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Abstract. This paper deals with a nonlinear system of partial differential equations modeling a simplified tumor-induced
angiogenesis taking into account only the interplay between tumor angiogenic factors and endothelial cells. Considered
model assumes a nonlinear flux at the tumor boundary and a nonlinear chemotactic response. It is proved that the choice of
some key parameters influences the long-time behavior of the system. More precisely, we show the convergence of solutions
to different semi-trivial stationary states for different range of parameters.
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1. Introduction

Angiogenesis is a physiological process involving the new vessels sprout from a pre-existing vasculature in
response to a chemical stimuli. Angiogenesis is an important ingredient of a processes like development,
growth and wound healing. However, angiogenesis is also induced by tumoral cells. In this paper, we con-
sider a model of tumor-induced angiogenesis that was proposed in [5]. Actually, in the above-mentioned
model, some factors influencing angiogenesis are neglected to keep the model simple but sufficiently inter-
esting from the analytical point of view. We refer the reader to [12] as a source of information about
the progress in mathematical modeling and biological knowledge of angiogenesis process. We focus our
attention on two key variables: the endothelial cells (ECs), denoted by u, and the tumor angiogenic fac-
tors (TAF), denoted by v. We assume that (ECs) form the blood vessels wall are induced by the (TAF),
factors that are generated by the tumor, to migrate chemotactically toward the tumor. We assume that
the (ECs) and the (TAF) fill in a bounded and connected domain Ω ⊂ Rd with a regular boundary ∂Ω.
In particular, neither the existence of extracellular matrix nor the activity of metalloproteinases is con-
sidered. But, following [5], nonlinear flux of TAF on the tumor boundary is taken into account. This way
we include the fact that ECs are supposed to react chemotactically to the TAF, thus generating the large
gradient of TAF on the boundary. This, in turn, is supposed to make the tumor more dangerous. The
aim of [5] was to study the interplay between the density of ECs and TAF dependently on a parameter μ
measuring the strength of the flux on the tumor boundary and the nonlinearity V measuring nonlinear
response of ECs. In [5], the qualitative features of a model were studied in a local sense. We mean by that
the local stability of steady states which were proven to exist in [5]. We complete the studies taken in [5]
by analyzing the global stability of steady states. We shall prove the asymptotic convergence of solutions
for different values of μ. To be more precise, we consider the case

∂Ω = Γ1 ∪ Γ2,
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where Γ1 ∩ Γ2 = ∅ and Γi are closed and open sets in the relative topology of ∂Ω. We suppose that Γ2 is
the tumor boundary and Γ1 is the blood vessel boundary. Our parabolic problem reads.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut − Δu = −div(V (u)∇v) + λu − u2 in Ω × (0, T ),
vt − Δv = −v − cuv in Ω × (0, T ),
∂u

∂n
=

∂v

∂n
= 0 on Γ1 × (0, T ),

∂u
∂n = 0, ∂v

∂n = μ v
1+v on Γ2 × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω,

(1)

where 0 < T ≤ +∞, λ, μ ∈ R, c > 0,

V ∈ C1(R), V > 0 in (0,∞) with V (0) = 0; (2)

and u0 and v0 are given nonnegative and nontrivial functions. In [5, Theorem 3.1, Theorem 3.8] the exis-
tence and uniqueness of global-in-time bounded regular solutions, provided initial data are nonnegative
and V ∈ L∞(0,+∞) is shown. Moreover in [5, Section 4], the existence of two semi-trivial steady states
(λ, 0), λ > 0 and (0, θμ) is shown provided μ > μ1 (see also [14]), where μ1 is the principal eigenvalue of
the boundary eigenvalue problem

⎧
⎨

⎩

−Δv + v = 0 in Ω,
∂v
∂n = 0 on Γ1,
∂v
∂n = μv on Γ2.

Furthermore, results concerning the linearized stability around the semi-trivial solutions to (1) are proven
in [5].

First models of tumor-induced angiogenesis that we are aware of are considered in [3] (see also [10]
for a more elaborated model). A reduced model proposed in [10] is studied in [7]. The local stability of
the homogeneous steady states in one-dimensional domains is shown there. In all the mentioned papers,
the boundary conditions are either zero Neumann or no flux. In [6], the stationary problem of (1) with
linear flux for v is studied. Finally, let us mention [9] where the authors study the local solvability of a
system of partial differential equations with a nonlinear boundary condition and a chemotaxis term.

The aim of this paper is to analyze the global stability for positive initial data. In particular, we show
global stability for some range of parameters (λ, μ) for which even the local stability is not known.

It should be pointed out that in our investigations, we assume

‖u(t)‖∞ < C, for t ≥ 0. (3)

In particular, (3) is satisfied when V is bounded (see [5]). However, most of the results of this paper could
be extended even to more general forms of V , for example, V (u) = u or V (u) = up, p > 1, as soon as we
know that (3) holds. By the regularity of V , we have just to apply the following estimate

V (u) ≤ max
s∈[0,‖u‖∞]

V (s) ≤ max
s∈[0,C]

V (s) = K < +∞.

Observe that the parabolic regularity asserts

‖v(t)‖∞ < C

for any t > 0 once we know (3) and by [5, Theorem 3.1], the solution is global and regular.

2. Preliminaries

For the reader’s convenience, we collect here some results of interpolation theory and its applications to
parabolic problems that will be used throughout the paper.
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a) Let E0, E1 be two normed spaces embedded in a common topological Hausdorff space E , we can define
the real interpolation function, denoted by

(E0, E1)θ,p, 0 < θ < 1, 1 ≤ p ≤ +∞,

(see for instance [13, Def. 22.1]). During the paper, we will use the following property of the real
interpolation functor (see [13, Lemma 25.2]):

If (E0, E1)θ,p is a Banach space then

∃C > 0 such that ‖x‖(E0,E1)θ,p
≤ C‖x‖1−θ

E0
‖x‖θ

E1
∀x ∈ E0 ∩ E1.

In the context of fractional Sobolev spaces, this inequality reads cf. [1, (5.20), (5.21)]

‖x‖W m,p ≤ C‖x‖θ
W k,p‖x‖1−θ

p (4)

for m < kθ, θ ∈ (0, 1).
b) Let us consider a parabolic problem with a nonhomogeneous boundary condition

⎧
⎨

⎩

zt + Az = f(t) in Ω × (0, T ),
Bz = g(t) on ∂Ω × (0, T ),
z(x, 0) = z0(x), in Ω.

(5)

where

Bz :=
∂z

∂n

and

Az := −Δz + z.

We define the space of functions

W s,p
B :=

⎧
⎨

⎩

{z ∈ W s,p(Ω) : Bz = 0} if 1 + 1/p < s ≤ 2,
W s,p(Ω) if −1 + 1/p < s < 1 + 1/p,

(W−s,p′
(Ω))′ if −2 + 1/p < s ≤ −1 + 1/p.

It is known that (A,B), as being in separated divergence form (see [1, pg. 21]), is normally elliptic.
We denote by Aα−1 the W 2α−2,p

B -realization of (A,B) (see [1, pg. 39] for the precise definition). Since
(A,B) is normally elliptic then Aα−1 generates an analytic semigroup [1, Theorem 8.5]. Moreover, if

(f, g) ∈ C((0, T );W 2α−2,p
B (Ω) × W

2α−1−1/p,p
B (∂Ω))

for some T > 0 and 2α ∈ (1/p, 1+1/p) then for any t < T , we rewrite (5) by the generalized variation
of constants formula

z(t) = e−tAα−1z0 +

t∫

0

e−(t−τ)Aα−1(f(τ) + Aα−1Bc
αg(τ))dτ,

where Bc
α is the continuous extension of (B|Ker(A))−1 to W 2α−1−1/p,p(∂Ω). Since [0,+∞) ⊂ ρ(−Aα−1)

(ρ is the resolvent set) then by [1, Remark 8.6 c)] for 1 < p < ∞, there exists a constant C ≥ 1 such
that

‖z‖W 2α,p
B

≤ C‖Aα−1z‖W 2α−2,p
B

. (6)

c) Let a, b, c ∈ L∞(Ω), the eigenvalue problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Δz + a(x)z = λz in Ω,
∂z

∂n
+ b(x)z = 0 on Γ1,

∂z

∂n
+ c(x)z = 0 on Γ2.
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has a unique principal eigenvalue (i.e., an eigenvalue whose associated eigenfunction can be chosen
positive in Ω) and it will be denoted by

λ1(−Δ + a;N + b;N + c).

3. Convergence to the semi-trivial solution (λ, 0)

In the present section, we deal with the convergence to the semi-trivial steady state (λ, 0). Throughout
this section, we assume (3). A sufficient condition guaranteeing (3) is the boundedness of V (see [5]). We
will use the generalized variation of constants formula to estimate v, which is stated in the next lemma.

Lemma 3.1. Let γ ∈ (1,+∞), 1
γ < 2α < 1 + 1

γ and β ∈ (1, 2α). Let Σ be a spectral bound of Aα−1, that
is, Σ := inf Re σ(Aα−1). Then, there exist constants δ ∈ (0,Σ) and θ = θ(β) ∈ (0, 1) such that

‖e−(t−τ)Aα−1z‖W β,γ ≤ C(t − τ)−θe−δ(t−τ)‖z‖W 2α−2,γ
B

for every z ∈ W 2α,γ
B and every τ ∈ (0, t).

Proof. By the choice of β, we have W β,γ
B = W β,γ(Ω). As a consequence if we apply [1, Theorem 7.2], we

get

‖e−(t−τ)Aα−1z‖W β,γ ≤ C‖e−(t−τ)Aα−1z‖θ
W 2α,γ

B
‖e−(t−τ)Aα−1z‖1−θ

W 2α−2,γ
B

for some θ ∈ (0, 1). Next, we apply (6) to the first norm on the right-hand side and [8, Theorem 1.3.4] to
deduce

‖e−(t−τ)Aα−1z‖W β,γ ≤ C(t − τ)−θe−δ(t−τ)θe−δ(t−τ)(1−θ)‖z‖W 2α−2,γ
B

,

where δ ∈ (0,Σ). �

Lemma 3.2. Let γ ∈ (1,+∞), β ∈ (1, 1 + 1/γ), μ ∈ [0, μ1) and 0 < δ < ρ < α(μ) where α(μ) is defined as

α(μ) := λ1(−Δ + 1;N ,N − μ).

Then, there exists C > 0 such that, for t > 0, the v-solution to (1) satisfies

v(x, t) ≤ Ce−ρt ∀(x, t) ∈ Ω × (0,+∞),

‖v(t)‖W β,γ ≤ C(1 + t−θ)e−δt‖v0‖γ ,

where θ = θ(β) ∈ (0, 1).

Proof. A solution to the problem
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wt − Δw + w = 0 in Ω × (0, Tmax),
∂w

∂n
= 0 on Γ1 × (0, Tmax),

∂w

∂n
= μw on Γ2 × (0, Tmax),

w(x, 0) = v0(x) in Ω,

(7)

is a supersolution to the v-equation of (1); therefore, v(x, t) ≤ w(x, t). Since, for sufficiently large M,w =
Me−ρtϕ1, with ϕ1 a positive eigenfunction associated with α(μ), is a supersolution to (7), the pointwise
estimate in the claim of the lemma follows. For the second one, we pick

f(t) : = −cu(t)v(t),

g(t) : =

⎧
⎨

⎩

0 on Γ1,

μ
v(t)

1 + v(t)
on Γ2 .
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Taking the W β,γ-norm in a generalized variation of constants formula for v and using Lemma 3.1, we
obtain

‖v(t)‖W β,γ ≤ ‖e−tAα−1v0‖W β,γ +

t∫

0

‖e−(t−τ)Aα−1(f(τ) + Aα−1Bc
αg(τ))‖W β,γ

≤ C

⎛

⎝e−δtt−θ‖v0‖W 2α−2,γ
B

+

t∫

0

(t − τ)−θe−δ(t−τ)‖f(τ) + Aα−1Bc
αg(τ)‖W 2α−2,γ

B
dτ

⎞

⎠ .

Next, we estimate the last term in the above inequality using the fact that

Aα−1Bc
α ∈ L(W 2α−1−1/γ,γ(∂Ω),W 2α−2,γ

B (Ω))

and the continuous embeddings

Lγ(Ω) ↪→ W 2α−2,γ
B , Lγ(∂Ω) ↪→ W 2α−1−1/γ,γ(∂Ω).

Therefore, we get

‖v(t)‖W β,γ ≤ Ce−δtt−θ‖v0‖γ + Ce−δt

t∫

0

eδτ (t − τ)−θ
(‖f(τ)‖Lγ(Ω) + ‖g(τ)‖Lγ(∂Ω)

)
dτ. (8)

Observe that by (3) and the first part of the Lemma, we have

‖f(τ)‖Lγ(Ω) ≤ C‖v‖L∞(Ω) ≤ Ce−ρτ ,

‖g(τ)‖Lγ(∂Ω) ≤ ‖v‖L∞(∂Ω) ≤ Ce−ρτ .

In view of the above bounds, (8) yields

‖v(t)‖W β,γ ≤ Ce−δtt−θ‖v0‖γ + Ce−δt

t∫

0

e(δ−ρ)τ (t − τ)−θdτ.

Next, by the choice of δ and ρ,
∫ ∞
0

e(δ−ρ)τ (t − τ)−θdτ = C < +∞ and the Lemma follows. �

Our purpose is to show that u converges to steady states. To this end, we treat separately the cases
λ = 0, λ > 0.

3.1. Case λ = 0

Lemma 3.3. Let τ > 0 and y ∈ C1(τ,+∞) ∩ L1(τ,+∞), y′ ∈ L1(τ,+∞). Then, lim
t→+∞ |y(t)| = 0.

Proof. By the assumptions of the lemma, we observe that for any k > 0

lim
t→+∞

t+k∫

t

(|y(s)| + |y′(s)|) ds = 0. (9)

Let us assume that lim
t→+∞ |y(t)| �= 0, then there exists a sequence {tn}n∈N, tn → +∞, such that

|y(tn)| > C > 0,
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for all n ≥ n0. We pick θ ∈ (0, k] and see that by (9)

∣
∣|y(tn + θ)| − |y(tn)|∣∣ ≤ |y(tn + θ) − y(tn)| ≤

tn+θ∫

tn

|y′(s)|ds ≤
tn+k∫

tn

|y′(s)|ds <
C

2

Therefore, |y(s)| > C/2 for all s ∈ [tn, tn + k], n ≥ n0. The last assertion contradicts the fact that

lim
n→+∞

tn+k∫

tn

|y(s)|ds = 0.

�

Next, assume that (u, v) is a global solution to (1).

Lemma 3.4. Let λ = 0 and t > τ > 0, then it holds

μ

t∫

τ

∫

Γ2

V (u)v
1 + v

+

t∫

τ

∫

Ω

u2 =
∫

Ω

u(τ) −
∫

Ω

u(t). (10)

Proof. Integrating the u-equation of (1) yields
∫

Ω

ut =
∫

∂Ω

(
∂u

∂n
− V (u)

∂v

∂n

)

−
∫

Ω

u2

= −μ

∫

Γ2

V (u)v
1 + v

−
∫

Ω

u2.

So, integrating the last expression in time between τ and t, we get the result. �

Remark 3.5. By Lemma 3.4, we see that for any t > τ

t∫

τ

∫

Ω

u2 ≤ ‖u(τ)‖1.

Theorem 3.6. Assume that 0 ≤ μ < μ1 and λ = 0, then

lim
t→+∞ ‖u(t)‖W m,p = 0,

for any m < 1 and p ≥ 2.

Proof. On multiplying the u-equation of (1) by u and integrating in space, we obtain

d
2dt

∫

Ω

u2 =
∫

Ω

(−|∇u|2 + V (u)∇v · ∇u − u3
) − μ

∫

Γ2

V (u)uv

1 + v

≤ (ε − 1)
∫

Ω

|∇u|2 + C(ε)
∫

Ω

|∇v|2 − μ

∫

Γ2

V (u)uv

1 + v
−

∫

Ω

u3. (11)

Therefore, we infer

d
2dt

∫

Ω

u2 + (1 − ε)
∫

Ω

|∇u|2 ≤ C(ε)‖v‖2
W 1,2 ,
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and after integrating in time, thanks to Lemma 3.2 we arrive at

∫

Ω

u(t)2 −
∫

Ω

u(τ)2 + (1 − ε)

t∫

τ

∫

Ω

|∇u|2 ≤ C(ε)

t∫

τ

(1 + s−θ)2e−2δs‖v0‖2
2.

In particular, we deduce that for t > τ

t∫

τ

∫

Ω

|∇u|2 ≤ C.

By [5, Theorem 3.8], we find a bound ‖u(t)‖C(Ω) ≤ C, therefore,
∣
∣
∣
∣
∣
∣

d
2dt

∫

Ω

u2

∣
∣
∣
∣
∣
∣
≤ C

∫

Ω

|∇u|2 + C(ε)‖v‖2
W 1,2 + Cμ

∫

Γ2

V (u)v
1 + v

+ C

∫

Ω

u2.

Thanks to (10), for t > τ

t∫

τ

∣
∣
∣
∣
∣
∣

d
2dt

∫

Ω

u2

∣
∣
∣
∣
∣
∣
≤ C. (12)

Finally, Remark 3.5 and (12) together with Lemma 3.3 entail

lim
t→+∞ ‖u(t)‖2 = 0.

Also thanks to ‖u(t)‖C(Ω) ≤ C for all t > 0, we obtain

lim
t→+∞ ‖u(t)‖p = 0

for any p > 2. Next, we recall that by [5, Lemma 3.7] for any 2β ∈ (k, 1), we find a bound on the Xβ norm
of u, where Xβ is a usual fractional space connected to a semigroup approach to parabolic equations, see
[8]. Next, due to the fact that 2β ∈ (k, 1), we infer from the embedding Xβ ↪→ W k,p (see for instance
[8, Theorem 1.6.1]) that for all k < 1 and p ≥ 2

‖u(t)‖W k,p ≤ C.

Next, (4) entails

‖u(t)‖W m,p ≤ C‖u(t)‖θ
W k,p‖u(t)‖1−θ

p .

Therefore, it holds

lim
t→+∞ ‖u(t)‖W m,p ≤ C lim

t→+∞ ‖u(t)‖1−θ
p = 0. (13)

�

Remark 3.7. Let us point out that if we pick m such that m − d/p > 0 then Wm,p(Ω) is embedded in
C(Ω).
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3.2. Case λ > 0

Assume that there exists δ0 and t0 such that

u(t) > δ0 > 0 (14)

for t > t0 > 0. Next, we examine the long-time behavior for u under the hypothesis (14). In the sequel,
we shall give sufficient conditions on V (u) implying (14).

Theorem 3.8. Let 0 ≤ μ < μ1 and assume (14) is satisfied, then there exists θ > 0 such that

‖u(t) − λ‖W m,p ≤ Ce−θt, (15)

for all t ≥ t0 and any m < 1, p ≥ 2.

Proof. On multiplying the u-equation by u − λ, we have

d
2dt

∫

Ω

(u − λ)2 = −
∫

Ω

|∇u|2 +
∫

Ω

V (u)∇v · ∇u − μ

∫

Γ2

vV (u)
1 + v

(u − λ) −
∫

Ω

u(u − λ)2

≤ −1
2

∫

Ω

|∇u|2 +
‖V ‖2

∞
2

∫

Ω

|∇v|2

+μ‖V (u)(u − λ)‖2,Γ2

⎛

⎝

∫

Γ2

v2

(1 + v)2

⎞

⎠

1/2

−
∫

Ω

u(u − λ)2. (16)

Having in mind that (1 + v)2 ≥ 1, the hypothesis (14) and the Sobolev trace embedding

W 1,2(Ω) ↪→ L2(∂Ω)

we get

d
dt

∫

Ω

(u − λ)2 + 2δ0

∫

Ω

(u − λ)2 ≤ C‖v‖2
W 1,2 + μC‖v‖W 1,2 . (17)

By Lemma 3.2, we can deduce

‖u(t) − λ‖2
2 ≤ Ce−θ1t

for 0 < θ1 < min{2δ0, β}. At this point, we can argue exactly as in the end of the proof of Theorem 3.6;
namely by the bound on u in L∞, we infer the bound on the Lp norm of u, p > 2. Next, we use the
estimate of u in W k,p, k < 1, p ≥ 2, coming from [5, Lemma 3.7], in order to conclude (15). �

In the rest of this section, we give sufficient conditions on V implying (14). Actually, only the behavior
of V around zero matters. Roughly speaking, we require a superlinear growth of V in the neighborhood
of zero. From now on, we assume that there exist C, δ > 0, k0 > 1 + d/2, j > d/2 such that

0 < V (s) < Csk0 , |V ′(s)| ≤ Csj (18)

for all s ∈ (0, δ).

Remark 3.9. The condition (18) is satisfied, for example, for functions

V (u) =
uα

1 + uα

with α > 1 + d/2.
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Next, we introduce some notation that will be used in the proof of (14). Moreover, we formulate a
lemma which we need in the main part of the proof of (14). Let f(δ), g(δ) be defined in a following way:

f(δ) := sup
s∈(0,δ)

V 2(s),

g(δ) := sup
s∈(0,δ)

(2(s − δ)2V ′(s)2 + 2V 2(s)).

Lemma 3.10. Assume that (18) holds. Moreover, for some D,μ > 0, η > 1, ε̃ and C(ε̃) are given by

ε̃ =
δ2η

2μD
, C(ε̃) =

μD

2δ2η
.

Then, if δ > 0 is small enough, the following conditions are satisfied simultaneously

C(ε̃)
V 2(s)

s
δ ≤ λ − δ (19)

for s ∈ (0, δ),

C(ε̃)g(δ) < 1/2 (20)

and

f(δ)D ≤ δ2η

2
. (21)

Proof. Thanks to (18), we have

f(δ)D = sup
s∈(0,δ)

V 2(s)D ≤ Cδ2k0D.

Hence, for η < k0 and δ sufficiently small, (21) is satisfied. Next, owing to (18), we observe that

C(ε̃)
V 2(s)

s
δ ≤ C(ε̃)δ2k0 .

Thus, (19) can be assured for η < k0 and δ small enough. Moreover, it is straightforward to see that (20)
is also satisfied for 1 < η < min{k0, 1 + j}. �

Lemma 3.11. Assume that 0 ≤ μ < μ1 and that (18) is satisfied then (14) holds.

Proof. Let δ > 0 be a fixed constant defined in (18). Given a function f , we define the negative part of
f as a nonpositive function as follows

f− := min{f, 0}.
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Our purpose is to show that ‖(u − δ)−(t)‖∞ ≤ δ/2 for every t > t0 which implies (14). In order to obtain
the previous estimate, we multiply the u-equation by (u − δ)− and we integrate in space to obtain

d
2dt

∫

Ω

(u − δ)2− = −
∫

Ω

(∇u − V (u)∇v) · ∇(u − δ)−

+
∫

∂Ω

(
∂u

∂n
− V (u)

∂v

∂n

)

(u − δ)−+
∫

Ω

u(λ − u)(u − δ)−

= −
∫

Ω

|∇(u − δ)−|2 +
∫

Ω

V (u)∇v · ∇(u − δ)−

−
∫

Γ2

V (u)μ
v

1 + v
(u − δ)− +

∫

Ω

u(λ − u)(u − δ)−

= −
∫

Ω

|∇(u − δ)−|2 +
∫

Ωδ

V (u)∇v · ∇(u − δ)−

−μ

∫

Γδ

v

1 + v
V (u)(u − δ)− +

∫

Ω

u(λ − u)(u − δ)−,

where

Ωδ := {x ∈ Ω : u(x) < δ} , Γδ := {x ∈ Γ2 : u(x) < δ}.

Consequently,

d
2dt

∫

Ω

(u − δ)2− ≤ (ε − 1)
∫

Ω

|∇(u − δ)−|2 + C(ε)
∫

Ωδ

V 2(u)|∇v|2

−μ

∫

Γδ

v

1 + v
V (u)(u − δ)− +

∫

Ω

u(λ − u)(u − δ)−

≤ (ε − 1)
∫

Ω

|∇(u − δ)−|2 + C(ε) sup
s∈(0,δ)

V 2(s)
∫

Ω

|∇v|2

−μ

∫

Γδ

v

1 + v
V (u)(u − δ)− +

∫

Ω

u(λ − u)(u − δ)−.

Previous inequality can be rewritten in terms of f(δ) defined before Lemma 3.10 as

d
2dt

∫

Ω

(u − δ)2− ≤ (ε − 1)
∫

Ω

|∇(u − δ)−|2 + C(ε)f(δ)
∫

Ω

|∇v|2 + με̃

∫

Γ2

v2

(1 + v)2

+μC(ε̃)
∫

Γ2

V (u)2(u − δ)2− +
∫

Ω

u(λ − u)(u − δ)−.
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Thanks to the Sobolev trace embedding W 1,2(Ω) ↪→ L2(∂Ω) and having in mind that (v + 1)2 ≥ 1, we
arrive at

∫

Γ2

V (u)2(u − δ)2− ≤ C

⎛

⎝

∫

Ω

V 2(u)(u − δ)2− +
∫

Ω

(
2(u − δ)2−V ′(u)2 + 2V 2(u)

) |∇(u − δ)−|2
⎞

⎠ ,

με̃

∫

Γ2

v2

(1 + v)2
≤ Cμε̃‖v‖2

W 1,2 .

Therefore, we obtain
d

2dt

∫

Ω

(u − δ)2− ≤ (ε − 1)
∫

Ω

|∇(u − δ)−|2 + C(ε)f(δ)
∫

Ω

|∇v|2 + Cε̃‖v‖2
W 1,2

+C(ε̃)

⎛

⎝

∫

Ω

V 2(u)(u − δ)2− +
∫

Ω

(
2(u − δ)2−V ′(u)2 + 2V 2(u)

) |∇(u − δ)−|2
⎞

⎠

+
∫

Ω

u(λ − u)(u − δ)−. (22)

In view of the nonnegativity of u, we have

− δ < (u − δ)−. (23)

Owing to (23), from (22), we see that (g(δ) was defined before Lemma 3.10)

d
2dt

∫

Ω

(u − δ)2− ≤ (ε + C(ε̃)g(δ) − 1)
∫

Ω

|∇(u − δ)−|2

+(C(ε)f(δ) + με̃)‖v‖2
W 1,2 +

∫

Ω

u(u − δ)−

(

λ − u − C(ε̃)
V 2(u)

u
δ

)

. (24)

Due to the nonpositivity of (u − δ)− and (20), we have
∫

Ω

u(u − δ)−

(

λ − u − C(ε̃)
V 2(u)

u
δ

)

< 0. (25)

By the Hopf lemma and zero Neumann data on the boundary for u, we see that there exists δ1 such that
u(t0) > δ1. Hence, choosing δ < δ1 and using (19), (25) and Lemma 3.2, we infer from (24)

‖(u − δ)−(t)‖2
2 ≤ (2C(ε)f(δ) + 2με̃)C(β),

for t > t0 > 0. We shall show that

‖(u − δ)−(t)‖2
2 ≤ δ2η, (26)

for some η > 1. To this end notice that choosing ε = C(ε) = 1/2, we are in a position to apply Lemma 3.10
with D = C(β). As a consequence, for ε̃ as it is chosen in Lemma 3.10, (19), (20), (21) and

2με̃C(β) ≤ δ2η

2
are satisfied simultaneously. Hence, (26) is shown.

Next, we use interpolation between Lp spaces, (26) and (23) to obtain

‖(u − δ)−‖2/θ1 ≤ ‖(u − δ)−‖θ1
2 ‖(u − δ)−‖1−θ1∞

≤ δαθ1δ1−θ1 = δ1+(α−1)θ1 .
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Applying (4), we infer

‖(u − δ)−‖W θ,2/θ1 ≤ C‖(u − δ)−‖θ
W 1,2/θ1 ‖(u − δ)−‖1−θ

2/θ1
≤ C1‖(u − δ)−‖1−θ

2/θ1
,

the last inequality being a consequence of the uniform bound of L∞ norm, see [5, Theorem 3.8], and [1,
Theorem 15.5]. Picking up θ1 such that

θ − dθ1

2
> 0 (27)

we make sure that W θ,2/θ1(Ω) ↪→ L∞(Ω). Consequently,

‖(u − δ)−‖∞ ≤ C2δ
(1−θ)(1+(α−1)θ1).

Next, we notice that choosing α > 1 + d
2 , we make sure that

1 <

(

1 − dθ1

2

)

(1 + (α − 1)θ1).

Hence, choosing θ close enough to dθ1
2 , we see that (1 − θ)(1 + (α − 1)θ1) > 1 and upon taking δ small

enough, we obtain

‖(u − δ)−(t)‖∞ ≤ δ

2
,

for t ≥ t0 > 0. The Lemma is proved. �

4. Convergence to the semi-trivial solution (0, θµ)

Throughout this Section, additionally to the boundedness of u, we assume that there exist constants
0 < cm < CM and α ≥ 1 such that

cmsα ≤ V (s) ≤ CMsα for all s ∈ [0, ‖u‖∞]. (28)

Remark 4.1. Let us observe that when V ′(0) �= 0 and (2) holds, then (28) is true for α = 1. Moreover, if
V ∈ Ck for k ≥ 1 with V k(0) �= 0 and V j(0) = 0 for j < k, then (28) holds true for α = k.

In the following Theorem, we eliminate the restriction on μ of Theorem 3.6. However, we require the
additional condition (28) on V .

Theorem 4.2. Let λ = 0 and assume (28), then

lim
t→+∞ ‖u(t)‖W m,p = 0,

for any m < 1 and p ≥ 2.

Proof. On the one hand, we multiply the u-equation of (1) by u and we integrate in the space variable
to obtain

d
2dt

∫

Ω

u2 =
∫

Ω

(−|∇u|2 + V (u)∇v · ∇u − u3
) − μ

∫

Γ2

V (u)uv

1 + v

=
∫

Ω

(−|∇u|2 + ∇v · ∇ϕ(u) − u3
) − μ

∫

Γ2

V (u)uv

1 + v
, (29)

with

ϕ(u) =

u∫

0

V (s) ds.
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On the other hand, we multiply the v-equation of (1) by ϕ(u). Integrating in space, we obtain
∫

Ω

∇v · ∇ϕ(u) = −
∫

Ω

ϕ(u)vt + μ

∫

Γ2

vϕ(u)
1 + v

−
∫

Ω

vϕ(u) −
∫

Ω

cuvϕ(u).

Inserting the above equality into (29), we have

d
2dt

∫

Ω

u2 =
∫

Ω

(−|∇u|2 + ϕ(u)(−vt − v − cuv) − u3
)

+ μ

∫

Γ2

v

1 + v
(ϕ(u) − V (u)u). (30)

Next, we estimate vt. Multiplying the v-equation by vt and integrating over Ω, we see that
1
2

∫

Ω

v2
t +

d
2dt

∫

Ω

|∇v|2 +
d

2dt

∫

Ω

v2 − μd
dt

∫

Γ2

θ(v) = −
∫

Ω

cuvvt ,

where

θ(v) :=

v∫

0

s

1 + s
ds.

Therefore, by the uniform bound of v in C(Ω), we deduce

1
4

∫

Ω

v2
t +

d
2dt

∫

Ω

|∇v|2 +
d

2dt

∫

Ω

v2 − μd
dt

∫

Γ2

θ(v) ≤ M

∫

Ω

u2.

After integrating over the interval (τ, t), we find, by Lemma 3.4, that for t ≥ τ

t∫

τ

∫

Ω

v2
t ≤ C. (31)

Next, by (28), we obtain from (30) that

d
2dt

∫

Ω

u2 ≤ −
∫

Ω

|∇u|2 +
∫

Ω

ϕ(u)2 +
∫

Ω

v2
t + μ

∫

Γ2

vCuuα+1

(1 + v)(α + 1)

≤ −
∫

Ω

|∇u|2 + max
s∈[0,Cu]

V 2(s)
∫

Ω

u2 +
∫

Ω

v2
t +

μC2
u

α + 1

∫

Γ2

vuα

1 + v
. (32)

By Lemma 3.4 and (28), we get
t∫

τ

∫

Γ2

vuα

1 + v
≤ C (33)

for t ≥ τ . According to (33) and (31), we find upon integration of (32) over the time interval (τ, t) that
for t ≥ τ

t∫

τ

∫

Ω

|∇u|2 ≤ C.

From the last estimate, a similar argument to the one used previously yields
t∫

τ

∣
∣
∣
∣
∣
∣

d
dt

∫

Ω

u2

∣
∣
∣
∣
∣
∣
≤ C
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for t ≥ τ . Thus, by Lemma 3.3

lim
t→+∞ ‖u(t)‖2 = 0.

Finally, we can infer the result arguing as in the end of the proof of Theorem 3.6. �

Next, we prove a lemma which we will use in the proof of Theorem 4.4. As a by-product of the fol-
lowing lemma, we learn a qualitative information that v is bounded away from 0 for times large enough.
We shall obtain a lower bound on v by considering a subsolution to an elliptic problem which is also a
subsolution to a second equation in (1).

Lemma 4.3. Let λ = 0 and μ > μ1. If the condition (28) is satisfied then there exist constants c1, t0 > 0
such that for t ≥ t0

v(t) > c1. (34)

Proof. Let k ∈ (μ1, μ). Since λ1(−Δ + 1;N ;N + b(x)) is increasing with respect to b (see [4, Proposition
3.3]), we have

λ1(−Δ + 1;N ;N − μ) < λ1(−Δ + 1;N ;N − k) < λ1(−Δ + 1;N ;N − μ1) = 0.

Therefore, there exists ε0 > 0 such that

λ1(−Δ + 1;N ;N − k) = −cε0 i.e., λ1(−Δ + 1 + cε0;N ;N − k) = 0.

Let ϕ1 be the positive eigenfunction with ‖ϕ1‖∞ = 1 associated with the above eigenvalue, that is, ϕ1

satisfies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Δϕ1 + (1 + ε0c)ϕ1 = 0 in Ω,
∂ϕ1

∂n
= 0 on Γ1,

∂ϕ1

∂n
= kϕ1 on Γ2.

By Theorem 4.2, there exists t0 > 0 such that 0 ≤ u(t) < ε0 for all t ≥ t0 > 0. We claim that there exists
δ > 0 such that w = δϕ1 is a subsolution to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wt − Δw + (1 + cu)w = 0 in Ω × (t0,+∞),
∂w

∂n
= 0 on Γ1 × (t0,+∞),

∂w

∂n
= μ

w

1 + w
on Γ2 × (t0,+∞).

w(x, t0) = v(x, t0) in Ω.

Therefore, v(x, t) ≥ δϕ1 ≥ c1. It remains to prove the claim. By the strong maximum principle, v(x, t0) >
c > 0. Thus, there exists δ > 0 such that δϕ1 < v(x, t0). Moreover, choosing δ > 0 such that k(1+δ) < μ,
we make sure that

∂w

∂n
≤ μ

w

1 + w

on Γ2 × (t0,+∞). Hence, the claim is shown, and the lemma follows. �

Now, we are in a position to prove the main result of this section. To this end, we make use of the
theorem by Amann and López-Gómez, see [2], stating the equivalence between positivity of principal
eigenvalue and existence of strictly positive supersolution of some elliptic problems (the previous version
of this theorem for the Dirichlet problem was shown in [11]).

Theorem 4.4. Let λ = 0, μ > μ1 and assume (28), then

lim
t→+∞ ‖v(t) − θμ‖2 = 0.
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Proof. Let z(t) = v(t) − θμ. Then, z solves the following parabolic problem
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

zt = Δz − z − cuv in Ω × (0, T ),
∂v

∂n
= 0 on Γ1 × (0, T ),

∂z

∂n
= μ

z

(1 + v)(1 + θμ)
on Γ2 × (0, T ),

z(x, 0) = v0(x) − θμ in Ω.

(35)

We multiply (35) by z to obtain

d
2dt

∫

Ω

z2 = −
∫

Ω

|∇z|2 + μ

∫

Γ2

z2

(1 + v)(1 + θμ)
−

∫

Ω

z2 −
∫

Ω

cuvz. (36)

In order to estimate the right-hand side of (36) for t ≥ t0, we pick γ > 1 such that
γ

1 + c1
< 1 (37)

where c1 is given in (34). For each t ≥ t0, we consider the eigenvalue problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Δw + w = λw in Ω,
∂w

∂n
= 0 on Γ1,

∂w

∂n
=

μγw

(1 + v(t))(1 + θμ)
on Γ2.

(38)

Next, we see that θμ is a strict supersolution of
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Δw + w = 0 in Ω,
∂w

∂n
= 0 on Γ1,

∂w

∂n
=

μγw

(1 + v(t))(1 + θμ)
on Γ2.

Indeed,

−Δθμ + θμ = 0 in Ω,
∂θμ

∂n
= 0 on Γ1,

Finally, by the choice of γ (see (37)) and Lemma 4.3, we have
∂θμ

∂n
= μ

θμ

1 + θμ
>

μγθμ

(1 + v(t))(1 + θμ)
on Γ2.

Therefore, by [2, Theorem 2.4] we get λ1 > 0, the principal eigenvalue of (38). Next, the variational
characterization of the principal eigenvalue entails

λ1 = inf
ϕ∈H1(Ω)

∫

Ω
|∇ϕ|2 +

∫

Ω
ϕ2 − μγ

∫

Γ2

ϕ2

(1+v(t))(1+θμ)
∫

Ω
ϕ2

.

Thus, for all ϕ ∈ H1(Ω), we have

λ1γ
−1

∫

Ω

ϕ2 ≤ γ−1

∫

Ω

|∇ϕ|2 + γ−1

∫

Ω

ϕ2 − μ

∫

Ω

ϕ2

(1 + v(t))(1 + θμ)
.

In particular, we can apply it in (36) to obtain the following inequality
d

2dt

∫

Ω

z2 + (1 − γ−1)
∫

Ω

|∇z|2 + (1 − γ−1 + λ1γ
−1)

∫

Ω

z2 ≤
∫

Ω

cuvz.
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Therefore, there exists M > 0 such that

d
2dt

∫

Ω

z2 + (1 − γ−1)

⎛

⎝

∫

Ω

|∇z|2 +
∫

Ω

z2

⎞

⎠ ≤ M

∫

Ω

u2.

Integrating the above estimate on the time interval (τ, t), we obtain for t ≥ τ ,
t∫

τ

∫

Ω

|∇z|2 +
∫

Ω

z2 ≤ C. (39)

In view of (39), one infers
t∫

τ

∣
∣
∣
∣
∣
∣

d
dt

∫

Ω

z2

∣
∣
∣
∣
∣
∣
≤ C

for t ≥ τ . Finally, the result follows by Lemma 3.3. �
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