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The Role of Convection in the Limit
Shape of the Critical Front Profile for
Born-Infeld Diffusion Models
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Abstract. In this paper, we deal with models with Born-Infeld (or relativistic) type
diffusion and monostable reaction, investigating the effect of the introduction of
a convection term on the limit shape of the critical front profile for vanishing
diffusion. We first provide an estimate of the critical speed and then, through
a careful analysis of an equivalent first-order problem, we show that different
convection terms may lead either to a complete sharpening of the limit profile or
to its complete regularization, presenting some related numerical simulations.
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1. Introduction

This paper is devoted to the analysis of the limit shape, for ε → 0+, of the critical
front profile for the 1-dimensional reaction-convection-diffusion equation

ut = ε

(
ux√

1 − u2
x

)
x

− (h(u))x + f(u), u = u(x, t), x ∈ R, t ∈ R, (1)

under the following assumptions:
(F) f ∈ C([0, 1]) is such that f(0) = f(1) = 0, f(s) > 0 for s ∈ (0, 1) and there

exists k > 0 for which f(s) � ks, f(s) � k(1 − s) for every s ∈ [0, 1];
(H) h ∈ C2([0, 1]) is such that h(0) = h′(0) = 0.
The second-order operator appearing in Eq. (1), known as the relativistic or Born-
Infeld operator, embodies a singular diffusion, constraining regular solutions to be
subject to the a priori bound |ux| < 1. It models diffusion in the Lorentz-Minkowski
space (see, e.g., the references in [2,10]) and, at the same time, it appears in Born-
Infeld electrodynamics [4], as mentioned in [10,17]. In these contexts, the fact that
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the (normalized) constant 1 represents an unsurmountable threshold for |ux| is in
line with the physical assumption that the speed is bounded by the speed of light
- in the former case - or the electric field is bounded by the so-called Born field
strength parameter - in the latter one.

Problems with nonlinear diffusion have received growing attention in the re-
cent years, dealing with a wide range of qualitatively different diffusion operators
including saturating, anisotropic or fractional ones. They build upon the well known
theory for the linear diffusion case, for which the pioneering works go back to the
first half of the 20th century [8,16,18]. In [8], the unknown u was seen as the con-
centration of an advantageous gene inside a population in a 1-dimensional spatial
framework, and it was observed that traveling fronts - i.e., strictly monotone reg-
ular solutions u(x, t) = v(x + ct) joining two equilibria - naturally emerge. Such
solutions may be employed in comparison arguments in order to deduce the prop-
erties of the solutions of the initial-value problems associated with the considered
reaction-diffusion equation, including their long-term behavior, cf. [1,7,13].

In this work, we are concerned with increasing traveling fronts for (1), which
solve the second-order problem⎧⎪⎨

⎪⎩ε

(
v′√

1 − (v′)2

)′
− (c + h′(v))v′ + f(v) = 0

v(−∞) = 0, v(+∞) = 1, v′ > 0.

(2)

Since (2) is autonomous, it possesses an uncountable family of solutions obtained
via z-translation (z = x + ct); hence, in order to be able to properly deal with
the limit of profiles for ε → 0+, we impose since the very beginning the condition
v(0) = 1/2, allowing us to recover uniqueness of the solution of (2) for fixed ε.
Of course, the choice of the constant 1/2 is arbitrary, and replacing it with any
constant belonging to (0, 1) would produce the same qualitative outcomes as the
ones described in the forthcoming sections. Writing the differential equation in (2)
as the equivalent first-order system in the phase plane⎧⎪⎨

⎪⎩
v′ =

w√
1 + w2

εw′ = (c + h′(v))
w√

1 + w2
− f(v),

one has

dw

dv
=

c + h′(v)
ε

− f(v)
√

1 + w2

εw
, (w > 0),

so that y(v) = ε(
√

1 + w(v)2 − 1) satisfies the first-order two-point problem
⎧⎪⎨
⎪⎩

y′ = (c + h′(v))

√
y(2ε + y)
ε + y

− f(v)

y(0) = 0, y(1) = 0, y > 0 on (0, 1)
(3)
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(see also [7,11,20]). Explicitly, it holds

y(v) = ε

(
1√

1 − v′(z(v))2
− 1

)
and v′(z) =

√
y(v(z))(2ε + y(v(z))

ε + y(v(z))
, (4)

while the two boundary conditions in (3) come from the fact that the monotone
function v has to attain the two equilibria 0 and 1 with zero derivative. In presence
of a monostable reaction, we will see that the admissible traveling speeds c for the
wave profiles solving (2) form an unbounded interval [c∗

ε, +∞) (see Sect. 2), whose
lower endpoint is known as critical speed ; the solution vε of (2) for c = c∗

ε, unique
up to translations in the variable z = x + ct, is called critical profile. It is natural
to wonder the behavior of c∗

ε and vε as ε → 0+, that is, for vanishing diffusion.
In the 0-convection case, namely for constant h, it was shown in [10] that,

under a mild additional assumption on f , the limit speed c̄ = limε→0+ c∗
ε is strictly

positive and coincides with f(v+), where v+ ∈ (0, 1) is the largest solution of the
equation

∫ v

0
f(s) ds = vf(v). Furthermore, if one denotes by V0

I (z; z, v) the unique

positive solution of
{

c̄v′ = f(v)
v(z) = v

and defines

V0
L(z; z, v) =

⎧⎨
⎩

0 z ∈ (−∞, z − v)
z − z + v z ∈ [z − v, 1 + z − v]
1 z ∈ (1 + z − v, +∞),

for given v ∈ (0, 1) and z ∈ R, it turns out that the limit profile v̄ = limε→0+ vε

(to be meant in uniform sense) is obtained by gluing V0
I and V0

L in a C1 way, for
suitable values of z and v. Explicitly, [10, Theorem 25] states that

v̄(z) =

{
V0

L(z; 0, 1/2)
V0

I (z; v+ − 1/2, v+)
z ∈ (−∞, v+ − 1/2]
z ∈ (v+ − 1/2, +∞) if v+ � 1/2

v̄(z) =

{
V0

L(z; z+, v+)
V0

I (z; 0, 1/2)
z ∈ (−∞, z+]
z ∈ (z+, +∞) if v+ < 1/2,

being z+ < 0 the unique real number for which V0
I (z+; 0, 1/2) = v+. Summarizing,

the limit speed is strictly positive and the limit profile becomes sharp on one side
only, near the equilibrium 0. This represents a deep difference with respect to models
with linear [15] or saturating [9] diffusion, for which c∗

ε → 0 for ε → 0+ and the limit
profile v̄ coincides with the Heaviside function. The crucial point leading to the above
outcome for the Born-Infeld operator consists in the possibility to provide a lower
bound for the critical speed which is not compatible with a completely piecewise

linear limit profile: roughly speaking, it was shown in [10] that c̄ � supv∈(0,1]

F (v)
v

>

F (1), while if it were v̄(z) = V0
L(z; 0, 1/2) for every z ∈ R one would have c̄ = F (1)

[10, Corollary 23].
It is natural to wonder if this scenario is preserved in presence of a convective

term. As is well known, in the linear diffusion case with monostable reaction the
convection leads to a shift of the critical speed, compared with the model which
encompasses reaction and diffusion only (see, in a more general framework, [19,
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Theorem 1.4]). Moreover, in the nonlinear case, the convection may amplify some
nonlinear effects such as, for instance, the singularities appearing for a saturating
diffusion [14] (see also [12]). Hence, a quite specific shape of the limit profile as the
one reported above may potentially be altered by the action of a convective term.

As a first difference with respect to [10, Theorem 25], in the case f ≡ 0 the
presence of the sole convection steers in fact the limit profile for (2) to have derivative
everywhere equal to 1 when it takes values different from the equilibria, as can be
easily seen looking at the equivalent first-order two-point problem⎧⎪⎨

⎪⎩
y′ = (c + h′(v))

√
y(2ε + y)
ε + y

y(0) = 0, y(1) = 0, y > 0 on (0, 1).
(5)

The differential equation herein is explicitly integrable; solving the associated Cauchy
problem with initial condition y(0) = 0 by separating variables yields the positive
solution

yε(v) =
√

ε2 + (cv + h(v))2 − ε,

provided that cv + h(v) > 0 for every v ∈ (0, 1). Imposing the latter boundary
condition in (5), one then finds that c = −h(1), independently of ε, and this implies
that yε(v) → h(v) − h(1)v for every v ∈ [0, 1] (actually, with uniform convergence).
Due to (4), this means that the limit profile v̄ must necessarily have slope 1 when-
ever it takes a value different from 0 and 1; since vε(0) = 1/2 for every ε > 0,
it will be v′

ε(z) → 1 for any z ∈ (−1/2, 1/2) and v̄ constant elsewhere, namely
v̄ ≡ VL(·; 0, 1/2). Notice that, in order for (5) to have a solution, here it has to be
h(v) > h(1)v for every v ∈ (0, 1), that is, h cannot be convex on [0, 1]. Convex con-
vections support indeed the existence of decreasing fronts, corresponding to problem
(5) where we take the opposite sign in the right-hand side. In any case, the purely
convective model thus leads to a fully piecewise linear limit profile.

In case of interplay between reaction and convection, the question is now
whether the above one-sided sharpening effect can be fully accentuated or destroyed,
according to the amplitude and to the concavity of the convective term. Thanks to
a careful study of problem (3), we provide a possible answer in our main result

(Theorem 3.1). Setting S(v) :=
F (v) − h(v)

v
, this may be summarized as follows:

if S is strictly increasing (resp., decreasing), then the critical profile for (1) con-
verges, for ε → 0+, to a fully piecewise linear (resp., to a fully regular, as long as
it takes positive values) profile; on the contrary, if S reaches a strict positive maxi-
mum inside (0, 1), then the limit profile is obtained with a gluing procedure similar
to the one in [10, Theorem 25], being sharp near 0 and rounded (regular) near 1.

To show the validity of such a statement, which represents the core of Sect. 3, it
will be crucial to provide a suitable estimate of the critical speed associated with (2),
see Sect. 2. Finally, Sect. 4 deals with an example where Theorem 3.1 applies, given
by the Fisher-Burgers equation with Born-Infeld diffusion, for which it completely
covers the possible records which may arise. Contextually, we also show some related
numerical simulations illustrating the theoretical results (Figs. 1–4). We point out
that it would be interesting to investigate the shape of the limit critical profile in
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fourth-order models governed by the biharmonic operator, as well (see, e.g., [3]); in
particular, one could wonder if the one-sided sharpening of the limit critical profile
[10], as well as the regularizing/sharpening effect of the convection in the present
paper, could also arise in quasilinear versions of them.

2. Estimating the Critical Speed

In this section, we show some bounds for the critical speed associated with (2),
thanks to the analysis of its equivalent first-order reduction (3). We start by for-
malizing the concept of admissible speed.

Definition 2.1. We say that c ∈ R is an admissible speed if problem (3) has a solution.

Our first goal is to provide an estimate for the admissible speeds of increasing
fronts. To this end, we first observe that, assuming (F) and (H), the condition

cv + h(v) > 0 for every v ∈ (0, 1]

has here to hold, as can be easily deduced by integrating Eq. (2) on (−∞, z), for
any z ∈ R ∪ {+∞}. Consequently, it has in particular to be c + h(1) > 0, in line
with the discussion in the Introduction. Second, from c > −h(v)/v, passing to the
limit for v → 0+ we infer

c � −h′(0) = 0,

so that any admissible speed for (3) is nonnegative. Furthermore, since for every
y � 0 it is

√
y(2ε + y) � ε + y, and f > 0 on (0, 1), we deduce that any solution of

(3) satisfies

y′(v) � (c + h′(v) − f(v))

√
y(v)(2ε + y(v))

ε + y(v)
for every v ∈ [0, 1]; (6)

integrating such an inequality with the initial condition y(0) = 0 necessarily implies
cv +h(v)−F (v) > 0 and y(v) �

√
ε2 + (cv + h(v) − F (v))2 − ε for every v ∈ (0, 1),

where we have set F (v) =
∫ v

0
f(s) ds. Consequently, it has to be

c � sup
v∈(0,1]

F (v) − h(v)
v

. (7)

The following lemma ensures the existence of an unbounded interval of admis-
sible speeds.

Lemma 2.2. Assume (F ) and (H). If

c � max
v∈[0,1]

f(v) − min
v∈[0,1]

h′(v) + 2

√
ε sup

v∈(0,1]

f(v)
v

, (8)

then c is admissible for (3).
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Proof. Assuming (8), for fixed ε > 0 we seek β > 0 such that the positive solution

yβ of

⎧⎪⎨
⎪⎩

y′
β = β

√
yβ(2ε + yβ)
ε + yβ

yβ(0) = 0
satisfies

y′
β − (c + h′(v))

√
yβ(2ε + yβ)
ε + yβ

+ f(v) � 0 for every v ∈ [0, 1]. (9)

This will provide a positive lower solution for the (forward) Cauchy problem associ-
ated with (3)1 with initial condition y(0) = 0, where (3)1 stands for the differential
equation in (3). Since, on the other hand, the unique solution of (3)1 fulfilling
y(1) = 0 cannot vanish in (0, 1) due to the sign of f , this will allow one to find a
solution of (3) by a standard uniqueness argument.

Using the explicit expression of yβ, (9) will be true if, for every v ∈ (0, 1], it
holds

β2 − (c + h′(v) − f(v))β + ε
f(v)

v
� 0.

This inequality is implied by the condition

β2 −
(
c + min

v∈[0,1]
h′(v) − max

v∈[0,1]
f(v)

)
β + sup

v∈(0,1]

ε
f(v)

v
� 0;

thanks to (8), there exists at least one positive β for which such an inequality holds.
One can choose, for instance,

β =
c + minv∈[0,1] h

′(v) − maxv∈[0,1] f(v)
2

> 0,

correspondingly finding the desired positive lower solution yβ.

We point out that the value appearing in the right-hand side of (8) is strictly
positive, coherently with the previous discussion, as minv∈[0,1] h

′(v) � h′(0) = 0.
Now, the argument in the proof of Lemma 2.2 ensures that if c is admissible and
c′ > c, then also c′ is admissible; moreover, arguing as in the proof of [5, Proposition
3.2], the use of Arzelà-Ascoli Theorem ensures that also the infimum of admissible
speeds is an admissible speed. For every fixed ε > 0, the set of admissible speeds for
(3) is then an interval, denoted by [c∗

ε, +∞); its lower endpoint c∗
ε is called critical

speed and the associated front profile is called critical profile. Notice that Lemma
2.2 provides an upper bound for c∗

ε.

Remark 2.3. Assumption (F) ensures the existence of the considered profiles (since,
together with (H), it makes the right-hand side in (8) finite), and guarantees that
they are true heteroclinic connections between 0 and 1, being defined on the whole
real line and reaching the equilibria only at infinity (cf. [5, Proposition 2.3]).

We are interested in the limit behavior of c∗
ε and vε for ε → 0+; to this end, we

will examine the solution yε of the first-order reduction (3). We set

c̄ = lim
ε→0+

c∗
ε, v̄ = lim

ε→0+
vε, ȳ = lim

ε→0+
yε.
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In this respect, we underline that if we consider speeds c for which c + h′(v) � 0
for every v (for sure such a condition has to hold in a right neighborhood of 0, due
to the sign of y), then c∗

ε is monotone increasing in ε, thus it converges for ε → 0+;
this follows from comparison principles applied to the first-order backward problem
for (3)1 with initial condition y(1) = 0, which enjoys uniqueness. In the general
case, we are here assuming that c∗

ε has a limit for ε → 0+; if this is in principle
not ensured, in what follows we can initially replace limε→0+ c∗

ε with lim supε→0+ c∗
ε,

whenever necessary, with the very same proof (referring in particular to Proposition
2.4) thanks to the properties of inferior and superior limits. Observe moreover that
such a superior limit is finite in view of (8). A posteriori, after Theorem 3.1, since
from any εn → 0+ we can extract a subsequence εnk

for which c∗
εnk

, vεnk
and yεnk

always converge to the same limit, under our assumptions c∗
ε will in fact converge.

On the other hand, the front profiles vε are equi-Lipschitz continuous and bounded
in C1 since 0 � vε � 1 and ‖v′

ε‖L∞(R) � 1, hence there exists a Lipschitz continuous
function v̄ such that v̄(z) = limε→0+ vε(z) for every z ∈ R and vε → v̄ uniformly
on compact subsets of R (actually, the convergence is uniform on the whole real
line in view of [6, Lemma 2.4]). Finally, for what concerns yε, due to the sign of c∗

ε

for sure it will be y′
ε � − maxv∈[0,1] |h′(v)| − f(v), hence the backward solution of

y′ = − maxv∈[0,1] |h′(v)| − f(v) satisfying y(1) = 0 is a positive upper solution for
yε, for every ε. Consequently, there exists Y∞ > 0 such that

‖yε‖L∞(0,1) � Y∞ (10)

for every ε > 0; since y 	→
√

y(2ε + y)
ε + y

is increasing, (3)1 then yields the existence

of Y ′
∞ > 0 for which

‖y′
ε‖L∞(0,1) � Y ′

∞ (11)

for every ε > 0. By the Arzelà-Ascoli Theorem, the bounds (10) and (11) imply
that yε converges uniformly to its limit ȳ for ε → 0+ and ȳ is a continuous function,
nonnegative on [0, 1].

To begin with, we give an estimate of the limit critical speed c̄ for ε → 0+ in
case the limit profile contains a linear piece with slope 1.

Proposition 2.4. Assume that v̄(z) = VL(z; z0, v0) on [z0, z1], for some real numbers
z0 < z1, v0 ∈ [0, 1). Let also v̄(z1) = v1 ∈ (0, 1] (so that v̄(z) = z − z0 + v0 on
[z0, z1], being z1 − z0 = v1 − v0). Then,

c̄ =
F (v1) − F (v0) − h(v1) + h(v0)

v1 − v0
+

ȳ(v1) − ȳ(v0)
v1 − v0

.

Proof. Since {vε}ε is bounded in C1([z0, z1]), the family {v′
ε}ε is bounded in

L2(z0, z1) and hence there exists w ∈ L2(z0, z1) for which, up to subsequences,
v′

ε ⇀ w in L2(z0, z1) for ε → 0+. Passing to a further subsequence, if necessary, w
has to coincide almost everywhere with v̄′ in the points where v̄ is differentiable, so
that w(z) = 1 for almost every z ∈ [z0, z1]. Multiplying the differential equation in
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(2) by v′
ε and integrating on [z0, z1] one obtains, for every ε > 0, that

c∗
ε‖v′

ε‖2L2(z0,z1)
+

∫ z1

z0

h′(vε(z))v′
ε(z)2 dz = ε

(
1√

1 − v′
ε(z1)2

− 1√
1 − v′

ε(z0)2

)

+F (vε(z1))−F (vε(z0))=yε(v1
ε) − yε(v0

ε) + F (v1
ε) − F (v0

ε),

where v0
ε := vε(z0), v1

ε := vε(z1). Using the weak semicontinuity of the norm, the
first summand in the left-hand side is bounded from below by c̄(v1 −v0) in the limit
for ε → 0+. As for the second one, we observe that h′(vε)v′

ε → h′(v̄)w strongly in
L2(z0, z1), in view of the uniform convergence of vε to v̄ and of the fact that h ∈ C2.
Since v′

ε ⇀ w in L2(z0, z1), we conclude that∫ z1

z0

h′(vε(z))v′
ε(z)2 dz →

∫ z1

z0

h′(v̄(z))w(z)2 dz = h(v1) − h(v0),

where the last equality follows from the properties of absolutely continuous func-
tions. Being limε→0+ v0

ε = v0 and limε→0+ v1
ε = v1, using (10) and (11) one has that

yε(v0
ε) → ȳ(v0) and yε(v1

ε) → ȳ(v1) for ε → 0+. Therefore, we infer

c̄ � ȳ(v1) − ȳ(v0)
v1 − v0

+
F (v1) − F (v0) − h(v1) + h(v0)

v1 − v0
.

On the other hand, integrating the inequality (6) - with c = c∗
ε - between v0 and

v1 provides
√

yε(v1)(2ε + yε(v1)) −
√

yε(v0)(2ε + yε(v0)) � c∗
ε(v1 − v0) + h(v1) −

h(v0) − F (v1) + F (v0), which passing to the limit for ε → 0+ yields the reversed
inequality for c̄. The conclusion follows. �

Corollary 2.5. Let v̄(z) = V0
L(z; 0, 1/2) for every z ∈ R. Then, c̄ = F (1) − h(1).

3. The Role of the Convective Term in the Shape of the Limit

Profile

From the discussion in Sect. 2, we have understood that a key quantity in deter-
mining the asymptotic value of the critical speed and the asymptotic shape of the
critical profile is

S(v) :=
F (v) − h(v)

v
.

In view of assumptions (F) and (H), S can be extended by continuity setting S(0) =
0, and for this reason supv∈(0,1] S(v) � 0. In the next statement, we see how different
assumptions on S produce different outcomes regarding c̄ and v̄; the exposition is
maintained to a more readable level in order to avoid overloading the contents and
the proofs, since we are mainly interested in highlighting the different phenomena
which can arise, rather than in providing the corresponding optimal assumptions.
In any case, our results fully cover the most natural case of Fisher-Burgers type
Eqs. (see (14)), for which we are able to give a complete picture.
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In the following, we set VL(z; z, v) = V0
L(z; z, v), and we denote by VI(·; z, v) the

unique C1-solution of {
(c̄ + h′(v))v′ = f(v)
v(z) = v; (12)

here we implicitly assume that c̄ + h′(v) > 0, in line with the monotonicity of
the solutions we are interested in and in order to avoid degeneracy. Of course, the
solution of (12) might possibly be defined only on a neighborhood of z or might
escape the interval [0, 1], depending on the expressions of f and h′. We still comment
about this after Theorem 3.1.

With these preliminaries, we now have the following.

Theorem 3.1. Let f and h fulfill assumptions (F) and (H). The following hold:
1) if S′(v) < 0 for every v ∈ (0, 1], then c̄ = 0 and v̄ ≡ VI(·; 0, 1/2) as long as

v̄ > 0, while v̄ = 0 elsewhere;
2) if 0 < supv∈(0,1] S(v) 
= S(1) and f − h′ has a unique local maximum point in

[0, 1], then c̄ = f(v+) − h′(v+), where v+ is the largest solution of the equation
F (v) − h(v) = v(f(v) − h′(v)), and the limit profile v̄ is given by

v̄(z) =
{VL(z; 0, 1/2)

VI(z; v+ − 1/2, v+)
z ∈ (−∞, v+ − 1/2]
z ∈ (v+ − 1/2, +∞) if v+ � 1/2

v̄(z) =
{VL(z; z+, v+)

VI(z; 0, 1/2)
z ∈ (−∞, z+]
z ∈ (z+, +∞) if v+ < 1/2,

where, in the latter case, z+ < 0 is the unique real number for which VI(z+; 0, 1/2) =
v+;

3) if S′(v) > 0 for every v ∈ (0, 1), then c̄ = F (1) − h(1) and v̄ ≡ VL(·; 0,
1/2).

Proof. We first notice that if c̄ > 0, then there exists v1 ∈ (0, 1) such that ȳ(v) > 0
for every v ∈ (0, v1); indeed, if c < c̄ is sufficiently small, then the positive solution
of (3)1 satisfying y(0) = 0 is greater or equal than the positive solution of⎧⎪⎨

⎪⎩
y′ = c

√
y(2ε + y)
ε + y

y(0) = 0,

uniformly in ε. This can be seen, for instance, performing an argument similar to
the one in the proof of [10, Lemma 26], thanks to the fact that h′(0) = 0 and
hence c̄ + h′(v) > 0 in a right neighborhood of 0. Hence, it makes sense to define
ṽ := sup{v ∈ (0, 1] | ȳ > 0 on (0, v)}. One has that ȳ(ṽ) = 0, by the continuity
of ȳ; moreover, for every [α, β] ⊂ (0, v1), it holds that yε → ȳ in C1([α, β]), where
ȳ(v) = c̄v + h(v) − F (v) (as can be seen letting α → 0+).

The proof then proceeds differently according to the considered case.
1) If by contradiction it were c̄ > 0, by the previous observations one would have

ȳ(ṽ) = 0 and hence, by the expression of ȳ,

c̄ =
F (ṽ) − h(ṽ)

ṽ
� 0,
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against the assumption. Hence, c̄ = 0. For fixed ξ ∈ (0, 1), let now Mε =
maxv∈[ξ,1] yε(v) and let vM,ε ∈ [ξ, 1) be such that yε(vM,ε) = Mε (we drop
the dependences on ξ for the sake of readability); up to subsequences, one can
assume that vM,ε → v∗ ∈ [ξ, 1]. If by contradiction it were ε/Mε → 0, passing
to the limit in

0 � y′
ε(vM,ε) = (c∗

ε + h′(vM,ε))

√
Mε(2ε + Mε)

ε + Mε
− f(vM,ε)

one would obtain h′(v∗) � f(v∗), implying that S′(v∗) � 0 against the assump-
tion. It follows that yε → 0 uniformly and, for any fixed ξ > 0, Mε → 0 with
order ε (if this occurred with a stronger order, one would easily find the con-
tradiction y′

ε → −f < 0). For fixed ζ ∈ R, using the expression of y provided
by (4) then ensures the existence of 0 < K < 1 such that ‖v′

ε‖L∞(ζ,+∞) � K.
For any ψ ∈ C∞

c ([ζ,+∞)), one can then pass to the limit for ε → 0+ in

−
∫ +∞

ζ

εv′
ε(z)√

1 − (v′
ε(z))2

ψ′(z) dz +
∫ +∞

ζ

(c∗
εvε(z) + h(vε(z)))ψ′(z) dz

+
∫ +∞

ζ

f(vε(z))ψ(z) dz = 0,

finally obtaining that v̄ satisfies h′(v̄)v̄′ − f(v̄) = 0 whenever v̄ > 0. It follows
that v̄(z) = VI(z; 0, 1/2) for every z ∈ R such that v̄(z) > 0.

2) In this second case, we have c̄ > 0 in view of (7) and thus ṽ > 0 is well defined.
Moreover, we observe that necessarily ṽ < 1, otherwise c̄ = F (1) − h(1) and
hence ȳ(v) = (F (1)−h(1))v−F (v)+h(v) > 0 for every v ∈ (0, 1), contradicting
the assumption supv∈(0,1] S(v) 
= S(1). We now claim that

c̄ =
F (ṽ) − h(ṽ)

ṽ
= f(vm) − h′(vm) = f(ṽ) − h′(ṽ), (13)

where vm ∈ (0, ṽ) is such that ȳ(vm) = M := maxv∈[0,ṽ] ȳ(v). The first equality
in (13) is a straight consequence of the fact that ȳ(ṽ) = 0, while the second
one follows from the C1-convergence of yε to ȳ on any interval [α, β] ⊂ (0, ṽ),
since

0 ← y′
ε(vm) = (c∗

ε + h′(vm))

√
yε(vm)(2ε + yε(vm))

ε + yε(vm)
− f(vm)

→ c̄ + h′(vm) − f(vm),

being yε(vm) → M > 0. As for the last equality in (13), we first observe
that, for fixed v1 > ṽ, integrating the inequality y′

ε(v) � (c∗
ε + h′(v) − f(v))√

yε(v)(2ε + yε(v))
ε + yε(v)

on [ṽ, v1] yields
√

yε(v1)(2ε + yε(v1))−√
yε(ṽ)(2ε + yε(ṽ))

� c∗
ε(v

1− ṽ)+h(v1)−h(ṽ)−F (v1)+F (ṽ), which passing to the limit for ε → 0+

produces (recalling that ȳ(ṽ) = 0 and ȳ(v1) � 0)

c̄ � F (v1) − F (ṽ) − h(v1) + h(ṽ)
v1 − ṽ

;
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passing now to the limit for v1 → ṽ+, we obtain c̄ � f(ṽ) − h′(ṽ). As for the
reversed inequality, we observe that since ȳ(ṽ) = 0 < ȳ(v) for every v ∈ (0, ṽ),
there exists a sequence vn ↗ ṽ such that ȳ′(vn) � 0. Recalling the expression
of ȳ in the interval (0, ṽ) and the C1-convergence of yε to ȳ, it then follows
that

0 � ȳ′(vn) = c̄ + h′(vn) − f(vn),

which yields the desired inequality passing to the limit for n → +∞. We now
proceed similarly as in case 1) and as in the proof of [10, Theorem 25]. For
fixed σ > 0, we define Mε = maxv∈[ṽ+σ,1] yε(v) and we let vM,ε ∈ [ṽ + σ, 1)
be such that yε(vM,ε) = Mε. Up to subsequences, vM,ε → v∗ ∈ [ṽ + σ, 1]; if it
were ε/Mε → 0, arguing as in case 1) one would find c̄ + h′(v∗) − f(v∗) � 0,
which is impossible in view of the assumption on f − h′ (since the equation
c̄ + h′(v) − f(v) = 0 has the two distinct solutions vm and ṽ). Hence Mε → 0
with order ε, yε → 0 uniformly in [ṽ + σ, 1] for every σ > 0, ṽ = v+ and
v̄ is piecewise linear with slope 1 as long as it takes values in (0, v+); when
taking values in (v+, 1), instead, v̄ coincides with the solution of (12) gluing
with the previous branch in such a way that, overall, the solution is C1. This
is equivalent to the statement in case 2).

3) The assumption S′ > 0 and (7) imply that

c̄ � sup
v∈(0,1]

S(v) = F (1) − h(1) > 0.

With the same notation as above, in this case we have that ṽ necessarily
coincides with 1, for if by contradiction ṽ < 1, one would deduce ȳ(ṽ) =
c̄ṽ + h(ṽ) − F (ṽ) = 0, implying, in view of the fact that S′ > 0, the con-
tradiction

c̄ =
F (ṽ) − h(ṽ)

ṽ
< F (1) − h(1).

Hence, c̄ = F (1) − h(1) and ȳ(v) = c̄v + h(v) − F (v) > 0 for every v ∈ (0, 1).
Using a similar argument as the one mentioned in the Introduction for the
0-convection case, this implies that v̄ ≡ VL(·; 0, 1/2), concluding the statement.

Some comments are in order, in particular about the above case 1). Setting
z0 = inf{z ∈ (−∞, 0) | VI(z; 0, 1/2) > 0}, it may be z0 = −∞ or z0 ∈ (−∞, 0),
according to whether the improper integral

∫ 1/2

0
h′(s)/f(s) ds diverges or not. In the

former case, VI(·; 0, 1/2) (henceforth briefly denoted by VI) is positive and regular
on the whole real line and vε → v̄ with C1-convergence, while in the latter one it
holds VI(z0) = 0 and the differential equation for VI degenerates at z0. If V ′

I(z0) > 0,
VI may then be prolonged so as to escape the interval [0, 1], while if V ′

I(z0) = 0 it
may be prolonged in a C1-way to 0 in the interval (−∞, z0). Noticing that vε → VI

in C1(z, +∞) for every z > z0, similarly as in [10, Remark 29], it will be

lim
z→z+

0

v̄′(z) = lim
z→z+

0

V ′
I(z) = lim

z→z+
0

f(VI(z))
h′(VI(z))

;
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hence, a crucial role is here played by the limit 
 := lims→0+ f(s)/h′(s). If 
 = 0,
then v̄ may be prolonged to a globally C1-function, being limz→z+

0
v̄′(z) = 0 =

limz→z−
0

v̄′(z) (this last equality holding since necessarily v̄ ≡ 0 in (−∞, z0)). Oth-
erwise, if 
 > 0 then v̄ is sharp near 0. This issue does not arise for the inviscid piece
of limit profile in case 2), since the boundedness of the considered front profiles in
C1, together with the fact that f is positive on (0, 1), prevents c̄ + h′(v) from van-
ishing in the interval [v+, 1), otherwise one would reach the contradiction 0 = f(v)
for some v ∈ [v+, 1).

We make some further remarks about the statement of Theorem 3.1. We notice
that case 1) only occurs if h′(s) > 0 for every s ∈ (0, 1], namely only for suitable
strictly increasing convections. Indeed, the conditions S(0) = 0 and S′(v) < 0 for
every v ∈ (0, 1] imply that S(v) < 0 for every v > 0; since moreover

S′(v) =
f(v) − h′(v) − S(v)

v
,

it has necessarily to be f(v) − h′(v) − S(v) < 0, that is, f(v) + |S(v)| < h′(v) for
v > 0. Notice that this implies that the differential equation in (12) can degenerate
only when v = 0.

Case 3) cannot instead occur if h is everywhere increasing, since from the fact
that S′(v) > 0 for every v ∈ (0, 1) it follows that f(1)−h′(1)−S(1) = −h′(1)−S(1) �
0, hence h′(1) has to be strictly negative (being here S(1) > 0). However, the
assumption S′(v) > 0 for every v ∈ (0, 1) may be fulfilled for convections which
are locally increasing near 0, like h(s) = s2(δ − s), for a sufficiently small δ > 0,
provided that f(v) > h′(v) + S(v) for every v ∈ (0, 1).

In particular, since h′(0) = 0, the conditions h′′(v) < 0 (implying strict concav-
ity) and h′′(v) > 0 (implying strict convexity) for every v are ruled out, respectively,
from cases 1) and 3). Case 2) depends instead on the quantitative interplay between
f and h′, rather than on the sign of h′, hence in principle it can occur regardless of
the monotonicity (and of the convexity) of h. One may wonder if the sign assump-
tion S′ < 0 (resp., S′ > 0) on the derivative of S could be replaced by a weaker
condition like supv∈(0,1] S(v) = 0 (resp., supv∈(0,1] S(v) = F (1) − h(1)), but for the
sake of brevity we have preferred a slightly stronger hypothesis, in order to proceed
with a simpler and shorter proof.

4. An Example: A Quasilinear Fisher-Burgers Equation

We here illustrate the statement of Theorem 3.1 for the Fisher-Burgers type equa-
tion

ut = ε

(
ux√

1 − u2
x

)
x

− (αu2)x + ku(1 − u) = 0, (14)
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Figure 1 For ε, k, α as in (15), we show the graph of the criti-
cal profile vε for (14). The values of c̄ predicted by Theorem 3.1
are, respectively, c̄ = 0 (top line), c̄ = 0.152, 0.187 (middle line),
c̄ = 1/3, 2/3 (bottom line), while here we have found the approxi-
mations c∗

ε ≈ 0.07, 0.09 (top line), c∗
ε ≈ 0.163, 0.234 (middle line),

c∗
ε ≈ 0.336, 0.667 (bottom line).

in dependence on two parameters α ∈ R, k > 0, showing some related numerical
simulations performed with Wolfram Mathematica c© software. To this end, we set

ε = 2 · 10−3, k = 1 and:

α = 1, α = 0.5(= k/2) (top line),

α = 0.05, α = −0.05 (middle line),

α = −1/6(= −k/6), α = −0.5 (bottom line).

(15)

For Eq. (14) one has

S(v) =
(

k

2
− α

)
v − k

v2

3



248 M. Garrione et al. Vol. 92 (2024)

Figure 2 For k = 1 and α = 1, we depict the critical front solution
vε of (14) (black) and the inviscid profile VI (gray) in the cases
ε = 0.002 (left) and ε = 0.0002 (right). In the former case c∗

ε ≈ 0.07,
as in Fig. 1, while in the latter one we find c∗

ε ≈ 0.024.

Figure 3 For h(s) = s3/2 and f(s) = s(1−s), we depict the critical
front profile vε for (1) (black) and the inviscid profile VI (gray) for
ε = 0.01 (left) and ε = 0.002 (right). Here c∗

ε ≈ 0.143 (left), c∗
ε ≈

10−3 (right).

and it is immediately seen that if α � k/2, then the assumptions of case 1) in the
statement of Theorem 3.1 are satisfied. However, since lims→0 f(s)/h′(s) = k/(2α),
the inviscid profile VI exits the interval [0, 1], while v̄ is constrained between 0 and
1 and hence v̄ ≡ 0 on the left of the vanishing point for VI . In particular, v̄ is not
C1 and is sharp near the value 0, similarly to the case without convection. This
outcome is reproduced in Fig. 1, top line. If instead α ∈ (−k/6, k/2), then S′(1) < 0
and case 2) of Theorem 3.1 occurs; moreover, it can be easily checked that f − h′

has a unique maximum, so that the limit profile is again sharp on the “left” side
only (Fig. 1, middle line). Finally, if α � −k/6, it is immediate to see that S′(v) > 0
for every v ∈ (0, 1), so that the limit configuration for vε is fully piecewise linear, in
accord with case 3) of Theorem 3.1 (Fig. 1, bottom line). Summarizing, Theorem
3.1 completely characterizes v̄ for Fisher-Burgers type equations: the limit profile is
never regular, becoming fully sharp (near both the values 0 and 1) if the convection
is sufficiently negative (in particular, concave). Of course, for fixed ε > 0 the profiles
are always smooth, anyway in the pictures we can spot quite neatly the asymptotic
trend stated in the theorem.

In Fig. 2, we zoom into the above case 1), showing how the critical profile vε

modifies its shape for smaller ε; we explicitly plot the inviscid profile VI (gray) to
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Figure 4 For h(s) = s2 and f(s) = s2(1 − s), we depict the critical
front profile vε for (1) (black) and the inviscid profile VI (gray) for
ε = 0.1 (left) and ε = 0.01 (right). Here c∗

ε ≈ 0.046 (left), c∗
ε ≈ 10−4

(right).

highlight how much vε and VI become almost indistinguishable whenever strictly
positive.

We finally corroborate our discussion about the importance of the value of
lims→0+ f(s)/h′(s) in the possible regularization of the limit profile in the above
case 1). In Fig. 3, we show the critical profile vε for ε = 0.01 (left) and ε = 0.002
(right) in case f(s) = s(1 − s) and h(s) = s3/2 (notice that, in this case, h is not
C2 at s = 0); here, lims→0+ f(s)/h′(s) = 0, so that v̄ is everywhere C1 and reaches
the equilibrium 0 in finite time. On the other hand, in Fig. 4 we show the shape of
vε for ε = 0.1 (left) and ε = 0.01 (right) in case f(s) = s2(1 − s) and h(s) = s2, for
which the inviscid profile VI is regular and reaches the equilibrium 0 only at −∞,
since the integral

∫ 1/2

0
h′(s)/f(s) ds diverges. Consequently, v̄ is everywhere C1 and

v̄(z) > 0 for every z ∈ R. We notice again that v̄ and VI appear indistinguishable
in the considered interval.
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