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1. Introduction

Wheeler—Feynman electrodynamics (WF) describes the classical electromagnetic interaction of a number
of N charges by action-at-a-distance [28]. The nature of the action-at-a-distance is such that two charges
interact with each other’s if and only if they are in each others light-cone. Hence, the force acting on
one charge at a certain time instant depends on the respective future and past of all other charges. In
contrast to Maxwell-Lorentz electrodynamics, the theory contains no fields and is free from ultraviolet
divergences originating from ill-defined self-fields. Electrodynamics without fields was considered as early
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as 1845 by Gauss [14] and continued to be of interest, for example, [13,20,26], where the fundamental
equations of WF, the so-called Fokker—Schwarzschild-Tetrode (FST) equations, were already discussed.
The connection to physical phenomena was then made by Wheeler and Feynman [27,28] who showed
that this alternative formulation of classical electrodynamics leads to a satisfactory description of radi-
ation damping: Accelerated charges are supposed to radiate and to lose energy thereby. How can this
be accounted for in a theory without fields? To answer this question, Wheeler and Feynman introduced
the so-called absorber condition, which needs to be satisfied by the world-lines of all charges, and they
argue that it is satisfied on thermodynamic scales. Under this absorber condition, it is straightforwardly
seen that the net force acting on any selected charge can effectively be described by the sum of forces
arising from the respective past of all other charges and the same radiation friction term that appears in
Dirac’s mass renormalization procedure [7]; see our short discussion in [4]. The advantage in Wheeler and
Feynman’s derivation of the radiation friction term is that it involves no divergences in the defining equa-
tions which in the case of Dirac’s formal derivation provoke unphysical, so-called run-away, solutions. At
the same time, Wheeler and Feynman’s argument is able to explain the irreversible nature of radiation
phenomena. These features make WF the most promising candidate for arriving at a mathematically
well-defined theory of relativistic, classical electromagnetism.

However, mathematically, WF is completely opaque. It is not an initial value problem for differential
equations because its fundamental equations of motion, the FST equations, contain time-like advanced
and retarded state-dependent arguments for which no theory of existence or uniqueness of solutions is
available. Apart from two exceptions discussed below, it is not even known whether in general there are
solutions at all. In tensor notation, WF is given by the FST equations:

1

mzil(r) =e; Z 3 [F[zk]’f(zz(T)) + F[zk]’iy(zi(T))] Ziw(7), 1<i<N, (1)
k:]i,;él,N
where
P = or A =0 A, Al (@) = en gt (e ST (2)

and the world-line parameters 7 +, 7% — : M — R are implicitly defined through

(4 (@) = 2° + x — 2o @), 2R (7 (2)) = 2° = |Ix — 2 (73— (2))]]. (3)

Here, the world-lines of the charges z; : 7 — z!(7) for 1 < i < N are parametrized by proper time 7 € R
and take values in Minkowski space M := (R*, g) equipped with the metric tensor g = diag(1, -1, —1,—1).
We use Einstein’s summation convention for Greek indices, that is, z,y* = Zi:o guvxty”, and the
notation x = (2°,x) for an € M in order to distinguish the time component 2° € R from the spatial
components x € R3. The overset dot denotes a differentiation with respect to the world-line parametri-
zation 7. For simplicity, each particle has the same inertial mass m # 0 (all presented results however
hold for charges having different masses, too). The coupling constant e; denotes the charge of the i-th
particle.

If one were to insist on using field theoretic language, then one may also say that Eq. (1) describe the
interaction between the charges via their advanced and retarded Liénard—Wiechert fields F[zy ]+, Fzx]—,
1 < k < N. These fields are special solutions of the Maxwell equations of classical electrodynamics cor-
responding to a prescribed world-line zj. The functional dependence on 7 +— 2, (7) is emphasized by the
square bracket notation [z;]. Given an x € M and a time-like world-line 7 — z;(7), that is, one fulfilling
Zeu’y, > 0, the solutions 7y 4 (2), 7,—(2), are unique and given by the intersection of the forward and
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Fic. 1. a Solutions of equations (3) for AzC := 20(r, +(x)) — 2% and Az = ||x — 2z (7, +(2))[|. b Two WF world-lines z;
and zj interacting via a ladder of light-cones (45° lines since in our units the speed of light equals one). Hence, the value
of Z; depends on both advanced and retarded data F[z]+(z;) and F[zk]+(2;), respectively

backward light-cone of space-time point x and the world-line z, respectively; see Fig. 1a. The acceleration
on the left-hand side of the FST equations depends through (3) on time-like advanced as well as retarded
data [with respect to z?(7)] of all the other world-lines; see Fig. 1b. The delay is unbounded, and by (2),
the right-hand side of (1) again depends on the acceleration.

It is noteworthy that in early 1900 the mathematician and philosopher A.N. Whitehead [29] devel-
oped a philosophical view on nature which rejects “initial value problems” as fundamental descriptions of
nature. He developed his own gravitational theory and motivated Synge’s study of what is now referred
to as Synge equations [19,24], that is,

mz (1) =ei Y Flal? (z(r)ziu (7). (4)

The Synge equations share many difficulties with the FST equations but, as we shall show, are simpler
to handle because they only depend on time-like retarded arguments. We would like to remark that inde-
pendent of Whitehead’s philosophy, it seems to be the case that often fields are introduced to formulate
a physical law, even though it may have a delay character, as initial value problem. Maxwell-Lorentz
electrodynamics is a prime example. However, these very fields are then often the source of singularities of
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the theory, quantum or classical. Whitehead’s idea might therefore point toward a fruitful new reflection
about the character of physical laws.

The books [9,11,18] provide a beautiful overview on the topic of delay differential equations. How-
ever, for the FST equations as well as similar types of delay differential equations with advanced and
retarded arguments of unbounded delay, there are almost no mathematical results available. The prob-
lem one usually deals with in the field of differential equations without delay is extension of local
solutions to a maximal domain and avoiding critical points by introducing a notion of typicality of
initial conditions. For WF, the situation is dramatic. Because of the unbounded delay, the notion of
local solutions does not make sense, so that the issue is not local versus global existence and also
not explosion or running into singular points of the vector field. The issue is simply: Do solutions
exist? and  What kind of data of the solutions is necessary and/or sufficient to characterize solutions
uniquely?

To put our work in perspective, we call attention to the following literature: Angelov studied exis-
tence of Synge solutions in the case of two equal point-like charges and three dimensions [2]. Under the
assumption of an extra condition on the minimal distance between the charges to prevent collisions,
he proved existence of Synge solutions on the positive time half-line. Uniqueness is only known in a
special case in one dimension for two equal charges initially having sufficiently large opposite veloci-
ties and sufficiently large space-like separation. Under these conditions, Driver has shown [8] that the
Synge solutions are uniquely characterized by initial positions and momenta. With regard to WF, two
types of special solutions are known to exist: First, the explicitly known Schild solutions [21] composed
of specially positioned charges revolving around each other on stable orbits, and second, the scattering
solutions of two equal charges constrained on the straight line [3]. The latter result rests on the fact
that the asymptotic behavior of world-lines on the straight line is well controllable [due to this special
geometry the acceleration dependent term on the right-hand side of (1) vanishes]. Uniqueness of FST
solutions was proven in one dimension with zero initial velocity and sufficiently large separation of two
equal charges [10]. In a recent work [17], a well-defined analog of the formal Fokker variational principle
for two charges restricted to finite intervals was proposed. It is shown that its minima, if they exist,
fulfill the FST equations on these finite times intervals. Furthermore, there are conjectures about unique-
ness of FST solutions, for example, [1,12,25,28]. While Driver’s result [10] points to the possibility of
uniqueness by initial positions and momenta, Bauer’s [3] work suggests to specify asymptotic positions
and momenta. Furthermore, a WF toy model for two charges in three dimensions was given in [5,6]
for which a sufficient condition for a unique characterization of all its (sufficiently regular) solutions
is the prescription of connected strips of time-like world-lines long enough such that at least for one
point on each strip the right-hand side of the FST equation is well defined and the FST equation is
fulfilled.

2. Our setup and results

Our focus is on the bare existence of solutions of WF, that is, on the above question: Do solutions exist?
For that question, the issue that in a dynamical evolution of a system of point-like charges catastrophic
events may happen is secondary (compare the famous n-body problem of classical gravitation [22]). More
on target, such considerations would have to invoke a notion of typicality of world-lines, so that cata-
strophic events can be shown to be atypical. But that would require not only existence of solutions but
also a classification of solutions. We are far from that. To avoid such issues at this early state of research,
we regard WF, as introduced in [4] instead of WF, that is, we consider extended rigid charges described
by the charge distributions g;, 1 < ¢ < N, where singularities do not even occur when charges pass
through each other. It has to be emphasized that in contrary to textbook electrodynamics in WF the
charges do not acquire electrodynamic mass, and as long as the world-lines do not cross or approach the
speed of light, the limit back to point-particles can be carried out without obstacles.
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For our mathematical analysis, it is convenient to express WF,, in coordinates where it takes the form
Pit

Drctis = v(pig) = ——Pi_
Otpit = Z /d3x 0i(x — qit) (Bt [qr, Pr](x) + v(qi¢) A Be[ar, pr](x)) (5)

for 1 <i< N and

E§e+’e*)[qi, pi](x)) N —Voi(y —dis) — 0s [V(Pis)0i(y — dis)]
<B§6+’“[qi, ) ~Xotmes [ @ty ey (T G R B )
(6)
. S(lIx[[£t)

where as in (5) most of the time we drop the superscript (¢+-¢-), Here, K (x) := i) are the advanced
and retarded Green’s functions of the d’Alembert operator. The partial derivative with respect to time ¢
is denoted by 0, the gradient by V, the divergence by V-, and the curl by VA. At time ¢ the ith charge
for 1 <1 < N is situated at position q;; in space R3, has momentum Pit € R? and carries the classical
mass m € R\ {0}. The geometry of the rigid charges is described by the smooth charge densities g; of
compact support, that is, o; € C>°(R3,R), for 1 <i < N.

Using the notation E; := (F%(t,))1<i<s and B, = (F?3(t,-), F3L(t,-), F'2(¢,-)) and replacing o;
by the three-dimensional Dirac delta distribution 6 times e;, one retrieves from (5) the FST equa-
tions (1) for e, = 3 = e_ and the Synge equations (4) for ey = 0,e_ = 1. As discussed in Theorem
3.10, the expression (6) for the choices for e = 1,e. = 0 and ey = 0,e_ = 1 is the advanced and
retarded Liénard-Wiechert field, respectively. The square brackets [q;, p;] emphasize that these fields are
functionals of the charge world-line ¢ — (q; ¢, pi,+) and no dynamical degrees of freedom in their own.

The first idea to come to grips with existence of solutions is to adapt fixed point arguments from
ordinary differential equations. That is not practical because of two difficulties. The first difficulty is that
in general in WF one cannot separate the second-order derivative from lower order derivatives; see (23),
(24) and (25) for a more explicit expression of (6). Therefore, one cannot rewrite the FST equations
in terms of an integral equation which is normally employed in the fixed points arguments. The second
difficulty is that the time-like advanced and retarded arguments introduced by (6) are of unbounded delay
so that WF dynamics makes only sense for charge world-lines which are globally defined in time. One
would thus have to find an appropriately normed space of functions on R on which the fixed point map
can be controlled—which has not been found yet. One may circumvent this problem by introducing a
notion of conditional solutions where outside a chosen time interval [-T, T] the world-lines are prescribed
by hand. The fixed point argument—if that could be formulated—would then run on the time interval
[—T,T) only. If successful, one may then try to construct a bonafide global solution by letting 7" — oco. In
this work, we show how one can formulate a fixed point procedure on intervals [T, T for arbitrary large
T > 0, that is, we show how one can circumvent the first difficulty albeit gaining conditionally solutions
only. The extension to global solutions would require good control on the asymptotic behavior (as e.g.,
in [3] in the case of the motion on the straight line), which we do not pursue here. We stress, however,
that the extension to infinite time intervals is an interesting and worthwhile task, joining the results of
this paper with the removal technique for T'— oo introduced in [3].

The key idea to define a fixed point map on time intervals [-T,7] is a reformulation of the WF
functional differential equations into a system of nonlinear partial differential equations without delay,
namely the Maxwell-Lorentz equations without self-interaction (abbrev. ML-SI) introduced in [4, (4)-
(7)]. Relying on the notation in [4, (13)], the relation between WF and ML-SI can be expressed as an
equality of sets of charge world-lines:

WF = {world-lines of ML-SI | {F, = 0}}. (7)
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On the left-hand side, we consider the set of world-lines of the charges that fulfill WF. On the right, we
have the set charge world-lines corresponding to solutions of ML-SI restricted to the subset for which
Fy = F — 3(F; + F_) vanishes, that is, the electrodynamic fields F coincide with the WF fields (6).

In the case of rigid charges, we shall use the relation (7) in the following way: Consider charge world-
lines ¢ +— (Qit, Pit)1<i<ny Which solve WF,. By definition, the fields (6) fulfill the Maxwell equations
which implies that the map

t = (e, Pist, Bie, Bit)1<i<n = (Qit, Piyt, Be[di, Pi], Be[Qi, Pil)1<i< v
is a solution of ML-SI,, that is, the Mazwell equations:

OE;: =V ABi; —4nv(pit)oi(- —dit) V-Eip=4mo;(- —qr)

OB =—-VAE;,; V-Bi:=0 (8)
together with the Lorentz equations (without self-interaction):
P,

O1Qi .t = v(Pi) = —

\/ m? + p?,t
o= Y [ 4% 0ix- qus) [Brale) + vie A Brs(). )

k=1,..., N
ki

On the other hand, global existence and uniqueness of solutions of ML-SI, for initial data p :=
(qg,p?)lgiSN € RO and sufficiently regular initial fields F' := (E?,B?)@-SN, for example, at time

to € R, has been shown in [4]; the needed definitions and results are summarized in the Sect. 3.2. For any
(p, F) € D,,(A>), the particular solution is then denoted by

t— Mp[p, F](t, to) := (i, Pirt, Ei e, Bit)1<i<n. (10)

In this sense, we say that sufficiently regular WF, charge world-lines give rise to ML-SI, solutions.
Changing the point of view, we now fix some Newtonian Cauchy data p and ask our
Crucial Question: Do fields F' exist such that the corresponding ML-SI, solution

t = (its Pit, Big, Bit)1<i<n =: Mp[p, Fl(t, to)
fulfills

F = (E¢[as, pi), Be[qi, Pi))1<i<nli=t, 7 (11)

Condition (11) expresses that the initial fields F equal the WF,, fields (6) at initial time ¢ = ¢o. Equiva-
lently, it ensures that the time-evolved fields ¢ — (E; ¢, B;)1<;<n of the ML-SI, solution equal the WF,
fields t — (E.[q;, pi], Bi[di, pi])1<i<n for all times ¢ because their difference is a solution to the homo-
geneous Maxwell equations [i.e. (8) for g; = 0] which is zero; compare (7). Given the equality of fields
for all times, Egs. (9) turn into the WF, equations (5), and hence, the charge world-lines of the ML-SI,
solution fulfilling (11) solve the WF, equations. In other words, the subset of sufficiently regular solutions
of ML-SI, that correspond to initial conditions fulfilling (11) have WF, charge world-lines. We shall show
that any once differentiable charge world-line ¢t — (p¢,q;) with bounded momenta and accelerations
produces WF, fields (6) that are regular enough to serve as initial conditions for ML-SI,. This covers all
physically interesting WF, solutions, including the known Schild solutions. The advantage gained from
this change of viewpoint is that ML-SI, is given in terms of an initial value problem. Therefore, instead
of working directly with the WF, functional equations, it will be more convenient to formulate a fixed
point procedure for ML-SI, to find initial fields for which (11) holds.

We now give an overview of our main results for which we need a precise definition of the considered
classes of charge world-lines:
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Definition 2.1. (Charge world-lines)
(i) We call any map

(qa p) S Cl(R7 Rg X Rs)) t— (qtapt)

a charge world-line and denote with q; and p; the position and momentum of the charge, respectively.

Its velocity at time ¢ is given by v(p;) := \/%.
m pt

(ii) We collect all time-like charge world-lines in the set
Ta = {(q7 p) € C1(R,R3 x R3) ‘ [v(pe)|| <1 forallte ]R}7
(iii) and all strictly time-like charge world-lines in the set

T4(I) = {<q, p) e T2

Fumas < 1such that sup,c; [|[v(pe)]| < vmam}.

where we use the abbreviation 74, := 74, (R).

The symbol ® refers to “time-like” whereas the symbol ®! refers to “strictly time-like”. Furthermore, we
use the notation

(q.7 p) = (67 f)) > VteR: (qt7 Pt) = (ah ﬁt)
and define the Cartesian products 7" := (7)Y and T := (74)V.
Furthermore, we define the class of charge world-lines that fulfill the WF, equations (5)—(6).

Definition 2.2. (Class of Solutions) We define 725+,e,) to consist of elements (q;, p;)i<i<n € TG,’Y which
fulfill:

(i) There exists an amq, < 00 such that for all 1 < ¢ < N, sup,cg [|10:v(Pit)]] < Gmaz-

(ii) (g4, Pi)1<i<n solve the Egs. (5)—(6) for all times ¢t € R and the particular choice of e4,e_.

Qur first results is as follows:

e

Theorem 2.3. (Weak Uniqueness of Solutions) For e;,e_ € R, (q;,Pi)1<i<n € 'T(]J+
define

)andteRwe

§e+767)[<(li7pi)1§i§N] = (Qi,hpi,taEieJﬁei)[Qiapi]aBz(se%ei)[qupi])lgigN- (12)

¥
The following statements are true:
(i) For any ty € R we have wij*’e’)[(qi,pi)lgiSN] € D, (A>).
(ii) For all t,ty € R also o\“*“[(q;, pi)1<icn] = My @Es+’6_)[(qi,p1)1§i§N]] (t,t0) holds.
(iti) For any to € R the following map is injective:
i TN = DW(A®), (a4, pi)i<icn — on T (s, pi)i<i<n-

Hence, for any choice of the coupling parameters e;,e_ we know that: (i) The charge world-lines
in T(]ev+ . produce sufficiently regular initial fields for ML-SI,. (ii) The expression (12) coincides with
a ML-SI, solution. (iii) Each solution of (5)—(6) can be identified by positions, momenta and fields
Ege+’e’)[qi,pi]7B§e+’e’)[q¢, Pi])1<i<n at an initial time to.

This gives us a good handle on the existence and uniqueness of the Synge solutions. We define the
initial data:

Definition 2.4. (Synge Histories) For ¢ty € R we define the set $(t) to consist of elements (q;, Pi)1<i<n €
T2 which fulfill:
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(i) There exists an amq, < 0o such that for all 1 <i < N, sup,cg [|0:v(Pit)|| < tmaz-
(ii) (d4,Pi)1<i<n solve the Egs. (5)—(6) for ey =0,e_ =1 at time ¢ = .
Furthermore, $(to)™ denotes the set $(ty) equipped with

9t (to) ~ ~ -~
(Qiapi)lgigN =" (Qiapi)lgigN &Vt e [t07oo) : (Qi,tvpi,t)lgigN = (Qi,upi,t)lgigN
while $(to)~ denotes the set $(ty) equipped with
N (to) j~ ~ -~
(qi7pi)1§i§N =" (qnpi)lgigN &Vt e (—Oo’to} : (Qi,npi,t)lgigN = (qz‘,upi,t)lgigjv-

Given a history (q; ,p; )i<i<n € 9 (fo) one can simply compute the retarded Liénard—Wiechert
fields (Ego’l))[q;, p; | BEO’I))[q;, P; |)1<i<n at time ¢ = ¢y and use them as initial fields for ML-SI,. The
charge world-lines of the time-evolved ML-SI, solutions then obey the Synge equations for times ¢ > .
This way we shall prove:

Theorem 2.5. (Ezistence and Uniqueness of Synge Solutions) Let e = 0,e- = 1, to € R and
(a; ,P; )i<i<n € H(to) -
(i) (ewistence) There exists an extension (q; ,p; )i<i<n € H(to)T such that the concatenation

(a4 Pihi<icy fort <tg

(13)
(a1 Pihi<icn  fort >t

(Ai, Pi)1<i<n :t = (Qits Pit)i<i<n = {
is an element of TLY ((—0o,T)) for all T € R and solves the Egs. (5)—(6) for all t > t.
(ii) (uniqueness) Let (Qi, Pi)1<i<n € T2 ((—o0,T)) for any T € R and suppose further that it solves the

. ~ ~ H(t _ _ . . ~ ~
Eqgs. (5)—(6) for all timest > ty. Then (Qq;, Pi)1<i<N Lfo) (q; ,p; )i<i<n implies (A ¢, Pit)1<i<N =

(dit, Pit)1<i<n for allt € R.

Given Theorem 2.3, this existence and uniqueness result is not hard to prove, and the reason for this
is that we only ask for solutions on the half-line [tg, 00). In contrast to WF,, the notion of local solutions
again makes sense since the histories simply act as prescribed external potentials. However, if we ask
for solutions on whole R, we again face the problem as in WF,, that is, by the unboundedness of the
delay the notion of local solutions loses its meaning (a conceivable way around this without necessarily
sacrificing uniqueness is to give initial conditions for ¢y — —o0).

We now come to the main part of this work where we discuss the existence of WF, solutions. From
now on we shall keep the choice e, = %, e_ = % fixed, although all the results hold also for any choices of
—1 <ey,e_ < 1. We take on the mentioned idea of conditional solutions: For given initial positions and
momenta of the charges at ¢ = 0, we look for WF, solutions on time intervals [T, T] for an arbitrary
large but fixed T > 0. To be able to regard only the time interval [T, T] of the WF, dynamics, we need
to prescribe how the charge world-lines continue for times |t| > T" because due to the delay the dynamics
within [T, 7] will of course depend also on the world-lines at times |¢t| > T'. This is done by specifying
the advanced Liénard—Wiechert fields at time T as well as the retarded Liénard—Wiechert fields and time
—T corresponding to each continuation of the charge world-line for times [t| > T. We shall refer to these
fields as boundary fields and denote them by X;;T and X; 7. The set of WF, equations for 1 <i < N

with respect to the boundary fields X fiT turn into

atqi,t = V(pi,t) = __Dut
\/ m? + pzz,t
Opit = Z /d33€ 0i(X — Qi) (EtX [k, Pr](%) + v(Qie) A BtX[qkapk](X)) (14)
k=1,...,N
k#i

and
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It + +
X r X t
o s XitrT X;i/
T
T
L 7
R?’ B R3
—L
=T
=T
X _ _
L'7 ‘ 7 X17, X],*T
(a) (b)

F1G. 2. Two WF world-lines z; and z; on time interval [—T,T] with Newtonian Cauchy data p. The straight lines for

times [t| > T are the prescribed asymptotes which generate the advanced and retarded Liénard-Wiechert fields X;;T and
X, _p- In a one observes true WF interaction between the charge world-lines on [T, T| within the time interval [—L, L].
In the extreme case b the charge world-lines on [T, T'] interact only with the given asymptotes (apart from the connection
conditions at +7)

1 .
(EY,,BY,) = 5 > My (X (qipo)](t, £T), forl<i<N (15)
+

where the M,[F°, (q,p)](t,to) denotes the solution of the Maxwell equations for initial fields F° at time
to corresponding to a prescribed world-line ¢ — (qq, p;) with a charge distribution g; see Definition 3.9
below. Note that the above set of equations is a natural restriction of the WF, dynamics onto the time
interval [—T,T] because, first, for the choice

_ _in(y - qi,s) — 0s [V(pi,s)Qi(y - qi,s)]
2 :I:T = 477/d8/ d3y K:I:T s X ) < YV A [v(pi,s)gi(y _ Qi,s)] > (16)

they turn into the WF, set of equations (5)—(6). And second, it is well known that for large T" the bound-
ary fields, should they have sufficient space-like decay, are forgotten by the Maxwell time evolution M in
the pointwise sense; see Remark 3.11 below. Based on this behavior, one may expect to be able to study
also unconditional existence of WF, solutions by considering the limit 7" — oo for a convenient choice of
controllable boundary fields.

For simplicity of our introductory discussion, let us choose

ij:ET : (EC( —qi+7),0)1<i<n,
(EC.0) = M, [t~ (0,0)](0, —o0) = ( [z o~ >|”o) ,

that is, the Coulomb fields corresponding to a charge at rest at q; +7. With this prescription, the condi-
tional WF, equations (14)-(15) are equivalent to WF, dynamics for charges initially being held at rest
for times ¢t < —T and then instantaneously stopped at times ¢ > T by external mechanical forces; see
Fig. 2a. The presented results, however, admit not only this particular case but a large class of boundary
fields which also allow a continuous continuation of the momentum of the charges at times ¢t = £7'.

In view of our discussion of (7), it seems natural to implement the following fixed point map in order
to find solutions to the conditional WF, equations (14)—(15) for initial positions and momenta p € RV
of the charges:
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INPUT: F = (E?,BY);<;<y for any fields such that (p, F) € D,,(A%).
(i) Compute the ML-SI, solution [—T,T] 3t — (d; ¢, Pi,t; Eit, Bit)1<i<n := Mg[p, F](t,0).
(ii) Compute the advanced and retarded fields

(Ei,taBi,t) = %Z M z‘[Xi:f::I:T[p7 F], (as, pi)](t, +T)
+

corresponding to the charge world-lines ¢t — (q;, p;) computed in (i) with prescribed initial fields
XF [p, F) at times +7.

+ ~ ~
OUTPUT: S%X [F] = (Ei,hBi,t)lSigN‘t:O-

Note that the boundary fields XfiT = XfiT , F] need to depend on the ML-SI, initial values (p, F).
Otherwise, it would not be possible to continuously connect the charge world-lines with the prescribed

+
continuation of the charge world-lines at times ¢ = £7. The precise definition of S%X is given in

+
Definition 4.11 below. By construction, any fixed point F™* of this map S%X gives rise to a ML-SI,
solutions t — M, [p, F*](t,0) whose charge world-lines fulfill the conditional WF, equations (14)—(15);
see Definition 4.10 and Theorem 4.12 below. We prove:

Theorem 2.6. (Eristence of Conditional WF,Solutions) Let p € RN be given. For each finite T > 0 the
p,XE ;
map Sy has a fized point.

The essential ingredient in the proof of this result is the good nature of the ML-SI, dynamics which
implies Lemma 4.17 below. Here we rely heavily on the work done in [4].

We close with a discussion of these fixed points. Recall that the Synge solutions on the time half-
line [tp,00) for times sufficiently close to ¢y give rise to interaction with the given past world-lines on
(—00, tg] only. For such small times, one simply solves an external field problem. Not until larger times
the interaction becomes truly retarded in the sense that the future charge world-lines interact with their
just generated histories for times ¢ > ty. However, in an extreme situation, a charge could approach the
speed of light so fast that the time coordinate of the intersection of its backward light-cone with another
charge world-line is bounded, say, by 7"** € R. This means that this charge will never interact with the
part t > T of the other charge world-lines. If T"%* < ¢, one ends up solving a purely external field
problem without seeing any truly retarded interaction. Such a scenario is of course so special that one
would not expect it for all Synge solutions (recall that by Theorem 2.5 one has existence and uniqueness
on the time half-line for any sufficiently regular set of past world-lines). For the WF, equations, however,
we only have solutions on time intervals [T, T] yet and, therefore, one should be more curious as the
described scenario in the case of the Synge equations could happen in the case of the FST equations in
the past as well as in the future of ¢y. If the WF, solution on [T, T] behaves as badly as described above
or the initial position are too far apart from each other in the space-like sense, we might end up solving
only an external field problem as the charge world-lines on [T, T] only “see” the prescribed boundary
fields; see Fig. 2b. The following result makes sure that given 7' at least for some solutions this is not
the case because on an interval [—L, L] with 0 < L < T they interact exclusively with all other charge
world-lines on [T, T] and not with the given boundary fields; that is, the case as shown in Fig. 2a.

We prove:

Theorem 2.7. (True WF, Interaction) Choose a,b,T > 0. Then:

(i) The absolute values of the velocities v(p;¢) of all charges of any ML-SI, solution with any initial
data (p, F') such that

+
lIpll < a, 122%)%] lloillLe, + 12‘?5\7 ||w*1/29i||L2 <b, I € Range S%X

have an upper bound v%"b with 0 < fu;’b < 1.
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(i) Let R > 0 be the smallest radius such that the support of o; lies within a ball around the origin with
radius R, that is, supp ¢; € Bgr(0), for all1 <i < N, and further Agmaz (p) := maxi<; j<n ||af —a)||.

For sufficiently small R there exist p = (q?,pY)1<i<n such that
(1 = 03T = Agmas — 2R

L=
1+ v%’b

>0 (17)

and any fized point F* of S%Xi gives rise to a ML-SI, solution t — M [p, F*](t,0) whose charge
world-lines for t € [—L, L] solve the WF, equations (5)—(6).

The form of L in (17) is a direct consequence of the geometry as displayed in Fig. 2a and the nature
of the free Maxwell time evolution, see Lemma 4.21, which can be seen from a direct computation using
harmonic analysis. The proof further employs a very rough Grénwall estimate coming from the ML-SI,
dynamics to estimate the velocities of the charges during the time interval [T, T, see Lemma 4.22. The
conditions for the above result are therefore quite restrictive but merely technical. Any uniform velocity
estimate, for example, as given in [3] for two charges of equal sign restricted to a straight line, makes this
result redundant as then T' can just be chosen arbitrarily large to ensure an arbitrary large L, and hence
charge world-lines that fulfill the WF, equations on arbitrary large intervals. We expect such a bound
also without the restriction to a straight line. However, even without such a uniform velocity bound the
result above already ensures that in Theorem 2.6 we do see truly advanced and retarded WF, interaction
between the charges. Furthermore, we remark that for the charge world-lines found in (ii) above, one can
already define the WF conservation laws [28] which we expect to be an important ingredient in order to
control a limit procedure T' — oo to yield global WF, solutions.

3. Preliminaries

In the proofs of the main results, we will frequently rely on explicit expressions of the time-evolved electric
and magnetic fields appearing in the Maxwell equations as well as in the ML-SI, time evolution. The
ML-SI, equations are (8)—(9), while the Maxwell equations for a given charge—current density ¢ — (pq, ji)
have the form

8tEtZV/\Bt—47Tjt V'Et:4ﬂ'pt

atBt = —V A\ Et V . Bt = 0 (18)

Although the presented results on the Maxwell equations are well known in the physics community,

we only found some of them in the mathematical literature; for example, [23]. Therefore, we give a math-
ematical review in Sect. 3.1. The proofs of all the claims are published separately in [5]. Furthermore,
ML-SI, was studied in [4]. In order to be self-contained, we given an overview of the needed results in
Sect. 3.2.
Notation. Let Ng = NU {0}. R? vectors and vector-valued functions have bold letters. We denote the
ball of radius R > 0 around the center x € R? by Br(x) C R? and its boundary by dBgr(x). We denote
by C' € Bounds any function x — C(z) € R, that depends continuously and nondecreasing on its argu-
ment . Furthermore, let C™(V, W) be the set of n-times continuously differentiable functions V- — W.
Cx(V,W) = Nyen, CHV,W). CHV, W) C C*(V, W) and C*(V,W) C C*(V,W) are the respective
subsets of functions with compact support. Where unambiguous we sometime drop the reference to
V and W.

3.1. Strong solutions to the Maxwell equations

We review the solution theory of the Maxwell equations (18) omitting the proofs which can be found in,
for example, [5]. The class of charge—current densities we treat is defined by:
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Definition 3.1. (Charge—Current Densities) We shall call any pair of maps p : R x R® — R, (¢,%x) — p;(x)
and j: R x R? — R3, (t,x) — j;(x) a charge—current density whenever:
(i) For all x € R%: p(y(x) € C'(R,R) and j()(x) € C'(R,R?).
(ii) For all t € R: p;, dypy € C°(R3,R) and j;, j: € C°(R3, R3).
(iii) For all (t,x) € R x R3: d;ps(x) + V - je(x) = 0 which is referred to as continuity equation.
We denote the set of such pairs (p, j) by D.
We are interested in solutions to the Maxwell equations (18) in the following sense:
Definition 3.2. (Strong Solution Sense) We define the space of fields
Fhi=C= (R R?) @ C°(R%, R?).
Let tg € R and FY € F!. Then any mapping F : R — F' ¢t — F, := (E;, B;) that solves (18) in the

pointwise sense for initial value Fy|,—;, = FY is called a strong solution to the Maxwell equations with ¢,
initial value F°.

Explicit formulas of those solutions are constructed with the help of:

Definition 3.3. (Green’s Functions of the d’Alembert) We set
S(llxll + )
K =
0 ]

where ¢ denotes the one-dimensional Dirac delta distribution.
Note that for every f € C>°(RR3)

0 for £t >0

K * f(x) = tan( )da(y)f(y) = oy f@Bm(x) do(y)f(y) otherwise
o] (%

holds, where do denotes the surface element on 9B, (x). We introduce the notation A = V -V and
O=207 - A.

Lemma 3.4. (Green’s Functions Properties) Let f € C*®(R3). Then:
(i) The following identities holds:

Kixf=Ft ][ do()f(- — )

0B=+(0)
12 .
oktif=F { do)fC-0Fy f EoH-y)
dB=4(0) B=4(0)
ORKF«f=KF«Af=AKF . (19)

(i) Set K, =Y FK;-. The mapping (t,x) — [K; * f](x) can uniquely be extended at t =0 to become
a C*®(R x R3) function such that for alln € N

tli%l:': (aEnJrth « )~ \anf (20)
and OKy * f =0 for allt € R.

Remark 3.5. In the future we will denote the unique extension of K; by the same symbol K. It is called
the propagator of the homogeneous wave equation.
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Theorem 3.6. (Mazwell Solutions) Let (p,j) € D.
(i) Given (E°,BY) € F* fulfilling the Mazwell constraints V-E° = 47p,, and V-B? = 0 for any to € R,
the mapping t — Fy = (E¢, By) defined by

E\ ([ 8 VA E? — 471, ! —V =5\ (ps
(Bt> = (—V/\ at ) Kt—to * (BO) + Kt—to * ( 0 —|—47T " ds Kt—s * 0 VA js (21)

for all t € R is F! walued, infinitely often differentiable and a solution to (18) with ty initial value
FO,
(i) ¢ For allt € R we have V - E; = 4mp; and V - B, = 0.
Remark 3.7. Clearly, one needs less regularity of the initial values in order to get a strong solution. With
regard to WF,, however, we will only need to consider smooth initial values F'. The explicit formula of
the solutions (after an additional partial integration) was already found in [15, (A.24),(A.25)] where it
was derived with the help of the Fourier transform. (There seems to be a misprint in the matrix on the

r.h.s of equation (A.24). In their notation m; * (Ey, By) should equal the first summand of the r.h.s. of
(21). However, (A.20) from which it is derived is correct.)

For the rest of this paper, the charge—current densities (p,j) we will consider are the ones generated
by a moving rigid charge on time-like world-lines (recall Definition 2.1):

Definition 3.8. (The Charge—Current Density of a Charge world-line) For g9 € C>*(R3,R) and (q,p) € 74
define
Pt

pe(x) = o(x — ), ji(x) = ——=o0(x — at)
t vm? + p}
for all (¢,x) € R x R? which we call the induced charge-current density of (q, p).
Clearly, (p,j) € D so that Theorem 3.6 applies:

Definition 3.9. (Mazwell Time Evolution) Given a charge world-line (q, p) € 7¢ which induces (p, j) € D
we denote the solution ¢ — F} of the Maxwell equations (18) given by Theorem 3.6 and ¢, initial values
F° = (E°, B € F! by

t = My[F°, (a,p)](t,t0) := Fp.

One finds the following special solutions:

Theorem 3.10. (Liénard—Wiechert Fields) Let F* = (E°,B%) € F! such that V-E° = 47tp;, and V-B? = 0
as well as

3
IIEO(X)H+IIBO(X)II+||X||Z(I|3x,:EO(X)II+HaxlBO(X)H): O (IxI™) (22)

lIx[|—oc

for some € > 0 and all x € R? are fulfilled. We distinguish two cases denoted by + or — and assume that
for allt € R, (q,p) € Ta([t,00)) or (q,p) € Ta ((—00,t]) holds, respectively. Then the pointwise limit

M,[q, p](t, +00) := pw-lim, ., M,[F°, (q,p)](t,t0)
e T

LW+ o +v)(1—v? A(mEv)n =
E; (x —z) = [fo(][zlfql)\2(1:i:n)-V)3 + Hxilz[*(:llﬂ(li“af]")?’} 29

exists in F1 where

BEWE(x — 2) = FnAE/(x —2z)|* (25)
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and

qt = qu vE = v(p) a
n:I: .

Sl P tF =t+|x—z—qF|.

£ 1= 0v(pe) == (26)

Remark 3.11. Condition (22) guarantees that in the limit o — oo, the initial value F© is forgotten
by the time evolution of the Maxwell equations. The condition that (q,p) are strictly time-like is only
sufficient for the limits ¢, — +o0 to exist but necessary to yield formulas (24) and (25); note the blowup
of the denominators (1 £n-v) for ||v|| — 1.

Theorem 3.12. (Liénard—Wiechert Fields Solve the Mazwell Equations) Let (q,p) € 74, then the
Liénard-Wiechert fields M,[q, p](t, £00) are a solution to the Mazwell equations (18) including the Maz-
well constraints for all t € R.

We immediately get a simple bound on the Liénard-Wiechert fields:

Corollary 3.13. (Liénard-Wiechert Estimate) Let (q,p) € Tg,. Furthermore, assume there exists an
Umaz < 00 such that sup,cg [|0:v(Pe)|| < Gmaz. Then the Liénard-Wiechert fields (24) and (25) fulfill:

For any multi-index o € N3 there exists a constant C, < 0o such that forallx e R3, teR

|DEE ()] + |D"BE (o)) < O ( S )
' 0= oma® \ T4 @l T T4 % —

holds.

3.2. The ML-SI, time evolution

Next, we briefly summarize the results of [4] on the ML-SI, equations (8)—(9):
Definition 3.14. (Weighted Square Integrable Functions) We define the class of weight functions
W= {w € (R}, RT\{0}) | 3C, € R, P, eN:w(x+y) < (1+ C’waH)PWw(y)}. (27)

For any w € W and open  C R?, we define the space of weighted square integrable functions Q — R3?
by

L2 (Q,R) := {F : Q — R? measurable

[ @ wePe? < oo}.

For regularity arguments, we need more conditions on the weight functions. For k € N, we define

Wh = {wEW |3 C. e RY : [D* V| < Cov/am, |0 gk} (28)
and
W = ﬂ Wk,
keN

Remark 3.15. As computed in [4], W 2 w(x) := (1 + [|x]|*)~".
The space of initial values is then given by:

Definition 3.16. (Phase Space) We define
N
Ha =P (R° o R & L, (R*, R*) © L,(R*, R?))..
i=1
Any element ¢ € H,, consists of the components ¢ = (q;, p;, E;, B;)1<i<n, that is, positions q;, momenta
p: and electric and magnetic fields E; and B; for each of the 1 < ¢ < N charges.
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If not noted otherwise, any spatial derivative will be understood in the distribution sense, and the
Latin indices i, §, ... shall run over the charge labels 1,2,..., N. For w € W, open set  C R3 and k > 0
we define the following Sobolev spaces

HE(Q,R3) = {f € L2 (QO,R?) | Df € L2(Q,R%), |a| < k},

HAY (Q,R?) = {f € L2 (R | AIf e LA (Q,R?) for 0 < j < k} (29)

chrl(Q R3) {f S L2 (Q Rg) VAfe L%U(Q,RB)}

which are equipped with the inner products

k
(£.8)i = D (DE,D8) 12 () (£,8) o) = (O, A78) 1, o)
7=0

la| <k
(£,8) euriq) = (£:8) 2 (@) T (VAL VARG g

respectively. We use the multi-index notation o = (ay, as, a3) € (Ng)3, |af := Zl 1@, D¥ = 07" 05205
where 0; denotes the derivative w.r.t. to the i-th standard unit vector in R3. In order to appreciate the
structure of the ML equations, we will rewrite them using the following operators A and J:

Definition 3.17. (Operator A) For a ¢ = (q;, Pi, Ei, Bi)1<i<n we defined A and A by the expression

Ap = (070,A(Ei,BZ—)) - (0,0, —V/\EZ-7V/\BZ-))

1<i<N 1<i<N

on their natural domain
N
=P R R © HY(R?,R®) @ Hi" (R?,R?)) C Ha.
i=1
Furthermore, for any n € N we define

Doy(A™) == {¢ € Dy(A) | AFp e Dy(A) fork=0,...,n—1}, D,(A®):= ﬁ D,,(A™).

n=0
Definition 3.18. (Operator J) Together with v(p;) := ——22 we define J : H,, — Dy(A>®) b
\/m
p;+m
@ J(p) v(pi); Z/de” 0i(x — q;) (E; (x) + v(pi) ABj(z)) , —4mv(ps)oi(- — i), 0
VE 1<i<N

for ¢ = (qi, Pi, Ei, Bi)1<i<n.

Note that J is well defined because o; € C2°(R3,R), 1 < i < N. With these definitions, the Lorentz
force law (9) and the Maxwell equations (8) without the Maxwell constraints take the form

Orpr = At + J(pt). (30)
The two main theorems are as follows:

Theorem 3.19. (Global Existence and Uniqueness) For w € W', n € N and ¢° € D,,(A™) the following
holds:
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(i) (global existence) There exists an n-times continuously differentiable mapping
0y R —Hey, t 0= (it Pirt, Bit, Bijt)1<i<n

which solves (30) for initial value p;|i—o = ¢°. FPurthermore, it holds %g@t € D, (A7) for allt € R
and 0 < j <n,

(#i) (uniqueness and growth) Any once continuously differentiable function ¢ : A — D,,(A) for some
open interval A C R which fulfills g1« = @ for an t* € A, and which also solves the Eq. (30) on
A, has the property that ¢, = @y holds for all t € A. In particular, given g;, 1 < i < N there exists
C, € Bounds such that for T > 0 with [-T,T] C A it holds

sup ot = @rllr, < Cor (T lpto 110 16t0 170, )l 9ta — o 1., - (31)
te[—T,T)
Furthermore, there is a Cy € Bounds such that for all g;, 1 <i < N,
swp_ el < o (T w202, loillza i1 < i < N) 1%, (32)
te[—T,T]

(i) (constraints) If the solution t — ¢y = (i ¢, Pit, Bit, Bit)i<i<n obeys the Mazwell constraints
V- -E;; =4m0;(- —qit), V-B;; =0 (33)
for 1 <i < N and one time instant t € R, then they are obeyed for all times t € R.

Theorem 3.20. (Regularity) Assume the same conditions as in Theorem 3.19 hold and let t — ¢ =
(Qits Pits Eig, Bit)1<i<n be the solution to (30) for initial value ¢° € D,,(A™). In addition, let w € W?
and n=2m for m € N. Then for all1 <7< N:
(i) It holds for any t € R that E;;, B;, € H5".
(ii) The electromagnetic fields regarded as maps E; : (t,x) — E; (x) and B; : (t,x) — B, (x) are in
L? (R* R?) and both have a representative in C"~2(R*, R3) within their equivalence class.

loc

(iii) For w € W* for k > 2 and every t € R we have also E;+,B;: € H], and C < oo such that:

sup > | D°Ei(x)|| < CEiillmy. sup D [D*Bin(x)|l < ClIBillue- (34)

3 3
xeR: o<k xeR la| <k

As shown in [4, Lemma 2.19], A on D,,(A) is a closed operator that generates a ~y-contractive group
(Wt)ter:

Definition 3.21. (Free Maxwell Time Evolution) We denote by (W;)ter the y-contractive group on H,,
generated by A on D,,(4).

Remark 3.22. The y-contractive group (W;)ier comes with a standard bound ||[Wipl|s, < e"1]|@]2,,
for all p € H,, for some v > 0.

The above existence and uniqueness result implies

Definition 3.23. (ML Time Evolution) We define the nonlinear operator
¢
My : R? x Dy (A) = Dy(A), (t,t0,¢°) = ML(t,0)[¢°] = o0 = Wietg¢” +/WtfsJ(<Ps)
to

which encodes the ML time evolution from time ty to time t.

Using the presented results in Sect. 3.1 on the Maxwell equations, we can give explicit expressions
of the free Maxwell time evolution group (W;);er and the ML-SI, time evolution for initial fields ful-
filling both the regularity requirements of D,,(A) and of F!. The following short-hand notation will be
convenient:
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Notation 3.24. (Projectors P,Q,F) For any ¢ = (q;, P, Ei, Bi)1<i<n € Hy we define
Qp = (9i,0,0,0)1<i<n,Pe = (0,Pi,0,0)1<i<n, Fp = (0,0,E;, Bi)1<i<n.
where we sometime neglect the zeros and write for example
(qi; Pi)1<i<n = (A +P)por(q;, pi, 0,0)1<i<n = (A + P)(qi, Pi)1<i<n-
Definition 3.25. (Projection of A, Wy, J to Field Space F,,) For all t € R and ¢ € H,, we define
Fuw = FHy, A :=FAF, W, :=FW,F,J :=FJ(p).

The natural domain of A is given by D,,(A) :=FD,,(A) C F,,. We shall also need D,,(A") :=FD,(A") C
Fu for every n € N and D,,(A*®) := FD,,(A>).

Note the distinction between roman and sans serif letters, for example, A and A. Clearly, F,, is a
Hilbert space, the operator A on D, (A) is again closed and inherits the resolvent properties from A
on D, (A). This implies (Q + P)W; = idp and FW; = W, so that (W;);cr is also a v-contractive group
generated by A on D,,(A). Finally, note also that by the definition of J we have J(p) = J((Q + P)y) for
all ¢ € H,,, that is, J does not depend on the field components Fep.

We extend the space of fields F!, cf. Definition 3.2, to comprise N electric and magnetic fields:

Definition 3.26. (Space of N Smooth Fields ) FN := @Y | F* = @Y | C*(R?, R?) @ C®(R?, R?).

The following corollary gives an explicit expression for the action of the group (W;)iecr using the
results from in Sect. 3.1 about the free Maxwell equation.

Corollary 3.27. (Kirchoff’s Formulas for (W;)ier) Let w € W, F € D,,(A") N FN for some n € N, and
(Eit,Bit)i<i<n = Wi F, teR.

~ t
Ei,t o 6,5 V/\ Ei70 . VV . Ei,O
(E,t) - (V/\ Oy ) fex (Bi,o Ao oo VV-Bio
0

fulfillE; ; = Ei,t and B, ; = ]A?;Lt forallt € R and 1 <i < N in the L2 sense. Furthermore, for allt € R
it holds also that (E;;,B; )1<i<n € Dy (A™) N FN.

Proof. A direct application of Lemma 3.4 and Definition 3.21. g

Then

From this corollary, we can also express the inhomogeneous Maxwell time evolution, cf. Definition 3.9,
in terms of (W )ter and J.

Lemma 3.28. (The Maxwell Solutions in Terms of (W;)icr and J) Let times t,tg € R be given, F =
(Fi)i<i<n € Dy(A™) N FN for some n € N be given initial fields, and (q;,p;) € T4 time-like charge
world-lines for 1 < i < N. In addition suppose the initial fields F; = (E;,B;), 1 < i < N, fulfill the
Mazwell constraints
V-E; =4m0;(- — di,), V-B; =0.
Then for allt € R
t
F, = WtftoF'f' /dS WtfsJ(QDS) € Dw(A”) = (Mgl [F“ (qi’pi)](t’to))lgigN

to
holds in the L% sense where ps := (Q+ P)(Qi s, Pis)1<i<n for s € R. Furthermore, Fy € D,,(A™) N FN
for allt € R.

Proof. This can be computed by applying Corollary 3.27 twice and using one partial integration. 0



1104 G. Bauer, D.-A. Deckert and D. Diirr ZAMP
4. Proofs
4.1. Weak uniqueness of WF, and Synge solutions by ML-SI, Cauchy data

Our first goal is to prove Theorem 2.3. Recall the Definition 2.2 where we defined what we mean by solu-
tions to Egs. (5)—(6) for particular choices of e and e_. Recall that e, = 1,e_ =1 and e; =0,e_ =1
corresponds to the WF, equations and the Synge equations, respectively.

Remark 4.1. (1) Note that Definition 2.2 is sensible because with (q;,pi)i<i<ny € 7&}, Eq. (6) for
1 <7 < N coincide with

B B )) =3 en My, (a5, pil(t, £00)
+

by definition in (23). Theorem 3.10 guarantees that the right-hand side is well defined, and charge world-
lines in 74, are once continuously differentiable so that the left-hand side of (5) is also well defined. The
bound on the acceleration will give us a bound on the WF,, fields in a suitable norm; cf. Lemma 4.4. (2)
Furthermore, there is no doubt that ’]'(]ev+ e ) is nonempty because in the point-particle case the Schild
solutions [21] as well as the solutions of Bauer’s existence theorem [3] have smooth and strictly time-like
charge world-lines with bounded accelerations.

As discussed in Sect. 3.2, the electric and magnetic fields live in the L2 space for a conveniently
chosen weight w € W, cf. Definitions 3.14 and 3.16. In the following, we give an example weight w
and show that with it the Liénard—Wiechert fields of charge world-lines in 7Y with uniformly bounded
accelerations are admissible as ML-SI, initial data; cf. Theorem 3.19 and Definition 3.17.

Definition 4.2. (Ezample Weight) We define the function
wiR S RE\{0}, x o w(x) i= (14 [x]?) . (35)
A straightforward computation given in [5] yields:
Lemma 4.3. The function w is an element of W

Lemma 4.4. (Regularity of the Liénard-Wiechert Fields) Let (q;, p:)1<i<ny € 72 and assume there eists
a constant Amay < 00 such that for all 1 < i < N, sup,eg [|0:V(Pi,t)|| < @maz- Define t — (E; 4, B; ;) =
M,,[q;, pi](t, £00). Then for allt € R

(Qits Pits Bit, Bit)1<icn € Diyw(A™),
holds true.

Proof. By Corollary 3.13, for 1 <i < N and each multi-index o € N} there exists a constant C, ™ < 0
such that

DB+ 10BN < o (i e )
ot ot T (= vmae)? \I+Ix—aef? T4 x—adll /)
Hence, w(x) = ﬁ ensures that
n N (o9 (e
[A™ (i, Pty B B, S32000 Y jajen (il FlIpicll + [ @z w(x) (ID*EF (x)]1” + [|1D*BE, (x)|1%))
is finite for all n € Ny, t € R. We conclude that ¢; € D,,(A%) for all ¢t € R. O

We prove the first main result:

Proof of Theorem 2.3 (Weak Uniqueness of Solutions). (i) Since (q;, pi)i<i<n € T]ev%e_), Lemma 4.4
guarantees @y, € D,,(A*) for all t5 € R.
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ii) First, the charge world-lines (q;, p;)1<i<n € TZ’L) are once continuously differentiable and fulfill

the WF, equations (5)-(6). Second, by Theorem 3.12 the fields (E{***“~[q;, ps], B“*"* [, pi])
given in (6) fulfill the Maxwell equations (8) including the Maxwell constraints for all ¢ € R and
1 <i < N. Hence, using (i), the equality

%w§€+’e’)
holds true [recall the notation in Sect. 3.2 before Eq. (30)]. Due to (i) also ¢, := M|, <p§§+’e‘)
[(qi, pi)i<i<n]], t € R, is well defined; cf. Definition 3.23. Theorem 3.19 states that ¢, is the
only solution of 0y¢y = A¢y + J(¢p¢) which fulfills ¢, = wﬁj*’e’)[(qi,pi)lgigzv]. Hence, ¢y =
<p§6+’e‘)[(qi,pi)1§i§N] holds for all ¢ € R.

(i) Suppose (q;,Pi)i<i<n, (i Pi)i<i<n € T(];;,e_) and define ¢ = iy ((qi,Pi)ici<n), @ =
i1, ((di> Pi)1<i<n) for some £y € R. According to (ii) we also set

(€+,€,)

[(qiapi)lgiSN] = Awge%e*)[(QmPihgigN] + J(‘Pt [(qiapi>1§i§N])7

0t = (Uits Pirt, Bi, Bit)1<i<n := Mr[p](t, to),
Ot = (it Pits Eit, Bit)1<i<n := Mp[P](¢, t0)

for all t € R. Now, ¢ = ¢ implies ¢, = ¢; for all ¢ € R. Hence, (Qit, Pit)1<i<N = (Uit Pit)1<i<N
for all ¢t € R, that iS, (qi7 pi)lgiSN = (ﬁu ﬁi)lgiSN by Definition 2.1. O

4.2. Existence and uniqueness of Synge solutions for given histories

We continue with the proof of our second main result:

Proof of Theorem 2.5 (Existence and Uniqueness of Synge Solutions). Set e = 0 and e = 1. (i) By
definition (q; ,p; )1<i<n € Z&Y, so that due to Theorem 3.10 and (6) for all ¢ < ¢y we can define
¢y = (i Pig Bela; Py ] Belay, pi Di<i<n

where the fields are given by the retarded Liénard—Wiechert fields of the history (q~,p~) € 7 (to), that
is,

(Et[qz‘_apz‘_LBt[qi_?pi_]) = MQi [qi_’pi_}(tv _OO))

Lemma 4.4 states @, € D, (A>). Hence, by Theorem 3.19, there is a unique mapping

t— (qi+,t7 pj,ta EitaBit)ISiSN = ‘Pt+ = ML[W;)](tatO) (36)
such that gojo = ¢;,- Let (q;, pi)1<i<n be the concatenation defined in (13). We consider now

ot = (Qit, Pits Bt [qi, Pi], Beldi, Pi])1<i<n
for all ¢ € R with the retarded Liénard—Wiechert fields of (q;, p;) given by
(Et [qia pl]a Bt[qia pl]) = MQi [qlv pl](ta —OO), (37)

which are well defined if (q;, p;) would be in 72,((—o0, T]) for all T € R. However, (q; ,q; )i<i<ny € 72},
and (q;,p;)i<i<n is continuously differenti