all, since the rod is fixed in x = 0, the displacement
field vanishes there, i.e.,

u(0, t) = 0 for all t ∈ [0, T ]. (3.10)
Next we assume that the rod is in contact at x = L with an obstacle and we model the contact with a
subdifferential inclusion of the form

− σ(L, t) ∈ ∂j(ut(L, t)) for all t ∈ [0, T ]. (3.11)

Here j is a prescribed possible nonconvex function and ∂j represents its Clarke subdifferential. Examples
of contact conditions which can be cast in the form (3.11), can be found in [13,19,25], for instance. Here
we restrict ourselves to recall that they include the so-called normal damped response condition and
various viscous-type contact conditions. We combine now (3.8) and (3.11) to deduce that

−
(
η|uxt(L, t)|p−2uxt(L, t) + Eux(L, t)

)
∈ ∂j(ut(L, t)) for all t ∈ [0, T ]. (3.12)

Finally, we prescribe the initial displacement and the initial velocity of the rod, i.e.,

u(x, 0) = u0(x), ut(x, 0) = v0(x) for all t ∈ [0, T ], (3.13)

where u0 and v0 are given functions.
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We are now in a position to formulate the mathematical model which describes the dynamic evolution
of the rod, in the physical setting described above.

Problem P . Find a displacement field u : [0, L] × [0, T ] → R which satisfies the balance equation (3.9), the
boundary conditions (3.10), (3.12) and the initial conditions (3.13).

The existence of weak solution of Problem P will be provided in Sect. 4. It is based on technique
used recently in [5]. Here we mention that the main difficulty in the analysis of Problem P arises in the
nonlinearities of this problem, which appear both in the second-order Eq. (3.9) and in the multivalued
boundary condition (3.12). We also note that, if the displacement function u represents a solution to
Problem P , then the corresponding stress field can be easily computed by using the constitutive law
(3.8).

4. Main result

In this section, we state our main result in the study of Problem P , Theorem 4.9. Here and below, we
take 2 ≤ p < ∞ and 1 < q ≤ 2 satisfying 1

p + 1
q = 1. We use notation R+ for a set of nonnegative real

numbers.
We impose the following assumptions on the functions g, h, j and f .

H(g) g : R → R is such that

(i) g is continuous,
(ii) g := inf

s∈R

g(s)s > −∞,

(iii) |g(s)| � cg(1 + |s|p−1) for all s ∈ R with cg > 0.
H(h) h : R → R is such that

(i) |h(s)| ≤ ch(1 + |s| 2
q ) for all s ∈ R with ch > 0,

(ii) |h(r) − h(s)| ≤ h (max{|r|, |s|}) |s − r| 1
q for all r, s ∈ R,

where h : R → R is a nondecreasing function.
H(j) j : R → R is such that

(i) j is locally Lipschitz
(ii) |ξ| � cj(1 + |s|p−1) for all ξ ∈ ∂j(s) with cj > 0.

H(f) f ∈ Lq([0, T ] × [0, L]).
H0 u0 ∈ V , v0 ∈ H.

A typical example which satisfies assumption H(h) is the function

h(s) = |s|δs,
where δ � 1 − 2

p .
We introduce the spaces

W = { v ∈ W 1,p(0, L) | v(0) = 0 }, V = { v ∈ H1(0, L) | v(0) = 0 }
and H = L2(0, L) with the norms defined by

‖v‖p
W =

L∫
0

|vx|p dx, ‖v‖2V =

L∫
0

|vx|2 dx, ‖v‖2H =

L∫
0

|v|2 dx.

We denote by 〈·, ·〉W ∗×W and 〈·, ·〉V ∗×V the duality in spaces W and V , respectively. The inner product
in H is denoted by (·, ·)H . Identifying H with its dual, we remark that the above spaces form the evolution
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system

W ⊂ V ⊂ H ⊂ V ∗ ⊂ W ∗

with all embeddings dense and continuous. We also recall that the embeddings W ⊂ H and V ⊂ H are
compact. It is well known that V ⊂ C(0, L) and the following inequality holds:

‖v‖C(0,L) ≤
√

L‖v‖V for all v ∈ V. (4.1)

Here C(0, L) denotes the space of continuous functions on [0, L] with norm ‖v‖C(0,L) = max{ |v(x)| | x ∈
[0, L] } for all v ∈ C(0, L). We consider operators A : W → W ∗, B : V → V ∗ and C : V → W ∗ defined by

〈Au, v〉W ∗×W = η

L∫
0

|ux|p−2uxvx dx +

L∫
0

g(u)v dx for all u, v ∈ W,

〈Bu, v〉V ∗×V = E

L∫
0

uxvxdx for all u ∈ V, v ∈ V,

〈Cu, v〉W ∗×W =

L∫
0

h(u)v dx for all u ∈ V, v ∈ W.

We also define the functional F : [0, T ] → W ∗ by

〈F (t), v〉W ∗×W =

L∫
0

f(t)v dx for all v ∈ W.

Moreover we define the spaces W = Lp(0, T ;W ), V = Lp(0, T ;V ), H = L2(0, T ;H) and U = Lp(0, T ). We
note that their dual spaces are W∗ = Lq(0, T ;W ∗), V∗ = Lq(0, T ;V ∗) and U∗ = Lq(0, T ), respectively.

We now introduce a notion of weak solution of Problem P .

Definition 4.1. A function u ∈ W is said to be a weak solution of Problem P if ut ∈ W, utt ∈ W∗ and
there exists a function ξ : [0, T ] → R such that

〈utt(t) + Aut(t) + Bu(t) + Cu(t), v〉W ∗×W + ξ(t)v(L) = 〈F (t), v〉W ∗×W

for a.e. t ∈ (0, T ), for all v ∈ W,

ξ(t) ∈ ∂j(ut(L, t)) for a.e. t ∈ (0, T ),
u(x, 0) = u0(x), ut(x, 0) = v0(x) for a.e. x ∈ (0, L).

We remark that the weak formulation used in Definition 4.1 can be obtained from equation in Problem
P by multiplying it by a test function v ∈ W and using an integration by parts formula.

In what follows we will deal with the existence of weak solutions of Problem P . To this end, we define
the multifunction M : R → 2R by M(s) = ∂j(s) for all s ∈ R. We also define the operator γ : W → R given
by γv = v(L) for all v ∈ W . We recall that W ⊂ C(0, L) and v(L) is understood as a value of a continuous
representant of v ∈ W at L. Thus operator γ is well defined. We use notation ‖γ‖ := ‖γ‖L(W,R). Next we
formulate the following auxiliary problem.

Problem P. Find u ∈ W with ut ∈ W and utt ∈ W∗ such that

utt(t) + Aut(t) + Bu(t) + Cu(t) + γ∗M(γut(t)) � F (t) a.e. t ∈ [0, T ],
u(0) = u0, ut(0) = v0.

Remark 4.2. By the definition of operator M , it follows that each solution of Problem P is also a weak
solution of Problem P .
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Applying Poincare and Jensen inequalities, we find that
L∫

0

|v|pdx ≤ Lp

L∫
0

|vx|pdx for all v ∈ W. (4.2)

Next we state and prove several properties of the operators A, B, C, M and γ which will be used in
Sect. 5.

Lemma 4.3. If the assumptions H(g) hold, then the operator A : W → W ∗ satisfies
(i) ‖Au‖W ∗ ≤ cA(1 + ‖u‖p−1

W ) for all u ∈ W , where cA = η + cg,
(ii) 〈Au, u〉W ∗×W ≥ η‖u‖p

W + Lg for all u ∈ W ,
(iii) A is pseudomonotone.

Proof. Condition (i) follows from H(g)(iii) and (4.2). Condition (ii) follows directly from the definition
of A and H(g)(ii). Finally for the proof of (iii), we refer to the proof of Proposition 27.9 in [26]. �

Lemma 4.4. The operator B : V → V ∗ is linear, bounded, symmetric and strongly positive, i.e.,

〈Bu, u〉V ∗×V = E‖u‖2V , ‖Bu‖V ∗ = E‖u‖V for all u ∈ V. (4.3)

The proof of Lemma 4.4 follows directly from the definition of B.

Lemma 4.5. If the assumptions H(h) hold, then the operator C : V → W ∗ satisfies

(i) ‖Cv‖W ∗ � βC(1 + ‖v‖
2
q

V ) for all v ∈ V with βC > 0,
(ii) there exists a nondecreasing function C : R+ → R+ such that

‖Cv − Cw‖W ∗ � C(max{‖v‖V , ‖w‖V })‖v − w‖
1
q

H

for all v, w ∈ V .
(iii) C is strongly continuous.

Proof. We start with the proof of (i). Using H(h)(i) and Hölder inequality, and (4.2), we calculate

| 〈Cv,w〉W ∗×W | ≤
L∫

0

|h(v)||w|dx ≤
L∫

0

ch

(
1 + |v| 2

q

)
|w|dx

≤ chL

(
L

1
q + ‖v‖

2
q

V

)
‖w‖W for all v ∈ V, w ∈ W.

Thus it follows that ‖Cv‖W ∗ ≤ chL(L
1
q + ‖v‖

2
q

V ) and (i) holds with βC = chLmax{1, L
1
q }. Now we prove

(ii). Let u, v ∈ V and w ∈ W . Applying again Hölder inequality and (4.2), we get

| 〈Cu − Cv,w〉W ∗×W | ≤
L∫

0

|h(u) − h(v)||w|dx ≤

⎛
⎝ L∫

0

(h(max{|u|, |v|}))q|u − v|dx

⎞
⎠

1
q

L‖w‖W ,

and, in a consequence, it follows that

‖Cu − Cv‖W ∗ ≤

⎛
⎝ L∫

0

(h(max{|u|, |v|}))q|u − v|dx

⎞
⎠

1
q

L. (4.4)
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Since function h is nondecreasing, using (4.1), we obtain

h(max{|u(x)|, |v(x)|}) ≤ h(max{‖u‖C(0,L), ‖v‖C(0,L)})

≤ h(
√

L max{‖u‖V , ‖v‖V }) for all x ∈ [0, L].

Moreover using again Hölder inequality, we obtain

⎛
⎝ L∫

0

|u − v|dx

⎞
⎠

1
q

≤ L
1
2q ‖u − v‖

1
q

H .

Thus condition (ii) holds with the function C given by C(s) = L
1
2q +1h(

√
Ls) for all s ∈ R+. It remains

to show (iii). Let vn → v weakly in V . It is enough to show that Cvn → Cv in W ∗ for a subsequence.
Since the embedding V ⊂ H is compact then, for a subsequence again denoted vn, we have vn → v in
H. Thus by (ii), it follows that Cvn → Cv in W ∗. This completes the proof. �

Lemma 4.6. If the assumptions H(j) hold, then the operator M satisfies

(i) for all u ∈ R, M(u) is a nonempty, closed and convex set,
(ii) M is upper semicontinuous,
(iii) |ξ| � cj(1 + |s|p−1) for all w ∈ R, ξ ∈ M(s).

The proof of Lemma 4.6 follows directly from the properties of Clarke subdifferential (see [10]).

Lemma 4.7. The operator γ : W → R is linear and strongly continuous.

Proof. The linearity of γ is obvious. We also observe, that for all v ∈ C(0, L), we have |γv| = |v(L)| ≤
maxx∈[0,L] |v(x)| = ‖v‖C(0,L), which means, that γ ∈ C(0, L)∗. Let vn → v weakly in W . Since the
embedding W ⊂ C(0, L) is continuous, we also have vn → v weakly in C(0, L), so, in particular γvn → γv
in R, which completes the proof. �

Lemma 4.8. The operator γ∗M(γ(·)) : W → W ∗ is pseudomonotone.

The proof of Lemma 4.8 exploits Lemma 4.7 and follows the lines of the proof of Proposition 1.6 in
[6] and, therefore, we omit it.

We now impose the following additional assumption on the constants of the problem.
Hconst η > cj‖γ‖p.

Our existence result in the study of Problem P that we state here and prove in Sect. 5 is the following.

Theorem 4.9. Let the assumptions H(g), H(h), H(j), H(f) and H0 hold. Moreover assume that either
p = 2 or Hconst holds. Then Problem P admits a weak solution.

5. The Rothe method

In this section, we study a time semidiscrete scheme corresponding to Problem P. We provide the existence
result for the approximate problem, and we study the convergence of its solution to the solution of
Problem P, when the discretization parameter converges to 0. In this way, we will prove Theorem 4.9.
The technique presented below is referred as the Rothe method and was already used in many references,
including [5,7,8].
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5.1. Discrete problem

We divide the time interval [0, T ] by means of a sequence {tk}Nn

k=0 ⊂ [0, T ] defined as follows

tk = kτn, where τn = T/Nn for k = 0, . . . , Nn.

In the above notation, Nn denotes the number of time steps in nth division of [0, T ], so we have Nn → ∞
and τn → 0, as n → ∞. For the convenience we will omit the subscript n and write N, τ instead of
Nn, τn. We approximate the initial condition u0 and v0 by elements of W . Namely, let {u0

τ}, {v0
τ} ⊂ W

be sequences such that u0
τ → u0 in V and v0

τ → v0 in H, as τ → 0, and ‖v0
τ‖W ≤ c/

√
τ for some constant

c > 0.
For a given τ > 0 we formulate the following Rothe problem.

Problem Pτ . Find a sequence {wk
τ }N

k=0 ⊂ W such that w0
τ = v0

τ and〈
1
τ

(wk
τ − wk−1

τ ) + Awk
τ + Buk

τ + Cuk
τ , v

〉
W ∗×W

+ ξk
τ γv

=
〈
F k

τ , v
〉

W ∗×W
for all v ∈ W and k = 1, . . . , N, (5.1)

where ξk
τ ∈ M(γwk

τ ), F k
τ = 1

τ

kτ∫
(k−1)τ

F (t) dt for k = 1, . . . , N and the sequence {uk
τ}N

k=1 is defined by

uk
τ = u0

τ + τ

k∑
i=1

wi
τ for k = 1, . . . , N. (5.2)

In what follows we will study the existence of solution to Problem Pτ . To this end, we define an auxiliary
multivalued operator T : R+ × W × W × W → 2W ∗

by

T (r, y, z, w) :=
1
r
w + Aw + rBw + C(y + rz + rw) + γ∗M(γw) (5.3)

for all r ∈ R+, y, z, w ∈ W.

The significance of operator T in the study of Problem Pτ is explained below.

Remark 5.1. It is easy to observe, that Problem Pτ is equivalent with finding a sequence {wk
τ }N

k=0 ⊂ W
such that w0

τ = v0
τ , w1

τ satisfies

T (τ, u0
τ , 0, w1

τ ) � F k
τ +

1
τ

w0
τ − Bu0

τ (5.4)

and, for k = 2, . . . , N , wk
τ satisfies

T
(

τ, u0
τ ,

k−1∑
i=1

wi
τ , wk

τ

)
� F k

τ +
1
τ

wk−1
τ − Bu0

τ − τ

k−1∑
i=1

Bwi
τ . (5.5)

The following lemmata provide properties of operator T .

Lemma 5.2. Let the assumptions H(g), H(h) and H(j) hold. Moreover assume that either p = 2 or Hconst

holds. Then, there exists τ0 > 0 such that for all 0 < τ < τ0, operator T (τ, y, z, ·) : W → 2W ∗
is coercive

for all y, z ∈ W .

Proof. Let y, z ∈ W be fixed. In the whole proof, we will denote by c a positive function, which may
change from line to line and may have a various set of arguments. Suppose that u ∈ T (τ, y, z, w), where
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w ∈ W is given. Then we have, u = 1
τ w + Aw + τBw + τC(y + τz + τw) + γ∗ξ, where ξ ∈ M(γw). In

order to show the coercivity of T , we calculate

〈u,w〉W ∗×W =
1
τ

‖w‖2H + 〈Aw,w〉W ∗×W + τ 〈Bw,w〉V ∗×V

+ 〈C(y + τz + τw), w〉W ∗×W + ξγw. (5.6)

Using Lemma 4.5 (i) and Young inequality, we estimate

| 〈C(y + τz + τw), w〉W ∗×W | ≤ ‖C(y + τz + τw)‖W ∗‖w‖W

≤ βC

(
1 + ‖y + τz + τw‖

2
q

V

)
‖w‖W ≤ ε‖w‖p

W + c(ε)(1 + ‖y + τz + τw‖2V )

≤ ε‖w‖p
W + c(ε)τ2‖w‖2V + c(ε, ‖y‖V , ‖z‖V ) (5.7)

Moreover by Lemma 4.6 (iii), we have

|ξγw| ≤ cM |γw| + cM |γw|p ≤ (cM + ε) |γw|p + c(ε). (5.8)

It is known that W ⊂ C(0, L) ⊂ H, where the first embedding is compact and the last one is continuous.
Thus using the Ehrling lemma (cf. Lemma 7.6 of [21]), we claim, that for all ε > 0

|γw| = |w(L)| ≤ ‖w‖C(0,L) ≤ ε‖w‖W + c(ε)‖w‖H . (5.9)

Now we consider two cases.
Case 1. p = 2. Then combining (5.8) and (5.9), we get

|ξγw| ≤ ε‖w‖2W + c(ε)‖w‖2H + c(ε). (5.10)

Thus by Lemma 4.3 (ii), Lemma 4.4, (5.6), (5.7) and (5.10), we have

〈u,w〉W ∗×W ≥
(

1
τ

− c(ε)
)

‖w‖2H + (η − 2ε) ‖w‖2W

+ τ(E − c(ε)τ)‖w‖2V + Lg − c(ε, ‖y‖V , ‖z‖V ).

Let us take ε = 1
4η and τ0 = min{c( 14η)−1, Ec( 14η)−1}. Then it follows that operator T is coercive for

τ ≤ τ0.
Case 2. p > 0 and Hconst holds. From Lemma 4.3 (ii), Lemma 4.4, (5.6)–(5.8) we get

〈u,w〉W ∗×W ≥ 1
τ

‖w‖2H + (η − (cM + ε)‖γ‖p − ε) ‖w‖p
W

+ τ(E − c(ε)τ)‖w‖2V + Lg − c(ε, ‖y‖V , ‖z‖V ).

We take ε = ε := (η − cM‖γ‖p)/(‖γ‖p + 1). The assumption Hconst implies that ε > 0. Let us define
τ0 = Ec(ε)−1. Now we observe, that T is coercive for τ < τ0. �
Lemma 5.3. Let the assumptions H(g), H(h) and H(j) hold. Then operator T is bounded with respect to
the last variable.

Proof. The boundedness of T follows directly from Lemma 4.3 (i), Lemmas 4.4, 4.5 (i) and 4.6 (iii). �
Lemma 5.4. Let the assumptions H(g), H(h) and H(j) hold. Then operator T is pseudomonotone with
respect to the last variable.

Proof. We examine the pseudomonotonicity of each components of T . The operator W � w → 1
τ w ∈ W ∗

is pseudomonotone, since it is linear and monotone. The pseudomonotonicity of A is provided by Lemma
4.3 (iii). Operator τB is pseudomonotone, since it is linear and monotone. By Lemma 4.5 (iii), and the
continuity of embedding W ⊂ V , we claim, that the operator C is strongly continuous from W to W ∗

and, in a consequence, it is pseudomonotone. Finally the multivalued term of T is pseudomonotone due
to Lemma 4.8. Thus from Proposition 2.5, it follows, that T is pseudomonotone. �
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Corollary 5.5. Let the assumptions H(g), H(h) and H(j) hold. Moreover assume that either p = 2 or
Hconst holds. Then there exists τ0 > 0 such that for all 0 < τ < τ0 the mapping T (τ, y, z, ·) : W → 2W ∗

is
surjective for all y, z ∈ W , i.e., for every f ∈ W ∗, there exists w ∈ W such that

T (τ, y, z, w) � f.

Proof. The proof is a consequence of Lemmas 5.2–5.4 and Theorem 2.6. �

Now we are in a position to formulate an existence result for Problem Pτ .

Theorem 5.6. Let the assumptions H(g), H(h), H(j) and H0 hold. Moreover assume that either p = 2
or Hconst holds. Then there exists τ0 > 0 such that for all 0 < τ < τ0 Problem Pτ has a solution.

Proof. We have to provide the existence of a sequence {wk
τ }N

k=0, that is a solution of Problem Pτ . First,
we define w0

τ = v0
τ . By Corollary 5.5, we know that for τ > 0 small enough, operator T is surjective with

respect to the last variable, and, in a consequence, there exists w1
τ that satisfies (5.4). Then we proceed

by induction. Suppose that elements wj
τ , j = 0, . . . , k−1 are already found for a fixed k = 2, . . . , N . Using

again surjectivity of T , we deduce that there exists wk
τ ∈ W that satisfies (5.5). Proceeding recursively,

we provide existence of the entire sequence {wk
τ }N

k=0. Applying Remark 5.1, we state that it is a solution
of Problem Pτ . �

5.2. A-priori estimates

In this subsection, we provide a priori estimates for the solution of Problem Pτ .
Let the sequence {wk

τ }N
k=0 be a solution of Problem Pτ , {ξk

τ }N
k=0 be a sequence that satisfies ξk

τ ∈
M(γwk

τ ) for k = 1, . . . , N and the sequence {uk
τ}N

k=0 be defined by (5.2). Then we have the following
result.

Lemma 5.7. Let the assumptions H(g), H(h) and H(j) hold. Moreover assume that either p = 2 or Hconst

holds. Then the sequences {wk
τ }N

k=0, {uk
τ}N

k=0 and {ξk
τ }N

k=0 satisfy

max
1≤n≤N

‖wn
τ ‖2H ≤ c, (5.11)

N∑
k=1

τ‖wk
τ ‖p

W ≤ c, (5.12)

N∑
k=1

τ |ξk
τ |q ≤ c, (5.13)

max
1≤n≤N

‖un
τ ‖p

W ≤ c, (5.14)

where the constant c does not depend on τ .

Proof. We take v = wk
τ in (5.1) and obtain(
wk

τ − wk−1
τ , wk

τ

)
H

+ τ
〈
Awk

τ , wk
τ

〉
W ∗×W

+ τ
〈
Buk

τ , wk
τ

〉
V ∗×V

τ
〈
Cuk

τ , wk
τ

〉
W ∗×W

+ τξk
τ γwk

τ = τ
〈
F k

τ , wk
τ

〉
W ∗×W

. (5.15)

By a property of scalar product in Hilbert space, we have(
wk

τ − wk−1
τ , wk

τ

)
H

=
1
2
‖wk

τ ‖2H − 1
2
‖wk−1

τ ‖2H +
1
2
‖wk

τ − wk−1
τ ‖2H . (5.16)

By Lemma 4.3 (ii), we have

τ
〈
Awk

τ , wk
τ

〉
W ∗×W

≥ τη‖wk
τ ‖p

W + τL g. (5.17)
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By the properties of operator B (see Lemma 4.4), we get

τ
〈
Buk

τ , wk
τ

〉
V ∗×V

=
〈
Buk

τ , uk
τ − uk−1

τ

〉
V ∗×V

=
1
2

〈
Buk

τ , uk
τ

〉
V ∗×V

(5.18)

− 1
2

〈
Buk−1

τ , uk−1
τ

〉
V ∗×V

+
1
2

〈
B(uk

τ − uk−1
τ ), uk

τ − uk−1
τ

〉
V ∗×V

≥ 1
2

〈
Buk

τ , uk
τ

〉
V ∗×V

− 1
2

〈
Buk−1

τ , uk−1
τ

〉
V ∗×V

= E
(
‖uk

τ‖2V − ‖uk−1
τ ‖2V

)
.

By Lemma 4.5 (i), we get

|τ
〈
Cuk

τ , wk
τ

〉
W ∗×W

| ≤ τβC

(
1 + ‖uk

τ‖
2
q

V

)
‖wk

τ ‖W

≤ τε‖wk
τ ‖p

W + τc1(ε)‖uk
τ‖2V + τc2(ε). (5.19)

Moreover we claim that

τ
〈
F k

τ , wk
τ

〉
W ∗×W

≤ τ‖F k
τ ‖W ∗‖wk

τ ‖W ≤ τε‖wk
τ ‖p

W + τc3(ε)‖F k
τ ‖q

W ∗ (5.20)

Finally we estimate the term ξk
τ γwk

τ . To this end, we consider two cases. If p = 2, then, analogously to
(5.10), we get

τ |ξk
τ γwk

τ | ≤ τε‖wk
τ ‖2W + τc4(ε)‖wk

τ ‖2H + τc5(ε). (5.21)

If p > 2, we use estimate analogous to (5.8) to obtain

τ |ξk
τ γwk

τ | ≤ τcM‖γ‖p‖wk
τ ‖p

W + τε‖wk
τ ‖p

W + τc6(ε). (5.22)

We sum up the Eq. (5.15) for k = 1, . . . , n ≤ N and use (5.16)–(5.20). Moreover we apply either (5.21)
for p = 2 or (5.22) for p > 2. Thus for p = 2, we obtain

1
2
‖wn

τ ‖2H + E‖un
τ ‖2V +

1
2

n∑
k=1

‖wk
τ − wk−1

τ ‖2H + (η − 3ε)
n∑

k=1

τ‖wk
τ ‖2W

≤ c4(ε)
n∑

k=1

τ‖wk
τ ‖2H + c1(ε)

n∑
k=1

τ‖uk
τ‖2V + c3(ε)

n∑
k=1

τ‖F k
τ ‖2W ∗

+
1
2
‖w0

τ‖2H + TL|g| + T (c2(ε) + c5(ε)) . (5.23)

On the other hand, when p > 2, we get

1
2
‖wn

τ ‖2H + E‖un
τ ‖2V +

1
2

n∑
k=1

‖wk
τ − wk−1

τ ‖2H + (η − cM‖γ‖p − 3ε)
n∑

k=1

τ‖wk
τ ‖p

W

≤ c1(ε)
n∑

k=1

τ‖uk
τ‖2V + c3(ε)

n∑
k=1

τ‖F k
τ ‖q

W ∗ +
1
2
‖w0

τ‖2H

+ TL|g| + T (c2(ε) + c6(ε)) . (5.24)

If p = 2, we apply Lemma 2.9 to (5.23) with ε = 1
6η. If p > 2, we use Hconst and apply Lemma 2.9 to

(5.24) with ε = 1
2 (η − cM‖γ‖p) > 0. In both cases, we obtain

max
1≤n≤N

‖wn
τ ‖2H + max

1≤n≤N
‖un

τ ‖2V ≤ c

(
1 +

n∑
k=1

τ‖F k
τ ‖q

W ∗

)
≤ c(1 + ‖F‖q

W∗) (5.25)

It follows from H(f) that F ∈ W∗, so the right-hand side of (5.25) remains bounded and we obtain
(5.11). Now from (5.25), we conclude that the right-hand side of (5.23), as well as the right-hand side of
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(5.24) are bounded, and in a consequence, (5.12) holds for all p ≥ 2. The estimates (5.13) follows directly
from H(j)(ii) and (5.12). Finally using (5.2), we obtain for a fixed k = 1, . . . , N

‖uk
τ‖p

W =

∥∥∥∥∥u0
τ + τ

k∑
i=1

wi
τ

∥∥∥∥∥
p

W

≤ 2p−1

(
‖u0

τ‖p
W +

(
τ

k∑
i=1

‖wi
τ‖W

)p)

≤ 2p−1

(
‖u0

τ‖p
W + kp−1τp−1τ

k∑
i=1

‖wi
τ‖p

W

)

≤ 2p−1

(
‖u0

τ‖p
W + T p−1τ

k∑
i=1

‖wi
τ‖p

W

)
.

The last estimates, together with (5.12), give (5.14). �

5.3. Convergence of the Rothe method

In this subsection, we construct sequences of time-dependent piecewise constant and piecewise linear
functions, whose values are determined by the solution of Problem Pτ . Next we study their convergence
to the solution of Problem P.

Let {wk
τ }N

k=0, {uk
τ}N

k=0 and {ξk
τ }N

k=0 be sequences described in the previous subsection. We define the
functions wτ , uτ : (0, T ] → W , ξτ : (0, T ] → R, F τ : (0, T ] → W ∗, wτ , uτ , : [0, T ] → W by the formulas

wτ (t) = wk
τ , uτ (t) = uk

τ , ξτ (t) = ξk
τ , F τ (t) = F k

τ for t ∈ ((k − 1)τ, kτ ] ,

wτ (t) = wk
τ +

(
t

τ
− k

)
(wk

τ − wk−1
τ ) for t ∈ [(k − 1)τ, kτ ] ,

uτ (t) = uk
τ +

(
t

τ
− k

)
(uk

τ − uk−1
τ ) for t ∈ [(k − 1)τ, kτ ] , k = 1, . . . , N.

Hereafter the convergence of all quantities subscribed with τ will be considered as τ → 0.
By Lemma 3.3 in [9], we know that

F τ → F in W∗. (5.26)

We observe that wτ is the distributional derivative of uτ , namely uτt(t) = wτ (t) for a.e. t ∈ (0, T ).
Moreover the distributional derivative of wτ is given by wτt(t) = wk

τ −wk−1
τ

τ for all t ∈ ((k − 1)τ, kτ) , k =
1, . . . , N .

We define the Nemytskii operators A : W → W∗, B : V → V∗, C : V → W∗, and ι : W → U given by
(Av)(t) = A(v(t)) for v ∈ W, (Bv)(t) = B(v(t)), (Cv)(t) = C(v(t)) for v ∈ V and (γv)(t) = γv(t) for
v ∈ W. Since {wk

τ }N
k=0 solves Problem Pτ , it follows that

(wτt, v)H + 〈Awτ , v〉W∗×W + 〈Buτ , v〉W∗×W + 〈Cuτ , v〉W∗×W
+

〈
γ∗ξτ , v

〉
W∗×W =

〈
F τ , v

〉
W∗×W for all v ∈ W, (5.27)

ξτ (t) ∈ M((γ wτ )(t)) for a.e. t ∈ (0, T ), (5.28)

where γ∗ : U∗ → W∗ denotes the operator adjoint to γ. Our goal is to obtain a solution of the original
Problem P, by passing to the limit in (5.27) and (5.28), as τ → 0. In the first step, we provide appropriate
bounds for functions wτ , wτ , uτ , uτ and ξτ .
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Lemma 5.8. Let the assumptions of Lemma 5.7 hold. Then there exists a positive constant c, that does
not depend on τ , such that

‖wτ‖L∞(0,T ;H) ≤ c, (5.29)

‖wτ‖C(0,T ;H) ≤ c, (5.30)

‖wτ‖W ≤ c, (5.31)

‖wτ‖W ≤ c, (5.32)

‖uτ‖L∞(0,T ;W ) ≤ c, (5.33)

‖uτ‖L∞(0,T ;W ) ≤ c, (5.34)

‖ξτ‖U∗ ≤ c, (5.35)

‖wτt‖W∗ ≤ c, (5.36)

‖wτ‖Mp,q(0,T ;W,W ∗) ≤ c. (5.37)

Proof. The estimates (5.29) and (5.30) follow directly from (5.11). Moreover ‖wτ‖p
W = τ

∑N
k=1 ‖wk

τ ‖p
W ,

so from (5.12), we obtain (5.31). The simple calculation shows that ‖wτ‖p
W ≤ τ

∑N
k=0 ‖wk

τ ‖p
W . Thus using

(5.12) and the fact that ‖w0
τ‖ ≤ C/

√
τ , we get (5.32). The estimates (5.33) and (5.34) follows from (5.14).

In order to show (5.35), it is enough to observe, that ‖ξτ‖q
U∗ = τ

∑N
k=1 |ξk

τ |q and apply (5.13).
Now we pass to the proof of (5.36). To this end, we calculate from (5.27)

‖wτt‖W∗ = sup
v ∈ W

‖v‖W = 1

| 〈wτt, w〉W ∗×W | = sup
v ∈ W

‖v‖W = 1

|(wτt, v)H|

≤ ‖Awτ‖W∗ + ‖Buτ‖W∗ + ‖Cuτ‖W∗ + ‖γ∗ξτ‖W∗ + ‖F τ‖W∗ (5.38)

Applying Lemma 4.3 (i), Lemma 4.4 and Lemma 4.5 (i) and using (5.31), (5.33) and (5.35), we estimate

‖Awτ‖W∗ ≤ c1(1 + ‖wτ‖p−1
W ) ≤ c, (5.39)

‖Buτ‖2W∗ ≤ c1‖Buτ‖2V∗ = c1

T∫
0

‖Buτ (t)‖2V ∗ dt

≤ c1E

T∫
0

‖uτ (t)‖2V dt = c1E‖uτ‖2V ≤ c2‖uτ‖L∞(0,T ;W ) ≤ c, (5.40)

‖Cuτ‖q
W∗ =

T∫
0

‖Cuτ (t)‖q
W ∗ dt ≤ c1

T∫
0

(1 + ‖uτ (t)‖2V ) dt

≤ c2(1 + ‖uτ‖2V) ≤ c3(1 + ‖uτ‖L∞(0,T ;W )) ≤ c, (5.41)

‖γ∗ξτ‖W∗ ≤ ‖γ∗‖L(U∗,W∗)‖ξτ‖U∗ ≤ c, (5.42)

where the constants c1, c2, c3, c may vary from line to line. Moreover from (5.26), it follows that F τ is
bounded in W∗. Thus applying (5.39)–(5.42) to (5.38), we obtain (5.36).

Next we pass to the proof of (5.37). Taking into account (5.31), it is enough to estimate the seminorm
‖wτ‖BV q(0,T ;W ∗). Since the function wτ is piecewise constant, the seminorm will be measured by means
of jumps between elements of sequence {wk

τ }N
k=1. Namely, let {kj}M

j=1 ⊂ {1, . . . , N} be an increasing
sequence of numbers such that k1 = 1, kM = N and

‖wτ‖q
BV q(0,T ;W ∗) =

M−1∑
j=1

‖wkj+1
τ − wkj

τ ‖q
W ∗ . (5.43)
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For a fixed j = 1, . . . ,M − 1, we obtain∥∥wkj+1
τ − wkj

τ

∥∥q

W ∗

=
∥∥wkj+1

τ − wkj+1−1
τ + wkj+1−1

τ − wkj+1−2
τ + · · · + wkj+1

τ − wkj
τ

∥∥q

W ∗

≤ (kj+1 − kj)q−1

kj+1−1∑
l=kj

∥∥wl+1
τ − wl

τ

∥∥q

W ∗ ≤ Nq−1

kj+1−1∑
l=kj

∥∥wl+1
τ − wl

τ

∥∥q

W ∗ . (5.44)

Combining (5.43) with (5.44), we get

‖wτ‖q
BV q(0,T ;W ∗) ≤ Nq−1

M−1∑
j=1

⎛
⎝kj+1−1∑

l=kj

∥∥wl+1
τ − wl

τ

∥∥q

W ∗

⎞
⎠

= Nq−1
N−1∑
l=1

‖wl+1
τ − wl

τ‖q
W ∗ = Nq−1τ q−1τ

N−1∑
l=1

∥∥∥∥wl+1
τ − wl

τ

τ

∥∥∥∥
q

W ∗

= T q−1‖wτt‖q
W∗ .

Thus it follows from (5.36) that ‖wτ‖BV q(0,T ;W ∗) ≤ c. Combining this with (5.31), we get (5.37), which
completes the proof of the lemma. �

The next lemmata deal with the properties of Nemytskii operators A, B, C and γ.

Lemma 5.9. If the assumptions H(g) hold, then the operator A satisfies:
H(A): if a sequence {wn}∞

n=1 ⊂ W is bounded in Mp,q(0, T ;W,W ∗), wn → w weakly in W and
lim supn→∞ 〈Awn, wn − w〉W∗×W ≤ 0, then Awn → Aw weakly in W∗.

The proof of Lemma 5.9 follows the lines of the proof of Lemma 1 in [15] and exploits Lemma 4.3.
We remark that every operator, which satisfies H(A), is said to be pseudomonotone with respect to

the space Mp,q(0, T ;W,W ∗).

Lemma 5.10. The operator B is linear, bounded, symmetric and strongly positive.

Lemma 5.10 follows directly from Lemma 4.4.

Lemma 5.11. If the assumption H(h) holds, then the operator C satisfies:
H(C): if a sequence {vn} is bounded in L∞(0, T ;V ) and vn → v in L1(0, T ;H), then Cvn → Cv in

W∗.

Proof. Let the sequence {vn} be bounded in L∞(0, T ;V ) and let vn → v in L1(0, T ;H). It follows from
Lemma 4.5 (ii) that

‖Cvn − Cv‖q
W∗ ≤

T∫
0

C
q
(max{‖vn(t)‖V , ‖v(t)‖V })‖vn(t) − v(t)‖H . (5.45)

Since the function C is nondecreasing, and {vn} is bounded in L∞(0, T ;V ), we conclude that for a.e.
t ∈ (0, T )

C(max{‖vn(t)‖V , ‖v(t)‖V }) ≤ C(max{‖vn‖L∞(0,T ;V ), ‖v‖L∞(0,T ;V )}) ≤ c.

Combining it with (5.45), we have ‖Cvn − Cv‖q
W∗ ≤ c‖vn − v‖L1(0,T ;H). Since vn → v in L1(0, T ;H), we

found that ‖Cvn − Cv‖W∗ → 0, which completes the proof. �
Lemma 5.12. The operator γ satisfies the following condition:

H(γ): if a sequence {vn} is bounded in Mp,q(0, T ;W,W ∗), then, for a subsequence
(still denoted by vn), we have γvn → γv in U .
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Proof. Let the sequence {vn} be bounded in Mp,q(0, T ;W,W ∗). We recall that W ⊂ C(0, L) ⊂ W ∗,
where the first embedding is compact and the second one is continuous. Thus applying Proposition 2.7,
we claim that for a subsequence (still denoted by vn) we have

vn → v in Lp(0, T ;C(0, L)). (5.46)

Thus we calculate

‖γvn − γv‖p
U =

T∫
0

|γvn(t) − γv(t)|p dt =

T∫
0

|vn(L, t) − v(L, t)|p dt

≤
T∫

0

‖vn(t) − v(t)‖p
C(0,L) dt ≤ c‖vn − v‖p

Lp(0,T ;C(0,L)). (5.47)

Combining (5.46) with (5.47), we get γvn → γv in U , which completes the proof. �

Now we are in a position to formulate the main theorem that guaranties the existence of solution of
Problem P.

Theorem 5.13. Let H(g), H(h), H(j) and H0 hold. Moreover assume that either p = 2 or Hconst holds.
Then there exists a solution of Problem P.

Proof. Let the assumptions of the theorem hold. Then for τ > 0 small enough, we can apply Theorem 5.6
to obtain the solution of Problem Pτ . Furthermore we construct the functions wτ , wτ , uτ , uτ and ξτ that
have been introduced at the beginning of this subsection. By Lemma 5.8, and the reflexivity of spaces W
and U , for subsequences still subscribed with τ , we have the following convergence results

wτ → w weakly ∗ in L∞(0, T ;H) and weakly in W, (5.48)

wτ → w weakly ∗ in L∞(0, T ;H) and weakly in W, (5.49)

wτt → wt weakly in W∗, (5.50)

uτ → u weakly ∗ in L∞(0, T ;W ), (5.51)

uτ → u weakly ∗ in L∞(0, T ;W ), (5.52)

ξτ → ξ weakly in U∗, (5.53)

where w,w, u, u ∈ W and ξ ∈ U . Note that symbol wt in (5.50) denotes the distributional derivative of
the function w from (5.49). In what follows we will show that the limits obtained in (5.48) and (5.49)
coincide, and so do the limits obtained in (5.51) and (5.52). To this end, we calculate

‖wτ − wτ‖p
W∗ =

N∑
k=1

kτ∫
(k−1)τ

(kτ − t)p

∥∥∥∥wk
τ − wk−1

τ

τ

∥∥∥∥
p

W ∗
=

τp

p + 1
‖wτt‖p

W∗ .

Recalling (5.36), we find that wτ − wτ → 0 in W∗. From (5.48) and (5.49), we have wτ − wτ → w − w
weakly in W. Since the embedding W ⊂ W∗ is continuous, we also have wτ − wτ → w − w weakly in
W∗. From uniqueness of weak limit, we have w = w. Analogously, we calculate

‖uτ − uτ‖p
W =

τp

p + 1
‖uτt‖p

W =
τp

p + 1
‖wτ‖p

W . (5.54)

Thus it follows from (5.31), (5.51), (5.52) and the uniqueness of weak limit that u = u. From (5.52), and
from the fact that uτt = wτ → w weakly in W, we have

w = ut. (5.55)
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Our goal is to pass to the limit in (5.27) and (5.28), as τ → 0. From (5.50), we have

(wτt, v)H = 〈wτt, v〉W∗×W → 〈wt, v〉W∗×W = (wt, v)H. (5.56)

From H(B), it is clear that B is linear and continuous and thus also weakly continuous. Therefore since
uτ → u weakly in W, we get Buτ → Bu weakly in W∗. Thus we have

〈Buτ , v〉W∗×W → 〈Bu, v〉W∗×W . (5.57)

From (5.49) and (5.52), we have uτ → u weakly in W and uτt → ut weakly in W∗. Thus by Lions–Aubin
compactness theorem, it follows that uτ → u in Lp(0, T ;H). On the other hand, from (5.54), we get
uτ → uτ in W and, in a consequence, we find that uτ → u in Lp(0, T ;H). Moreover (5.33) implies that
uτ is bounded in L∞(0, T ;V ). Thus it follows from Lemma 5.11 that

Cuτ → Cu in W∗, (5.58)

and, in particular, Cuτ → Cu weakly in W∗, i.e., we get

〈Cuτ , v〉W∗×W → 〈Cu, v〉W∗×W . (5.59)

From (5.53) we easily obtain〈
γ∗ξτ , v

〉
W∗×W =

〈
ξτ , γv

〉
U∗×U →

〈
ξ, γv

〉
U∗×U . (5.60)

Moreover (5.26) implies that F τ → F weakly in W∗, i.e., we have〈
F τ , v

〉
W∗×W →

〈
F , v

〉
W∗×W . (5.61)

It remains to show that

〈Awτ , v〉W∗×W → 〈Aw, v〉W∗×W . (5.62)

Its enough to show that convergence (5.62) holds for a subsequence. From (5.27), it follows that

lim sup
τ→0

〈Awτ , wτ − w〉W∗×W ≤ lim sup
τ→0

〈Fτ , wτ − w〉W∗×W

− lim inf
τ→0

(wτt, wτ − w)H − lim inf
τ→0

〈Buτ , wτ − w〉W∗×W

− lim inf
τ→0

〈Cuτ , wτ − w〉W∗×W − lim inf
τ→0

〈
ξτ , γ wτ − γw

〉
U∗×U . (5.63)

From (5.48) and (5.26), we have limτ→0 〈Fτ , wτ − w〉W∗×W = 0. Next we observe that

(wτt, wτ − w)H = (wτt − wt, wτ − w)H + 〈wτt, wτ − wτ 〉W∗×W

+ 〈wt, wτ − w〉W∗×W =
1
2

(
‖wτ (T ) − w(T )‖2H − ‖wτ (0) − w(0)‖2H

)
+ 〈wτt, wτ − wτ 〉W∗×W + 〈wt, wτ − w〉W∗×W . (5.64)

Taking into account (5.49), (5.50) and the fact that the embedding {w ∈ W |w′ ∈ W∗} ⊂ C(0, T ;H)
is continuous, we claim that wτ → w weakly in C(0, T ;H). Thus, in particular, we have wτ (0) → w(0)
weakly in H. On the other hand, by the assumptions, wτ (0) = v0

τ → v0 strongly, and in consequence,
also weakly in H. Thus from the uniqueness of the weak limit, we have

w(0) = v0 and wτ (0) → w(0) strongly in H. (5.65)

A direct calculation shows that 〈wτt, wτ − wτ 〉W∗×W ≥ 0. Thus from (5.49), (5.64) and (5.65) we have
lim infτ→0(wτt, wτ − w)H ≥ 0. We recall that wτ = uτt and w = ut and calculate

〈Buτ , wτ − w〉W∗×W = 〈Buτ , uτt − ut〉W∗×W = 〈Buτ − Bu, uτt − ut〉W∗×W
+ 〈Bu,wτ − w〉V∗×V + 〈Buτ − Buτ , wτ − w〉V∗×V . (5.66)
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From Lemma 4.4, it follows that

〈Buτ − Bu, uτt − ut〉W∗×W =
1
2

〈B(uτ (T ) − u(T )), uτ (T ) − u(T )〉W ∗×W

− 1
2

〈B(uτ (0) − u(0)), uτ (0) − u(0)〉W ∗×W ≥ −1
2
E‖uτ (0) − u(0)‖2V . (5.67)

From (5.48), (5.52) and from the fact that w = w, it follows that uτ → u weakly in {w ∈ W |wt ∈ W}.
Since the latter is continuously embedded in C(0, T ;W ), we have uτ → u weakly in C(0, T ;W ), and
in particular uτ (0) → u(0) weakly in W . In a consequence, we also get uτ (0) → u(0) weakly in V . By
assumption, we have uτ (0) = u0

τ → u0 strongly and, in a consequence, also weakly in V . Since the weak
limit is unique, we claim that

u(0) = u0 and uτ (0) → u(0) in V. (5.68)

Since wτ → w weakly in V, uτ → uτ in V (see (5.54)) and B is continuous, we get

lim
τ→0

〈Bu,wτ − w〉V∗×V + 〈Buτ − Buτ , wτ − w〉V∗×V = 0. (5.69)

From (5.66) to (5.69), we see that lim infτ→0 〈Buτ , wτ − w〉W∗×W ≥ 0. From (5.58) and (5.48), we get
limτ→0 〈Cuτ , wτ − w〉W∗×W = 0. Finally, from (5.37) and Lemma 5.12, we find that for a subsequence,
still denoted by wτ , we have γ wτ → ζ in U , where ζ ∈ U . Since γ is linear and continuous, it is also
weakly continuous. Thus from (5.48), we have γ wτ → γw weakly in U . By the uniqueness of weak limit,
we have ζ = γw and

γ wτ → γw in U . (5.70)

Combining it with (5.53), we obtain limτ→0

〈
ξτ , γ wτ − γw

〉
U∗×U = 0. Summarizing, it follows from (5.63)

that lim supτ→0 〈Awτ , wτ − w〉W∗×W ≤ 0. Combining this with (5.37) and (5.48), we can use Lemma
5.9, to obtain (5.62). Now applying (5.56), (5.57), (5.59)–(5.62), we pass to the limit in (5.27) and obtain

(wt, v)H +
〈
Aw + Bu + Cu + γ∗ξ − f, v

〉
W∗×W = 0 for all v ∈ W. (5.71)

Now we pass to the limit in (5.28). First we recall that the multifunction M : R → 2R has nonempty,
closed and convex values. Furthermore by Proposition 5.6.10 of [12], it is also upper semicontinuous from
R furnished with the strong topology into R furnished with the weak topology (in fact, the strong and
the weak topology on R coincide). By (5.70), it follows that for a subsequence, still denoted by wτ , we
have γ wτ (t) → γw(t) for a.e. t ∈ (0, T ). This, together with (5.53), allows to apply Proposition 2.8 to
(5.28) and obtain

ξ(t) ∈ M((γ w)(t)) for a.e. t ∈ (0, T ). (5.72)

Taking into account (5.55), (5.65), (5.68), (5.71) and (5.72), we conclude that u is a solution of Problem
P, which concludes the proof. �

Finally, using Remark 4.2 we deduce that u is a weak solution of Problem P , which completes the
proof of Theorem 4.9.
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