
Z. Angew. Math. Phys. (2016) 67:49
c© 2016 The Author(s).
This article is published with open access at Springerlink.com
0044-2275/16/030001-12
published online April 23, 2016
DOI 10.1007/s00033-016-0645-z

Zeitschrift für angewandte
Mathematik und Physik ZAMP

On the stability and uniqueness of the flow of a fluid through a porous medium
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Abstract. In this short note, we study the stability of flows of a fluid through porous media that satisfies a generalization
of Brinkman’s equation to include inertial effects. Such flows could have relevance to enhanced oil recovery and also to the
flow of dense liquids through porous media. In any event, one cannot ignore the fact that flows through porous media are
inherently unsteady, and thus, at least a part of the inertial term needs to be retained in many situations. We study the
stability of the rest state and find it to be asymptotically stable. Next, we study the stability of a base flow and find that
the flow is asymptotically stable, provided the base flow is sufficiently slow. Finally, we establish results concerning the
uniqueness of the flow under appropriate conditions, and present some corresponding numerical results.
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1. Introduction

In this note, we shall study the stability of flows of a fluid that is governed by a generalization to
Brinkman’s equation that takes into account the effect of inertia. Brinkman [1,2] developed an equation
for the flow of a fluid through a porous solid which reduces to the equation developed by Darcy [3] for the
flow through a porous medium when one ignores the frictional effects within the fluid and to the equations
governing Stokes flow when the effects of the friction at the pores are ignored. Forchheimer [4] suggested
a modified “drag” due to the friction at the pore as he found the predictions of Darcy’s equation to be
not in keeping with experimental effects. The interaction term that he introduced leads to the equation
becoming nonlinear. However, in the models proposed by Darcy, Brinkman and Forchheimer the non-
linearity of the inertial effect is ignored. The justification offered by Darcy and Brinkman to ignore the
effects of inertia is that the flow in a porous media is expected to be slow. However, as shown by Munaf
et al. [5], inertial effects can become important in the flow of fluids through porous media under certain
circumstances. In fact, in problems such as enhanced oil recovery where the oil is driven by steam at
high pressure, when the pressure gradients are high or when the flow of dense fluids is considered, inertial
effects can become important, or at least significant enough to be not ignored. In flows involving high
pressures and high pressure gradients, it might be necessary to include the effect of the pressure on the
viscosity as well as on the “drag” term that arises due to frictional effects at the pore.

Recently, Subramaniam and Rajagopal [6] investigated flow of fluids at high pressures and pressure
gradients under the assumption that both the viscosity and the “drag coefficient” depend on the pres-
sure. They found flow rates markedly different from those predicted by the classical model with constant
viscosity and constant “drag coefficient.” They also found the development of boundary layers (regions
where the vorticity is much larger than the rest of the flow domain) wherein the high pressures are con-
fined. Later, Kannan and Rajagopal [7] studied the flow of fluids through an inclined porous medium
at high pressures and pressure gradients in the presence of the effects of gravity and their results show
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the development of boundary layers wherein the vorticity is concentrated. The flows considered by Sub-
ramaniam and Rajagopal [6] and Kannan and Rajagopal [7] are steady and of a special form such that
the inertial term is identically zero. However, the flow fields considered in these and several other studies
can be viewed only as approximations to the real flows that take place in a porous medium as the main
assumption in such researches is that the flow is unidirectional. It is important to recognize that flows
through porous media are inherently unsteady, and thus, one has to include at the very least the unsteady
part of the inertial term. Moreover, flows through porous media are never truly one-dimensional as the
flows take place through tortuous pores, and thus, one cannot neglect the nonlinear term in the inertia
on that basis. In fact, when very high pressure gradients are involved the flow could be locally turbulent.
Here, we shall not consider turbulent flows. We shall, however, modify Brinkman’s equation to take into
account the effects of inertia.

A detailed discussion of the various assumptions that go into the development of Brinkman’s equation
can be found in the recent article on a hierarchy of approximations for the flow of fluids through porous
media by Rajagopal [8].1 While discussing Darcy’s approximation, Brinkman very astutely observed that
“Equation (2.2), however, cannot be used as such. A first objection is that no viscous stress has been
defined with relation to it. The viscous shearing stresses acting on a volume element of a fluid have
been neglected; only the damping force of the porous mass ην/k has been retained. This is a good
approximation for small permeabilities.2” When the permeability is large, it is necessary to include the
effect of the viscous dissipation within the fluid in the modeling. Brinkman’s equation can be derived
systematically from the theory of mixtures (see Truesdell [9], Bowen [10], Atkin and Craine [11], Samohyl
[12], Rajagopal and Tao [13] for a detailed discussion of the mechanics of mixtures) by making the
following assumptions (see [8]):

1. The solid is a rigid porous solid, and thus, the balance of linear momentum of the solid can be ignored;
the stresses in the solid are whatever they need to be to meet the balance of linear momentum of
the solid.

2. Frictional effects between the fluid and the pore as well as frictional effects in the fluid due to the
viscosity of the fluid are included.3 The fluid will be assumed to be a linearly viscous fluid.

3. The flow is sufficiently slow that inertial effects in the fluid can be neglected.
4. The fluid density is assumed to be a constant.
5. The flow is steady.

We shall not enforce the requirement that inertial effects be neglected or that the flow be steady. Based on
this generalization of the model due to Brinkman, we shall consider the stability of the base flow to finite
disturbances and conditions under which we can establish its uniqueness. The seminal works of Reynolds
[15] and Orr [16], followed by the work of Synge [17], Kampe de Feriet [18], Berker [19], Thomas [20],
Hopf [21] laid the foundation to the stability of flows of Navier–Stokes fluids to finite disturbances and
Serrin [22] built upon this work and was able to obtain conditions for the Reynolds number that would
guarantee the stability of flows. In such a way he extended the work of Hopf and Thomas under which
one could establish the uniqueness of flows of the Navier–Stokes fluid. We shall follow a similar procedure
to establish the asymptotic stability of the base flow of a fluid that satisfies the equations developed by
Brinkman and establish conditions under which the solution is unique. We show that the base flow is
globally asymptotically stable, i.e., the L2-norm of the disturbances to the basic flow decay exponentially
in time, provided the base flow is sufficiently slow in the sense that the Reynolds number does not exceed
a critical threshold. We are also able to establish that the base flow is unique under the same conditions.

1 There are several obvious typographical errors which appear in the paper by Rajagopal [8]. The sign in front of in
Eqs. (3.4), (3.7), (3.11), (3.14) and (4.8) should be a negative sign instead of a positive one.

2 By Eq. (2.2) Brinkman is referring to Darcy’s equation.
3 A detailed discussion of the various interaction mechanisms between constituents of fluids can be found in the article

by Johnson et al. [14].
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Several mathematical studies concerning convection in porous media [23–28] have been carried out by
coupling Brinkman’s equation with the equation of balance of energy, the two equations coupled by a
term accounting for the effects of buoyancy as in the Oberbeck–Boussinesq approximation [29–31]. Such
a classic approximation is widely used but it is not an approximation that retains terms of like order in a
perturbation (see the works by Rajagopal et al. for a detailed discussion of the issues [32] and a rigorous
derivation of Oberbeck–Boussinesq-type approximations governing convection in a porous medium [33]).
An up to date discussion of the literature pertinent to the stability of flows in porous media can be found
in the recent book by Straughan [34].

The plan of the paper is as follows. In the next section, we document the governing equations and
in Sect. 3, we study the asymptotic stability of the rest state. In the final section, we carry out the
asymptotic stability analysis to a base flow and provide some corresponding numerical results.

2. Governing equations

The equation developed by Brinkman [1,2] is

− ∇p + μΔv − αv + ρb = 0. (2.1)

In the above equation, μ denotes the fluid viscosity, α the drag coefficient due to the frictional resistance
offered by the pore to the flow of the fluid, p the pressure, v the velocity and b the body force. We shall
assume that both the viscosity and drag coefficient are positive. Since it is assumed that the fluid density
ρ is constant, the fluid can only undergo isochoric motions, and thus, we have

divv = 0. (2.2)

Equations (2.1) and (2.2) provide four scalar equations for the three components of the velocity and
pressure. The above model due to Brinkman assumes that the flow is sufficiently slow that inertial effects
in the fluid can be ignored. We shall consider a generalization that takes into account inertial effects due
to the flow, namely

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p + μΔv − αv + ρb. (2.3)

We notice that when α is zero, the above equation reduces to the Navier–Stokes equation.
We shall henceforth assume that the body force field is conservative with potential φ, i.e., b = −∇φ.

Then, Eq. (2.3) can be rewritten as

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇P + μΔv − αv, (2.4)

where P = p + ρφ.

3. Uniqueness and stability in bounded domains

Let Ω be a bounded domain and let d denote its diameter. Let us non-dimensionalize Eqs. (2.4) and (2.2)
according to

x∗ =
x

d
, v∗ =

v

V
, t∗ =

V

d
t, P ∗ =

P

ρV 2
, (3.1)
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V being a reference velocity (henceforth, the maximum modulus of the velocity field will be taken as a
reference value). By dropping the asterisks for simplicity of notation, Eqs. (2.4) and (2.2) become⎧⎨

⎩
DR

[
∂v

∂t
+ (v · ∇)v

]
= −DR∇P + DΔv − v,

divv = 0,

(3.2)

where R = ρV d/μ and D = μ/(αd2) are the Reynolds and Darcy numbers, respectively. Let m0 = (v̄, P̄ )
be a solution to (3.2) in Ω satisfying a Dirichlet-type boundary condition on ∂Ω and let us study its
uniqueness and stability. We first introduce the perturbations (u,Π) to the basic solution m0, i.e.,

v̄ = v + u, P = P̄ + Π, (3.3)

and then we write down the evolution equations of the perturbations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

DR

[
∂u

∂t
+ (u · ∇)v̄ + (v̄ · ∇)u + (u · ∇)u

]

= −DR∇Π + DΔu − u in Ω×]0,+∞[,

divu = 0 in Ω×]0,+∞[,

u = 0 on ∂Ω×]0,+∞[.

(3.4)

On forming the scalar product of (3.4)1 with u, integrating over the domain Ω and taking into account
(3.4)2, (3.4)3 and that divv̄ = 0, we obtain

DR
dE

dt
= −2G(v̄,u, t)E(t), (3.5)

where

E(t) = ‖u(·, t)‖22 =
∫
Ω

|u(x, t)|2dV (3.6)

is the kinetic energy associated with the perturbations, the functional G is defined as

G(v̄,u, t) =

‖u‖22 + D

⎛
⎝‖∇u‖22 + R

∫
Ω

u · D̄udV

⎞
⎠

‖u‖22
, (3.7)

and

D̄ =
1
2

[∇v̄ + (∇v̄)T
]
. (3.8)

Let λi(x, t) (i = 1, 2, 3) be the eigenvalues of the symmetric second-order tensor D̄(x, t) and assume
that

λmin = inf
t≥0

min
x∈Ω

min {λ1(x, t), λ2(x, t), λ3(x, t)} > −∞. (3.9)

(It is worth noting that, since divv̄ = trD̄ = 0, λmin is non-positive and λmin vanishes if and only if
the velocity field v̄ is constant in Ω × [0,+∞[.) Then, the functional G defined through (3.7) is bounded
from below in I × [0,+∞[, I being the space of the kinematically admissible perturbations, that is, the
space of divergence-free vector fields defined in Ω and vanishing on ∂Ω. In fact, assumption (3.9) and the
Poincaré inequality [35,36],

‖∇u‖22 ≥ C(Ω)‖u‖22 ∀u ∈ I, (3.10)
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yield

G(v̄,u, t) ≥ ‖u‖22 + D
(‖∇u‖22 − R|λmin|‖u‖22

)
‖u‖22

(3.11)

≥ 1 + D [C(Ω) − R|λmin|] ∀(u, t) ∈ I × [0,+∞[.

Next, by following similar arguments as in [37] one can prove that for all t ∈ [0,+∞[ the functional
G(v̄,u, t) admits minimum in I and, in the light of (3.11),

γ ≡ inf
t≥0

min
u∈I

G(v̄,u, t) ≥ 1 + D [C(Ω) − R|λmin|] . (3.12)

We are now in position to prove the following theorem.

Theorem 1. Let m0 = (v̄, P ) be a solution to (3.2) satisfying Dirichlet-type boundary conditions such that

γ = inf
t≥0

min
u∈I

G(v̄,u, t) > 0, (3.13)

with G as in (3.7). Then, m0 is globally exponentially stable.

Proof. From (3.5) and (3.13) we deduce that

dE

dt
≤ − 2γ

DR
E(t). (3.14)

Integrating (3.14) yields

E(t) ≤ E(0) exp
(

− 2γt

DR

)
, (3.15)

and hence the kinetic energy associated with the perturbations decay exponentially in time. �

As a simple example of application of Theorem (1), if v̄ ≡ 0, then γ = 1 +DC(Ω) > 0, and thus, the
rest state is globally exponentially stable.

Another sufficient condition for the stability of the basic motion m0 is given by the following corollary.

Corollary 1. Let m0 = (v̄, P ) be a solution to (3.2) satisfying Dirichlet-type boundary conditions on
∂Ω × [0,+∞[ such that (3.9) holds. Assume that

R <
1 + DC(Ω)
D |λmin| . (3.16)

Then, m0 is globally exponentially stable.

Proof. The proof follows immediately from Theorem (1) and (3.12). �

It is worth noting that the stability condition (3.16) implies (3.13) but not vice versa. In addition, the
stability condition (3.16) is easier to apply as it does not require the solution of a variational problem.

We conclude this section by remarking that if a solution to (3.2) under a prescribed initial condition
on the velocity field meets the hypotheses of Theorem 1 or Corollary 1, then it is unique.

4. Laminar solutions

In this section, we are interested in the stability of laminar flows trough a porous medium that is bounded
in only one direction. Then, once introduced a Cartesian frame of reference Oxyz with basis {i, j,k}, the
porous layer may be represented by the domain Ωd = R

2 × [0, d] and the laminar flows whose stability
we shall investigate are of the form

v = U(z)i. (4.1)
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Following the procedure carried out in the previous section, we non-dimensionalize equations (2.4) and
(2.2) according to (3.1) (in which d is now the thickness of the porous layer and V = maxz∈[0,d] |U(z)|) to
obtain (3.2) once again. It is easy to check that the following solutions to (3.2) represent all the possible
laminar flows of the form (4.1):⎧⎪⎨

⎪⎩
U(z) = c1 exp(τz) + c2 exp(−τz) + A0,

P = P̄ (x) = − A0

DR
x + P0,

(4.2)

where c1, c2, A0 and P0 are integration constants and τ = 1/
√
D .

As special cases of (4.2), for

• U(0) = 0, U(1) = 1 and A0 = 0 one obtains the Couette-type flow⎧⎨
⎩

U(z) =
sinh(τz)
sinh τ

,

P = P̄ (x) = P0,

(4.3)

• U(0) = U(1) = 0 and A0 �= 0 we get the Poiseuille-type flow4

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

U(z) = sign(A0)
cosh

(τ

2

)
− cosh

[
τ

(
z − 1

2

)]

cosh
τ

2
− 1

,

P = P̄ (x) = − A0

DR
x + P0.

(4.4)

5. Stability of laminar flows

Let u = ui + vj + wk and Π be the perturbations to the velocity and pressure fields given by (4.2), i.e.,

v = U(z)i + u, P = P̄ (x) + Π. (5.1)

From (3.2), we deduce that the perturbations satisfy the following equations⎧⎨
⎩

DR

[
∂u

∂t
+ U

∂u

∂x
+ U ′wi + (u · ∇)u

]
= −DR∇Π − u + DΔu,

divu = 0,

(5.2)

the prime denoting differentiation with respect to z, and the boundary conditions

u = 0 z = 0, 1. (5.3)

From here on, we shall assume that the perturbations u and Π are periodic in the x and y directions
with periods 2π/ax and 2π/ay (ax > 0, ay > 0), respectively, denote by Ωp the periodicity cell

Ωp =
[
− π

ax
,

π

ax

]
×

[
− π

ay
,

π

ay

]
× [0, 1] (5.4)

and let a =
√

a2
x + a2

y be the wave number.

4 For the sake of brevity, we shall hereafter refer to the Couette-type and Poiseuille-type flows as “Couette” and
“Poiseuille” flows.
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5.1. Linear stability

On linearizing Eq. (5.2), we obtain⎧⎨
⎩

DR

[
∂u

∂t
+ U

∂u

∂x
+ U ′wi

]
= −DR∇Π − u + DΔu,

divu = 0.

(5.5)

By taking the third components of curl and curlcurl of (5.5)1 and taking into account (5.5)2, we deduce
that the components of the perturbation to the velocity field may be found by solving the following
boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DR

(
−∂Δw

∂t
− U

∂Δw

∂x
+ U ′′ ∂w

∂x

)
= Δw − DΔΔw,

DR

(
∂ζ

∂t
+ U

∂ζ

∂x
− U ′ ∂w

∂y

)
= −ζ + DΔζ,

Δ∗u = − ∂2w

∂x∂z
− ∂ζ

∂y
,

Δ∗v = − ∂2w

∂y∂z
+

∂ζ

∂x
,

w =
∂w

∂z
= 0 on z = 0, 1,

ζ = 0,

(5.6)

where ζ = curlu · k and

Δ∗ =
∂2

∂x2
+

∂2

∂y2
(5.7)

is the two-dimensional Laplacian. From (5.6), we deduce that the only independent component of the
perturbation to the velocity field is w as, once w is determined by solving Eq. (5.6)1 subject to the
boundary conditions (5.6)5, all the other unknown scalar fields may be determined from the remaining
equations and boundary conditions. Finally, as the perturbation to the pressure field is concerned, once
all the components of u are determined, it may be determined by solving (5.5)1.

Since the coefficients in (5.6)1 depend only on z, Eq. (5.6)1 admits solutions which depend on x, y
and t exponentially. We consider therefore solutions of the form

w(x, y, z, t) = W (z) exp[i(axx + ayy − axct)], (5.8)

in which it is understood that the real parts of these expressions must be taken into consideration to
obtain physically meaningful quantities. The wave speed c may be complex, i.e., c = cr + ici, and the
expression (5.8) thus represents waves which travel in the x and y coordinate directions with phase speed
axcr/a and which grow or decay in time given by exp(−axcit). Such a wave is stable if ci > 0, unstable if
ci < 0, and neutrally stable if ci = 0. If we now let D = d/dz, then on substituting the expression (5.8)
into equation (5.6)1 and boundary conditions (5.6)4 we obtain the following boundary value problem5

{
[D(D2 − a2) − 1](D2 − a2)W = iaxDR[(U − c)(D2 − a2) − U ′′]W,

W = DW = 0 at z = 0, 1.
(5.9)

The fourth-order system (5.9) can be solved by using the Chebyshev tau method [38], which is a
spectral technique coupled with the QZ algorithm. For Poiseuille flow, the critical thresholds for the

5 Equation (5.9)1 represents the generalization of the Orr–Sommerfeld equation to laminar flows in a porous medium.
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Fig. 1. Visual representation of the Poiseuille flow linear instability thresholds with critical Reynolds number R plotted
against logD

Reynolds number shown in Fig. 1 correspond to comparable studies on Brinkman flow by Hill and
Straughan [39]. On the contrary, Couette flow does not yield instability thresholds utilizing linear theory.

5.2. Nonlinear stability

In order to study the nonlinear stability of the laminar flows (4.2), we follow the same arguments as in
Sect. 3 but modifying the notations slightly. More precisely, we introduce the functional

F(U,u) ≡

‖u‖22 + D

⎛
⎜⎝‖∇u‖22 + R

∫
Ωp

U ′uwdV

⎞
⎟⎠

‖u‖22
, (5.10)

and set

γ(ax, ay) ≡ min
u∈Ip

F(U,u), (5.11)

where the space of the kinematically admissible perturbations Ip is the space of the divergence-free vector
fields u defined in Ωp such that⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u

(
− π

ax
, y, z

)
= u

(
π

ax
, y, z

)
∀(y, z) ∈

[
− π

ay
,

π

ay

]
× [0, 1],

u

(
x,− π

ay
, z

)
= u

(
x,

π

ay
, z

)
∀(x, z) ∈

[
− π

ax
,

π

ax

]
× [0, 1],

u (x, y, 0) = u (x, y, 1) = 0 ∀(x, y) ∈
[
− π

ax
,

π

ax

]
×

[
− π

ay
,

π

ay

]
.

(5.12)

In this way, we may state that if γp(ax, ay) > 0, then the laminar flow (4.2) is non-linearly exponentially
stable with respect to all perturbations periodic in the x and y directions with periods 2π/ax and 2π/ay

as
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Fig. 2. Visual representation of the Poiseuille flow nonlinear stability thresholds with critical Reynolds number R plotted
against logD . The thresholds for β values between 0 and 1 are contained between the β = 0 and β = 1 lines
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Fig. 3. Visual representation of the Couette flow nonlinear stability thresholds with critical Reynolds number R plotted
against logD . The thresholds for β values between 0 and 1 are contained between the β = 0 and β = 1 lines

‖u(·, t)‖22 ≤ ‖u(·, 0)‖22 exp
[
−2γp(ax, ay)

DR
t

]
∀u ∈ Ip. (5.13)

In conclusion, from (5.13) we may state the following theorem.

Theorem 2. Assume that

γcr ≡ min
ax,ay>0

γp(ax, ay) > 0. (5.14)

Then the laminar flow (4.2) is globally exponentially stable.

The Euler–Lagrange equations corresponding to the variational problem (5.11) are⎧⎨
⎩

∇χ + (1 − σ)u − DΔu +
1
2
DRU ′(wi + uk) = 0,

divu = 0,

(5.15)
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where χ is a Lagrange multiplier associated with the incompressibility constraint. Then, the number
γp(ax, ay) is the least eigenvalue σ of the characteristic value problem (5.15)and (5.12).

Since the Euler–Lagrange equations (5.15) are linear, we may follow the same arguments as
those employed for the linear stability analysis. More specifically, we take the third components of
curl and curlcurl of (5.15)1, use (5.15)2 to get (5.6)3, (5.6)4 once again and look for solutions of
the form {

w(x, y, z) = W (z) exp[i(axx + ayy)],

ζ(x, y, z) = curlu · k = Ψ(z) exp[i(axx + ayy)]
(5.16)

to reduce the eigenvalue problem (5.15) and (5.12) to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(D2 − a2)2W + (σ − 1)(D2 − a2)W

+
DR

2
(2iaxU ′DW + iayU ′Ψ + iaxU ′′W ) = 0,

D(D2 − a2)Ψ + (σ − 1)Ψ +
DR

2
iayU ′W = 0,

W = DW = Ψ = 0 at z = 0, 1.

(5.17)

The sixth-order system (5.17) has been solved using the Chebyshev tau method [38] for Poiseuille
(Fig. 2) and Couette (Fig. 3) flows. We let ax = a

√
β and ay = a

√
1 − β, such that β ∈ [0, 1] for the

range of ax and ay values which comprise wavenumber a.
The numerical results for Poiseuille flow are in good agreement with those in [39].
Although there is some quantitative differences with the results for Poiseuille flow, the Couette flow

nonlinear stability thresholds have a similar structure.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci.
Res. A 1, 27–34 (1947)

2. Brinkman, H.C.: On the permeability of the media consisting of closely packed porous particles. Appl. Sci. Res. A 1, 81–
86 (1947)

3. Darcy, H.: La Fontaines Publiques de La Ville de Dijon. Victor Dalmont, Paris (1846)
4. Forchheimer, P.: Wasserbewegung durch Boden. Zeits. V. Deutsch. Ing 45, 1782–1788 (1901)
5. Munaf, D., Lee, D., Wineman, A.S., Rajagopal, K.R.: A boundary value problem in groundwater motion analysis-

comparisons based on Darcy’s law and the continuum theory of mixtures. Math. Model. Methods Appl. Sci. 3, 231–
248 (1993)

6. Subramaniam, S.C., Rajagopal, K.R.: A note on the ow through porous solids at high pressures. Comput. Math.
Appl. 53, 260–275 (2007)

7. Kannan, K., Rajagopal, K.R.: Flow through porous media due to high pressure gradients. Appl. Math. Comput. 199, 748–
759 (2008)

8. Rajagopal, K.R.: Hierarchy of models for the flow of fluids through porous media. Math. Model. Methods Appl.
Sci. 17, 215–252 (2007)

9. Truesdell, C.: Sulle basi della termomeccanica. Rend. Accad. Lincei 22, 33–38 and 158–166 (1957)
10. Bowen, R.M.: Mechanics of mixtures. In: Eringen, A.C. Continuum Physics, Vol III., pp. 1–127. Academic Press, New

York (1976)

http://creativecommons.org/licenses/by/4.0/


ZAMP On the stability and uniqueness of the flow of a fluid through a porous medium Page 11 of 12 49

11. Atkin, R.J., Craine, R.E.: Continuum theory of mixtures: basic theory and historical developments. Q. J. Mech. Appl.
Math. 29, 209–234 (1976)

12. Samohyl, I.: Thermodynamics of Irreversible processes in Fluid Mixtures. Teubner-Texte zur Physik, Leipzig (1987)
13. Rajagopal, K.R., Tao, L.: Mechanics of Mixtures. World Scientific Press, Singapore (1995)
14. Johnson, G., Massoudi, M., Rajagopal, K.R.: A review of interaction mechanisms in fluid–solid flows. DOE Report,

DOE/PETC/TR-90/9, Pittsburgh (1990)
15. Reynolds, O.: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos.

Trans. R. Soc. Lond. A 186, 123–164 (1895)
16. Orr, W.M.: The stability or instability of the steady motions of a perfect liquid and of a viscous fluid. Proc. R. Ir.

Acad. 27, 9–138 (1907)

17. Synge, S.L.: Hydrodynamical stability. Am. Math. Soc. 2, 227–269 (1938)
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