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Abstract. In this paper, we establish a blow-up criterion of strong solutions to the 3D incompressible magnetohydrodynamics
equations including two nonlinear extra terms: the Hall term (quadratic with respect to the magnetic field) and the ion-slip
term (cubic with respect to the magnetic field). This is an improvement of the recent results given by Fan et al. (Z Angew
Math Phys, 2015).
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1. Introduction

We are interested in the regularity criterion of the following incompressible magnetohydrodynamics equa-
tions with the Hall and ion-slip effects in R3:

u+ (u-V)u—(VxB)x B—Au+Vr =0,
B+ (u-V)B—(B-V)u+V x((VxB)xB)—AB=Vx[Bx(Bx(VxB), (1.1)
V-u=V-B=0, '
(u, B)(2,0) = (uo(), Bo(x)),

where x € R? and t > 0. Here u = u(z,t) € R3, B = B(z,t) € R? and 7 = 7(z,t) are nondimensional
quantities corresponding to the flow velocity, the magnetic field and the pressure at the point (x,t), while
uo(z) and By(x) are the given initial velocity and initial magnetic field with V -4y = 0 and V - By = 0,
respectively.

Magnetohydrodynamics (MHD) is a fluid theory that describes plasma physics by treating the plasma
as a fluid of charged particles. Hence, the equations that describe the plasma form a nonlinear system
that couples Navier—Stokes equations with Maxwell’s equations. This model describes some important
physical phenomena. Comparing with the usual viscous incompressible MHD equations, the system (1.1)
contains the extra term V x ((V x B) x B) which is the so-called Hall term and V x [((V x B) x B) x B]
the ion-slip effect.

The above system has been studied a lot by physicists and mathematicians because of its physical
importance, complexity, rich phenomena and mathematical challenges; see [1-4,6] and the references cited
therein.

The mathematical study of the above system was initiated by Mulone and Solonnikov [19], who proved
the small data global existence of strong solutions in a bounded domain. Refer to [19-21]. Recently, Chae
and Lee [2] established an existence result on strong solutions and proved the following regularity criteria

we Las (0,T;L9 (R*) and VB e L5 (0,T; L (R%)) with 3 < g,s < oo,

) Birkhauser
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or
ue L (0,7;BMO (R*)) and VB e L?(0,T;BMO (R?)).
Here BMO is the space of functions of bounded mean oscillations.
Very recently, the local well posedness of the strong solution to the incompressible magnetohydro-
dynamic equations with the Hall and ion-slip effects was established for the whole space R3 by Fan
et al. [12] and they proved that if

7€ L= (0,T; L% (R%)) with 3 < ¢ < oo (1.2)
and ,
BeL>(0,7;L% (R*) and VB e Las (0,7;L7(R%)) with 3 < ¢ < o0,
then the solution (u(t), B(t)) can be extended beyond t = T

In this paper, we extend the results of [12] to the critical Besov space. We prove a blow-up criterion
-1
for local strong solutions in terms of the critical Besov space B, and multiplier spaces.

2. Multiplier and Besov spaces

Before stating our results precisely, we first recall the definition of the homogeneous Besov space with
negative indices B ", in R? and the homogeneous Sobolev space H, o of exponent a > 0. It is known [24]

that f € S’ (R*) belongs to B;O‘f‘oo (R3) if and only if the heat semigroup e!2f € L*°(R3) for all t > 0
and ¢ 2 HetAfHOO € L™ (0,00). The norm of BZ®_ is defined, up to equivalence, by

00,00
R— tg tA .
1 ze., = sup (¢ [|e** ]|,

We introduce now the homogeneous Sobolev space H q (R3), which is defined as the set of functions
feLm(R¥),L=1_25such that (—A)? f € L% (R3). This space is endowed with the norm

T g
1y = (2% 1]
and when ¢ = 2, we just let H2S (R3) = H* (R3). Recall that
W lligy < Wfllgy s 520, f e Hy (R?).

Here Hj (R3) is the standard inhomogeneous Sobolev space. We introduce the following two lemmas.

La’

Lemma 2.1. Let 0 < a < % Then the embedding
H27(R®) C L= (R?) € B (R%)

holds.

Lemma 2.2. Let 1 <p < qg<oo andlet s =« (% — 1) > 0. Then there exists a constant depending only

on a,p and q such that the estimate
1l < €| (=a)% s

holds for all f € H (R3) N B3, (R?).

3 1_p
2
) 1Al e (2.1)

This result is due to Meyer—Gerard-Oru [18], and the proof is based on the Littlewood—Paley decom-
position, please refer to [18] for the details.

Next, let us define the function spaces in which the blow-up criterion of strong solution (u, B, ) is
going to be established.
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Definition 2.3. [16,26] For 0 < r < %, the space X, is defined as the space of f(z) € L2 (R?) such that

loc

1, = sup [lfgllzz < oo,

llgll pr<1

where we denote by HT (R3) the completion of the space D (]RB) with respect to the norm Hu||Hr =
(SR

L2’
We have the homogeneity properties: Yz € R3
IF(+zo)ll, =I1F1l%,

1FO)lg, = 37 175, . A>0.
Lemma 2.4. Let 0 <r < % Then
L (R%) C X, (R%)
holds.
Proof. Let f € L* (R‘S) By using the following well-known Sobolev embedding

H (R?) C L9 (R?)

19l < AN s lglle < CUA s llgll g -
Then, it follows that

Ifl = suwp [fgl <CIfls.
lgll <1

Remark 2.1. We note from Proposition 2.5 in [16] that X, C B;OTOO for all 0 <7 < 3.

By Banach fixed point theorem and energy estimates, it is easy to prove the following well posedness
of local strong solutions to the problem (1.1), and hence we omit the details here (see for e.g., [12]).

Theorem 2.5. Let (ug, By) € H*(R?) x H?(R3) with V - ug = V - By = 0. There exists a positive time T
such that the problem (1.1) has a unique strong solution (u, B) in (0,T) such that

(u, B) € L* (0, T; H* (R*)) n L* (0, T; H*(R?)) ,
(Oyu, 0,B) € L (0,T; L* (R*)) N L* (0,T; H'(R?)) .
First our main result reads as follows.

Theorem 2.6. Let the initial data (ug, Bo) € H? (R®) with V -up = V - By = 0. Assume that (u, B) is
a local strong solution to Hall- MHD equations on some interval [0,T] with 0 < T < oo constructed in
Theorem 2.5. If (u, B, ) satisfies the following condition

(1, VB) € LT (O,T; X, (R3)) with 0<r <1,
and
B e L>(0,T;L> (R?%)),
then the solution (u, B) can be extended beyond T.
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Next, we consider an improvement of Theorem 2.6 for the case r = 1 by using critical Besov space

B in which X (R?) is embedded.

00;007

Theorem 2.7. Let the initial data (ug, Bo) € H? (R®) with V -ug = V - By = 0. Assume that (u, B) is
a local strong solution to Hall-MHD equations on some interval [0,T] with 0 < T < oo constructed in
Theorem 2.5. If (u, B, ) satisfies the following condition

me L? (O,T; B;ioo (R3)) : (2.2)
and
BeL®(0,T;L (R*)) and VBeLTr (o,T; X, (R3)) with 0<r <1,
then the solution (u, B) can be extended beyond T .

Remark 2.2. Since the multiplier space X, (R?) with 0 < r < 1 is wider than the Lebesgue space L+ (R?3),
hence our result is an improvement of the recent result obtained by Chae-Lee [2] and Fan et al. [12].

Remark 2.3. When r = 0, we notice that there holds X (R?) = BMO(R?), where BMO denotes the space
of bounded mean oscillations. Hence, our result in Theorem 2.6 gives that the condition

(u, VB) € L*(0,T; BMO(R?))
still implies the local strong solution (u, B) is regular on R? x (0,7T7.

Remark 2.4. In the sequel, we will use the following inequality for all 1 < ¢ < c©
IVallLe < C(Ju-Vull e + 1B x (VX B)| L)

3. Proof of Theorem 2.6

We are now in a position to the proof of our first result.

Proof. We want to establish an a priori estimate for the smooth solution.
First, multiplying (1.1); by u, after integration by parts and taking the divergence-free property into
account, we have

1d
R3 R3 B3
Similarly, multiplying (1.1), by B, and integrating over R?, we have
1d
R3 ra

Combining (3.1) and (3.2), we have the well-known energy equality

1d
2dt
R3

(Jul* +|B*)dz + |Vull72 + [VBIlZ: + [(V x B) x B||72 = 0.

Integrating the above equality over time interval [0, ], we obtain the energy equality and this proves that
(u,B) € L™ (0,T; L*(R*)) N L (0,T; H'(R?)) .
Take operator A on Eq. (1.1); and take scalar product of them with Awu, we obtain
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th/\A | dx+/|VAu| dz
—/A(u V) - Auda +/A((V « B) x B)) - Audz = Jy + Jo. (3.3)

Now let us remind the following well-known interpolation inequality: if 0 < r < 1, then

1—
1l < ClAlz IV e -
Using this inequality together with Young’s inequality, we obtain

Z/Aulau Audx—QZ/aulaau Audx

)= 1R3

_Z/Auzu aAuderzZ/uz (0;05u - Au)dx

,]= 1]R3
< Cllu'AU||L2 VAUl
< Cllullg, [1Au]l - VAU

Aulffs .

1 2 =
< 1 IVAul2, +C full
In the following calculations we will use the following Gagliardo—Nirenberg inequality
V£l 720 < ClUF e 1AF ]l o for 1<q<cc.
To estimate Jo, we apply interpolation inequality and Young’s inequality,
o < c/(|VB|2 +1B||AB|) VAU de
R3

< C (IVBIG« + 1Bl I1ABI: ) [V Au

1 2 2 2
< 7 IVAulL: + C Bl [ABI[L2 -
Applying A to (1.1)2, then multiplying it by AB, after integration by parts, we find that,

1d

§a/|AB|2dx+/|VAB|2dx+/|B>< (V x AB)|* dz

R3 R3 R3
z/[VxA(uxB)]-Ade—/A((VxB)xB)-(VxAB)dx

R3 R3

+ /{A[(V x B) x B) x B]- (V x AB) + |B x (V x AB)|*}dz

=L+ 1+ Is. (3.4)
From the calculus inequality, interpolation inequality and Young’s inequality, we bound I; as follows:
L = /[A(u x B)] - (V x AB)dx
R3

]

R3

3
Aux B+uxAB+2Y duxdB|-(VxAB)dz

i=1




18 Page 6 of 10 S. Gala and M. A. Ragusa ZAMP

IN

([[Aul[ 2 [Bllpee + [lu- AB| 2 +2[[Vu - VB 1.) [VAB| 1.
1 2 2 2 2 2 2 2
T IVAB|7: +C (HAUHL2 Bl + llully, IAB|;- +41IVBI, ||VU||H">

IN

IN

1 2 2 2 = 2 2 2 2
3 IVAB|[2 + CllAulpz 1Bl + Cllull 7 [AB|L2 + CIVBI 7 [[Vullz. + Ol Aullza

IN

1 2 = 2 = 2 2 2
3 IVAB|[2 + Cllull 7 1AB| 2 + CIIVB| 7 [[Vul[z. + Ol Aulza (1 + HB||L°°) :

Similarly, from the calculus inequality, interpolation inequality and Young’s inequality, we bound I as
follows:

I=—
Ri’»
< C|[VBIlg_ IIAB] - [VAB] .

-(V x AB)dz

3
(va) x AB+2Y 0i(V x B) xE)Z-B>

i=1

1 =
< S IVAB[L: + CIVBIL T IIAB]7:

By integration by parts, Is can be rewritten as:

/lZa (VX B) x B) x B+ ((Vx B) x8;B) x B+ ((V x B) x B) x 3;B| dz

R3

+/|B><A(V><B)\2da:

R3

3

Z 9;(V x B) x 8;B) x B+2(0;(V x B) x B) x 9; B+ ((V x B) x 9B) x B

3
+((V x B) x B) x 8?B] - (V x AB)dx + 22/[((V x B) x 9;B) x 9;B] - (V x AB)dz
=155
=131+ I35.
For I5 1, using Young’s inequality and the interpolation inequality, we obtain

I31 < O||BHLoo VBl ||AB||HT IVAB|[ .

3 IIVABIILz +C Bl <

|1r

AB|| IR
For the second term on the right of I3, by the simple vector identity and Holder inequality, I3 2 is bounded
by

3
13,2 = 22 V x [((V X B) X 813) X OZB] - ABdx

1 =
< S IVAB|. + C VB T |AB]7.

Inserting the estimates above in (3.3)—(3.4), we obtain
1d
o d@ (|Aul® + |AB]| )dx+/(|VAu| +|VABJ? dx+/|B>< (V x AB)|* dz
R3

R3

1 2 1—r 2 2 2
< IVl + 0 (I E + 1813 ) (1l + 1AB1E)
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2
-r

+ 51981+ 19BN (IAulk + IABIE: + 1817 |ABI%: ).
Consequently, using the Gronwall’s inequality, one has
(u, B) € L™ (0,T; H*(R*)) N L? (0, T; H*(RY)) . (3.5)
This completes the proof of Theorem 2.6. O

4. Proof of Theorem 2.7

In this section, we shall give the proof of theorem 2.7.

Proof. Testing (1.1)3 by |u\2 u, taking the divergence-free property into account and using the Holder

inequality, we get
1d
4dt

1
= / (B -VB — §V |B|2) Jul? udaz — /u u|® - Vrda
R3 R3

3
z/ﬂv-(u\u|2)dx+%/V~(\u|2u)-|B|2dm—Z/BiBai(|u|2u)dx
R3 i=lgs

R3

2
L2

1 1
/|u|4dx + 5 llu- Vullfe + 5 ||V P
R3

< C’/|7r| |u|2|Vu|dx+C/|B|2|u\ lu - V| dz.
R3 R3

Testing (1.1)3 by |B|2 B, taking the divergence-free property into account and using the Holder inequality,
we get
1d . 1 , 1 )
13 1B 518 VBIE + 5 [viBP
]R3
= /(B -V)u - |B|* Bdz + /(B x (V x B))-V x (|B]” B)dz
R3 R3
= 7/(3 V) \B\QB~udx+/(B x (V x B))(V|B|* x B)dz

R3 R3

< C/|u||B|3|VB|dx+C/|B|3|VB|2d:c,
R3 R3

2
L2

where we used the fact ||Vw| . = ||V x wl|,. if V-w =0.
Due to the following ones (0 < r < 1)

lwll gy < Cllwllzz" IVl 72

it is easy to see that
1d
4dt

Jautt + 1810+ 5 (Ju- Vallze + 1B VBI3:) + 5 (Hv |, +||v 1B
J

< Clmul gz llu- Vull 2+ C|||BP ||, -Vl

2
L2
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2 2
+C||iul 1BP|| , 18- VBl +C||VBIIBE|| , IB- VBl

2 2 1 2
< Climlza llulzs + 5 llu- Valza + Cllull 14

1BP|

- ]

1—r r
2
+C llull I A R 2

|BP|

2
BB+ C|VB| (1B

2 1 2 2
<cC HWHB—l V7| 2 flullza + 5 - Vullpe + Cllull pa | Bl s - Vaull

1—7r T
2 = 4\ % 2|12 \? 2\ 2
+Clull 1812 15 981+ 0 (I9B1E 11 ) ([vise]l,) (18- vBIE.)
2 4 1 2 1 2
<Ol Nullfe + 5 19703 + 5 - Vulfa +C ull o | Bll o 1Bl hu - Vall
= it L L 22 | 1 2
+C lull s 1Bl 4 1Bl I1B - VB 2 + CIVBIL 1Bl + ¢ [V 1BP|| , + 1B VBI3:
2 4 1 2 2 1 5
< Cnl} o Mullzs + 5 (Iu- Vulza + 1B VBIZ:) + 5 llu- Vul s
2 2 2 1 2 2 2 2
+C lullf B I1BIG = + 5 llu - Vulfz + C ullfs |1BI3 1Bl
1 2 = 4 1 22 | 1 2
+51B- VB3 + CIVBIL Bl + 1 ||VIBP| |, +71B- VB
1 2 1 2 1 2||? 2 4
< 5l Vullfe + 5 18- VB + 7 ||V IBE| |, +CllnlfsJulz
2 4 4 = 4
+C BN (lullfs +1BIE:) + CIVBIL ™ I1BI.

1 2 1 2 1 2||?
< 5l Vullie + 5 1B VB3 + 7 |[VIBF|

4 4 2 2 =
LC (||u||L4 + ||B||L4) (||7T||B;loo + 1B 7 + ||VB||XT’"> .

where we used the Young inequality. Consequently, we have
1d
4dt

R3

4 4 2 2 =
<0 (ke +1B1%) (Il + 1B~ +IVBIE ).

By applying the standard Gronwall inequality, we obtain, for every ¢ € [0, T,

4 4 1 2 2 1 2||? 2||?
(lul* +1B1*) dz + 5 (Ilu- Vull3a + 1B~ VBIL ) + 5 <HV|u |, +|viB HL)

t
Jullfs + 1B+ [ (e Fuo)lEs + 15 - VB ) dr
0

- [ (e o, e @f;,) e
0

T
2 2 2 2 =5
<€ (Jualls + 1Bol) exo | [ (I + 1B + IVB@IET ) ar
0

This implies us that
(u,B) € L= (0,T; L*(R*)) C L® (0, T; L*(R?)) (4.1)
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and
(u.Vu,B.VB) € L* (0,T; L*(R?)) .

From (4.1) and the standard Serrin regularity criterion (see e.g., [12]), we have (u, B) smooth on (0,T") x
R3. Then, by using the standard arguments of the continuation of local solutions, it is easy to conclude
that the above estimate (4.1) implies that the solution (u(x,t), B(x,t)) can be extended beyond ¢t = T.
This completes the proof by Theorem 2.7. O
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