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1. Introduction

Wheeler–Feynman electrodynamics (WF) describes the classical electromagnetic interaction of a number
of N charges by action-at-a-distance [28]. The nature of the action-at-a-distance is such that two charges
interact with each other’s if and only if they are in each others light-cone. Hence, the force acting on
one charge at a certain time instant depends on the respective future and past of all other charges. In
contrast to Maxwell–Lorentz electrodynamics, the theory contains no fields and is free from ultraviolet
divergences originating from ill-defined self-fields. Electrodynamics without fields was considered as early
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as 1845 by Gauss [14] and continued to be of interest, for example, [13,20,26], where the fundamental
equations of WF, the so-called Fokker–Schwarzschild–Tetrode (FST) equations, were already discussed.
The connection to physical phenomena was then made by Wheeler and Feynman [27,28] who showed
that this alternative formulation of classical electrodynamics leads to a satisfactory description of radi-
ation damping: Accelerated charges are supposed to radiate and to lose energy thereby. How can this
be accounted for in a theory without fields? To answer this question, Wheeler and Feynman introduced
the so-called absorber condition, which needs to be satisfied by the world-lines of all charges, and they
argue that it is satisfied on thermodynamic scales. Under this absorber condition, it is straightforwardly
seen that the net force acting on any selected charge can effectively be described by the sum of forces
arising from the respective past of all other charges and the same radiation friction term that appears in
Dirac’s mass renormalization procedure [7]; see our short discussion in [4]. The advantage in Wheeler and
Feynman’s derivation of the radiation friction term is that it involves no divergences in the defining equa-
tions which in the case of Dirac’s formal derivation provoke unphysical, so-called run-away, solutions. At
the same time, Wheeler and Feynman’s argument is able to explain the irreversible nature of radiation
phenomena. These features make WF the most promising candidate for arriving at a mathematically
well-defined theory of relativistic, classical electromagnetism.

However, mathematically, WF is completely opaque. It is not an initial value problem for differential
equations because its fundamental equations of motion, the FST equations, contain time-like advanced
and retarded state-dependent arguments for which no theory of existence or uniqueness of solutions is
available. Apart from two exceptions discussed below, it is not even known whether in general there are
solutions at all. In tensor notation, WF is given by the FST equations:

mz̈μ
i (τ) = ei

∑

k=1,...,N

k �=i

1
2
[
F [zk]μν

+ (zi(τ)) + F [zk]μν
− (zi(τ))

]
żi,ν(τ), 1 ≤ i ≤ N, (1)

where

Fμν = ∂μAν − ∂νAμ, A[zk]μ±(x) := ek
żμ

k (τk,±(x))
(x−zk(τk,±(x)))ν żν

k(τi,±(x)) , (2)

and the world-line parameters τk,+, τk,− : M → R are implicitly defined through

z0
k(τk,+(x)) = x0 + ‖x − zk(τk,+(x))‖, z0

k(τk,−(x)) = x0 − ‖x − zk(τk,−(x))‖. (3)

Here, the world-lines of the charges zi : τ �→ zμ
i (τ) for 1 ≤ i ≤ N are parametrized by proper time τ ∈ R

and take values in Minkowski space M := (R4, g) equipped with the metric tensor g = diag(1,−1,−1,−1).
We use Einstein’s summation convention for Greek indices, that is, xμyμ :=

∑3
μ=0 gμνxμyν , and the

notation x = (x0,x) for an x ∈ M in order to distinguish the time component x0 ∈ R from the spatial
components x ∈ R

3. The overset dot denotes a differentiation with respect to the world-line parametri-
zation τ . For simplicity, each particle has the same inertial mass m �= 0 (all presented results however
hold for charges having different masses, too). The coupling constant ei denotes the charge of the i-th
particle.

If one were to insist on using field theoretic language, then one may also say that Eq. (1) describe the
interaction between the charges via their advanced and retarded Liénard–Wiechert fields F [zk]+, F [zk]−,
1 ≤ k ≤ N . These fields are special solutions of the Maxwell equations of classical electrodynamics cor-
responding to a prescribed world-line zk. The functional dependence on τ �→ zk(τ) is emphasized by the
square bracket notation [zk]. Given an x ∈ M and a time-like world-line τ �→ zk(τ), that is, one fulfilling
żk,μżμ

k > 0, the solutions τk,+(x), τk,−(x), are unique and given by the intersection of the forward and
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(a)

(b)

Fig. 1. a Solutions of equations (3) for �x0 := z0
k(τk,+(x)) − x0 and �x := ‖x − zk(τk,+(x))‖. b Two WF world-lines zi

and zk interacting via a ladder of light-cones (45◦ lines since in our units the speed of light equals one). Hence, the value
of z̈i depends on both advanced and retarded data F [zk]+(zi) and F [zk]+(zi), respectively

backward light-cone of space-time point x and the world-line zk, respectively; see Fig. 1a. The acceleration
on the left-hand side of the FST equations depends through (3) on time-like advanced as well as retarded
data [with respect to z0

i (τ)] of all the other world-lines; see Fig. 1b. The delay is unbounded, and by (2),
the right-hand side of (1) again depends on the acceleration.

It is noteworthy that in early 1900 the mathematician and philosopher A.N. Whitehead [29] devel-
oped a philosophical view on nature which rejects “initial value problems” as fundamental descriptions of
nature. He developed his own gravitational theory and motivated Synge’s study of what is now referred
to as Synge equations [19,24], that is,

mz̈μ
i (τ) = ei

∑

k=1,...,N

k �=i

F [zk]μν
− (zi(τ))żi,ν(τ). (4)

The Synge equations share many difficulties with the FST equations but, as we shall show, are simpler
to handle because they only depend on time-like retarded arguments. We would like to remark that inde-
pendent of Whitehead’s philosophy, it seems to be the case that often fields are introduced to formulate
a physical law, even though it may have a delay character, as initial value problem. Maxwell–Lorentz
electrodynamics is a prime example. However, these very fields are then often the source of singularities of
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the theory, quantum or classical. Whitehead’s idea might therefore point toward a fruitful new reflection
about the character of physical laws.

The books [9,11,18] provide a beautiful overview on the topic of delay differential equations. How-
ever, for the FST equations as well as similar types of delay differential equations with advanced and
retarded arguments of unbounded delay, there are almost no mathematical results available. The prob-
lem one usually deals with in the field of differential equations without delay is extension of local
solutions to a maximal domain and avoiding critical points by introducing a notion of typicality of
initial conditions. For WF, the situation is dramatic. Because of the unbounded delay, the notion of
local solutions does not make sense, so that the issue is not local versus global existence and also
not explosion or running into singular points of the vector field. The issue is simply: Do solutions
exist? and What kind of data of the solutions is necessary and/or sufficient to characterize solutions
uniquely?

To put our work in perspective, we call attention to the following literature: Angelov studied exis-
tence of Synge solutions in the case of two equal point-like charges and three dimensions [2]. Under the
assumption of an extra condition on the minimal distance between the charges to prevent collisions,
he proved existence of Synge solutions on the positive time half-line. Uniqueness is only known in a
special case in one dimension for two equal charges initially having sufficiently large opposite veloci-
ties and sufficiently large space-like separation. Under these conditions, Driver has shown [8] that the
Synge solutions are uniquely characterized by initial positions and momenta. With regard to WF, two
types of special solutions are known to exist: First, the explicitly known Schild solutions [21] composed
of specially positioned charges revolving around each other on stable orbits, and second, the scattering
solutions of two equal charges constrained on the straight line [3]. The latter result rests on the fact
that the asymptotic behavior of world-lines on the straight line is well controllable [due to this special
geometry the acceleration dependent term on the right-hand side of (1) vanishes]. Uniqueness of FST
solutions was proven in one dimension with zero initial velocity and sufficiently large separation of two
equal charges [10]. In a recent work [17], a well-defined analog of the formal Fokker variational principle
for two charges restricted to finite intervals was proposed. It is shown that its minima, if they exist,
fulfill the FST equations on these finite times intervals. Furthermore, there are conjectures about unique-
ness of FST solutions, for example, [1,12,25,28]. While Driver’s result [10] points to the possibility of
uniqueness by initial positions and momenta, Bauer’s [3] work suggests to specify asymptotic positions
and momenta. Furthermore, a WF toy model for two charges in three dimensions was given in [5,6]
for which a sufficient condition for a unique characterization of all its (sufficiently regular) solutions
is the prescription of connected strips of time-like world-lines long enough such that at least for one
point on each strip the right-hand side of the FST equation is well defined and the FST equation is
fulfilled.

2. Our setup and results

Our focus is on the bare existence of solutions of WF, that is, on the above question: Do solutions exist?
For that question, the issue that in a dynamical evolution of a system of point-like charges catastrophic
events may happen is secondary (compare the famous n-body problem of classical gravitation [22]). More
on target, such considerations would have to invoke a notion of typicality of world-lines, so that cata-
strophic events can be shown to be atypical. But that would require not only existence of solutions but
also a classification of solutions. We are far from that. To avoid such issues at this early state of research,
we regard WF� as introduced in [4] instead of WF, that is, we consider extended rigid charges described
by the charge distributions �i, 1 ≤ i ≤ N , where singularities do not even occur when charges pass
through each other. It has to be emphasized that in contrary to textbook electrodynamics in WF the
charges do not acquire electrodynamic mass, and as long as the world-lines do not cross or approach the
speed of light, the limit back to point-particles can be carried out without obstacles.
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For our mathematical analysis, it is convenient to express WF� in coordinates where it takes the form

∂tqi,t = v(pi,t) :=
pi,t√

m2 + p2
i,t

∂tpi,t =
∑

k=1,...,N

k �=i

ˆ
d3x �i(x − qi,t) (Et[qk,pk](x) + v(qi,t) ∧ Bt[qk,pk](x)) (5)

for 1 ≤ i ≤ N and
(

E(e+,e−)
t [qi,pi](x)

B(e+,e−)
t [qi,pi](x)

)
=
∑

±
4πe±

ˆ
ds

ˆ
d3y K±

t−s(x−y)
(
−∇�i(y − qi,s) − ∂s [v(pi,s)�i(y − qi,s)]

∇ ∧ [v(pi,s)�i(y − qi,s)]

)

(6)

where as in (5) most of the time we drop the superscript (e+,e−). Here, K±
t (x) := δ(‖x‖±t)

4π‖x‖ are the advanced
and retarded Green’s functions of the d’Alembert operator. The partial derivative with respect to time t
is denoted by ∂t, the gradient by ∇, the divergence by ∇·, and the curl by ∇∧. At time t the ith charge
for 1 ≤ i ≤ N is situated at position qi,t in space R

3, has momentum pi,t ∈ R
3 and carries the classical

mass m ∈ R \ {0}. The geometry of the rigid charges is described by the smooth charge densities �i of
compact support, that is, �i ∈ C∞

c (R3, R), for 1 ≤ i ≤ N .
Using the notation Et := (F 0i(t, ·))1≤i≤3 and Bt := (F 23(t, ·), F 31(t, ·), F 12(t, ·)) and replacing �i

by the three-dimensional Dirac delta distribution δ(3) times ei, one retrieves from (5) the FST equa-
tions (1) for e+ = 1

2 = e− and the Synge equations (4) for e+ = 0, e− = 1. As discussed in Theorem
3.10, the expression (6) for the choices for e+ = 1, e− = 0 and e+ = 0, e− = 1 is the advanced and
retarded Liénard–Wiechert field, respectively. The square brackets [qi,pi] emphasize that these fields are
functionals of the charge world-line t �→ (qi,t,pi,t) and no dynamical degrees of freedom in their own.

The first idea to come to grips with existence of solutions is to adapt fixed point arguments from
ordinary differential equations. That is not practical because of two difficulties. The first difficulty is that
in general in WF one cannot separate the second-order derivative from lower order derivatives; see (23),
(24) and (25) for a more explicit expression of (6). Therefore, one cannot rewrite the FST equations
in terms of an integral equation which is normally employed in the fixed points arguments. The second
difficulty is that the time-like advanced and retarded arguments introduced by (6) are of unbounded delay
so that WF dynamics makes only sense for charge world-lines which are globally defined in time. One
would thus have to find an appropriately normed space of functions on R on which the fixed point map
can be controlled—which has not been found yet. One may circumvent this problem by introducing a
notion of conditional solutions where outside a chosen time interval [−T, T ] the world-lines are prescribed
by hand. The fixed point argument—if that could be formulated—would then run on the time interval
[−T, T ] only. If successful, one may then try to construct a bonafide global solution by letting T → ∞. In
this work, we show how one can formulate a fixed point procedure on intervals [−T, T ] for arbitrary large
T > 0, that is, we show how one can circumvent the first difficulty albeit gaining conditionally solutions
only. The extension to global solutions would require good control on the asymptotic behavior (as e.g.,
in [3] in the case of the motion on the straight line), which we do not pursue here. We stress, however,
that the extension to infinite time intervals is an interesting and worthwhile task, joining the results of
this paper with the removal technique for T → ∞ introduced in [3].

The key idea to define a fixed point map on time intervals [−T, T ] is a reformulation of the WF
functional differential equations into a system of nonlinear partial differential equations without delay,
namely the Maxwell–Lorentz equations without self-interaction (abbrev. ML-SI) introduced in [4, (4)–
(7)]. Relying on the notation in [4, (13)], the relation between WF and ML-SI can be expressed as an
equality of sets of charge world-lines:

WF =
{
world-lines of ML-SI � {F0 ≡ 0}

}
. (7)
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On the left-hand side, we consider the set of world-lines of the charges that fulfill WF. On the right, we
have the set charge world-lines corresponding to solutions of ML-SI restricted to the subset for which
F0 = F − 1

2 (F+ + F−) vanishes, that is, the electrodynamic fields F coincide with the WF fields (6).
In the case of rigid charges, we shall use the relation (7) in the following way: Consider charge world-

lines t �→ (qi,t,pi,t)1≤i≤N which solve WF�. By definition, the fields (6) fulfill the Maxwell equations
which implies that the map

t �→ (qi,t,pi,t,Ei,t,Bi,t)1≤i≤N := (qi,t,pi,t,Et[qi,pi],Bt[qi,pi])1≤i≤N

is a solution of ML-SI�, that is, the Maxwell equations:

∂tEi,t = ∇ ∧ Bi,t − 4πv(pi,t)�i(· − qi,t) ∇ · Ei,t = 4π�i(· − qt,i)

∂tBi,t = −∇ ∧ Ei,t ∇ · Bi,t = 0 (8)

together with the Lorentz equations (without self-interaction):

∂tqi,t = v(pi,t) :=
pi,t√

m2 + p2
i,t

∂tpi,t =
∑

k=1,...,N

k �=i

ˆ
d3x �i(x − qi,t) [Ek,t(x) + vi,t ∧ Bk,t(x)] . (9)

On the other hand, global existence and uniqueness of solutions of ML-SI� for initial data p :=
(q0

i ,p
0
i )1≤i≤N ∈ R

6N and sufficiently regular initial fields F := (E0
i ,B

0
i )1≤i≤N , for example, at time

t0 ∈ R, has been shown in [4]; the needed definitions and results are summarized in the Sect. 3.2. For any
(p, F ) ∈ Dw(A∞), the particular solution is then denoted by

t �→ ML[p, F ](t, t0) := (qi,t,pi,t,Ei,t,Bi,t)1≤i≤N . (10)

In this sense, we say that sufficiently regular WF� charge world-lines give rise to ML-SI� solutions.
Changing the point of view, we now fix some Newtonian Cauchy data p and ask our

Crucial Question: Do fields F exist such that the corresponding ML-SI� solution

t �→ (qi,t,pi,t,Ei,t,Bi,t)1≤i≤N =: ML[p, F ](t, t0)

fulfills

F = (Et[qi,pi],Bt[qi,pi])1≤i≤N |t=t0 ? (11)

Condition (11) expresses that the initial fields F equal the WF� fields (6) at initial time t = t0. Equiva-
lently, it ensures that the time-evolved fields t �→ (Ei,t,Bi,t)1≤i≤N of the ML-SI� solution equal the WF�

fields t �→ (Et[qi,pi],Bt[qi,pi])1≤i≤N for all times t because their difference is a solution to the homo-
geneous Maxwell equations [i.e. (8) for �i = 0] which is zero; compare (7). Given the equality of fields
for all times, Eqs. (9) turn into the WF� equations (5), and hence, the charge world-lines of the ML-SI�
solution fulfilling (11) solve the WF� equations. In other words, the subset of sufficiently regular solutions
of ML-SI� that correspond to initial conditions fulfilling (11) have WF� charge world-lines. We shall show
that any once differentiable charge world-line t �→ (pt,qt) with bounded momenta and accelerations
produces WF� fields (6) that are regular enough to serve as initial conditions for ML-SI�. This covers all
physically interesting WF� solutions, including the known Schild solutions. The advantage gained from
this change of viewpoint is that ML-SI� is given in terms of an initial value problem. Therefore, instead
of working directly with the WF� functional equations, it will be more convenient to formulate a fixed
point procedure for ML-SI� to find initial fields for which (11) holds.

We now give an overview of our main results for which we need a precise definition of the considered
classes of charge world-lines:
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Definition 2.1. (Charge world-lines)
(i) We call any map

(q,p) ∈ C1(R, R3 × R
3), t �→ (qt,pt)

a charge world-line and denote with qt and pt the position and momentum of the charge, respectively.
Its velocity at time t is given by v(pt) := pt√

m2+p2
t

.

(ii) We collect all time-like charge world-lines in the set

T 1� :=
{

(q,p) ∈ C1(R, R3 × R
3)
∣∣∣∣ ‖v(pt)‖ < 1 for all t ∈ R

}
,

(iii) and all strictly time-like charge world-lines in the set

T 1�!(I) :=
{

(q,p) ∈ T 1�
∣∣∣∣ ∃vmax < 1 such that supt∈I ‖v(pt)‖ ≤ vmax

}
.

where we use the abbreviation T 1�! := T 1�!(R).
The symbol � refers to “time-like” whereas the symbol �! refers to “strictly time-like”. Furthermore, we
use the notation

(q,p) = (q̃, p̃) :⇔ ∀t ∈ R : (qt,pt) = (q̃t, p̃t)

and define the Cartesian products T N� := (T 1� )N and T N�! := (T 1�!)
N .

Furthermore, we define the class of charge world-lines that fulfill the WF� equations (5)–(6).

Definition 2.2. (Class of Solutions) We define T N
(e+,e−) to consist of elements (qi,pi)1≤i≤N ∈ T N�! which

fulfill:
(i) There exists an amax < ∞ such that for all 1 ≤ i ≤ N , supt∈R

‖∂tv(pi,t)‖ ≤ amax.
(ii) (qi,pi)1≤i≤N solve the Eqs. (5)–(6) for all times t ∈ R and the particular choice of e+, e−.

Our first results is as follows:

Theorem 2.3. (Weak Uniqueness of Solutions) For e+, e− ∈ R, (qi,pi)1≤i≤N ∈ T N
(e+,e−) and t ∈ R we

define

ϕ
(e+,e−)
t [(qi,pi)1≤i≤N ] = (qi,t,pi,t,E

(e+,e−)
t [qi,pi],B

(e+,e−)
t [qi,pi])1≤i≤N . (12)

The following statements are true:

(i) For any t0 ∈ R we have ϕ
(e+,e−)
t0 [(qi,pi)1≤i≤N ] ∈ Dw(A∞).

(ii) For all t, t0 ∈ R also ϕ
(e+,e−)
t [(qi,pi)1≤i≤N ] = ML

[
ϕ

(e+,e−)
t0 [(qi,pi)1≤i≤N ]

]
(t, t0) holds.

(iii) For any t0 ∈ R the following map is injective:

i
(e+,e−)
t0 : T N

(e+,e−) → Dw(A∞), (qi,pi)1≤i≤N �→ ϕ
(e+,e−)
t0 [(qi,pi)1≤i≤N ].

Hence, for any choice of the coupling parameters e+, e− we know that: (i) The charge world-lines
in T N

(e+,e−) produce sufficiently regular initial fields for ML-SI�. (ii) The expression (12) coincides with
a ML-SI� solution. (iii) Each solution of (5)–(6) can be identified by positions, momenta and fields
E(e+,e−)

t [qi,pi],B
(e+,e−)
t [qi,pi])1≤i≤N at an initial time t0.

This gives us a good handle on the existence and uniqueness of the Synge solutions. We define the
initial data:

Definition 2.4. (Synge Histories) For t0 ∈ R we define the set H(t0) to consist of elements (qi,pi)1≤i≤N ∈
T N�! which fulfill:
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(i) There exists an amax < ∞ such that for all 1 ≤ i ≤ N , supt∈R
‖∂tv(pi,t)‖ ≤ amax.

(ii) (qi,pi)1≤i≤N solve the Eqs. (5)–(6) for e+ = 0, e− = 1 at time t = t0.
Furthermore, H(t0)+ denotes the set H(t0) equipped with

(qi,pi)1≤i≤N
H+(t0)= (q̃i, p̃i)1≤i≤N :⇔ ∀t ∈ [t0,∞) : (qi,t,pi,t)1≤i≤N = (q̃i,t, p̃i,t)1≤i≤N

while H(t0)− denotes the set H(t0) equipped with

(qi,pi)1≤i≤N
H−(t0)= (q̃i, p̃i)1≤i≤N :⇔ ∀t ∈ (−∞, t0] : (qi,t,pi,t)1≤i≤N = (q̃i,t, p̃i,t)1≤i≤N .

Given a history (q−
i ,p−

i )1≤i≤N ∈ H−(t0) one can simply compute the retarded Liénard–Wiechert
fields (E(0,1)

t )[q−
i ,p−

i ],B(0,1)
t )[q−

i ,p−
i ])1≤i≤N at time t = t0 and use them as initial fields for ML-SI�. The

charge world-lines of the time-evolved ML-SI� solutions then obey the Synge equations for times t ≥ t0.
This way we shall prove:

Theorem 2.5. (Existence and Uniqueness of Synge Solutions) Let e+ = 0, e− = 1, t0 ∈ R and
(q−

i ,p−
i )1≤i≤N ∈ H(t0)−.

(i) (existence) There exists an extension (q+
i ,p+

i )1≤i≤N ∈ H(t0)+ such that the concatenation

(qi,pi)1≤i≤N : t �→ (qi,t,pi,t)1≤i≤N :=

{
(q−

i,t,p
−
i,t)1≤i≤N for t ≤ t0

(q+
i,t,p

+
i,t)1≤i≤N for t > t0

(13)

is an element of T N�! ((−∞, T ]) for all T ∈ R and solves the Eqs. (5)–(6) for all t ≥ t0.
(ii) (uniqueness) Let (q̃i, p̃i)1≤i≤N ∈ T N�! ((−∞, T ]) for any T ∈ R and suppose further that it solves the

Eqs. (5)–(6) for all times t ≥ t0. Then (q̃i, p̃i)1≤i≤N
H−(t0)= (q−

i ,p−
i )1≤i≤N implies (q̃i,t, p̃i,t)1≤i≤N =

(qi,t,pi,t)1≤i≤N for all t ∈ R.

Given Theorem 2.3, this existence and uniqueness result is not hard to prove, and the reason for this
is that we only ask for solutions on the half-line [t0,∞). In contrast to WF�, the notion of local solutions
again makes sense since the histories simply act as prescribed external potentials. However, if we ask
for solutions on whole R, we again face the problem as in WF�, that is, by the unboundedness of the
delay the notion of local solutions loses its meaning (a conceivable way around this without necessarily
sacrificing uniqueness is to give initial conditions for t0 → −∞).

We now come to the main part of this work where we discuss the existence of WF� solutions. From
now on we shall keep the choice e+ = 1

2 , e− = 1
2 fixed, although all the results hold also for any choices of

−1 ≤ e+, e− ≤ 1. We take on the mentioned idea of conditional solutions: For given initial positions and
momenta of the charges at t = 0, we look for WF� solutions on time intervals [−T, T ] for an arbitrary
large but fixed T > 0. To be able to regard only the time interval [−T, T ] of the WF� dynamics, we need
to prescribe how the charge world-lines continue for times |t| > T because due to the delay the dynamics
within [−T, T ] will of course depend also on the world-lines at times |t| > T . This is done by specifying
the advanced Liénard–Wiechert fields at time T as well as the retarded Liénard–Wiechert fields and time
−T corresponding to each continuation of the charge world-line for times |t| > T . We shall refer to these
fields as boundary fields and denote them by X+

i,+T and X−
i,−T . The set of WF� equations for 1 ≤ i ≤ N

with respect to the boundary fields X±
i,±T turn into

∂tqi,t = v(pi,t) :=
pi,t√

m2 + p2
i,t

∂tpi,t =
∑

k=1,...,N

k �=i

ˆ
d3x �i(x − qi,t)

(
EX

t [qk,pk](x) + v(qi,t) ∧ BX
t [qk,pk](x)

)
(14)

and
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(a) (b)

Fig. 2. Two WF world-lines zi and zj on time interval [−T, T ] with Newtonian Cauchy data p. The straight lines for

times |t| > T are the prescribed asymptotes which generate the advanced and retarded Liénard–Wiechert fields X+
i,+T and

X−
i,−T . In a one observes true WF interaction between the charge world-lines on [−T, T ] within the time interval [−L, L].

In the extreme case b the charge world-lines on [−T, T ] interact only with the given asymptotes (apart from the connection
conditions at ±T )

(EX
i,t,B

X
i,t) =

1
2

∑

±
M�i

[X±
i,±T , (qi,pi)](t,±T ), for 1 ≤ i ≤ N (15)

where the M�[F 0, (q,p)](t, t0) denotes the solution of the Maxwell equations for initial fields F 0 at time
t0 corresponding to a prescribed world-line t �→ (qt,pt) with a charge distribution �; see Definition 3.9
below. Note that the above set of equations is a natural restriction of the WF� dynamics onto the time
interval [−T, T ] because, first, for the choice

X±
i,±T = 4π

ˆ
ds

ˆ
d3y K±

±T−s(x − y)
(

−∇�i(y − qi,s) − ∂s [v(pi,s)�i(y − qi,s)]
∇ ∧ [v(pi,s)�i(y − qi,s)]

)
(16)

they turn into the WF� set of equations (5)–(6). And second, it is well known that for large T the bound-
ary fields, should they have sufficient space-like decay, are forgotten by the Maxwell time evolution M in
the pointwise sense; see Remark 3.11 below. Based on this behavior, one may expect to be able to study
also unconditional existence of WF� solutions by considering the limit T → ∞ for a convenient choice of
controllable boundary fields.

For simplicity of our introductory discussion, let us choose

X±
±T := (EC

i (· − qi,±T ), 0)1≤i≤N ,

(EC
i , 0) := M�i

[t �→ (0, 0)](0,−∞) =
(ˆ

d3z �i(· − z)
z

‖z‖3
, 0
)

,

that is, the Coulomb fields corresponding to a charge at rest at qi,±T . With this prescription, the condi-
tional WF� equations (14)–(15) are equivalent to WF� dynamics for charges initially being held at rest
for times t ≤ −T and then instantaneously stopped at times t ≥ T by external mechanical forces; see
Fig. 2a. The presented results, however, admit not only this particular case but a large class of boundary
fields which also allow a continuous continuation of the momentum of the charges at times t = ±T .

In view of our discussion of (7), it seems natural to implement the following fixed point map in order
to find solutions to the conditional WF� equations (14)–(15) for initial positions and momenta p ∈ R

6N

of the charges:
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INPUT: F = (E0
i ,B

0
i )1≤i≤N for any fields such that (p, F ) ∈ Dw(A∞).

(i) Compute the ML-SI� solution [−T, T ] � t �→ (qi,t,pi,t,Ei,t,Bi,t)1≤i≤N := ML[p, F ](t, 0).
(ii) Compute the advanced and retarded fields

(Ẽi,t, B̃i,t) =
1
2

∑

±
M�i

[X±
i,±T [p, F ], (qi,pi)](t,±T )

corresponding to the charge world-lines t �→ (qi,pi) computed in (i) with prescribed initial fields
X±

i,±T [p, F ] at times ±T .

OUTPUT: Sp,X±
T [F ] := (Ẽi,t, B̃i,t)1≤i≤N |t=0.

Note that the boundary fields X±
i,±T = X±

i,±T [p, F ] need to depend on the ML-SI� initial values (p, F ).
Otherwise, it would not be possible to continuously connect the charge world-lines with the prescribed
continuation of the charge world-lines at times t = ±T . The precise definition of Sp,X±

T is given in
Definition 4.11 below. By construction, any fixed point F ∗ of this map Sp,X±

T gives rise to a ML-SI�
solutions t �→ ML[p, F ∗](t, 0) whose charge world-lines fulfill the conditional WF� equations (14)–(15);
see Definition 4.10 and Theorem 4.12 below. We prove:

Theorem 2.6. (Existence of Conditional WF�Solutions) Let p ∈ R
6N be given. For each finite T > 0 the

map Sp,X±
T has a fixed point.

The essential ingredient in the proof of this result is the good nature of the ML-SI� dynamics which
implies Lemma 4.17 below. Here we rely heavily on the work done in [4].

We close with a discussion of these fixed points. Recall that the Synge solutions on the time half-
line [t0,∞) for times sufficiently close to t0 give rise to interaction with the given past world-lines on
(−∞, t0] only. For such small times, one simply solves an external field problem. Not until larger times
the interaction becomes truly retarded in the sense that the future charge world-lines interact with their
just generated histories for times t ≥ t0. However, in an extreme situation, a charge could approach the
speed of light so fast that the time coordinate of the intersection of its backward light-cone with another
charge world-line is bounded, say, by Tmax ∈ R. This means that this charge will never interact with the
part t ≥ Tmax of the other charge world-lines. If Tmax ≤ t0, one ends up solving a purely external field
problem without seeing any truly retarded interaction. Such a scenario is of course so special that one
would not expect it for all Synge solutions (recall that by Theorem 2.5 one has existence and uniqueness
on the time half-line for any sufficiently regular set of past world-lines). For the WF� equations, however,
we only have solutions on time intervals [−T, T ] yet and, therefore, one should be more curious as the
described scenario in the case of the Synge equations could happen in the case of the FST equations in
the past as well as in the future of t0. If the WF� solution on [−T, T ] behaves as badly as described above
or the initial position are too far apart from each other in the space-like sense, we might end up solving
only an external field problem as the charge world-lines on [−T, T ] only “see” the prescribed boundary
fields; see Fig. 2b. The following result makes sure that given T at least for some solutions this is not
the case because on an interval [−L,L] with 0 < L ≤ T they interact exclusively with all other charge
world-lines on [−T, T ] and not with the given boundary fields; that is, the case as shown in Fig. 2a.

We prove:

Theorem 2.7. (True WF� Interaction) Choose a, b, T > 0. Then:
(i) The absolute values of the velocities v(pi,t) of all charges of any ML-SI� solution with any initial

data (p, F ) such that

‖p‖ ≤ a, max
1≤i≤N

‖�i‖L2
w

+ max
1≤i≤N

‖w−1/2�i‖L2 ≤ b, F ∈ Range Sp,X±
T

have an upper bound va,b
T with 0 ≤ va,b

T < 1.
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(ii) Let R > 0 be the smallest radius such that the support of �i lies within a ball around the origin with
radius R, that is, supp �i ⊆ BR(0), for all 1 ≤ i ≤ N , and further �qmax(p) := max1≤i,j≤N ‖q0

i −q0
j‖.

For sufficiently small R there exist p = (q0
i ,p

0
i )1≤i≤N such that

L :=
(1 − va,b

T )T − �qmax − 2R

1 + va,b
T

> 0 (17)

and any fixed point F ∗ of Sp,X±
T gives rise to a ML-SI� solution t �→ ML[p, F ∗](t, 0) whose charge

world-lines for t ∈ [−L,L] solve the WF� equations (5)–(6).

The form of L in (17) is a direct consequence of the geometry as displayed in Fig. 2a and the nature
of the free Maxwell time evolution, see Lemma 4.21, which can be seen from a direct computation using
harmonic analysis. The proof further employs a very rough Grönwall estimate coming from the ML-SI�
dynamics to estimate the velocities of the charges during the time interval [−T, T ], see Lemma 4.22. The
conditions for the above result are therefore quite restrictive but merely technical. Any uniform velocity
estimate, for example, as given in [3] for two charges of equal sign restricted to a straight line, makes this
result redundant as then T can just be chosen arbitrarily large to ensure an arbitrary large L, and hence
charge world-lines that fulfill the WF� equations on arbitrary large intervals. We expect such a bound
also without the restriction to a straight line. However, even without such a uniform velocity bound the
result above already ensures that in Theorem 2.6 we do see truly advanced and retarded WF� interaction
between the charges. Furthermore, we remark that for the charge world-lines found in (ii) above, one can
already define the WF conservation laws [28] which we expect to be an important ingredient in order to
control a limit procedure T → ∞ to yield global WF� solutions.

3. Preliminaries

In the proofs of the main results, we will frequently rely on explicit expressions of the time-evolved electric
and magnetic fields appearing in the Maxwell equations as well as in the ML-SI� time evolution. The
ML-SI� equations are (8)–(9), while the Maxwell equations for a given charge–current density t �→ (ρt, jt)
have the form

∂tEt = ∇ ∧ Bt − 4πjt ∇ · Et = 4πρt

∂tBt = −∇ ∧ Et ∇ · Bt = 0.
(18)

Although the presented results on the Maxwell equations are well known in the physics community,
we only found some of them in the mathematical literature; for example, [23]. Therefore, we give a math-
ematical review in Sect. 3.1. The proofs of all the claims are published separately in [5]. Furthermore,
ML-SI� was studied in [4]. In order to be self-contained, we given an overview of the needed results in
Sect. 3.2.
Notation. Let N0 = N ∪ {0}. R

3 vectors and vector-valued functions have bold letters. We denote the
ball of radius R > 0 around the center x ∈ R

3 by BR(x) ⊂ R
3 and its boundary by ∂BR(x). We denote

by C ∈ Bounds any function x �→ C(x) ∈ R+ that depends continuously and nondecreasing on its argu-
ment x. Furthermore, let Cn(V,W ) be the set of n-times continuously differentiable functions V → W .
C∞(V,W ) :=

⋂
n∈N0

Cn(V,W ). Cn
c (V,W ) ⊂ Cn(V,W ) and C∞

c (V,W ) ⊂ C∞(V,W ) are the respective
subsets of functions with compact support. Where unambiguous we sometime drop the reference to
V and W .

3.1. Strong solutions to the Maxwell equations

We review the solution theory of the Maxwell equations (18) omitting the proofs which can be found in,
for example, [5]. The class of charge–current densities we treat is defined by:
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Definition 3.1. (Charge–Current Densities) We shall call any pair of maps ρ : R × R
3 → R, (t,x) �→ ρt(x)

and j : R × R
3 → R

3, (t,x) �→ jt(x) a charge–current density whenever:
(i) For all x ∈ R

3: ρ(·)(x) ∈ C1(R, R) and j(·)(x) ∈ C1(R, R3).
(ii) For all t ∈ R: ρt, ∂tρt ∈ C∞(R3, R) and jt, ∂tjt ∈ C∞(R3, R3).
(iii) For all (t,x) ∈ R × R

3: ∂tρt(x) + ∇ · jt(x) = 0 which is referred to as continuity equation.
We denote the set of such pairs (ρ, j) by D.

We are interested in solutions to the Maxwell equations (18) in the following sense:

Definition 3.2. (Strong Solution Sense) We define the space of fields

F1 := C∞(R3, R3) ⊕ C∞(R3, R3).

Let t0 ∈ R and F 0 ∈ F1. Then any mapping F : R → F1, t �→ Ft := (Et,Bt) that solves (18) in the
pointwise sense for initial value Ft|t=t0 = F 0 is called a strong solution to the Maxwell equations with t0
initial value F 0.

Explicit formulas of those solutions are constructed with the help of:

Definition 3.3. (Green’s Functions of the d’Alembert) We set

K±
t (x) :=

δ(‖x‖ ± t)
4π‖x‖

where δ denotes the one-dimensional Dirac delta distribution.

Note that for every f ∈ C∞(R3)

K±
t ∗ f(x) =

⎧
⎨

⎩

0 for ± t > 0
t

ffl
∂B|t|(x)

dσ(y)f(y) := t
4πt2

´
∂B|t|(x)

dσ(y)f(y) otherwise

holds, where dσ denotes the surface element on ∂B|t|(x). We introduce the notation � = ∇ · ∇ and
� = ∂2

t − �.

Lemma 3.4. (Green’s Functions Properties) Let f ∈ C∞(R3). Then:
(i) The following identities holds:

K±
t ∗ f = ∓t

 

∂B∓t(0)

dσ(y)f(· − y)

∂tK
±
t ∗ f = ∓

 

∂B∓t(0)

dσ(y) f(· − y) ∓ t2

3

 

B∓t(0)

d3y �f(· − y)

∂2
t K±

t ∗ f = K±
t ∗ �f = �K±

t ∗ f. (19)

(ii) Set Kt =
∑

± ∓K±
t . The mapping (t,x) �→ [Kt ∗ f ](x) can uniquely be extended at t = 0 to become

a C∞(R × R
3) function such that for all n ∈ N

lim
t→0∓

(
∂2n

t Kt ∗ f
∂2n+1

t Kt ∗ f

)
=
(

0
�nf

)
(20)

and �Kt ∗ f = 0 for all t ∈ R.

Remark 3.5. In the future we will denote the unique extension of Kt by the same symbol Kt. It is called
the propagator of the homogeneous wave equation.
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Theorem 3.6. (Maxwell Solutions) Let (ρ, j) ∈ D.
(i) Given (E0,B0) ∈ F1 fulfilling the Maxwell constraints ∇·E0 = 4πρt0 and ∇·B0 = 0 for any t0 ∈ R,

the mapping t �→ Ft = (Et,Bt) defined by
(

Et

Bt

)
:=
(

∂t ∇∧
−∇∧ ∂t

)
Kt−t0 ∗

(
E0

B0

)
+ Kt−t0 ∗

(
−4πjt0

0

)
+ 4π

ˆ t

t0

ds Kt−s ∗
(

−∇ −∂s

0 ∇∧

)(
ρs

js

)
(21)

for all t ∈ R is F1 valued, infinitely often differentiable and a solution to (18) with t0 initial value
F 0.

(ii) c For all t ∈ R we have ∇ · Et = 4πρt and ∇ · Bt = 0.

Remark 3.7. Clearly, one needs less regularity of the initial values in order to get a strong solution. With
regard to WF�, however, we will only need to consider smooth initial values F1. The explicit formula of
the solutions (after an additional partial integration) was already found in [15, (A.24),(A.25)] where it
was derived with the help of the Fourier transform. (There seems to be a misprint in the matrix on the
r.h.s of equation (A.24). In their notation mt ∗ (E0, B0) should equal the first summand of the r.h.s. of
(21). However, (A.20) from which it is derived is correct.)

For the rest of this paper, the charge–current densities (ρ, j) we will consider are the ones generated
by a moving rigid charge on time-like world-lines (recall Definition 2.1):

Definition 3.8. (The Charge–Current Density of a Charge world-line) For � ∈ C∞
c (R3, R) and (q,p) ∈ T 1�

define

ρt(x) := �(x − qt), jt(x) :=
pt√

m2 + p2
t

�(x − qt)

for all (t,x) ∈ R × R
3 which we call the induced charge–current density of (q,p).

Clearly, (ρ, j) ∈ D so that Theorem 3.6 applies:

Definition 3.9. (Maxwell Time Evolution) Given a charge world-line (q,p) ∈ T 1� which induces (ρ, j) ∈ D
we denote the solution t �→ Ft of the Maxwell equations (18) given by Theorem 3.6 and t0 initial values
F 0 = (E0,B0) ∈ F1 by

t �→ M�[F 0, (q,p)](t, t0) := Ft.

One finds the following special solutions:

Theorem 3.10. (Liénard–Wiechert Fields) Let F 0 = (E0,B0) ∈ F1 such that ∇·E0 = 4πρt0 and ∇·B0 = 0
as well as

‖E0(x)‖ + ‖B0(x)‖ + ‖x‖
3∑

i=1

(
‖∂xi

E0(x)‖ + ‖∂xi
B0(x)‖

)
= O

‖x‖→∞
(
‖x‖−ε
)

(22)

for some ε > 0 and all x ∈ R
3 are fulfilled. We distinguish two cases denoted by + or − and assume that

for all t ∈ R, (q,p) ∈ T 1�!([t,∞)) or (q,p) ∈ T 1�!((−∞, t]) holds, respectively. Then the pointwise limit

M�[q,p](t,±∞) := pw-limt0→±∞ M�[F 0, (q,p)](t, t0)

= 4π

tˆ

±∞
ds

[
Kt−s ∗

(
−∇ −∂s

0 ∇∧

)(
ρs

js

)]
=
ˆ

d3z �(z)
(

ELW±
t (· − z)

BLW±
t (· − z)

)
(23)

exists in F1 where

ELW±
t (x − z) :=

[
(n±v)(1−v2)

‖x−z−q‖2(1±n·v)3 + n∧[(n±v)∧a]
‖x−z−q‖(1±n·v)3

]±
(24)

BLW±
t (x − z) := ∓[n ∧ Et(x − z)]± (25)
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and
q± := qt± v± := v(pt±) a± := ∂tv(pt)|t=t±

n± := x−z−q±

‖x−z−q±‖ t± = t ± ‖x − z − q±‖.
(26)

Remark 3.11. Condition (22) guarantees that in the limit t0 → ±∞, the initial value F 0 is forgotten
by the time evolution of the Maxwell equations. The condition that (q,p) are strictly time-like is only
sufficient for the limits t0 → ±∞ to exist but necessary to yield formulas (24) and (25); note the blowup
of the denominators (1 ± n · v) for ‖v‖ → 1.

Theorem 3.12. (Liénard–Wiechert Fields Solve the Maxwell Equations) Let (q,p) ∈ T 1�!, then the
Liénard–Wiechert fields M�[q,p](t,±∞) are a solution to the Maxwell equations (18) including the Max-
well constraints for all t ∈ R.

We immediately get a simple bound on the Liénard–Wiechert fields:

Corollary 3.13. (Liénard–Wiechert Estimate) Let (q,p) ∈ T 1�!. Furthermore, assume there exists an
amax < ∞ such that supt∈R

‖∂tv(pt)‖ ≤ amax. Then the Liénard–Wiechert fields (24) and (25) fulfill:
For any multi-index α ∈ N

3
0 there exists a constant C1

(α) < ∞ such that for all x ∈ R
3, t ∈ R

‖DαE±
t (x)‖ + ‖DαB±

t (x)‖ ≤ C1
(α)

(1 − vmax)3

(
1

1 + ‖x − qt‖2
+

amax

1 + ‖x − qt‖

)

holds.

3.2. The ML-SI� time evolution

Next, we briefly summarize the results of [4] on the ML-SI� equations (8)–(9):

Definition 3.14. (Weighted Square Integrable Functions) We define the class of weight functions

W :=
{

w ∈ C∞(R3, R+ \ {0})
∣∣ ∃ Cw ∈ R

+, Pw ∈ N : w(x + y) ≤ (1 + Cw‖x‖)Pww(y)
}

. (27)

For any w ∈ W and open Ω ⊆ R
3, we define the space of weighted square integrable functions Ω → R

3

by

L2
w(Ω, R) :=

{
F : Ω → R

3 measurable
∣∣∣∣
ˆ

d3x w(x)‖F(x)‖2 < ∞
}

.

For regularity arguments, we need more conditions on the weight functions. For k ∈ N, we define

Wk :=
{

w ∈ W
∣∣ ∃ Cα ∈ R

+ : |Dα
√

w| ≤ Cα

√
w, |α| ≤ k

}
(28)

and

W∞ :=
⋂

k∈N

Wk.

Remark 3.15. As computed in [4], W � w(x) := (1 + ‖x‖2)−1.

The space of initial values is then given by:

Definition 3.16. (Phase Space) We define

Hw :=
N⊕

i=1

(
R

3 ⊕ R
3 ⊕ L2

w(R3, R3) ⊕ L2
w(R3, R3)

)
.

Any element ϕ ∈ Hw consists of the components ϕ = (qi,pi,Ei,Bi)1≤i≤N , that is, positions qi, momenta
pi and electric and magnetic fields Ei and Bi for each of the 1 ≤ i ≤ N charges.
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If not noted otherwise, any spatial derivative will be understood in the distribution sense, and the
Latin indices i, j, . . . shall run over the charge labels 1, 2, . . . , N . For w ∈ W, open set Ω ⊆ R

3 and k ≥ 0
we define the following Sobolev spaces

Hk
w(Ω, R3) :=

{
f ∈ L2

w(Ω, R3)
∣∣∣ Dαf ∈ L2

w(Ω, R3), |α| ≤ k

}
,

H�k

w (Ω, R3) :=
{
f ∈ L2

w(Ω, R3)
∣∣∣ �jf ∈ L2

w(Ω, R3) for 0 ≤ j ≤ k

}
,

Hcurl
w (Ω, R3) :=

{
f ∈ L2

w(Ω, R3)
∣∣∣ ∇ ∧ f ∈ L2

w(Ω, R3)
}

(29)

which are equipped with the inner products

〈f ,g〉Hk
w

:=
∑

|α|≤k

〈Dαf ,Dαg〉L2
w(Ω) , 〈f ,g〉H�

w (Ω) :=
k∑

j=0

〈
�jf ,�jg

〉
L2

w(Ω)

〈f ,g〉Hcurl
w (Ω) := 〈f ,g〉L2

w(Ω) + 〈∇ ∧ f ,∇ ∧ g〉L2
w(Ω) ,

respectively. We use the multi-index notation α = (α1, α2, α3) ∈ (N0)3, |α| :=
∑3

i=1 αi, Dα = ∂α1
1 ∂α2

2 ∂α3
3

where ∂i denotes the derivative w.r.t. to the i-th standard unit vector in R
3. In order to appreciate the

structure of the ML equations, we will rewrite them using the following operators A and J :

Definition 3.17. (Operator A) For a ϕ = (qi,pi,Ei,Bi)1≤i≤N we defined A and A by the expression

Aϕ =
(
0, 0, A(Ei,Bi)

)

1≤i≤N
:=
(
0, 0,−∇ ∧ Ei,∇ ∧ Bi)

)

1≤i≤N
.

on their natural domain

Dw(A) :=
N⊕

i=1

(
R

3 ⊕ R
3 ⊕ Hcurl

w (R3, R3) ⊕ Hcurl
w (R3, R3)

)
⊂ Hw.

Furthermore, for any n ∈ N we define

Dw(An) :=
{
ϕ ∈ Dw(A)

∣∣ Akϕ ∈ Dw(A) for k = 0, . . . , n − 1
}
, Dw(A∞) :=

∞⋂

n=0

Dw(An).

Definition 3.18. (Operator J) Together with v(pi) := pi√
p2

i +m2
we define J : Hw → Dw(A∞) by

ϕ �→ J(ϕ) :=

⎛

⎝v(pi),
N∑

j �=i

ˆ
d3x �i(x − qi) (Ej(x) + v(pi) ∧ Bj(x)) ,−4πv(pi)�i(· − qi), 0

⎞

⎠

1≤i≤N

for ϕ = (qi,pi,Ei,Bi)1≤i≤N .

Note that J is well defined because �i ∈ C∞
c (R3, R), 1 ≤ i ≤ N . With these definitions, the Lorentz

force law (9) and the Maxwell equations (8) without the Maxwell constraints take the form

∂tϕt = Aϕt + J(ϕt). (30)

The two main theorems are as follows:

Theorem 3.19. (Global Existence and Uniqueness) For w ∈ W1, n ∈ N and ϕ0 ∈ Dw(An) the following
holds:
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(i) (global existence) There exists an n-times continuously differentiable mapping

ϕ(·) : R → Hw, t �→ ϕt = (qi,t,pi,t,Ei,t,Bi,t)1≤i≤N

which solves (30) for initial value ϕt|t=0 = ϕ0. Furthermore, it holds dj

dtj ϕt ∈ Dw(An−j) for all t ∈ R

and 0 ≤ j ≤ n,
(ii) (uniqueness and growth) Any once continuously differentiable function ϕ̃ : Λ → Dw(A) for some

open interval Λ ⊆ R which fulfills ϕ̃t∗ = ϕt∗ for an t∗ ∈ Λ, and which also solves the Eq. (30) on
Λ, has the property that ϕt = ϕ̃t holds for all t ∈ Λ. In particular, given �i, 1 ≤ i ≤ N there exists
C2 ∈ Bounds such that for T > 0 with [−T, T ] ⊂ Λ it holds

sup
t∈[−T,T ]

‖ϕt − ϕ̃t‖Hw
≤ C??(T, ‖ϕt0‖Hw

, ‖ϕ̃t0‖Hw
)‖ϕt0 − ϕ̃t0‖Hw

. (31)

Furthermore, there is a C3 ∈ Bounds such that for all �i, 1 ≤ i ≤ N ,

sup
t∈[−T,T ]

‖ϕt‖Hw
≤ C3

(
T, ‖w−1/2�i‖L2 , ‖�i‖L2

w
; 1 ≤ i ≤ N

)
‖ϕ0‖Hw

. (32)

(iii) (constraints) If the solution t �→ ϕt = (qi,t,pi,t,Ei,t,Bi,t)1≤i≤N obeys the Maxwell constraints

∇ · Ei,t = 4π�i(· − qi,t), ∇ · Bi,t = 0 (33)

for 1 ≤ i ≤ N and one time instant t ∈ R, then they are obeyed for all times t ∈ R.

Theorem 3.20. (Regularity) Assume the same conditions as in Theorem 3.19 hold and let t �→ ϕt =
(qi,t,pi,t,Ei,t,Bi,t)1≤i≤N be the solution to (30) for initial value ϕ0 ∈ Dw(An). In addition, let w ∈ W2

and n = 2m for m ∈ N. Then for all 1 ≤ i ≤ N :
(i) It holds for any t ∈ R that Ei,t,Bi,t ∈ H�m

w .
(ii) The electromagnetic fields regarded as maps Ei : (t,x) �→ Ei,t(x) and Bi : (t,x) �→ Bi,t(x) are in

L2
loc(R

4, R3) and both have a representative in Cn−2(R4, R3) within their equivalence class.
(iii) For w ∈ Wk for k ≥ 2 and every t ∈ R we have also Ei,t,Bi,t ∈ Hn

w and C < ∞ such that:

sup
x∈R3

∑

|α|≤k

‖DαEi,t(x)‖ ≤ C‖Ei,t‖Hk
w
, sup

x∈R3

∑

|α|≤k

‖DαBi,t(x)‖ ≤ C‖Bi,t‖Hk
w
. (34)

As shown in [4, Lemma 2.19], A on Dw(A) is a closed operator that generates a γ-contractive group
(Wt)t∈R:

Definition 3.21. (Free Maxwell Time Evolution) We denote by (Wt)t∈R the γ-contractive group on Hw

generated by A on Dw(A).

Remark 3.22. The γ-contractive group (Wt)t∈R comes with a standard bound ‖Wtϕ‖Hw
≤ eγ|t|‖ϕ‖Hw

for all ϕ ∈ Hw for some γ ≥ 0.

The above existence and uniqueness result implies

Definition 3.23. (ML Time Evolution) We define the nonlinear operator

ML : R
2 × Dw(A) → Dw(A), (t, t0, ϕ0) �→ ML(t, t0)[ϕ0] = ϕt = Wt−t0ϕ

0 +

tˆ

t0

Wt−sJ(ϕs)

which encodes the ML time evolution from time t0 to time t.

Using the presented results in Sect. 3.1 on the Maxwell equations, we can give explicit expressions
of the free Maxwell time evolution group (Wt)t∈R and the ML-SI� time evolution for initial fields ful-
filling both the regularity requirements of Dw(A) and of F1. The following short-hand notation will be
convenient:
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Notation 3.24. (Projectors P, Q, F) For any ϕ = (qi,pi,Ei,Bi)1≤i≤N ∈ Hw we define

Qϕ = (qi, 0, 0, 0)1≤i≤N , Pϕ = (0,pi, 0, 0)1≤i≤N , Fϕ = (0, 0,Ei,Bi)1≤i≤N .

where we sometime neglect the zeros and write for example

(qi,pi)1≤i≤N = (Q + P)ϕor(qi,pi, 0, 0)1≤i≤N = (Q + P)(qi,pi)1≤i≤N .

Definition 3.25. (Projection of A,Wt, J to Field Space Fw) For all t ∈ R and ϕ ∈ Hw we define

Fw := FHw,A := FAF,Wt := FWtF, J := FJ(ϕ).

The natural domain of A is given by Dw(A) := FDw(A) ⊂ Fw. We shall also need Dw(An) := FDw(An) ⊂
Fw for every n ∈ N and Dw(A∞) := FDw(A∞).

Note the distinction between roman and sans serif letters, for example, A and A. Clearly, Fw is a
Hilbert space, the operator A on Dw(A) is again closed and inherits the resolvent properties from A
on Dw(A). This implies (Q + P)Wt = idP and FWt = Wt so that (Wt)t∈R is also a γ-contractive group
generated by A on Dw(A). Finally, note also that by the definition of J we have J(ϕ) = J((Q + P)ϕ) for
all ϕ ∈ Hw, that is, J does not depend on the field components Fϕ.

We extend the space of fields F1, cf. Definition 3.2, to comprise N electric and magnetic fields:

Definition 3.26. (Space of N Smooth Fields ) FN :=
⊕N

i=1 F1 =
⊕N

i=1 C∞(R3, R3) ⊕ C∞(R3, R3).

The following corollary gives an explicit expression for the action of the group (Wt)t∈R using the
results from in Sect. 3.1 about the free Maxwell equation.

Corollary 3.27. (Kirchoff’s Formulas for (Wt)t∈R) Let w ∈ W1, F ∈ Dw(An) ∩ FN for some n ∈ N, and

(Ei,t,Bi,t)1≤i≤N := WtF, t ∈ R.

Then
(

Ẽi,t

B̃i,t

)
=
(

∂t ∇∧
−∇∧ ∂t

)
Kt ∗
(

Ei,0

Bi,0

)
−

tˆ

0

ds Kt−s ∗
(

∇∇ · Ei,0

∇∇ · Bi,0

)

fulfill Ei,t = Ẽi,t and Bi,t = B̃i,t for all t ∈ R and 1 ≤ i ≤ N in the L2
w sense. Furthermore, for all t ∈ R

it holds also that (Ei,t,Bi,t)1≤i≤N ∈ Dw(An) ∩ FN .

Proof. A direct application of Lemma 3.4 and Definition 3.21. �
From this corollary, we can also express the inhomogeneous Maxwell time evolution, cf. Definition 3.9,

in terms of (Wt)t∈R and J.

Lemma 3.28. (The Maxwell Solutions in Terms of (Wt)t∈R and J) Let times t, t0 ∈ R be given, F =
(Fi)1≤i≤N ∈ Dw(An) ∩ FN for some n ∈ N be given initial fields, and (qi,pi) ∈ T 1� time-like charge
world-lines for 1 ≤ i ≤ N . In addition suppose the initial fields Fi = (Ei,Bi), 1 ≤ i ≤ N , fulfill the
Maxwell constraints

∇ · Ei = 4π�i(· − qi,t0), ∇ · Bi = 0.

Then for all t ∈ R

Ft := Wt−t0F +

tˆ

t0

ds Wt−sJ(ϕs) ∈ Dw(An) =
(
M�i

[Fi, (qi,pi)](t, t0)
)
1≤i≤N

holds in the L2
w sense where ϕs := (Q + P)(qi,s,pi,s)1≤i≤N for s ∈ R. Furthermore, Ft ∈ Dw(An) ∩ FN

for all t ∈ R.

Proof. This can be computed by applying Corollary 3.27 twice and using one partial integration. �
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4. Proofs

4.1. Weak uniqueness of WF� and Synge solutions by ML-SI� Cauchy data

Our first goal is to prove Theorem 2.3. Recall the Definition 2.2 where we defined what we mean by solu-
tions to Eqs. (5)–(6) for particular choices of e+ and e−. Recall that e+ = 1

2 , e− = 1
2 and e+ = 0, e− = 1

corresponds to the WF� equations and the Synge equations, respectively.

Remark 4.1. (1) Note that Definition 2.2 is sensible because with (qi,pi)1≤i≤N ∈ T N�! , Eq. (6) for
1 ≤ i ≤ N coincide with

(E(e+,e−)
i,t ,B(e+,e−)

i,t ) =
∑

±
e±M�i

[qi,pi](t,±∞)

by definition in (23). Theorem 3.10 guarantees that the right-hand side is well defined, and charge world-
lines in T 1�! are once continuously differentiable so that the left-hand side of (5) is also well defined. The
bound on the acceleration will give us a bound on the WF� fields in a suitable norm; cf. Lemma 4.4. (2)
Furthermore, there is no doubt that T N

(e+,e−) is nonempty because in the point-particle case the Schild
solutions [21] as well as the solutions of Bauer’s existence theorem [3] have smooth and strictly time-like
charge world-lines with bounded accelerations.

As discussed in Sect. 3.2, the electric and magnetic fields live in the L2
w space for a conveniently

chosen weight w ∈ W∞, cf. Definitions 3.14 and 3.16. In the following, we give an example weight w
and show that with it the Liénard–Wiechert fields of charge world-lines in T N�! with uniformly bounded
accelerations are admissible as ML-SI� initial data; cf. Theorem 3.19 and Definition 3.17.

Definition 4.2. (Example Weight) We define the function

w : R
3 → R

+ \ {0}, x �→ w(x) := (1 + ‖x‖2)−1. (35)

A straightforward computation given in [5] yields:

Lemma 4.3. The function w is an element of W∞.

Lemma 4.4. (Regularity of the Liénard–Wiechert Fields) Let (qi,pi)1≤i≤N ∈ T N�! and assume there exists
a constant amax < ∞ such that for all 1 ≤ i ≤ N , supt∈R

‖∂tv(pi,t)‖ ≤ amax. Define t �→ (Ei,t,Bi,t) :=
M�i

[qi,pi](t,±∞). Then for all t ∈ R

(qi,t,pi,t,Ei,t,Bi,t)1≤i≤N ∈ Dw(A∞),

holds true.

Proof. By Corollary 3.13, for 1 ≤ i ≤ N and each multi-index α ∈ N
3
0 there exists a constant C1

(α) < ∞
such that

‖DαE±
i,t(x)‖ + ‖DαB±

i,t(x)‖ ≤ C1
(α)

(1 − vmax)3

(
1

1 + ‖x − qt‖2
+

amax

1 + ‖x − qt‖

)
.

Hence, w(x) = 1
1+‖x‖2 ensures that

∥∥An(qi,t,pi,t,E±
i,t,B

±
i,t)
∥∥

Hw
≤
∑N

i=1

∑
|α|≤n

(
‖qi,t‖+‖pi,t‖ +

´
d3x w(x)

(
‖DαE±

i,t(x)‖2 + ‖DαB±
i,t(x)‖2

))

is finite for all n ∈ N0, t ∈ R. We conclude that ϕt ∈ Dw(A∞) for all t ∈ R. �

We prove the first main result:

Proof of Theorem 2.3 (Weak Uniqueness of Solutions). (i) Since (qi,pi)1≤i≤N ∈ T N
(e+,e−), Lemma 4.4

guarantees ϕt0 ∈ Dw(A∞) for all t0 ∈ R.
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ii) First, the charge world-lines (qi,pi)1≤i≤N ∈ T N
(e+,e−) are once continuously differentiable and fulfill

the WF� equations (5)–(6). Second, by Theorem 3.12 the fields (E(e+,e−)
t [qi,pi],B

(e+,e−)
t [qi,pi])

given in (6) fulfill the Maxwell equations (8) including the Maxwell constraints for all t ∈ R and
1 ≤ i ≤ N . Hence, using (i), the equality

d
dt

ϕ
(e+,e−)
t [(qi,pi)1≤i≤N ] = Aϕ

(e+,e−)
t [(qi,pi)1≤i≤N ] + J(ϕ(e+,e−)

t [(qi,pi)1≤i≤N ]),

holds true [recall the notation in Sect. 3.2 before Eq. (30)]. Due to (i) also φt := ML

[
ϕ

(e+,e−)
t0

[(qi,pi)1≤i≤N ]], t ∈ R, is well defined; cf. Definition 3.23. Theorem 3.19 states that φt is the
only solution of ∂tφt = Aφt + J(φt) which fulfills φt0 = ϕ

(e+,e−)
t0 [(qi,pi)1≤i≤N ]. Hence, φt =

ϕ
(e+,e−)
t [(qi,pi)1≤i≤N ] holds for all t ∈ R.

(iii) Suppose (qi,pi)1≤i≤N , (q̃i, p̃i)1≤i≤N ∈ T N
(e+,e−) and define ϕ := it0((qi,pi)1≤i≤N ), ϕ̃ :=

it0((q̃i, p̃i)1≤i≤N ) for some t0 ∈ R. According to (ii) we also set

ϕt = (qi,t,pi,t,Ei,t,Bi,t)1≤i≤N := ML[ϕ](t, t0),

ϕ̃t = (q̃i,t, p̃i,t, Ẽi,t, B̃i,t)1≤i≤N := ML[ϕ̃](t, t0)

for all t ∈ R. Now, ϕ = ϕ̃ implies ϕt = ϕ̃t for all t ∈ R. Hence, (qi,t,pi,t)1≤i≤N = (q̃i,t, p̃i,t)1≤i≤N

for all t ∈ R, that is, (qi,pi)1≤i≤N = (q̃i, p̃i)1≤i≤N by Definition 2.1. �

4.2. Existence and uniqueness of Synge solutions for given histories

We continue with the proof of our second main result:

Proof of Theorem 2.5 (Existence and Uniqueness of Synge Solutions). Set e+ = 0 and e− = 1. (i) By
definition (q−

i ,p−
i )1≤i≤N ∈ T N�! , so that due to Theorem 3.10 and (6) for all t ≤ t0 we can define

ϕ−
t = (q−

i,t,p
−
i,t,Et[q−

i ,p−
i ],Bt[q−

i ,p−
i ])1≤i≤N

where the fields are given by the retarded Liénard–Wiechert fields of the history (q−,p−) ∈ H−(t0), that
is,

(Et[q−
i ,p−

i ],Bt[q−
i ,p−

i ]) = M�i
[q−

i ,p−
i ](t,−∞)).

Lemma 4.4 states ϕ−
t0 ∈ Dw(A∞). Hence, by Theorem 3.19, there is a unique mapping

t �→ (q+
i,t,p

+
i,t,E

+
i,t,B

+
i,t)1≤i≤N = ϕ+

t := ML[ϕ−
t0 ](t, t0) (36)

such that ϕ+
t0 = ϕ−

t0 . Let (qi,pi)1≤i≤N be the concatenation defined in (13). We consider now

ϕt = (qi,t,pi,t,Et[qi,pi],Bt[qi,pi])1≤i≤N

for all t ∈ R with the retarded Liénard–Wiechert fields of (qi,pi) given by

(Et[qi,pi],Bt[qi,pi]) := M�i
[qi,pi](t,−∞), (37)

which are well defined if (qi,pi) would be in T 1�!((−∞, T ]) for all T ∈ R. However, (q−
i ,q−

i )1≤i≤N ∈ T N�! ,
and (q+

i ,p+
i )1≤i≤N is continuously differentiable so that we only need to check that (qi,pi)1≤i≤N is

continuously differentiable at t = t0. Now according to the assumption, at time t = t0, the history
(q−

i ,p−
i )1≤i≤N solves Eqs. (5)–(6) for e+ = 0 and e− = 1, and furthermore, Theorem 3.12 states that

(Et[q−
i ,p−

i ],Bt[q−
i ,p−

i ])1≤i≤N solve the Maxwell equations at t = t0. Hence, we have

lim
t↗t0

d
dt

ϕ−
t = Aϕ−

t0 + J(ϕ−
t0) = lim

t↘t0

d
dt

ϕ+
t ,
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that is, (qi,pi) ∈ T 1�!((−∞, T ]) for 1 ≤ i ≤ N and any T ∈ R so that (37) is well defined. With the help
of Theorem 3.19 for all t ≥ t0 we compute

d
dt

(ϕt − ϕ+
t ) = A(ϕt − ϕ+

t ) +
[
J(ϕs) − J(ϕ+

s )
]

= A(ϕt − ϕ+
t ) (38)

because J does only depend on the charge world-lines. The only solution to this equation is Wt(ϕt0−ϕ+
t0) =

0; cf. Definition 3.21. Hence, (E+
i,t,B

+
i,t) = (Et[qi,pi],Bt[qi,pi]) for 1 ≤ i ≤ N and all t ≥ t0, that is, the

fields generated by the ML-SI� time evolution equal the retarded Liénard–Wiechert fields corresponding
to the charge world-lines generated by ML-SI� time evolution. This implies that (qi,pi)1≤i≤N solve the
WF� equations (5)–(6) for e+ = 0 and e− = 1 and all t ≥ t0.

(ii) Since (q̃i,t, p̃i,t) = (q−
i,t,p

−
i,t)1≤i≤N for all t ≤ t0, the claim follows from the uniqueness of the

map (36). �
Remark 4.5. (1) Condition (ii) in Definition 2.4 is only needed to ensure continuity of the derivative of
the charge world-lines at t0. Theorem 3.10 can be generalized to piecewise C1 charge world-lines. Using
this generalization, Theorem 2.5 can be proven without this condition, ensuring the existence of piecewise
C1 Synge solutions for t ≥ t0. However, this condition is not restrictive in the sense that one had to fear
H(t0) could be empty. Elements of H(t0) can be constructed with the following algorithm:

1. Choose positions and momenta (q−
i,t0

,q−
i,t0

) for 1 ≤ i ≤ N particles at time t0.
2. For 1 ≤ i ≤ N choose (q−

i,t,p
−
i,t) on time intervals from −∞ up to the latest intersection of the

backward light-cones of space-time points (t0,q−
j,t0

), j �= i, before time t0.
3. Use the Synge equations to compute the acceleration for all 1 ≤ i ≤ N charges at t0.
4. For 1 ≤ i ≤ N extend (q−

i,t,p
−
i,t) up to time t0 smoothly such that they connect to the chosen

(q−
i,t0

,q−
i,t0

) with the correct acceleration computed in step 3.

(2) From the geometry of the Liénard–Wiechert fields, it is clear that the whole history (q−
i,t,p

−
i,t)1≤i≤N

for t ≤ t0 is sufficient for uniqueness but not necessary. The necessary data for the charge world-lines
(q−

i,t,p
−
i,t)1≤i≤N that identify a Synge solution for t ≥ t0 uniquely are the shortest world-line strips, so

that the backward light-cone of each space-time point (t,q−
i,t0

) intersects all other charge world-lines
(q−

j ,p−
j ), j �= i.

4.3. Existence of WF� solutions on finite time intervals

We shall now prove the remaining main results Theorems 2.6 and Theorem 2.7. For the rest of this work,
we keep the choice e+ = 1

2 , e− = 1
2 fixed. The results, however, hold also for any choices of 0 ≤ e+, e− ≤ 1.

The strategy will be to use Schauder’s fixed point theorem to prove the existence of a fixed point of SX±
T .

Recall the distinction between roman and sans serif letters in Definition 3.25. We generalize the definition
of Fw:

Definition 4.6. (Hilbert Spaces for the Fixed Point Theorem) Given n ∈ N we define Fn
w to be the linear

space of elements F ∈ Dw(An) equipped with the inner product

〈F,G〉Fn
w

:=
n∑

k=0

〈
AkF,AkG

〉
Fw

.

The corresponding norm is denoted by ‖ · ‖Fn
w

and we shall use the notation

‖F‖Fn
w(B) :=

(
n∑

k=0

‖AkF‖2
L2

w(B)

)1/2

to denote the restriction of the norm to a subset B ⊂ R
3.
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Lemma 4.7. For n ∈ N, Fn
w is a Hilbert space.

Proof. This is an immediate consequence of [4, Theorem 2.10] and relies on the fact that A is closed on
Dw(A). �

As explained in Sect. 2, we encode the continuation of the charge world-lines for times |t| ≥ T in
terms of advanced and retarded Liénard–Wiechert fields X+

i,+T and X−
i,−T , respectively. These fields are

generated by the prescribed charge world-lines for times |t| ≥ T and evaluated at time T . They must
depend on the charge world-lines within [−T, T ] because we want to impose certain regularity conditions
at the connection times t = ±T . Since these world-lines will be generated within the iteration of Sp,X±

T by
the ML-SI� time evolution, this dependence can be expressed simply by the dependence on the ML-SI�
initial data (p, F ) = ϕ ∈ Dw(A∞). We shall therefore use the notation X±

i,±T [ϕ] for the boundary fields.
Next, we introduce three classes of such boundary fields for our discussion, namely An

w ⊃ Ãn
w ⊃ ALip.

The class An
w will allow to define what we mean by a conditional WF� solution (see Definition 4.10

below). The existence of conditional WF� solutions is then shown for the class Ãn
w with n = 3. The third

class, ALip, is only needed for Remark 4.18 where we discuss uniqueness of the conditional WF� solution
for small enough T . We define

Definition 4.8. (Boundary Fields Classes An
w, Ãn

w and ALip
w ) For weight w ∈ W and n ∈ N, we define An

w

to be the set of maps

X : R × Dw(A) → Dw(A∞) ∩ FN , (T, ϕ) �→ XT [ϕ]

which have the following properties for all p ∈ P and T ∈ R:
(i) There is a C4

(n) ∈ Bounds such that for all ϕ ∈ Dw(A) with (Q + P)ϕ = p it is true that ‖XT [ϕ]‖Fn
w

≤
C4

(n)(|T |, ‖p‖).
(ii) The map F �→ XT [p, F ] as F1

w → F1
w is continuous.

(iii) For (Ei,T ,Bi,T )1≤i≤N := XT [ϕ] and (qi,T ,pi,T )1≤i≤N := (Q + P)ML[ϕ](T, 0) one has

∇ · Ei,T = 4π�i(· − qi,T ), ∇ · Bi,T = 0.

The subset Ãn
w comprises maps X ∈ An

w that fulfill:
(iv) For balls Bτ := Bτ (0) ⊂ R

3 with radius τ > 0, Bc
τ := R

3 \ Bτ , and any bounded set M ⊂ Dw(A)
it holds that

lim
τ→∞ sup

F∈M
‖XT [p, F ]‖Fn

w(Bc
τ ) = 0.

Furthermore, ALip
w comprise such maps X ∈⊂ A1

w that fulfill:
(v) There is a C5 ∈ Bounds such that for all ϕ, ϕ̃ ∈ Dw(A) with (Q + P)ϕ = p = (Q + P)ϕ̃ it is true that

‖XT [ϕ] − XT [ϕ̃]‖F1
w

≤ |T |C5(|T |, ‖ϕ‖Hw
, ‖ϕ̃‖Hw

) ‖ϕ − ϕ̃‖Hw
.

Remark 4.9. (1) Note also that An+1
w ⊂ An

w as well as Ãn+1
w ⊂ Ãn

w for n ∈ N. (2) In Lemma 4.14, we shall
show that these classes are not empty. In fact, the definitions are intended to allow Liénard–Wiechert
fields generated by any once continuously differentiable asymptotes with strictly time-like and uniformly
bounded accelerations.

With this definition, we can formalize the term “conditional WF� solution” for given Newtonian
Cauchy data and prescribed boundary fields which we have discussed in Sect. 2:

Definition 4.10. (Conditional WF� Solutions) Let T > 0, p ∈ P and X± ∈ A1
w be given. The set T p,X±

T

consists of elements (qi,pi)1≤i≤N ∈ T N� that solve the conditional WF� equations (14)–(15) for New-
tonian Cauchy data p = (qi,t,qi,t)1≤i≤N |t=0. We shall refer to elements in T p,X±

T as conditional WF�

solutions for initial value p and boundary fields X±
T .
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Furthermore, we define the potential fixed point map Sp,X±
T as discussed in Sect. 2 where we make

use of the notation and results presented in Sects. 3.1 and 3.2.

Definition 4.11. (Fixed Point Map Sp,X±
T ) For any given finite T > 0, p ∈ P and X± ∈ A1

w, we define

Sp,X±
T : Dw(A) → Dw(A∞), F �→ Sp,X±

T [F ]

by

Sp,X±
T [F ] :=

1
2

∑

±

⎡

⎣W∓T X±
±T [p, F ] +

tˆ

±T

ds W−sJ(ϕs[p, F ])

⎤

⎦

where s �→ ϕs[p, F ] := ML[p, F ](s, 0) denotes the ML-SI� solution, cf. Definition 3.23, for initial value
(p, F ) ∈ Dw(A).

Next we make sure that this map is well defined and that its fixed points, if they exist, have corre-
sponding charge world-lines in T p,X±

T , that is, the conditional WF� solutions.

Theorem 4.12. (Sp,X±
T and its Fixed Points) For any finite T > 0, p ∈ P and X± ∈ A1

w the following is
true:
(i) The map Sp,X±

T is well defined.
(ii) Given F ∈ Dw(A), setting (X±

i,±T )1≤i≤N := X±
±T [p, F ] and denoting the ML-SI� charge world-lines

t �→ (qi,t,qi,t)1≤i≤N := (Q + P)ML[p, F ](t, 0) (39)

by (qi,pi)1≤i≤N we have

Sp,X±
T [F ] =

1
2

∑

±

(
M�i

[X±
i,±T , (qi,pi)](0,±T )

)

1≤i≤N

as well as Sp,X±
T [F ] ∈ Dw(A∞) ∩ FN .

(iii) For any F ∈ Dw(A) such that F = Sp,X±
T [F ] the corresponding charge world-lines (39) are in

T p,X±
T .

Proof. (i) Let F ∈ Dw(A), then (p, F ) ∈ Dw(A), and hence, by Theorem 3.19 the map t �→ ϕt :=
ML[ϕ](t, 0) is a once continuously differentiable map R → Dw(A) ⊂ Hw. By properties of J stated in [4,
Lemma 2.22] we know that AkJ : Hw → Dw(A∞) ⊂ Hw is locally Lipschitz continuous for any k ∈ N.
By projecting onto field space Fw, cf. Definition 3.25, we obtain that also AkJ : Hw → Dw(A∞) ⊂ Fw is
locally Lipschitz continuous. Hence, by the group properties of (Wt)t∈R, we know that s �→ W−sA

kJ(ϕs)
for any k ∈ N is continuous. Furthermore, A is closed. This implies the commutation

Ak

0ˆ

±T

ds W−sJ(ϕs) =

0ˆ

±T

ds W−sA
kJ(ϕs).

As this holds for any k ∈ N,
´ 0

±T
ds W−sJ(ϕs) ∈ Dw(A∞). Furthermore, by Definition 4.8, the term

X±
±T [p, F ] is in Dw(A∞) and therefore W∓T X±

±T [p, F ] ∈ Dw(A∞) by the group properties. Hence, the

map Sp,X±
T is well defined as a map Dw(A) → Dw(A∞).

(ii) For F ∈ Dw(A) let (qi,pi)1≤i≤N denote the charge world-lines t �→ (qi,t,pi,t)1≤i≤N = (Q + P)ϕt

of t �→ ϕt := ML[p, F ](t, 0), which by (p, F ) ∈ Dw(A) and Theorem 3.19 are once continuously differen-
tiable. Since the absolute value of the velocity is given by ‖v(pi,t)‖ = ‖pi,t‖√

m2+p2
i,t

< 1, we conclude that

(qi,pi)1≤i≤N are also time-like and therefore in T N� , cf. Definition 2.1. Furthermore, the boundary fields
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X±
±T [p, F ] are in Dw(A∞) ∩ FN and obey the Maxwell constraints by the definition of An

w. So we can
apply Lemma 3.28 which states for (X±

i,±T )1≤i≤N := X±
±T [p, F ] that

(
M�i

[X±
i,±T , (qi,pi](t,±T )

)
1≤i≤N

= Wt∓T X±
±T [p, F ] +

tˆ

±T

ds Wt−sJ(ϕs) ∈ Dw(A) ∩ FN . (40)

For t = 0 this proves claim (ii).
(iii) Finally, assume there is an F ∈ Dw(A) such that F = Sp,X±

T [F ]. By (ii) this implies F ∈
Dw(A∞) ∩ FN . Let (qi,pi)1≤i≤N and t �→ ϕt be defined as in the proof of (ii) which now is infinitely
often differentiable as R → Hw since (p, F ) ∈ Dw(A∞). We shall show later that the following integral
equality holds

ϕt = (p, 0) +

tˆ

0

ds (Q + P)J(ϕs) +
1
2

∑

±

⎡

⎣Wt∓T (0,X±
±T [p, F ]) +

tˆ

±T

ds Wt−sFJ(ϕs)

⎤

⎦ (41)

for all t ∈ R; note that t �→ ϕt := ML[p, F ](t, 0) depends also on (p, F ). For now, suppose (41) holds. Then
the differentiation with respect to time t of the phase space components of (qi,t,pi,t,Ei,t,Bi,t)1≤i≤N := ϕt

yields ∂t(Q + P)ϕt = (Q + P)J(ϕt), which by definition of J gives

∂tqi,t = v(pi,t) :=
pi,t√

m2 + p2
i,t

∂tpi,t =
∑

j �=i

ˆ
d3x �i(x − qi,t) (Ej,t(x) + v(qi,t) ∧ Bj,t(x)) . (42)

Furthermore, the field components fulfill

Fϕt = F
1
2

∑

±

⎡

⎣Wt∓T (0,X±
±T [ϕ]) +

tˆ

±T

ds Wt−sFJ(ϕs)

⎤

⎦

=
1
2

∑

±

⎡

⎣Wt∓T X±
±T [p, F ] +

tˆ

±T

ds Wt−sJ(ϕs)

⎤

⎦

where we only used the definition of the projectors, cf. Definition 3.25. Hence, by (40) we know

(Ei,t,Bi,t) =
1
2

∑

±
M�i

[Fi, (qi,pi](t,±T ). (43)

Furthermore, we have

(qi,t,pi,t)1≤i≤N

∣∣
t=0

= p = (q0
i ,p

0
i )1≤i≤N . (44)

Now, Eqs. (42), (43) and (44) are exactly the conditional WF� equations (14)–(15) for Newtonian Cauchy
data p and boundary fields X±. Hence, since in (ii) we proved that (qi,pi)1≤i≤N are in T N� , we conclude
that they are also in T p,X±

T , cf. Definition 4.10.
Finally, it is only left to prove that the integral equation (41) holds. By Definition 3.23, ϕt fulfills

ϕt = Wt(p, F ) +

tˆ

0

ds Wt−sJ(ϕs)
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for all t ∈ R. Inserting the fixed point equation F = Sp,X±
T [F ], that is,

F =
1
2

∑

±

⎡

⎣W∓T X±
±T [p, F ] +

tˆ

±T

ds W−sJ(ϕs)

⎤

⎦ ,

we find

ϕt = (p, 0) +
1
2

∑

±
Wt∓T

(
0,X±

±T [p, F ]
)

+
1
2

∑

±
Wt

0ˆ

±T

ds W−s

(
0, J(ϕs)

)
+

tˆ

0

ds Wt−sJ(ϕs).

By the same reasoning as in (i), we may commute Wt with the integral. This together with J = (Q + P)J+
FJ and (Q + P)Wt = idP proves the equality (41) for all t ∈ R which concludes the proof. �

Next, we give a simple but physically meaningful element C ∈ Ãn
w ∩ ALip

w to show that neither Ãn
w

nor ALip
w is empty.

Definition 4.13. (Coulomb Boundary Field) Define C : R × Dw(A) → Dw(A∞), (T, ϕ) �→ CT [ϕ] by

CT [ϕ] :=
(
EC

i (· − qi,T ), 0
)
1≤i≤N

where (qi,T )1≤i≤N := QML[ϕ](T, 0) and

(EC
i , 0) := M�i

[t �→ (0, 0)](0,−∞) =
(ˆ

d3z �i(· − z)
z

‖z‖3
, 0
)

. (45)

Note that the equality on the right-hand side of (45) holds by Theorem 3.10.

Lemma 4.14. (Ãn
w ∩ ALip

w is Non-Empty) Let n ∈ N and w ∈ W. The map C given in Definition 4.13 is
an element of Ãn

w ∩ ALip
w .

Proof. We need to show the properties (i)–(v) given in Definition 4.8. Fix T > 0 and p ∈ P. Let ϕ ∈ Dw(A)
such that (Q + P)ϕ = p and set F := Fϕ. Furthermore, we define (qi,T )1≤i≤N := QML[ϕ](T, 0). Since EC

i

is a Liénard–Wiechert field of the constant charge world-line t �→ (qi,T , 0) in T 1�!, we can apply Corollary
3.13 to yield the following estimate for any multi-index α ∈ N

3
0 and x ∈ R

3

∥∥DαEC
i (x)
∥∥

R3 ≤ C1
(α)

1 + ‖x‖2
. (46)

which allows to define the finite constants C6
(α) :=

∥∥DαEC
i

∥∥
L2

w
. Using the properties of the weight

w ∈ W, see (27), we find

‖CT [ϕ]‖2
Fn

w
≤

n∑

k=0

‖AkCT [ϕ]‖Fw
≤

n∑

k=0

N∑

i=1

∥∥(∇∧)kEC
i (· − qi,T )

∥∥
L2

w
≤

n∑

k=0

∑

|α|≤k

N∑

i=1

∥∥DαEC
i (· − qi,T )

∥∥
L2

w

≤
n∑

k=0

∑

|α|≤k

N∑

i=1

(1 + Cw ‖qi,T ‖)
Pw
2
∥∥DαEC

∥∥
L2

w
≤

n∑

k=0

∑

|α|≤k

N∑

i=1

(1 + Cw ‖qi,T ‖)
Pw
2 C6

(α) < ∞.

This implies CT [ϕ] ∈ Dw(A∞)∩FN and that C : R×Dw(A) → Dw(A∞)∩FN is well defined. Note that
the right-hand side depends only on ‖qi,T ‖ which is bounded by

‖qi,T ‖ ≤ ‖Qp‖ + |T | (47)

since the maximal velocity is bounded by one, that is, the speed of light. Hence, property (i) holds for

C4
(n)(|T |, ‖p‖) :=

n∑

k=0

∑

|α|≤k

N∑

i=1

(1 + Cw (‖Qp‖ + |T |))
Pw
2 C6

(α).
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Instead of showing property (ii), we prove the stronger property (v). For this let ϕ̃ ∈ Dw(A) such that
(Q + P)ϕ = (Q + P)ϕ̃ and set (q̃i,T )1≤i≤N := QML[ϕ̃](T, 0). Starting with

‖CT [ϕ] − CT [ϕ̃]‖F1
w

≤
N∑

i=1

∑

|α|≤1

∥∥Dα
(
EC(· − qi,T ) − EC(· − q̃i,T )

)∥∥
L2

w

we compute
∥∥Dα
(
EC(· − qi,T ) − EC(· − q̃i,T )

)∥∥
L2

w
=
∥∥∥∥

1́

0

dλ (q̃i,T − qi,t) · ∇DαEC(· − q̃i,T + λ(q̃i,T − qi,t))
∥∥∥∥

L2
w

≤
1́

0

dλ
∥∥(qi,t − q̃i,T ) · ∇DαEC(· − q̃i,T + λ(q̃i,T − qi,t))

∥∥
L2

w
.

Therefore, for all |α| ≤ 1 we get
∑

|α|≤1

∥∥Dα
(
EC(· − qi,T ) − EC(· − q̃i,T )

)∥∥
L2

w

≤ ‖qi,T − q̃i,T ‖R3 sup
0≤λ≤1

∑

|β|≤2

∥∥DβEC(· + λ(qi,T − q̃i,T ))
∥∥

L2
w

.

The estimate (46), 0 ≤ λ ≤ 1 and the properties of w ∈ W yield
∥∥DβEC(· − q̃i,T + λ(q̃i,T − qi,t))

∥∥
L2

w
≤
(
1 + Cw ‖q̃i,T − λ(q̃i,T − qi,t)‖R3

)Pw
2
∥∥DβEC

∥∥
L2

w

≤ (1 + Cw(‖qi,T ‖R3 + ‖q̃i,T ‖R3)
Pw
2 C6

(β)

Hence, because of bound (47), property (v) holds for

C5(|T |, ‖ϕ‖Hw
, ‖ϕ̃‖Hw

) := N
∑

|β|≤2

(1 + Cw(‖Qϕ‖R3 + ‖Qϕ̃‖R3 + 2|T |)
Pw
2 C6

(β)

(iii) holds by Theorem 3.6. (iv) Let Bτ (0) ⊂ R
3 be a ball of radius τ > 0 around the origin. For any

F ∈ Dw(A), we define (qi,T )1≤i≤N := QML[ϕ](T, 0). It holds

‖CT [p, F ]‖Fn
w(Bc

τ (0)) ≤
N∑

i=1

∑

|α|≤n

∥∥DαEC(· − qi,T )
∥∥

L2
w(Bc

τ (0))

≤
N∑

i=1

∑

|α|≤n

(1 + Cw‖qi,T ‖)
Pw
2
∥∥DαEC

∥∥
L2

w(Bc
τ (qi,T ))

.

We use again that the maximal velocity is smaller than one, that is, ‖qi,T ‖ ≤ ‖q0
i ‖ + T . Hence, for

τ > ‖q0
i ‖ + T define r(τ) := τ − ‖q0

i ‖ + T such that we can estimate the L2
w(Bc

τ (qi,T )) norm by the
L2

w(Bc
r(τ)(0)) norm and yield

sup
F∈Dw(A)

‖CT [p, F ]‖Fn
w(Bc

τ (0)) ≤
N∑

i=1

∑

|α|≤n

(1 + Cw‖qi,T ‖)
Pw
2
∥∥DαEC

∥∥
L2

w(Bc
r(τ)(0))

−−−−→
τ→∞ 0

This concludes the proof. �

Remark 4.15. When looking for global WF� solutions, in view of (15) and (16), the boundary fields
can be seen as a good guess of how the charge world-lines (q0

i ,pi)1≤i≤N continue outside of the time
interval [−T, T ]. Without much modification of Lemma 4.14 one can also treat the Liénard–Wiechert
fields of a charge world-line which starts at qi,T and has constant momentum pi,T using the notation
(qi,T ,pi,T )1≤i≤N := (Q + P)ML[ϕ](T, 0) (the result is the Lorentz boosted Coulomb field). Such boundary
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fields are also in Ãn
w∩ALip

w since the derivative ∂spi,s for s ∈ [−T, T ] can be expressed by J which is locally
Lipschitz continuous by Bauer et al. [4, Lemma 2.22] and the ML-SI� dynamics are well controllable on
the interval [−T, T ]; see (ii) of Theorem 3.19.

We collect the needed estimates and properties of Sp,X±
T in the following three lemmas.

Lemma 4.16. (Fn
wEstimates) For n ∈ N0 the following is true:

(i) For all t ∈ R and F ∈ Dw(An) it holds that ‖WtF‖Fn
w

≤ eγ|t|‖F‖Fn
w
.

(ii) For all ϕ ∈ Hw there is a C7
(n) ∈ Bounds such that

‖J(ϕ)‖Fn
w

≤ C7
(n)(‖Qϕ‖Hw

).

(iii) For all ϕ, ϕ̃ ∈ Hw there is a C8
(n) ∈ Bounds such that

‖J(ϕ) − J(ϕ̃)‖Fn
w

≤ C8
(n)(‖ϕ‖Hw

, ‖ϕ̃‖Hw
)‖ϕ − ϕ̃‖Hw

.

Proof. (i) As shown in [4, Lemma 2.19], A on Dw(A) generates a γ-contractive group (Wt)t∈R; cf. Def-
inition 3.21. This property is inherited from A on Dw(A) which generates the group (Wt)t∈R. Hence, A
and Wt commute for any t ∈ R which implies for all F ∈ Dw(An) that

‖WtF‖2
Fn

w
=

n∑

k=0

‖AkWtF‖2
Fw

=
n∑

k=0

‖WtA
kF‖2

Fw
≤ eγ|t|

n∑

k=0

‖AkF‖2
Fw

= eγ|t|‖F‖Fn
w
.

For (ii) let (qi,pi,Ei,Bi)1≤i≤N = ϕ ∈ Hw. Using then the definition of J, cf. Definitions 3.18 and
3.25, we find

‖J(ϕ)‖Fn
w

≤
N∑

i=1

n∑

k=0

‖(∇∧)kv(pi)�i(· − qi)‖L2
w
.

By applying the triangular inequality, one finds a constant C9 such that

‖(∇∧)kv(pi)�i(· − qi)‖L2
w

≤ (C9)n
∑

|α|≤n

‖v(pi)Dα�i(· − qi)‖L2
w

≤ (C9)n
∑

|α|≤n

‖Dα�i(· − qi)‖L2
w

whereas in the last step, we used the fact that the maximal velocity is smaller than one. Using the
properties of the weight function w ∈ W, cf. Definition 3.14, we conclude

‖Dα�i(· − qi)‖L2
w

≤ (1 + Cw‖qi‖)
Pw
2 ‖Dα�i‖L2

w
.

Collecting these estimates, we yield that claim (ii) holds for

C7
(n)(‖Qϕ‖Hw

) := (C9)n
N∑

i=1

(1 + Cw‖qi‖)
Pw
2

∑

|α|≤n

‖Dα�i‖.

Claim (iii) is shown by repetitively applying estimate of [4, Lemma 2.22] on the right-hand side of

‖J(ϕ) − J(ϕ̃)‖Fn
w

≤
n∑

k=0

‖Ak[J(ϕ) − J(ϕ̃)]‖Hw

which yields a constant C8
(n) :=
∑n

k=0 C10
(k)(‖ϕ‖Hw

, ‖ϕ̃‖Hw
) where C10 ∈ Bounds is given in the proof

of [4, Lemma 2.22]. This concludes the proof. �

Lemma 4.17. (Properties of Sp,X±
T ) Let 0 < T < ∞, p ∈ P and X± ∈ An

w for n ∈ N. Then it holds:
(i) There is a C11 ∈ Bounds such that for all F ∈ F1

w we have

‖Sp,X±
T [p, F ]‖Fn

w
≤ C11

(n)(T, ‖p‖).

(ii) F �→ Sp,X±
T [F ] as F1

w → F1
w is continuous.



Vol. 64 (2013) On the existence of dynamics in Wheeler–Feynman electromagnetism 1113

If X± ∈ ALip
w , it is also true that:

(iii) There is a C12 ∈ Bounds such that for all F, F̃ ∈ F1
w we have

‖Sp,X±
T [F ] − Sp,X±

T [F̃ ]‖F1
w

≤ TC12(T, ‖p‖, ‖F‖Fw
, ‖F̃‖Fw

)‖F − F̃‖Fw
.

Proof. Fix a finite T > 0, p ∈ P, X± ∈ An
w for n ∈ N. Before we prove the claims we preliminarily recall

the relevant estimates of the ML-SI� dynamics. Throughout the proof and for any F, F̃ ∈ Fn
w, we use the

notation

Dw(An) � ϕ ≡ (p, F ), Dw(An) � ϕ̃ ≡ (p, F̃ ),

and furthermore,

ϕt := ML[ϕ](t, 0), ϕ̃t := ML[ϕ̃](t, 0),

for any t ∈ R. Recall the estimates given in (ii) of Theorem 3.19 which gives the following T dependent
upper bounds on these ML-SI� solutions:

sup
t∈[−T,T ]

‖ϕt − ϕ̃t‖Hw
≤ C??(T, ‖ϕ‖Hw

, ‖ϕ̃‖Hw
)‖ϕ − ϕ̃‖Hw

, (48)

sup
t∈[−T,T ]

‖ϕt‖Hw
≤ C2(T, ‖ϕ‖Hw

, 0)‖ϕ‖Hw
and sup

t∈[−T,T ]

‖ϕ̃t‖Hw
≤ C2(T, ‖ϕ̃‖Hw

, 0)‖ϕ̃‖Hw
. (49)

To prove claim (i) we estimate

‖Sp,X±
T [F ]‖Fn

w
≤
∥∥ 1

2

∑
± W∓T X±

±T [p, F ]
∥∥

Fn
w

+

∥∥∥∥∥
1
2

∑
±

0́

±T

ds W−sJ(ϕs)

∥∥∥∥∥
Fn

w

=: 1 + 2 ,

cf. Definition 4.11. By the estimate given in (i) of Lemma 4.16 and the property (i) of Definition 4.8 we
find

1 ≤ 1
2

∑

±
‖W∓T X±

±T [p, F ]‖Fn
w

≤ eγT ‖X±
±T [p, F ]‖Fn

w
≤ eγT C4

(n)(T, ‖ϕ‖Hw
).

Furthermore, using in addition the estimates (i)–(ii) of Lemma 4.16, we get a bound for the other term
by

2 ≤ TeγT sup
s∈[−T,T ]

‖J(ϕs)‖Fn
w

≤ TeγT sup
s∈[−T,T ]

C7(‖Qϕs‖Hw
) ≤ TeγT C7(‖p‖ + T )

whereas the last step is implied by the fact that the maximal velocity is below one. These estimates prove
claim (i) for

C11
(n)(T, ‖φ‖Hn

w
) := eγT

(
C4

(n)(T, ‖p‖) + TC7(‖p‖ + T )
)

.

Next we prove claim (ii). Therefore, we consider

‖Sp,X±
T [F ] − Sp,X±

T [F̃ ]‖Fn
w

≤ eγT ‖X±
±T [ϕ] − X±

±T [ϕ̃]‖Fn
w

+ TeγT sups∈[−T,T ] ‖J(ϕs) − J(ϕ̃s)‖Fn
w

=: 3 + 4

where we have already applied (i) of Lemma 4.16. Next we apply (iii) of Lemma 4.16 to the term 4 and
yield

4 ≤ TeγT sup
s∈[−T,T ]

C8
(n)(‖ϕs‖Hw

, ‖ϕ̃s‖Hw
)‖ϕs − ϕ̃s‖Hw

.

Finally, by the ML-SI� estimates (48) and (49), we have

4 ≤ TC13(T, ‖p‖, ‖F‖Fn
w
, ‖F̃‖Fn

w
)‖ϕ − ϕ̃‖Hw

(50)
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for

C13(T, ‖p‖, ‖F‖Fn
w
, ‖F̃‖Fn

w
) := eγT C8

(n)

(
C2(T, ‖ϕ‖Hw

, 0)‖ϕ‖Hw
, C2(T, 0, ‖ϕ̃‖Hw

)‖ϕ‖Hw

)

×C2(T, ‖ϕ‖Hw
, ‖ϕ̃‖Hw

).

By this estimate and (ii) of Definition 4.8, the limit F̃ → F in F1
w implies Sp,X±

T [F̃ ] → Sp,X±
T [F ] in F1

w

since here ‖ϕ − ϕ̃‖Hw
= ‖F − F̃‖Fw

. Hence, the claim (ii) is true.
(iii) Let now X± ∈ ALip

w . By (v) of Definition 4.8 the term 3 then behaves according to

3 ≤ TC5
(n)(|T |, ‖ϕ‖Hw

, ‖ϕ̃‖Hw
) ‖ϕ − ϕ̃‖Hw

Together with the estimate (50) this proves claim (ii) for

C12
(n)(T, ‖p‖, ‖F‖Fw

, ‖F̃‖Fw
) := C5

(n)(|T |, ‖ϕ‖Hw
, ‖ϕ̃‖Hw

) + C13(T, ‖p‖, ‖F‖Fn
w
, ‖F̃‖Fn

w
)

since in our case ‖ϕ − ϕ̃‖Hw
= ‖F − F̃‖Fw

. �

Remark 4.18. Let p ∈ P, X± ∈ ALip
w . Then claim (iii) of Lemma 4.17 has an immediate consequence: For

sufficiently small T the mapping Sp,X±
T has a unique fixed point, which follows by Banach’s fixed point

theorem. Consider therefore X± ∈ ALip
w ⊂ A1

w, then (i) of Lemma 4.17 states

‖Sp,X±
T [p, F ]‖F1

w
≤ C11

(1)(T, ‖p‖) =: r.

Hence, the map Sp,X±
T restricted to the ball Br(0) ⊂ F1

w with radius r around the origin is a nonlinear
self-mapping. Claim (iii) of Lemma 4.17 states for all T > 0 and F, F̃ ∈ Br(0) ⊂ Dw(A) that

‖Sp,X±
T [F ] − Sp,X±

T [F̃ ]‖F1
w

≤ TC12(T, ‖p‖, ‖F‖Fw
, ‖F̃‖Fw

)‖F − F̃‖Fw

≤ TC12(T, ‖p‖, r, r)‖F − F̃‖Fw
.

where we have also used that C12 ∈ Bounds is a continuous and strictly increasing function of its argu-
ments. Hence, for T sufficiently small we have TC12(T, ‖p‖, r, r) < 1 such that Sp,X±

T is a contraction on
Br(0) ⊂ F1

w. However, for larger T , we loose control on the uniqueness of the fixed point. This highlights
an interesting aspect of dynamical systems, for example, for the ML-SI� dynamics, it means that solutions
are still uniquely characterized not only by Newtonian Data and fields (p, F ) ∈ Dw(A) at time t = 0 but
also by specifying Newtonian Cauchy data p ∈ P at time t = 0 and fields F at a different time t = T .
The maximal T will in general be inverse proportional to the Lipschitz constant of the vector field.

We come to the proof of Theorem 2.6 where we shall use the following criterion for precompactness
of sequences in L2

w.

Lemma 4.19. (Criterion for Precompactness) Let (Fn)n∈N be a sequence in L2
w(R3, R3) such that

(i) The sequence (Fn)n∈N is uniformly bounded in H�
w , defined in (29).

(ii) limτ→∞ supn∈N
‖Fn‖L2

w(Bc
τ (0)) = 0.

Then the sequence (Fn)n∈N is precompact, that is, it contains a convergent subsequence.

Proof. The proof of this claim can be seen as a special case of [16, Chapter 8,Proof of Theorem 8.6, p.208]
and can be found in [5]. �

Of course, one solely needs control on the gradient. However, the Laplace turns out to be more con-
venient for our later application of this lemma.
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Proof of Theorem 2.6 (Existence of Conditional WF� Solutions). Fix p ∈ P. Given a finite T > 0, p ∈ P
and X± ∈ Ã3

w claim (i) of Lemma 4.12 states for all F ∈ F1
w

‖Sp,X±
T [p, F ]‖F1

w
≤ ‖Sp,X±

T [p, F ]‖F3
w

≤ C11
(3)(T, ‖p‖) =: r. (51)

Let K be the closed convex hull of M := {Sp,X±
T [F ] | F ∈ F1

w} ⊂ Br(0) ⊂ F1
w. By (ii) of Lemma 4.12,

we know that the map Sp,X±
T : K → K is continuous as a map F1

w → F1
w. Note that if M were compact

so would be K and we could infer by Schauder’s fixed point theorem the existence of a fixed point.
It remains to verify that M is compact. Therefore, let (Gm)m∈N be a sequence in M . With the help

of Lemma 4.19, we shall show now that it contains an F1
w convergent subsequence. By definition, there

is a sequence (Fm)m∈N in Br(0) ⊂ F1
w such that Gm := Sp,X±

T [Fm], m ∈ N; note that Gm is an element
of Dw(A∞) and therefore also of Fn

w for any n ∈ N. We define for m ∈ N the electric and magnetic fields

(E(m)
i ,B(m)

i )1≤i≤N := Sp,X±
T [Fm].

Recall the definition of the norm of Fn
w, cf. Definition 4.6, for some (Ei,Bi)1≤i≤N = F ∈ Fn

w and n ∈ N

‖F‖2
Fn

w
=

n∑

k=0

‖AkF‖2
Fw

=
n∑

k=0

N∑

i=1

(
‖(∇∧)kEi‖2

L2
w

+ ‖(∇∧)kBi‖2
L2

w

)
. (52)

Therefore, since A on Dw(A) is closed, (Gm)m∈N has an F1
w convergent subsequence if and only if all the

sequences ((∇∧)kE(m)
i )m∈N, ((∇∧)kB(m)

i )m∈N for k = 0, 1 and 1 ≤ i ≤ N have a common convergent
subsequence in L2

w.
To show that this is the case we first provide the bounds needed for condition (i) of Lemma 4.19.

Estimate (51) implies that
3∑

k=0

N∑

i=1

(
‖(∇∧)kE(m)

i ‖2
L2

w
+ ‖(∇∧)kB(m)

i ‖2
L2

w

)
= ‖Gm‖2

F3
w

≤ r2 (53)

for all m ∈ N. Furthermore, by (ii) of Lemma 4.12 the fields (E(m)
i ,B(m)

i )1≤i≤N are the fields of a Maxwell
solution at time zero, and hence, by Theorem 3.6 fulfill the Maxwell constraints for (q0

i ,p
0
i )1≤i≤N := p

which read

∇ · E(m)
i = 4π�i(· − q0

i ), ∇ · B(m)
i = 0.

Also by Theorem 3.6, Gm is in FN so that for every k ∈ N0

(∇∧)k+2E(m)
i = 4π(∇∧)k∇�i(· − q0

i ) − �(∇∧)kE(m)
i , (∇∧)k+2B(m)

i = −�(∇∧)kB(m)
i .

Estimate (53) implies for all m ∈ N that
1∑

k=0

N∑

i=1

(
‖�(∇∧)kE(m)

i ‖2
L2

w
+ ‖�(∇∧)kB(m)

i ‖2
L2

w

)

≤ 2
1∑

k=0

N∑

i=1

(
‖(∇∧)k+2E(m)

i ‖2
L2

w
+ ‖(∇∧)k+2B(m)

i ‖2
L2

w

)
+ 2

N∑

i=1

‖4π∇�i(· − q0
i )‖L2

w

≤ 2r2 + 8π
N∑

i=1

(
1 + Cw

∥∥q0
i

∥∥)Pw ‖∇�i‖2
L2

w

where we made use of the properties of the weight w ∈ W. Note that the right-hand side does not
depend on m. Therefore, all the sequences ((∇∧)kE(m)

i )m∈N, (�(∇∧)kE(m)
i )m∈N, ((∇∧)kB(m)

i )m∈N,
(�(∇∧)kB(m)

i )m∈N for k = 0, 1 and 1 ≤ i ≤ N are uniformly bounded in L2
w. This ensures condition (i)

of Lemma 4.19.
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Second, we need to show that all the sequences ((∇∧)kE(m)
i )m∈N, ((∇∧)kB(m)

i )m∈N for k = 0, 1 and 1 ≤
i ≤ N decay uniformly at infinity to meet condition (ii) of Lemma 4.19. Define (E(m),±

i,±T ,B(m),±
i,±T )1≤i≤N :=

X±
±T [p, Fm] for m ∈ N and denote the ith charge world-line t �→ (q(m)

i,t ,p(m)
i,t ) := (Q + P)ML[p, Fm](t, 0)

by (q(m)
i ,p(m)

i ), 1 ≤ i ≤ N . Using Lemma 4.12(ii) and afterward Theorem 3.6, we can write the fields as
(

E(m)
i

B(m)
i

)
=

1
2

∑

±
M�i

[(E±
i,±T ,E±

i,±T ), (q(m)
i ,p(m)

i )](0,±T )

=
1
2

∑

±

[(
∂t ∇∧

−∇∧ ∂t

)
Kt∓T ∗

(
E(m),±

i,±T

B(m),±
i,±T

)
+ Kt∓T ∗

(
−4πj(m)

i,±T

0

)

+4π

tˆ

±T

ds Kt−s ∗
(

−∇ −∂s

0 ∇∧

)(
ρ
(m)
i,s

j(m)
i,s

)]

t=0

=: 5 + 6 + 7

where ρ
(m)
i,t := �i(· − q(m)

i,t ) and j(m)
i,t := v(p(m)

i,t )ρi,t for all t ∈ R.
We shall show that there is a τ∗ > 0 such that for all m ∈ N the terms 6 and 7 are pointwise zero

on Bc
τ∗(0) ⊂ R

3. Recalling the computation rules for Kt from Lemma 3.4, we calculate for term 6

‖4π[K∓T ∗ j(m)
i,±T ](x)‖R3 ≤ 4πT

 

∂BT (x)

dσ(y) |�i(y − q(m)
±T )|.

The right-hand side is zero for all x ∈ R
3 such that ∂BT (x) ∩ supp �i(· − q±T ) = ∅. Because the charge

distributions have compact support, there is a R > 0 such that supp �i ⊆ BR(0) for all 1 ≤ i ≤ N . Now
for any 1 ≤ i ≤ N and m ∈ N we have

supp �i(· − q(m)
i,±T ) ⊆ BR(q(m)

i,±T ) ⊆ BR+T (q0
i )

since the supremum of the velocities of the charge supt∈[−T,T ],m∈N
‖v(p(m)

i,t )‖ is less than one. Hence,
∂BT (x) ∩ BR+T (q0

i ) = ∅ for all x ∈ Bc
τ (0) with τ > ‖p‖ + R + 2T .

Considering 7 we have
∥∥∥∥∥∥
4π

0ˆ

±T

ds

[
K−s ∗
(

−∇ −∂s

0 ∇∧

)(
ρ
(m)
i,s

j(m)
i,s

)]
(x)

∥∥∥∥∥∥
R6

≤ 4π

0ˆ

±T

ds s

 

∂B|s|(x)

dσ(y) ‖G(y − q(m)
s )‖R6 (54)

where we used the abbreviation

G(y − q(m)
s ) :=

(
−∇ −∂s

0 ∇∧

)(
ρ
(m)
i,s

j(m)
i,s

)
(y)

and the computation rules for Kt given in Lemma 3.4. As suppG ⊆ supp �i ⊆ BR(0), the right-hand side
of (54) is zero for all x ∈ R such that

⋃

s∈[−T,T ]

[
∂B|s|(x) ∩ BR(q(m)

i,s )
]

= ∅.

Now the left-hand side above is a subset of

∪s∈[−T,T ]∂B|s|(x)
⋂

∪s∈[−T,T ]BR(q(m)
i,s ) ⊆ BT (x) ∩ BR+T (q0

i )

which equals the empty set for all x ∈ Bc
τ (0) with τ > ‖p‖ + R + 2T .
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Hence, setting τ∗ := ‖p‖ + R + 2T we conclude that for all τ > τ∗, the terms 6 and 7 and all their
derivatives are zero on Bc

τ (0) ⊂ R
3. That means in order to show that all the sequences ((∇∧)kE(m)

i )m∈N,
((∇∧)kB(m)

i )m∈N for k = 0, 1 and 1 ≤ i ≤ N decay uniformly at spatial infinity, it suffices to show

lim
τ→∞ sup

m∈N

1∑

k=0

N∑

i=1

(
‖(∇∧)ke(m)

i ‖L2
w(Bc

τ (0)) + ‖(∇∧)kb(m)
i ‖L2

w(Bc
τ (0))

)
= 0. (55)

for
(

e(m)
i

b(m)
i

)
:= 5 =

(
∂t ∇∧

−∇∧ ∂t

)
Kt∓T ∗

(
E(m),±

i,±T

B(m),±
i,±T

)∣∣∣∣
t=0

for 1 ≤ i ≤ N . Let F ∈ C∞(R3, R3) and τ > 0. By computation rules for Kt given in Lemma 3.4 we get

‖∇ ∧ K∓T ∗ F‖L2
w(Bc

τ+T (0)) = ‖K∓T ∗ ∇ ∧ F‖L2
w(Bc

τ+T (0)) ≤

∥∥∥∥∥∥∥
T

 

∂BT (0)

dσ(y) ∇ ∧ F(· − y)

∥∥∥∥∥∥∥
L2

w(Bc
τ+T (0))

≤ T

 

∂BT (0)

dσ(y) ‖∇ ∧ F(· − y)‖L2
w(Bc

τ+T (0)) ≤ T sup
y∈∂BT (0)

‖∇ ∧ F(· − y)‖L2
w(Bc

τ+T (0))

≤ T sup
y∈∂BT (0)

(1 + Cw‖y‖)
Pw
2 ‖∇ ∧ F(· − y)‖L2

w(Bc
τ+T (0)) ≤ T (1 + CwT )

Pw
2 ‖∇ ∧ F‖L2

w(Bc
τ (0)),

and

‖∂tKt∓T |t=0 ∗ F‖L2
w(Bc

τ+T (0)) =

∥∥∥∥∥∥∥

 

∂BT (0)

dσ(y) F(· − y) +
T 2

3

 

BT (0)

d3y �F(· − y)

∥∥∥∥∥∥∥
L2

w(Bc
τ+T (0))

≤
 

∂BT (0)

dσ(y) ‖F(· − y)‖L2
w(Bc

τ+T (0)) +
T 2

3

 

BT (0)

d3y ‖�F(· − y)‖L2
w(Bc

τ+T (0))

≤ (1 + CwT )
Pw
2 ‖F‖L2

w(Bc
τ (0)) +

T 2

3
(1 + CwT )

Pw
2 ‖�F‖L2

w(Bc
τ (0)).

Substituting F with (∇∧)kE(m),±
i,±T and (∇∧)kB(m),±

i,±T for k = 0, 1 and 1 ≤ i ≤ N in the two estimates
above yields

1∑

k=0

N∑

i=1

(
‖(∇∧)ke(m)

i ‖L2
w(Bc

τ+T (0)) + ‖(∇∧)kb(m)
i ‖L2

w(Bc
τ+T (0))

)

≤ (1 + CwT )
Pw
2

(
‖(∇∧)kE(m),±

i,±T ‖L2
w(Bc

τ (0)) + ‖(∇∧)kB(m),±
i,±T ‖L2

w(Bc
τ (0))

+
T 2

3

(
‖(∇∧)k�E(m),±

i,±T ‖L2
w(Bc

τ (0)) + ‖(∇∧)k�B(m),±
i,±T ‖L2

w(Bc
τ (0))

)

+T
(
‖(∇∧)k+1E(m),±

i,±T ‖L2
w(Bc

τ (0)) + ‖(∇∧)k+1B(m),±
i,±T ‖L2

w(Bc
τ (0))

))
. (56)

Now the boundary fields X± lie in Ã3
w which means that the fields E(m),±

i,±T and B(m),±
i,±T for 1 ≤ i ≤ N

fulfill the Maxwell constraints so that

‖(∇∧)k�E(m),±
i,±T ‖L2

w(Bc
τ (0)) = ‖(∇∧)k+2E(m),±

i,±T ‖L2
w(Bc

τ (0)) + 4π‖(∇∧)k∇�i(· − q(m)
i,±T ‖L2

w(Bc
τ (0))
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and

‖(∇∧)k�B(m),±
i,±T ‖L2

w(Bc
τ (0)) = ‖(∇∧)k+2B(m),±

i,±T ‖L2
w(Bc

τ (0)).

Applying (iv) of Definition 4.8 yields

lim
τ→∞ sup

m∈N

3∑

j=0

N∑

i=1

(∥∥∥(∇∧)jE
(m),±
i,±T ‖2

L2
w(Bc

τ (0))+‖(∇∧)jB
(m),±
i,±T ‖2

L2
w(Bc

τ (0))

)
= lim

τ→∞ sup
m∈N

‖χ±
±T [p, Fm]‖2

Fn
w(Bc

τ (0) =0

because Fm ∈ Br(0) ⊂ F1
w for all m ∈ N. Hence, (55) holds which, as we have shown, implies the

uniform decay at spatial infinity of all the sequences ((∇∧)kE(m)
i )m∈N, ((∇∧)kB(m)

i )m∈N for k = 0, 1 and
1 ≤ i ≤ N . This ensures condition (ii) of Lemma 4.19.

Using the abbreviations E(m,k)
i := (∇∧)kE(m)

i and B(m,k)
i := (∇∧)kB(m)

i for 1 ≤ i ≤ N , k = 0, 1, and
m ∈ N, we summarize: The sequences (E(m,k)

i )m∈N, (B(m,k)
i )m∈N, (�E(m,k)

i )m∈N and (�B(m,k)
i )m∈N are

all uniformly bounded in L2
w and decay uniformly at spatial infinity.

Successively application of Lemma 4.19 produces the common F1
w convergent subsequence: Fix 1 ≤

i ≤ N . Let (E(m0
l ,0)

i )l∈N be the L2
w convergent subsequence of (E(m,0)

i )m∈N and (E(m1
l ,1)

i )l∈N the L2
w

convergent subsequence of (E(m0
l ,1)

i )l∈N. In the same way, we proceed with the other indices 1 ≤ i ≤ N
and the magnetic fields, every time choosing a further subsequence of the previous one. Let us denote the
final subsequence by (ml)l∈N ⊂ N. Then, we have constructed sequences (Gml

)l∈N as well as (AGml
)l∈N

which are convergent in F0
w and implies the convergence in F1

w. As (Gm)m∈N was arbitrary, we conclude
that every sequence in M has an F1

w convergent subsequence and therefore M is compact which had to
be shown. This concludes the proof. �

Having established the existence of a fixed point F for any finite T > 0, p ∈ P and (X±
i,±T )1≤i≤N =

X± ∈ Ã3
w, claim (iii) of Theorem 4.12 states that the charge world-lines t �→ (qi,t,pi,t)1≤i≤N :=

(Q + P)ML[p, F ](t, 0) are in T p,X±
T , that is, they are time-like charge world-lines that solve the condi-

tional WF� equations (14)–(15) for all times t ∈ R. As discussed in the introduction, it is interesting to
verify that among those solutions we see truly advanced and delayed interactions between the charges.
This is the content of Theorem 2.7 which we prove next. We introduce:

Definition 4.20. (Partial WF� solutions) For p ∈ P we define T L
WF to be the set of time-like charge

world-lines (qi,pi)1≤i≤N ∈ T N� which solve the WF� equations (5)–(6) for times t ∈ [−L,L] and have
initial conditions (qi,t,pi,t)1≤i≤N |t=0 = p. We shall call every element of T L

WF a partial WF� solution on
[−L,L] for initial value p.

In order to show that a conditional WF� solution (qi,pi)1≤i≤N ∈ T p,X±
T is also a partial WF� solution,

we have to regard the difference between the WF fields produce by them:

M�i
[X±

i,±T , (qi,pi)](t,±T ) − M�i
[qi,pi](t,±∞)

=
(

∂t ∇∧
−∇∧ ∂t

)
Kt∓T ∗ X±

i,±T + Kt∓T ∗
(

−4πv(pi,±T )�i(· − qi,±T )
0

)

−4π

±Tˆ

±∞
ds Kt−s ∗

(
−∇ −∂s

0 ∇∧

)(
�i(· − qi,s)

v(pi,s)�i(· − qi,s)

)
. (57)

The equality holds by Definition 3.9, Theorem 3.6 and (23) in Theorem 3.10. Let R > 0 be the smallest
radius such that supp �i ⊆ BR(0) for all 1 ≤ i ≤ N . Whenever there is an L > 0 such that this difference
is zero at least for times t ∈ [−L,L] and in tubes of radius R around the charge world-lines (qi,pi)1≤i≤N

of a conditional WF� solution, these world-lines form already a partial WF� solution in T L
WF.
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(a) (b)

Fig. 3. a Choosing Liénard–Wiechert fields for X±
i,±T , 1 ≤ i ≤ N , the difference (57) between the conditional WF�

and partial WF� solution vanishes inside the shaded (sheared diamond shaped) space-time region, which is given by the
intersection of the forward and backward light-cones of qk,−T and qk,+T for 1 ≤ k ≤ N , respectively. b The nonshaded
region visualizes the set of space-time points (t,x) such that t ∈ (−T + R, T − R) and x ∈ B|t∓T |−R(q) which is used in
Lemma 4.21.

Suppose that the boundary fields X±
i,±T are given by the advanced and retarded Liénard–Wiechert

fields of asymptotes which continue the conditional WF� solution (qi,pi)1≤i≤N for times |t| > T into the
future and past, respectively. Only by looking at the geometry of the interaction, see Fig. 3a, one may
expect that the difference (57) is zero in the intersection of all forward and backward light-cones of the
space-time points (−T,qk,−T ) and (+T,qk,+T ) for all 1 ≤ k ≤ N , respectively. However, this intersection
might be empty, either if T is chosen too small compared to the maximal distance of the charges at time
zero or if the charges approach the speed of light sufficiently fast; see Fig. 2b for an extreme case. As
discussed, the properties of known WF� solutions suggest that the latter case will never occur as their
velocities are expected to be uniformly bounded away from the speed of light. In the particular case of
the Coulomb boundary fields C, cf. Definition 4.13, we shall now show that, even without having such a
uniform velocity estimate, for fixed T > 0, there is always a suitable choice of Newtonian Cauchy data
p ∈ P and nontrivial charge densities �i ∈ C∞

c such that partial WF� solutions exist.
Observe that the difference (57) is given by the free Maxwell time evolution of the boundary fields

which at time ±T carry divergences at qk,±T due to the Maxwell constraints. We shall now exploit the
remarkable feature of the free Maxwell time evolution that justifies the discussed geometric picture in
Fig. 3a: Any initial field with a nonvanishing divergence will be evolved by the free Maxwell time evolu-
tion in a way that the forward and backward light-cones of the support of the divergence are cleared to
zero. The next Lemma proves this explicitly in the case of the Coulomb field. Using Lorentz boosts, the
presented proof can easily be generalized to Coulomb fields of a moving charge with constant velocity,
and with a bit more work it can be generalized further to Liénard–Wiechert fields of any strictly time-like
charge world-line.

Lemma 4.21. (Shadows of the Boundary Fields and WF� fields) Let q,v ∈ R
3, � ∈ C∞

c (R3, R) such that
supp � ⊆ BR(0) for some finite R > 0, and let t �→ (qt,pt) ∈ T N� such that qt|t=0 = q. Furthermore,EC

be the Coulomb field of a charge at rest at the origin

EC :=
ˆ

d3z �(· − z)
z

‖z‖3

Then for T > R the expressions
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[(
∂t ∇∧

−∇∧ ∂t

)
Kt∓T ∗

(
EC(· − q)

0

)
+ Kt∓T ∗

(
−4πv�(· − q)

0

)]
(x) (58)

and
±Tˆ

±∞
ds Kt−s ∗

(
−∇ −∂s

0 ∇∧

)(
�(· − qs)

v(ps)�(· − qs)

)
(x) (59)

equal zero for t ∈ (−T + R, T − R) and x ∈ B|t∓T |−R(q); see Fig. 3b.

Proof. Let t ∈ (−T + R, T − R). With regard to the second term in (58), we compute

‖−4πv [Kt∓T ∗ �(· − q)] (x)‖ = 4π‖v‖

∣∣∣∣∣∣∣
(t ∓ T )

 

∂B|t∓T |(0)

dσ(y) �(x − y − q)

∣∣∣∣∣∣∣

≤ 4π‖v‖|t ∓ T | sup |�|
 

∂B|t∓T |(q)

dσ(y) 1BR(x)(y)

where we used Definition 3.3 for Kt∓T . Now x ∈ B|t∓T |−R(q) implies ∂B|t∓T |(q)∩BR(x) = ∅, and hence,
that the term above is zero.

With regard to the first term, we note that the only nonzero contribution is ∂tKt∓T ∗ EC
i since

∇ ∧ EC = 0. Lemma 3.4 and in particular equation (19) give

[
∂tKt∓T ∗ EC(· − q)

]
(x)=

ˆ

∂B|t∓T |(0)

dσ(y) EC(x−y−q)+(t ∓ T )∂t

ˆ

∂B|t∓T |(0)

dσ(y) EC(x − y − q) (60)

=
ˆ

∂B|t∓T |(0)

dσ(y) EC(x−y − q) +
(t ∓ T )2

3

 

B|t∓T |(0)

d3y �EC(x − y)=: 8 + 9 .

(61)

Using Lebesgue’s theorem, we start with

8 = EC(x − q) +

|t∓T |ˆ

0

ds ∂s

ˆ

∂Bs(0)

dσ(y) EC(x − y − q)

= EC(x − q) +

|t∓T |ˆ

0

dr
r

3

ˆ

Br(0)

d3y �EC(x − y − q).

Furthermore, we know that 0 = (∇∧)2EC = ∇(∇ · EC) − �EC and ∇ · EC = 4π�. So we continue the
computation with

8 = EC(x − q) +

|t∓T |ˆ

0

dr
r

3

ˆ

Br(0)

d3y 4π∇�(x − y − q)

= EC(x − q) −
|t∓T |ˆ

0

dr
1
r2

ˆ

∂Br(0)

dσ(y)
y
r

�(x − y − q)
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where we have used (60) to evaluate the derivative and in addition used Stoke’s Theorem. Note that the
minus sign in the last line is due to the fact that ∇ acts on x and not on y. Inserting the definition of
the Coulomb field EC we finally get

8 =
ˆ

Bc
|t∓T |(0)

d3y �(x − y − q)
y

‖y‖3
.

This integral is zero if, for example, Bc
|t∓T |(q) ∩ BR(x) = ∅ and this is the case for x ∈ B|t∓T |−R(q). So

it remains to show that 9 also vanishes. Therefore, using �EC = 4π∇� as before, we get

9 = −
ˆ

∂B|t∓T |(0)

dσ(y)
y

(t ∓ T )2
�(x − y − q).

This expression is zero, for example, when ∂B|t∓T |(q) ∩ BR(x) = ∅ which is true for x ∈ B|t∓T |−R(q).
Hence, we have shown that for t ∈ (−T + R, T − R) and x ∈ B|t∓T |(q) the term (58) is zero.

Looking at the support of the integrand and the integration domain in term (59), we find that for all
t ∈ (−T + R, T − R) it is zero for all x ∈ R

3 such that
⋃

|s|>T

(
∂B|t−s|(x) ∩ BR(qs)

)
= ∅. (62)

Hence, for t ∈ (−T + R, T − R) and x ∈ B|t∓T |(q), the term (59) is also zero which concludes the
proof. �

It remains to get a bound on the velocities of the charge world-lines within [−T, T ].

Lemma 4.22. (Uniform Velocity Bound) For finite a, b there is a continuous and strictly increasing map
va,b : R

+ → [0, 1), T �→ va,b
T such that

sup
{

‖v(pi,t)‖R3

∣∣∣∣ t ∈ [−T, T ], ‖p‖ ≤ a, F ∈ Range Sp,C
T , ‖�i‖L2

w
+ ‖w−1/2�i‖L2 ≤ b, 1 ≤ i ≤ N

}

≤ va,b
T < 1.

for (pi,t)1≤i≤N := PML[p, F ](t, 0) for all t ∈ R.

Proof. Recall the estimate (32) from the ML-SI� existence and uniqueness Theorem 3.19 which gives the
following T dependent upper bounds on these ML-SI� solutions for all ϕ ∈ Dw(A):

sup
t∈[−T,T ]

‖ML[ϕ](t, 0)‖Hw
≤ C3

(
T, ‖�i‖L2

w
, ‖w−1/2�i‖L2 ; 1 ≤ i ≤ N

)
‖ϕ‖Hw

. (63)

Note further that by Lemma 4.17 since C ∈ A1
w, there is a C11

(1) ∈ Bounds such that fields F ∈
Range Sp,C

T ∈ Dw(A∞) fulfill

‖F‖Fw
≤ C11

(1)(T, ‖p‖) ≤ C11
(1)(T, a).

Therefore, setting c := a + C11
(1)(T, a), we estimate the maximal momentum of the charges by

sup
{

‖pi,t‖R3

∣∣∣∣ t ∈ [−T, T ], ‖p‖ ≤ a, F ∈ Range Sp,C
T , ‖�i‖L2

w
+ ‖w−1/2�i‖L2 ≤ b, 1 ≤ i ≤ N

}

≤ sup
{

‖pi,t‖R3

∣∣∣∣ t ∈ [−T, T ], ϕ ∈ Dw(A), ‖ϕ‖Hw
≤ c, ‖�i‖L2

w
+ ‖w−1/2�i‖L2 ≤ b, 1 ≤ i ≤ N

}

≤ C3 (T, b, b, ) c =: pa,b
T < ∞.
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Now, since C2 as well as C11
(1) are in Bounds, the map T �→ pa,b

T as R
+ → R

+ is continuous and strictly
increasing. We conclude that claim is fulfilled for the choice

va,b
T :=

pa,b
T√

m2 + (pa,b
T )2

< 1.

�
With this we can prove our last result, that is, Theorem 2.7.

Proof of Theorem 2.7 (True WF� Interaction). Let F ∗ be a fixed point F ∗ = Sp,C
T [F ∗] which exists by

Theorem 2.6. Define the charge world-lines (qi,pi)1≤i≤N by t �→(qi,t,pi,t)1≤i≤N :=(Q + P)ML[p, F ∗](t, 0).
By the fixed point properties of F ∗ we know that (qi,pi)1≤i≤N ∈ T p,C

T and therefore solve the conditional
WF� equations (14)–(15) for Newtonian Cauchy data p and boundary fields C. In order to show that
the charge world-lines (qi,pi)1≤i≤N are also in T L

WF for the given L we need to show that the difference
(57), which equals

M�i
[X±

i,±T , (qi,pi)](t,±T ) − M�i
[qi,pi](t,±∞)

=
(

∂t ∇∧
−∇∧ ∂t

)
Kt∓T ∗ X±

i,±T + Kt∓T ∗
(

−4πv(pi,±T )�i(· − qi,±T )
0

)

−4π

±Tˆ

±∞
ds Kt−s ∗

(
−∇ −∂s

0 ∇∧

)(
�i(· − qi,s)

v(pi,s)�i(· − qi,s)

)
,

is zero for times t ∈ [−L,L] at least for all points x in a tube around the position of the j �= i charge world-
lines. Lemma 4.21 states that this expression is zero for all t ∈ (−T +R, T −R) and x ∈ B|t∓T |−R(qi,±T ).
So it is sufficient to show that the charge world-lines spend the time interval [−L,L] in this particular
space-time region. Clearly, the position q0

i at time zero is in BT−R(qi,±T ). Hence, we estimate the earli-
est exit time L of this space-time region of a charge world-line j, that is, the time when the jth charge
world-line leaves the region B|L∓T |−R(qi,±T ). By Lemma 4.22, the charges can in the worst case move
apart from each other with velocity va,b

T during the time interval [−T, T ]. Putting the origin at q0
i , we

can compute the exit time L by

−va,b
T T = ‖q0

j − q0
i ‖ + 2R + va,b

T L − (T − L)

This gives the lower bound L := (1−va,b
T )T−�qmax−2R

1+va,b
T

> 0. Since va,b
T < 1 we have (1 − va,b

T )T > 0.
Hence, for sufficiently small R and �qmax, it is true that L > 0 which concludes the proof. �
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