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Abstract. In this paper, following the studies in Amorim et al. (Partial Differ Equ
Appl 4, 36, 2023), we consider some new aspects of the motion of the director field
of a nematic liquid crystal submitted to a magnetic field and to a laser beam. In
particular, we study the existence and partial orbital stability of special standing
waves, in the spirit of Cazenave and Lions (Commun Math Phys 85:549–561,
1982) and Hadj Selem et al. (Milan J Math 82:273–295, 2014) and we present
some numerical simulations.
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1. Introduction and Main Results

A great number of technological applications related to data display and non-linear
optics, use thin films of nematic liquid cristals, cf. [7] for the general theory of
nematic liquid cristals. In such devices the local direction of the optical axis of the
liquid crystal is represented by a unit vector n(x, t), called the director, and may
be modified by the application of an electric or magnetic field. The interaction of a
light beam with the dynamics of the director n(x, t), under a magnetic field, helps
to improve the device performance.

In this paper we consider the model introduced in [1] to describe the motion
of the director field of a nematic liquid crystal submitted to an external constant
strong magnetic field H, with intensity H ∈ R, and also to a laser beam, assuming
some simplifications and approximations motivated by previous experiments and
models (cf. [2,3,20,21], for magneto-optic experiments, and [16,24] for the simplified
director field equation). The system under consideration reads{

iut + uxx = −ρu + a|u|2u + H2x2u
ρtt = (σ(v))x − bρ + |u|2, x ∈ R, t ≥ 0, (1.1)
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where i is the imaginary unit, u(x, t) is a complex valued function representing the
wave function associated to the laser beam under the presence of the magnetic field
H orthogonal to the director field, ρ ∈ R measures the angle of the director field
with de x axis,v = ρx, a,H ∈ R, b > 0 are given constants, with initial data

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x), ρt(x, 0) = ρ1(x), x ∈ R, (1.2)

and where the function σ(v) is given by

σ(v) = αv + λv3, λ =
2
3
γ(α − β), (1.3)

where α ≥ β > 0 are elastic constants of the liquid crystal, cf. [16], and

γ = 4(χa)−1H−2β > 0, (1.4)

where χa > 0 is the anisotropy of the magnetic susceptibility, cf. [20].
In the quasilinear case α > β, α � β, the study of the existence of a weak global

solution to the Cauchy problem for the system (1.1) with the initial data (1.2),
in suitable spaces, has been developed in [1], by application of the compensated
compactness method introduced in [22] to the regularised system with a physical
viscosity and the vanishing viscosity method (cf. also [8,9] for two examples of this
technique applied to related systems of short waves-long waves).

In Sect. 2 we prove, in the general case (λ ≥ 0), by application of Theorem 6 in
[19], a local in time existence and uniqueness theorem of a classical solution for the
Cauchy problem (1.1), (1.2). For this purpose we need to introduce some functional
spaces and point out several well known results:

Let A be the linear operator defined in L2(R) by

Au = uxx − H2x2u, u ∈ D(A), H �= 0, (1.5)

where D(A) =
{
u ∈ X|Au ∈ L2(R)

}
, with

X =
{
u ∈ H1(R)|xu ∈ L2(R)

}
. (1.6)

We also define the norm ‖u‖2
X = ‖ux‖2

2 + ‖xu‖2
2, for u ∈ X, denoting by ‖.‖p the

norm ‖.‖Lp(R). It can be proved, cf. [23], that if u ∈ X1 =
{
u|xu, ux ∈ L2(R)

}
, then

u ∈ L2(R) with

‖u‖2
2 ≤ 2

1
2 ‖ux‖2‖xu‖2,∀u ∈ X1, (1.7)

and so X = X1, and it is not difficult to prove that the injection of X in Lq(R), 2 ≤
q < +∞, is compact (cf. [11]).

Moreover, it may be also proved, cf. [4], lemma 9.2.1, that A is self-adjoint in
L2(R), (Au, u) ≤ 0,∀u ∈ D(A), and (cf. [14]),

D(A) = (−A + 1)−1L2(R) =
{
u ∈ H2(R)|x2u ∈ L2(R)

}
. (1.8)

We can now state the first result that will be proved in Sect. 2:

Theorem 1.1. Let (u0, ρ0, ρ1) ∈ D(A) × H3 × H2 and λ ≥ 0. Then, there exists
T ∗ = T ∗(u0, ρ0, ρ1) > 0 such that, for all T < T ∗, there exists an unique solution
(u, ρ) to the Cauchy problem (1.1), (1.2) with u ∈ C([0, T ];D(A)) ∩ C1([0, T ];L2)
and ρ ∈ C([0, T ];H3) ∩ C1([0, T ];H2) ∩ C2([0, T ];H1).
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As it is well known, in the quasilinear case the local solution, in general, blows-
up in finite time. In Sect. 3, by obtaining the convenient estimates, we prove the
following result in the semilinear case (α = β):

Theorem 1.2. Let (u0, ρ0, ρ1) ∈ D(A) × H3 × H2 and λ = 0. Then, there exists an
unique global in time solution (u, ρ) to the Cauchy problem (1.1), (1.2), with u ∈
C([0, +∞);D(A)) ∩ C1([0, +∞);L2) and ρ ∈ C([0, +∞);H3) ∩ C1([0, +∞);H2) ∩
C2([0, +∞);H1).

In the special case of initial data with compact support, we will prove in Sect. 4
the following result:

Theorem 1.3. Assuming the hypothesis of Theorem 1.2, consider the particular case
where

supp
{
u0 , ρ0 , ρ1

} ⊂ D =] − θ, θ[, θ > 0 . (1.9)

Then, for each t > 0 and ε > 0, there exists a δ = δ(t, ε, ‖u0‖H1) > 0, such that∫
R\(D+B(0,δ))

[|u|2 + |ρ|2 + |ρx|2 + |ρt|2](x, t)dx ≤ ε, (1.10)

where B(0, δ) =
{
x ∈ R||x| < δ

}
.

The proof of this result follows a technique introduced in [6] in the case of the
nonlinear Schrödinger equation.

In Sect. 5, which contains the main result in the paper, we study the existence
and possible partial orbital stability of the standing waves for the system (1.1) with
a = −1 (attractive case) and λ ≥ 0. These solutions are of the form

(eiμtu(x), ρ(x)), μ ∈ R, (1.11)

and the system (1.1) takes the aspect (we fix α = 1, without loss of generality):{
uxx − H2x2u + |u|2u + ρu = μu
−ρxx − λ(ρ3

x)x + bρ = |u|2, x ∈ R. (1.12)

We can rewrite this system as a scalar equation

uxx − H2x2u + |u|2u + ρ(|u|2)u = μu, (1.13)

where ρ(f) is the solution to −ρxx − λ(ρ3
x)x + bρ = f . It is not difficult to prove

that if f ∈ L2, there exists a unique ρ ∈ H2 satisfying the previous equation. This
allows for instance to prove that ρ(|u|2)u2 ∈ L1 provided that u ∈ X. Now, to find
nontrivial solutions of this equation belonging to D(A), the domain of the linear
operator defined by (1.5), we will closely follow the technique introduced in [11] for
the case of the Gross–Pitaevskii equation. More precisely, we consider the energy
functional defined in X by (with

∫
.dx =

∫
R

.dx):

E(u) =
1
2

∫
|ux|2dx +

1
2
H2

∫
x2|u|2dx

−1
4

∫
|u|4dx − 1

2

∫
ρ(|u|2)|u|2dx, u ∈ X, (1.14)
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and we look to solve the following constrained minimization problem for a prescribed
c > 0:

Ic = inf
{E(u), u ∈ X, real,

∫
|u(x)|2dx = c2

}
. (1.15)

We start by proving the following result which corresponds to Lemma 1.2 in [11].

Theorem 1.4. We have:
i) The energy functional E is C1 on X real.
ii) The mapping c → Ic is continuous.
iii) Any minimizing sequence of Ic is relatively compact in X and so, if

{un}n∈N ⊂ X is a corresponding minimizing sequence, then there exists u ∈ X
such that ‖u‖2

2 = c2 and limn→+∞ un = u in X. Moreover u(x) = u(|x|) is radial
decreasing and satisfies (1.13) for a certain μ ∈ R.

To prove this result we follow the ideas in [11] and introduce the real space
X̃ =

{
w = (u, v) ∈ X × X

}
, for reals u and v, with norm

‖w‖2
X̃

= ‖u‖2
X + ‖v‖2

X , u, v ∈ X, (1.16)

and observe that if u = u1 + iu2, with u1 = Re u, u2 = Im u, the Eq. (1.13) can be
written in the system form:{

u1xx − H2x2u1 + |u|2u1 + ρ(|u|2)u1 = μu1

u2xx − H2x2u2 + |u|2u2 + ρ(|u|2)u2 = μu2
x ∈ R, (1.17)

with w = (u1, u2) ∈ X̃, u1 = Re u, u2 = Im u.
In the new space X̃, the functional defined in (1.14) takes the form, for w = (u, v) ∈
X̃, |w|4 = (|u1|2 + |u2|2)2,

Ẽ(u) = 1
2

∫ |wx|2dx + 1
2H2

∫
x2|w|2dx

−1
4

∫ |w|4dx − 1
2

∫
ρ(|w|2)|w|2dξ, w ∈ X̃, (1.18)

and, for all c > 0,we introduce

Ĩc = inf
{Ẽ(w), w ∈ X̃,

∫
|w(x)|2dx = c2

}
, (1.19)

and the sets

Wc =
{
u ∈ X, ‖u‖2

2 = c2, Ic = E(u), u > 0
}
,

Zc =
{
w ∈ X̃, ‖w‖2

2 = c2, Ĩc = Ẽ(w)
}
.

Following [5] and [11], we introduce the following definition:

Definition: The set Zc is said to be stable if Zc �= ∅ and for all ε > 0, there exists
δ > 0 such that, for all w0 = (u10, u20) ∈ X̃, we have, for all t ≥ 0,

inf
w∈Zc

‖w0 − w‖X̃ < δ =⇒ inf
w∈Zc

‖ψ(., t) − w‖X̃ < ε,
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where ψ(x, t) = (u1(x, t), u2(x, t)) corresponds to the solution u(x, t) = u1(x, t) +
iu2(x, t) of the first equation in the Cauchy problem (1.1),(1.2), with initial data
u0(x) = u10(x) + iu20(x) and where ρ(x, t) = ρ(|u(x, t)|2)(x, t) satisfies

−ρxx − λ(ρ3
x)x + bρ = |u(., t)|2.

This corresponds to the hypothesis ρtt � 0, cf. [2,3,20]. The local existence and
uniqueness in X to the corresponding Cauchy problem for the Schrödinger equation
is a consequence of Theorem 3.5.1 in [4]. It is easy to get the global existence of such
solution ψ(t) if their initial data is closed to Zc. Indeed, denote by T the maximal
time of existence and suppose that Zc is stable at least up to the time T . So, using
the stability at time T , we see that ψ(T ) is uniformly bounded in X̃. Therefore,
we can apply the local existence result for initial data ψ(T ). This contradicts the
maximality of T and yields to the global existence.

Proceeding as in the proof of Theorem 1.3 (see in particular (5.9)), we can show
that

‖ρ(|ψ(t)|2) − ρ(|w|2)‖H1 ≤ C‖ψ(t) + w‖L2‖ψ(t) − w‖X̃ ,

where C is a constant not depending on t. So, if w is stable, we derive, in the
conditions of the definition,

inf
w∈Zc

‖ρ(., t) − ϕ‖H1 < c1(‖u0‖2 + c)ε. (1.20)

We point out that, if w = (u1, u2) ∈ Zc, then there exists a Lagrange multiplier
μ ∈ R such that w satisfies (1.17), that is u = u1 + iu2 satisfies (1.13).

We will prove the following result which is a variant of Theorem 2.1 in [11]:

Theorem 1.5. The functional Ẽ is C1 in X̃ and we have
i) For all c > 0, Ic = Ĩc,Zc �= ∅ and Zc is stable.
ii) For all w ∈ Zc, |w| ∈ Wc.
iii) Zc =

{
eiθu, θ ∈ R

}
, with u real being a minimizer of (1.15).

The proof of this result is similar to the proof of Theorem 2.1 in [11]. We
repeat some parts of the original proof for sake of completeness. Next, in Sect. 6,
also following closely [11], we prove a bifurcation result asserting in particular that
all solutions of the minimisation problem (1.15) belongs to a bifurcation branch
starting from the point (λ0, 0) (in the plane (μ, u)) where λ0 is the first eigenvalue
of the operator −∂xx + H2x2.

Proposition 1.6. The point (λ0, 0) is a bifurcation point for (1.13) in the plane (μ, u)
where −μ ∈ R

+ and u ∈ X. The branch issued from this point is unbounded in the
μ direction (it exists for all −μ > λ0). Moreover solutions to (1.13) belonging to this
branch are in fact minimizers of problem (1.15).

As already mentioned, the proof of this proposition follows closely the one of
[11, Theorem 3.1]. An important ingredient which has also independent interest is
the following uniqueness result.

Proposition 1.7. There exists a unique radial positive solution to (1.13) such that
limr→∞ u(r) = 0.
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The proof of this proposition is strongly inspired by [15].
Finally, in Sect. 7 we present some numerical simulations illustrating the be-

haviour of the standing waves according to the intensity of the magnetic field H,
and also the limit as the Lagrange multiplier −μ approaches the bifurcation value
λ0.

2. Local Existence in the General Case

In order to prove Theorem 1.1, let us introduce the Riemann invariants associated
to the second equation in the system (1.1),

l = w +
∫ v

0

√
α + 3λξ2dξ and r = w −

∫ v

0

√
α + 3λξ2dξ, (2.1)

where w = ρt, v = ρx. We derive

l − r = 2
∫ v

0

√
α + 3λξ2dξ

= v
√

α + 3λv2 +
1√
3λ

arcsinh(
√

3λv), w =
l + r

2
.

Noticing that

f(v) = v
√

α + 3λv2 +
1√
3λ

arcsinh(
√

3λv)

is one-to-one and smooth, we have v = f−1(l−r) = v(l, r) and, for classical solutions,
the Cauchy problem (1.1), (1.2) is equivalent to the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

iut + uxx − H2x2u = −ρu + a|u|2u

ρt = 1
2(l + r)

lt − √
α + 3λv2lx = −bρ + |u|2

rt +
√

α + 3λv2rx = −bρ + |u|2

(2.2)

with initial data (cf. (1.5), (1.8)),

u(., 0) = u0 ∈ D(A) =
{
u ∈ H2

R|x2u ∈ L2(R)
}
,

ρ(., 0) = ρ0 ∈ H3(R), l(., 0) = l0 ∈ H2(R), r(., 0) = r0 ∈ H2(R).
(2.3)

In order to apply Kato’s theorem (cf. [19, Thm. 6]) to obtain the existence and
uniqueness of a local in time strong solution, cf. Theorem 1.1, for the corresponding
Cauchy problem, we need to pass to real spaces, introducing the variables

u1 = Re u, u2 = Im u. (2.4)

Now, we can pass to the proof of Theorem 1:
With (u10, u20) = (u1(., 0), u2(., 0)), let

U = (u1, u2, ρ, l, r), U0 = (u10, u20, ρ0, l0, r0), (2.5)
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and

A(U) =

⎡
⎢⎢⎢⎢⎣

0 A 0 0 0
−A 0 0 0 0
0 0 0 0 0
0 0 0 −√

α + 3λv2 ∂
∂x 0

0 0 0 0
√

α + 3λv2 ∂
∂x

⎤
⎥⎥⎥⎥⎦ ,

g(t, U) =

⎡
⎢⎢⎢⎢⎣

−ρu2 + a(u2
1 + u2

2)u2

ρu1 − a(u2
1 + u2

2)u1
1
2(l + r)

−bρ + |u|2
−bρ + |u|2

⎤
⎥⎥⎥⎥⎦ .

The initial value problem (2.2), (2.3) can be written in the form
{

∂

∂t
U + A(U)U = g(t, U)

U(., 0) = U0.
(2.6)

Let us take

U0 = (u10, u20, ρ0, l0, r0) ∈ Y = (D(A))2 × (H2(R))3

(the condition ρ0 ∈ H3(R) will be used later). We now set Z = (L2(R))2 × (L2(R))3

and S = ((1−A)I)2×((1−Δ)I)3, which is an isomorphism S : Y → Z. Furthermore,
we denote by WR the open ball in Y of radius R centered at the origin and by
G(Z, 1, ω) the set of linear operators Λ : D(Λ) ⊂ Z → Z such that:

• −Λ generates a C0-semigroup {e−tΛ}t∈R+ ;
• for all t ≥ 0, ‖e−tΛ‖ ≤ eωt, where, for all U ∈ WR,

ω =
1
2

sup
x∈R

‖ ∂

∂x
a(ρ, l, r)‖ ≤ c(R), c : [0, +∞[→ [0, +∞[ continuous, and

a(ρ, l, r) =

⎡
⎣0 0 0

0 −√
α + 3λv2 0

0 0
√

α + 3λv2

⎤
⎦ .

By the properties of the operator A (cf. Sect. 1) and following [19, Section 12], we
derive

A : U = (u1, u2, ρ, l, r) ∈ WR → G(Z, 1, ω),

and it is easy to see that g verifies, for fixed T > 0, ‖g(t, U(t))‖Y ≤ θR, t ∈ [0, T ],
U ∈ C([0, T ];WR).

For (ρ, l, r) in a ball W̃ in (H2(R))3, we set (see [19, (12.6)]), with [., .] denoting
the commutator matrix operator,

B0(ρ, l, r) = [(1 − Δ), a(ρ, l, r)](1 − Δ)−1 ∈ L((L2(R))3).
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We now introduce the operator B(U) ∈ L(Z), U = (F1, F2, ρ, l, r) ∈ WR, by

B(U) =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0
0 0 B0(ρ, l, r)
0 0

⎤
⎥⎥⎥⎥⎦ .

In [19, Section 12], Kato proved that for (ρ, l, r) ∈ W̃ we have

(1 − Δ)a(ρ, l, r)(1 − Δ)−1 = a(ρ, l, r) + B0(ρ, l, r).

Hence, we easily derive

SA(U)S−1 = A(U) + B(U), U ∈ WR.

Now, it is easy to see that conditions (7.1)–(7.7) in Section 7 of [19] are satisfied
and so we can apply Theorem 6 in [19] and we obtain the result stated in Theorem
1, with ρ ∈ C([0, T ];H2) ∩ C1([0, T ];H1) ∩ C2([0, T ];L2).

To obtain the requested regularity for ρ it is enough to remark that, since
ρx = v, ρt = w, ρ0 ∈ H3, v0 = ρ0x ∈ H2, w0 = ρ1 ∈ H2, we deduce ρx = v ∈
C([0, T ];H2), ρt = w ∈ C([0, T ];H2), and this achieves the proof of Theorem 1.1.

3. Global Existence in the Semilinear Case

Now, we consider the semilinear case, that is when α = β and so λ = 0.
Hence we pass to the proof of Theorem 1.2. For the local in time unique solu-

tion (u, ρ) defined in the interval [0, T ∗[, T > 0, to the Cauchy problem (1.1),(1.2),
obtained in Theorem 1.1, we easily deduce the following conservation laws (cf. [1])
in the case λ ≥ 0, α > 0:∫

|u(x, t)|2 dx =
∫

|u0(x)|2 dx, t ∈ [0, T ∗[. (3.1)

E(t) =
1
2

∫
(ρt(x, t))2 dx +

α

2

∫
(ρx(x, t))2 dx +

λ

4

∫
(ρx(x, t))4 dx

+
b

2

∫
(ρ(x, t))2 dx −

∫
ρ(x, t)|u(x, t)|2 dx +

∫
|ux(x, t)|2 dx

+
a

2

∫
|u(x, t)|4 dx + H2

∫
x2|u(x, t)|2 dx = E(0), t ∈ [0, T ∗[.

(3.2)

Applying the Gagliardo–Nirenberg inequality to the term |a
2

∫ |u(x, t)|4 dx| and
since b > 0 we easily derive (cf. [1]), for t ∈ [0, T ∗[,∫

(ρt(x, t))2 dx +
∫

(ρx(x, t))2 dx + λ

∫
(ρx(x, t))4 dx

+
∫

(ρ(x, t))2 dx +
∫

|ux(x, t)|2 dx + H2

∫
x2|u(x, t)|2 dx ≤ c1.

(3.3)
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We continue with the proof of Theorem 1.2, in the semilinear case, that is λ = 0.
We have, for t ∈ [0, T ∗[,

‖ρ(t)‖2 ≤ ‖ρ0‖2 +
∫ t

0

‖ρt(τ)‖dτ ≤ c2(1 + t). (3.4)

Next we estimate ‖Au(t)‖2, ‖ρxt(t)‖2 and ‖ρxx‖2. For λ = 0, the system (2.2) reads
⎧⎪⎪⎨
⎪⎪⎩

iut + uxx − H2x2u = −ρu + a|u|2u
ρt = 1

2(l + r)
lt − √

α lx = −bρ + |u|2
rt +

√
α rx = −bρ + |u|2

(3.5)

with initial data (2.3). To simplify, we assume α = β = b = 1.
Recall that we have, since λ = 0,

{
l = w + v = ρt + ρx

r = w − v = ρt − ρx.
(3.6)

From (3.5), we derive

rtxrx + rxxrx = −ρxrx + 2Re(ūux)rx,

and so

1
2

d

dt

∫
(rx)2dx ≤ 1

2

∫
[(ρx)2 + (rx)2]dx + c3

∫
(rx)2dx + c3,

and a similar estimate for lx. We deduce, with c4(t) being a positive, increasing and
continuous function,

‖rx(t)‖2
2 + ‖lx(t)‖2

2 ≤ c4(t), t ∈ [0, T ∗[. (3.7)

Moreover, we derive from (3.5), formally,

Re(uttūt) + Im[(uxxt − H2x2ut)ūt] = aIm[(|u|2u)tūt],
1
2

d

dt

∫
|ut|2dx − Im

∫
uxtūxtdx = 2aIm

∫
Re(uūt)uūtdx

≤ c5

∫ |ut|2dx, and hence
∫

|ut|2dx ≤ c6(t), t ∈ [0, T ∗[. (3.8)

We deduce from (3.5),

‖Au(t)‖2 ≤ c7(t), t ∈ [0, T ∗[. (3.9)

We have by (3.5),

rtxxrxx + rtxxrxx = −ρxxrxx + 2
d

dx
[Re(uūx)]rxx
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and so, formally,

1
2

d

dt

∫
(rxx)2dx ≤ 1

2

∫
[(ρxx)2 + (rxx)2]dx

+ 2
∫

(|u||uxx| + |ux|2)|rxx|dx

≤ 1
2

∫
[(ρxx)2 + (rxx)2]dx + c8(t)

∫
|rxx|2dx,

(3.10)

by (3.9) and (1.8). But, by (3.6), we derive

ρxx =
1
2
(lx − rx),

and so, by (3.7) and (3.10), we deduce

d

dt

∫
(rxx)2dx ≤ c9(t)

∫
(rxx)2dx + c10(t) (3.11)

and similarly

d

dt

∫
(lxx)2dx ≤ c9(t)

∫
(lxx)2dx + c10(t). (3.12)

We conclude that

‖rxx‖2
2 + ‖lxx‖2

2 ≤ c11(t), t ∈ [0, T ∗[, (3.13)

with c11(t) being a positive, increasing and continuous function of t ≥ 0. This
achieves the proof of Theorem 1.2 (the operations that we made formally can be
easily justified by a convenient smoothing procedure).

4. Special Case of Initial Data with Compact Support

We assume the hypothesis of Theorem 1.2, that is is we consider the semilinear case
(λ = 0) and, without loss of generality, we take α = β = b = |a| = 1. We also
assume that the initial data verifies (1.9) for a certain d > 0. Following [6, Section
2], if we take φ ∈ W 1,∞(R), real valued, and u is the solution of the Schrödinger
equation in (1.1), we easily obtain

Re

∫
φ2utūdx + Im

∫
φ2uxxūdx = 0.

We derive

‖φu(t)‖2 ≤ ‖φu0‖2 + c0t‖φx‖∞, t ≥ 0, (4.1)

where

c0 = 2 sup
t≥0

‖ux(t)‖2.

Moreover, from the wave equation in (1.2) with λ = 0, we deduce for t ≥ 0,

φ2ρttρt − φ2φxxρt = −φ2ρρt + φ2ρt|u|2,
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d

dt

∫
(φρt)2dx +

d

dt

∫
(φρx)2dx +

d

dt

∫
(φρ)2dx

= 2
∫

φ2ρt|u|2dx ≤ 2‖φρt‖2‖φu‖2‖u0‖2.

(4.2)

We assume

0 ≤ φ ≤ 1. (4.3)

We have, by the Gagliardo–Nirenberg inequality and (4.1),

‖φu‖∞ ≤ ‖φu‖ 1
2
2 ‖(φu)x‖ 1

2
2

≤ (‖φu0‖2 + c0t‖φx‖∞))
1
2 (‖φx‖∞‖u0‖2 +

c0

2
)
1
2

= g0(t).

(4.4)

Now, with

g1(t) = g0(t)‖u0‖2, (4.5)

we deduce, from (4.2), (4.4) and with

f1(t) =
∫

(φρt)2dx +
∫

(φρx)2dx +
∫

(φρ)2dx, (4.6)

f
1
2
1 (t) ≤ f

1
2
1 (0) + 2

∫ t

0

g1(τ)f
1
2
1 (τ)dτ,

f
1
2
1 (t) ≤ f

1
2
1 (0) +

∫ t

0

g1(τ)dτ ≤ f
1
2
1 (0) + t‖u0‖2 g0(t), t ≥ 0. (4.7)

Hence, if we define

f(t) = f1(t) + ‖φu(t)‖2
2, t ≥ 0, (4.8)

we derive, by (4.7), (4.8) and (4.1),

f
1
2 (t) ≤ f

1
2
1 (t) + ‖φu(t)‖2 ≤ f

1
2
1 (0) + t‖u0‖2g0(t) + ‖φu0‖2 + c0t‖φx‖∞

≤ f
1
2 (0) + t‖u0‖2(‖φu0‖2 + c0t‖φx‖∞))

1
2 (‖φx‖∞‖u0‖2 +

c0

2
)
1
2

+ ‖φu0‖2 + c0t‖φx‖∞.

(4.9)

Now, we fix t > 0 and ε > 0 and assume that the initial data verifies (1.9). We
introduce the set C = R\(D + B(0, δ)), δ to be chosen, and the function φ ∈
W 1,∞(R), real valued, verifying (4.3), φ = 0 in D, φ = 1 in C and ‖φx‖∞ = 1

δ . We
have f(0) = 0, φu0 = 0, and so, by (4.9), we easily obtain

f(t) ≤ 2c0‖u0‖3
2

t3

δ2
+ c2

0‖u0‖2
2

t3

δ
+ 2c2

0

t2

δ2
, (4.10)

and now we can choose δ such that (1.10) is satisfied. This concludes the proof of
Theorem 1.3.
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5. Existence and Partial Stability of Standing Waves

We will consider the system (1.1) in the attractive case a = −1 and without loss of
generality we assume that α = 1. We want to study the existence and behaviour of
standing waves of the system (1.1), that is solutions of the form (1.11). As we have
seen in the introduction, we can rewrite this system as a scalar equation (1.13).
Following the technique introduced in [11] for the Gross–Pitaevski equation, we
consider the energy functional defined in X by (1.14). Recall that X ⊂ Lq(R), 2 ≤
q < +∞, with compact injection, and the norm in X is equivalent to the following
norm (which by abuse we also denote by ‖.‖X)

‖u‖2
X =

∫
|ux|2dx + H2

∫
x2|u|2dx, H �= 0, u ∈ X. (5.1)

We now pass to the proof of Theorem 1.4, which is a variant of Lemma 1.2 in
[11], whose proof we closely follow. Let {un} be a minimizing sequence of E defined
by (1.14) in X (real), that is

un ∈ X, ‖un‖2 = c2, lim
n→+∞ E(un) = Ic,

defined by (1.15). Multiplying the equation satisfied by ρ(|u|2) by u and integrating
by parts, we find ∫

[ρ2
x + λρ4

x + bρ2]dx =
∫

|u|2ρdx.

Using Young’s inequality, we get, for a constant C depending on b (we allow this
constant to change from line to line),∫

|u|2ρdx ≤ b

2

∫
ρ2dx + Cb

∫
|u|4dx.

So using the two previous lines, we get that∫
ρ2dx ≤ Cb

∫
|u|4dx. (5.2)

From Hölder’s inequality, we obtain that, for some constant C̃ > 0,
∫

ρ|u|2dx ≤
(∫

ρ2dx

) 1
2
(∫

|u|4dx

) 1
2

≤ C̃

∫
|u|4dx. (5.3)

and, by Gagliardo–Nirenberg inequality,

‖u‖4 ≤ C‖ux‖2‖u‖3
2, u ∈ H1(R). (5.4)

Hence, reasoning as in [11], (1.1) in Lemma 1.2, we derive, for each ε > 0 and x ∈ X,
such that ‖u‖2

2 = c2,

‖u‖4
4 ≤ ε2

2
‖ux‖2

2 +
1

2ε2
c6, (5.5)

and so, for u ∈ X such that ‖u‖2
2 = c2, we deduce

E(u) ≥
(

1
2

− ε2

2

(
1
4

+
C̃

2

))
‖ux‖2 − 1

2ε2

(
1
4

+
C̃

2

)
c6 − 1

2
H2

∫
x2|u|2dx, (5.6)
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and we can choose ε such that 1 − ε2(1
4 + C̃

2 ) > 0.
Hence, the minimizing sequence is bounded in X and there exists a subsequence

{un} such that un ⇀ u in X (weakly). Recalling that the injection of X in L4(R)
is compact, we derive

un → u inL4(R). (5.7)

Moreover, by lower semi-continuity, we deduce∫
(|ux|2 + H2x2|u|2)dx ≤ lim inf

n→∞

∫
(|unx|2 + H2x2|un|2)dx. (5.8)

On the other hand, we have, setting f := ρ(|u|2) − ρ(|un|2) := ρ − ρn,

−fxx − λ(ρ3
x − (ρn)3x)x + bf = |u|2 − |un|2.

Notice using Young’s inequality that

−
∫

(ρ − ρn)(ρ3
x − (ρn)3x)xdx =

∫
(ρ4

x + (ρn)4x − ρ3
x(ρn)x − (ρn)3xρx)dx ≥ 0.

So proceeding as in (5.2), we can show that

‖f‖2
L2 ≤ C‖|u|2 − |un|2‖2

L2 . (5.9)

Using this last estimate, we deduce that

|
∫

ρ(|u|2)|u|2 −
∫

ρ(|un|2)|un|2|

≤ |
∫

ρ(|u|2)(|u|2 − |un|2)dx| + |
∫

(ρ(|u|2) − ρ(|un|2))|un|2dx|
≤ ‖ρ(|u|2)‖L2‖|un|2 − |u|2‖2

L4 + ‖un‖2
L4‖ρ(|u|2) − ρ(|un|2)‖L2 → 0,

since |un|2 → |u|2 in L2(R).
Hence, u is a minimizer of (1.14), that is

u ∈ X, ‖u‖2
2 = c2, E(u) = Ic.

We conclude that E(un) → E(u) and so∫
|unx|2dx + H2

∫
x2|un|2dx →

∫
|ux|2dx + H2

∫
x2|u|2dx. (5.10)

We derive that u ∈ X. We denote by u� the Schwarz rearrangement of the real
function u, (cf. [18] for the definition and general properties). We know that

‖u�
x‖2 ≤ ‖ux‖2, ‖u�‖4 = ‖u‖4.

The Polya–Szego inequality asserts that, for any f ∈ W 1,p with p ∈ [1,∞],

‖∇f‖Lp ≥ ‖∇f�‖Lp .

Moreover, by [11], we have∫
x2|u�|2dx <

∫
x2|u|2dx, unless u = u�. (5.11)

By [12, Theorem 6.3] (see also [13]), we know that∫
G(v(x))dx ≤

∫
G(v�(x))dx,
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provided that G(t) =
∫ t

0
g(s)ds and g : R+ → R+ is such that

|g(s)| ≤ K(s + sl),

where K > 0, l > 1 and s ≥ 0. We want to apply this result for G(s) = ρ(s2)s2. So
g(s) = (ρ(s2))ss

2 + 2 sρ(s2). Observe that (ρ(s2))s := f is the solution to −fxx −
3λ((ρ(s2))2xfx)x + bf = 2 s. Using the maximum principle, we can show that g :
R+ → R+. On the other hand, by standard elliptic regularity theory, we have that
|ρ(s2)|, |ρ(s2)s| ≤ C(s + s2), for any s > 0. So, [12, Theorem 6.3] yields that∫

ρ(|u|2)|u|2dx ≤
∫

ρ(|u�|2)|u�|2dx.

Combining all the previous inequalities, we see that E(u�) < E(u) unless u = u� a.e.
and this proves that the minimizers of (1.14) are non-negative and radial decreasing.
This completes the proof of Theorem 1.4.

We now pass to the proof of Theorem 1.5, which follows the lines of the proof
of Theorem 2.1 in [11]. For sake of completeness we repeat some parts of the proof
to make it easier to follow.

We recall that, cf. [5], to prove the orbital stability it is enough to prove that
Z �= ∅ and that any sequence

{
wn = (un, vn)

} ⊂ X̃ such that ‖wn‖2
2 → c2 and

Ẽ(wn) → Ĩc, is relatively compact in X̃. By the computations in the proof of The-
orem 1.4, we have that the sequence {wn} is bounded in X̃ and so we can assume
that there exists a subsequence, still denoted by {wn} and w = (u, v) ∈ X̃ such
that wn ⇀ w weakly in X̃, that is un ⇀ u, vn ⇀ v in X. Hence, there exists a
subsequence, still denoted by {wn)}, such that there exists

lim
n→∞

∫
(|unx|2 + |vnx|2)dx. (5.12)

Now, we introduce �n = |wn| = (u2
n +v2

n)
1
2 , which belongs to X. Following the proof

of [11, Theorem 2.1], we have
�nx = ununx+vnvnx

(u2
n+v2

n)
1
2

, if u2
n + v2

n > 0, and �nx = 0, otherwise.

We deduce

Ẽ(wn) − E(�n) =
1
2

∫
u2
n+v2

n>0

(ununx − vnvnx

u2
n + v2

n

)2

dx

− 1
4

∫
|(|un|2 + |vn|2)|2dξ +

1
4

∫
|�n|4dξ

=
1
2

∫
u2
n+v2

n>0

(ununx − vnvnx

u2
n + v2

n

)2

dx.

(5.13)

Hence, we derive as in [11, Theorem 2.1],

Ĩc = lim
n→∞ Ẽ(wn) ≥ lim sup

n→∞
E(�n) (5.14)

and

lim
n→∞ ‖�n‖2

2 = lim
n→∞ ‖wn‖2

2 = c2. (5.15)
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Applying Theorem 1.4 with cn = ‖�n‖2, we obtain

lim inf
n→∞ E(�n) ≥ lim inf

n→∞ Icn ≥ Ic ≥ Ĩc. (5.16)

Hence, by (5.14) and (5.16), we derive

lim
n→∞ E(�n) = lim

n→∞ Ẽ(wn) = Ic = Ĩc , (5.17)

and so, by (5.13) and (5.17), we get

lim
n→∞

∫
|unx|2 + |vnx|2 − |∂x

(
(u2

n + v2
n)

1
2
)|2dx = 0. (5.18)

We can rewrite this last line as

lim
n→∞

∫
(|unx|2 + |vnx|)2dx = lim

n→∞

∫
|�nx|2dx. (5.19)

Now, by (5.15), (5.17) and iii) in Theorem 1.4, we conclude that there exists � ∈ X
such that �n → � in X and ‖�‖2

2 = c2, E(�) = Ic. Moreover � ∈ H2(R) ⊂ C1(R) is
a solution of (1.13) and � > 0. We prove that � = (u2 + v2)

1
2 just as in the proof of

Theorem 2.1 in [11, p. 279].
Finally, we prove that ‖wnx‖2

2 → ‖wx‖2
2. By applying (5.19) we have limn→∞

‖wn‖2
2 = limn→∞ ‖�nx‖2

2 and ‖�nx‖2
2 → ‖�x‖2

2, since �n → � in X. Hence, ‖wx‖2
2

≤ limn→∞ ‖wnx‖2
2 = ‖�x‖2

2. But it is easy to see that

‖wx‖2
2 =

∫
(|ux|2 + (|vx|2)dx ≥

∫
u2+v2>0

((uux + vvx)2

u2 + v2

)2

dx = ‖�x‖2
2,

because (uux + vvx
2) ≤ (u2 + v2)(|ux|2 + (|vx|2). Hence, ‖wnx‖2

2 → ‖wx‖2
2. We

also have that wn ⇀ w, weakly in X̃. In particular, by compactness, wn → w in
(L2(R))2 ∩ (L4(R))2.

Since Ẽ(wn) → Ĩc = Ẽ(c), we derive that
∫

x2|wn|2dx → ∫
x2|w|2dx and so

‖wn‖2
X̃

→ ‖w‖2
X̃

. We conclude that wn → w in X̃, and this achieves the proof of
Theorem 1.5.

Remark 5.1. We would like to remark that in the semilinear case, namely when
λ = 0, we can simplify some arguments. Indeed, by applying the Fourier transform
to (1.13), we can solve explicitly this equation and derive

ρ = F−1
( F|u|2

b + 4π2ξ2

)
. (5.20)

The energy functional is then given by:

E(u) =
1
2

∫
|ux|2dx +

1
2
H2

∫
x2|u|2dx

− 1
4

∫
|u|4dx − 1

4

∫ |F|u|2|2
1 + 4π2ξ2

dξ, u ∈ X.

(5.21)

We can use directly (5.20) to obtain an estimate on ρ. To prove the symmetry of
minimizers, we can use Proposition 3.2 in [17], noticing that (|u|2)� = |u�|2, to
deduce that
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∫ |F|u|2|2
1 + 4π2ξ2

dξ ≤
∫ |F(|u|2)�|2

1 + 4π2ξ2
dξ =

∫ |F(|u�|2)|2
1 + 4π2ξ2

dξ. (5.22)

6. Bifurcation Structure

This section is devoted to the study of the bifurcation structure of solution to the
minimization problem (1.15) namely we prove Proposition 1.6. We begin by showing
a Pohozaev identity which is also of independent interest.

Lemma 6.1. (Pohozaev identity) Let u ∈ X be a solution to (1.13). Then we have

2‖ux‖2
2 − 2H2‖xu‖2

2 − 1
2
‖u‖4

4 +
∫

u2xρx(|u|2)dx = 0.

Proof. To simplify notation, we set ρ := ρ(|u|2). Multiplying the Eq. (1.13) by xu
and integrating by parts, we get

‖ux‖2
2 − 3H2‖xu‖2

2 +
1
2
‖u‖4

4 +
∫

u2(ρ + xρx)dx − μ‖u‖2
2 = 0.

On the other hand, multiplying the equation by u and integrating by parts, we get

‖ux‖2
2 + H2‖xu‖2

2 −
∫

ρu2dx − ‖u‖4
4 + μ‖u‖2

2 = 0. (6.1)

So combining the two previous lines, we find

2‖ux‖2
2 − 2H2‖xu‖2

2 − 1
2
‖u‖4

4 +
∫

u2xρxdx = 0.

�
Let us denote by uc a function achieving the minimum for the problem (1.15)

and by μc its lagrange multiplier. We also set λ0 for the first eigenvalue of the
harmonic oscillator −∂xx + H2x2. We will show that μc converges to −λ0 when the
mass c goes to 0.

Proposition 6.2. We have

lim
c→0

μc = −λ0.

Proof. In a first time, we are going to show that −μc ≤ λ0. Multiplying the equation
satisfied by uc by uc and integrating by parts, we get

−c2μc = ‖(uc)x‖2
2 + H2‖xuc‖2

2 − ‖uc‖4
4 −

∫
ρ(|uc|2)u2

cdx = 2E(uc) − ‖uc‖4
4

2
.

Thus, we deduce that

−μc ≤ 2E(uc)
c2

.

Let u0 be the eigenfunction associated to λ0 namely ‖u0‖2
X = λ0 and ‖u0‖2 = 1.

We set vc = cu0. Using that uc is a minimiser of problem (1.15), we have that
E(uc) ≤ E(vc) and

2E(cu0)
c2

= ‖(u0)x‖2
2 + H2‖xu0‖2

2 − c2

2

∫
u4

0dx −
∫

ρ(|u0|2)u2
0dx ≤ λ0.
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This proves that −μc ≤ λ0.
Using Pohozaev’s identity (see Lemma 6.1) and (6.1), we have

2‖(uc)x‖2
2 +

∫
u2

c(
xρx(|uc|2)

2
− ρ(|uc|2))dx − 5

4
‖uc‖4

4 + μc‖uc‖2
2 = 0.

So, recalling that −μc ≤ λ0, we have for a constant M > 0 not depending on c that

‖(uc)x‖2
2 ≤ Mc2 + M‖uc‖4

4 −
∫

u2
c(

xρx(|uc|2)
2

− ρ(|uc|2))dx.

Notice that, integrating by parts and using radial coordinates,∫
u2

cxρx(|uc|2)dx =
∫

u2
c(xρ(|uc|2))xdx −

∫
u2

cρ(|uc|2)dx

= −2
∫

uc(uc)rrρ(|uc|2)dr −
∫

u2
cρ(|uc|2)dx

≥ −
∫

u2
cρ(|uc|2)dx.

In the last inequality, we used that ur ≤ 0. So, by (5.3), we obtain, for some constant
M not depending on c,

‖(uc)x‖2
2 ≤ Mc2 + M‖uc‖4

4 + M

∫
u2

cρ(|uc|2)dx ≤ Mc2 + M‖uc‖4
4.

The Gagliardo–Nirenberg’s inequality (5.4) and Young’s inequality then imply that

‖(uc)x‖2
2 ≤ Mc2.

We have, by definition of λ0,

−μc =
‖(uc)x‖2

2 + H2‖xuc‖2
2

c2
− ‖uc‖4

4 +
∫

ρ(|uc|2)u2
cdx

c2

≥ λ0 − ‖uc‖4
4 +

∫
ρ(|uc|2)u2

cdx

c2
.

Then, using (5.3) and Gagliardo–Nirenberg’s inequality (5.4), we deduce that, for
some constant k not depending on c,

−μc ≥ λ0 − kc4.

Taking c → 0, the result follows.
�

Adapting the proof of Proposition 6.7 of [15], we can prove the uniqueness of
positive solution to (1.13) namely Proposition 1.7.

Proof of Proposition 1.7. We denote by u(r, α1) the radial solution to (1.13) such
that u(0, α1) = α1. Suppose that there exist two numbers 0 < α1 < α̃1 such that
u(r, α1) and u(r, α̃1) are two positive radial solutions decaying to 0 at infinity. To
simplify notation, we set u(r) = u(r, α1) and η(r) = u(r, α̃1). Let ψ = η − u. In the
following, we denote by u′ = ∂ru. Then ψ satisfies

ψ′′ − (λ + r2)ψ +
|η|2η − |u|2u + ρ(|η|2)η − ρ(|u|2)u

η − u
ψ = 0. (6.2)
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Multiplying the previous equation by u and multiplying (1.13) by ψ, taking the
difference and integrating by parts, we find

ψ′(r)u(r) − u′(r)ψ(r) =
∫ r

0

(u3 + ρ(|u|2)u)ψdx

−
∫

(η3 + ρ(|η|2)η − u3 − ρ(|u|2)u)udx

=
∫

(u2 + ρ(|u|2) − η2 − ρ(|η|2))ηudx.

Observe that the left-hand side goes to 0 as r → ∞ whereas if we assume that
η(r) > u(r) for all r ≥ 0, the left-hand side converges to a negative constant. So
there exists γ1 such that η(γ1) = u(γ1) (by the maximum principle, we can show
that ρ(|u|2) − ρ(|η|2) < 0).

Next, we will show that it is in fact the only intersection point between u and
η. Indeed, suppose by contradiction that there exists γ2 > γ1 such that

0 < η(r) < u(r) for r ∈ (γ1, γ2), u(γ2) = η(γ2).

This implies that

ψ(r) < 0 for r ∈ (γ1, γ2), ψ′(γ1) < 0, ψ′(γ2) > 0 and ψ(γ1) = ψ(γ2).

Let ξ be a solution to{
ξ′′ − (λ + r2)ξ + [p|u|p−1 + ∂u(ρ(|u|2)u)]ξ = 2ru, r > 0
ξ(0) = 0, ξ′(0) = (λ − ρ(α2))α − αp.

(6.3)

In fact, we can think of ξ as u′ noticing that (ρ(|u|2)u)x = u′(ρ(|u|2)
+ u∂u(ρ(|u|2))). Let

χ(r) = p|u|p−1 + ∂u(ρ(|u|2)u) − |η|p−1η − |u|p−1u + ρ(|η|2)η − ρ(|u|2)u
η − u

.

Observe that the function u → ρ(|u|2)u is convex. Indeed ∂uu(ρ(|u|2)u) = u∂uuρ(|u|2)
+ 2∂uρ(|u|2) where ∂uρ(|u|2) := f is the solution to

−f ′′ − 3λ((ρ(|u|2)′)2fx)′ + bf = 2u,

and, ∂uuρ(|u|2) = g is the solution to

−g′′ − 3λ((ρ(|u|2)′)2gx)′ + bg = 2 + 6λ((∂uρ(|u|2))2)′′.

By the maximum principle, we see that f ≥ 0 and g ≥ 0 (since by comparison
principle we can show that ρ(tx1) ≤ tρ(x1) which implies, using once more com-
parison principle that ρ(tx1 + (1 − t)x2) ≤ tρ(x1) + (1 − t)ρ(x2), for all x1, x2 ≥ 0
and t ∈ [0, 1]). Using this and the convexity of up, we see that χ(r) > 0 when
r ∈ (γ1, γ2). Taking the difference of (6.2) multiplied by ξ and (6.3) multiplied by
ψ and integrating by parts on [γ1, r], we find

ξ(r)ψ′(r) − ξ′(r)ψ(r) = ξ(γ1)ψ′(γ1) +
∫ r

γ1

(χ(s)ξ(s)ψ(s) − 2su(s)ψ(s))ds. (6.4)
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Taking r = γ2 in the previous identity, we get

ξ(r2)ψ′(γ2) = ξ(γ1)ψ′(γ1) +
∫ γ2

γ1

[χ(s)ξ(s)ψ(s) − 2su(s)ψ(s)]ds.

This is a contradiction since the left-hand side is strictly negative while the right-
hand side is strictly positive. This establishes that u and η intersect exactly once.

Finally, we show that η has to change sign. Suppose by contradiction that

0 < η(r) < u(r) for r ∈ (γ1,∞).

This implies that ψ(r) < 0 for r ∈ (γ1,∞), ψ′(γ1) < 0 and ψ(γ1) = 0. Since u, u′

and u′′ go to 0 as r → ∞ (and the same for η), we see that the left-hand side of
(6.4) goes to 0 taking r → ∞ whereas the right-hand side converges to a positive
constant. Therefore, η cannot be positive everywhere and consequently u is the
unique positive radial solution to our equation. �

We are finally in position to prove our bifurcation result, i.e. Proposition 1.6.

Proof of Proposition 1.6. Since λ0 is a simple eigenvalue, we can apply standard
bifurcation results (see for instance [10, Theorem 2.1]) to deduce that (λ0, 0) is
indeed a bifurcation point and that the branch is unique provided that we are
sufficiently close to the bifurcation point. Next, Proposition 6.2 guarantees that
the minimizer of (1.15) uc actually belongs to this branch at least for c > 0 small
enough. Finally, we use our uniqueness result Proposition 1.7 to see that the set
{uc, c > 0} is convex and therefore included in the bifurcating branch. �

7. Numerical Simulations

In this section we perform some numerical simulations to illustrate our results. We
investigate the limit μ → −λ0 mentioned in the previous section, and analyse the
behaviour of standing waves with the variation of the intensity of the magnetic field
H.

7.1. Numerical Method

Our first goal is to numerically approximate the standing waves (1.11), according
to the system (1.12). Following [11], we use a shooting method. However, in the
present case, the director field angle ρ = ρ(|u|2) acts as an additional potential type
term, depending on u itself. Due to this, we perform a Picard iteration and look for
a fixed point u of the operator ϕ �→ Φ(ϕ), where Φ(ϕ) is the solution of

uxx − H2x2u + |u|2u + ρ(ϕ)u = μu, (7.1)

with ρ(ϕ) solving

− ρxx − λ(ρ3
x)x + bρ = ϕ (7.2)

and with boundary conditions u(0) = u0 > 0, ρ(0) = ρ0 > 0, u(∞) = u′(0) =
ρ(∞) = ρ′(0) = 0.

According to the results in previous sections, we look for u ∈ R even, smooth,
vanishing at infinity, strictly positive and decreasing with |x|. For convenience, we
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shall denote the class of functions verifying these conditions by V. Although there is
no result giving a similar structure for ρ(x), it is natural to assume that ρ satisfies
the same hypotheses as u, at least for small λ, and so we look for u, ρ ∈ V.

We now describe our procedure in more detail. First, equations (7.1),(7.2) can
be recast as a first-order system:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ux = w

wx = H2x2u − |u|2u − ρ(ϕ)u + μu

ρx = v

vx = −λ(v3)x + bρ − ϕ2,

(7.3)

with boundary conditions u(0) = u0 > 0, ρ(0) = ρ0 > 0, v(0) = w(0) = 0, and
ϕ ∈ V.

At each stage in the Picard iteration, we need, for a given ϕ ∈ V, to find
(u,w, ρ, v) solving (7.3). As mentioned, we employ a shooting method, which we
now describe. Suppose that we have computed ρ(ϕ), v(ϕ), and wish to compute
u,w. The idea is to adjust the initial value u(0) = u0 so that u(∞) = 0. Following
[11], u0 should verify u0 = sup{β > 0 : u(x; β) > 0, x > 0} where u(x; β) is the
solution of (7.1) with u(0) = β, u ∈ V. At each step of the shooting method, we
look for u0 in an interval [an, bn]. We set u0,n = (an + bn)/2 and solve the first
two equations of (7.3) using an explicit Euler scheme (which is sufficient for our
purposes) with w(0) = 0. Then, if u attains negative values for some x, we set
an+1 = u0,n, bn+1 = bn, thus decreasing u0,n+1. Conversely, if u(x) is increasing
at some point (so that it does not belong in the class V), we set an+1 = an and
bn+1 = u0,n, which increases u0,n+1.

The procedure to compute ρ and v is similar, except that the behaviour of ρ
exhibits an inverse dependence on the initial value ρ(0); thus in each iteration of
the shooting method the value of ρ(0) is increased when ρ becomes negative, and
decreased when ρ becomes increasing.

Let us mention that on each iteration of the shooting method, the equation for
v in (7.3) contains a nonlinear term when λ �= 0. The discretized equation reads

vj+1 − vj

dx
= −λ

(vj+1)3 − (vj)3

dx
+ bρj − (ϕj)2, (7.4)

and so we use a Newton method at each step to approximately solve for vj+1.
As a starting point to the Picard iteration, we take u(0)(x) ∈ V as the solution

with ρ = 0, that is, u(0) solves uxx −H2x2u+ |u|2u = μu with u(0) ∈ V. With an ini-
tial guess u(0)(x) ∈ V for the Picard iteration in hand, we compute u(1)(x), w(1)(x),
and so on, using the shooting method, according to{

u(n)
x = w(n)

w(n)
x = H2x2u(n) − (u(n))3 − ρ(u(n−1))u(n) + μu(n),

(7.5)

where ρ(u(n−1)) solves {
ρx = v,

vx = − λ(v3)x + bρ − (u(n−1))2
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Figure 1 Numerical approximation of the standing wave u(x) and
the director field angle ρ(x), solutions to (1.12), computed using a
shooting method and Picard iteration (Picard iterations in dashed
lines). Parameters are H = 1, μ = −0.8, λ = 0.1, b = 1.

(also using the shooting method), with boundary conditions u(0) = u0 > 0, ρ(0) =
ρ0 > 0, v(0) = w(0) = 0.

7.2. Numerical Results

In Fig. 1, we plot the standing wave u(x) and the director field angle ρ(x) calculated
according to the procedure described previously. The dashed lines correspond to the
iterations of the Picard method. For this simulation, we have used a spatial step
dx = 0.002 (corresponding to 3000 spatial points) and 15 Picard iterations.

Next, we illustrate the result of Proposition 6.2. First, note that it is easy to see
that u∗(x) = e−H

2 x2
is the first eigenfunction of the harmonic oscillator −∂xx+H2x2,

with eigenvalue λ0 = H. Note that in our notations, the parameter −μ plays the
role of λ0. In parallel to [11], and in accordance with Proposition 6.2, we verify
numerically that the L2 norm of uμ goes to zero as μ → −λ+

0 . Taking H = λ0 = 2,
we show in Fig. 2 the numerical solutions of (1.12) for various values of μ → −λ+

0 .
We can see that the solutions appear to converge to zero, although the convergence
is very slow. In Fig. 3, we show how the L2 norm of u = uμ varies as the Lagrange
multiplier μ tends to the value −λ0. Our numerical tests indicate that, although
slow, the convergence to zero of the L2 norm of uμ is verified, in accordance with
Proposition 6.2.

Next, we investigate numerically the behaviour of the standing wave when
the intensity of the magnetic field, H, is varied. It turns out that for each set of
parameters that we analyzed, there is a maximum (relatively small) value of H such
that our numerical method diverges for larger values of H. This may be related
to the observation that the behaviour of u (and ρ) with respect to u(0) is very
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Figure 2 Numerical approximation of the standing wave u(x) and
the director field angle ρ(x), solutions to (1.12), with μ → −λ0.
Parameters are H = λ0 = 2, λ = 0.1, b = 1.

Figure 3 The norm ‖u‖2
2 as a function on the Lagrange multiplier

μ as μ → −λ0 = −H = −2, in log-log scale. The values of μ are the
same as in Fig. 2, but μ is ranging from −1.9 to −1.9999153, taking
60 values (left). On the right is a zoom on the last 15 values of μ.

sensitive to perturbations: any arbitrarily small perturbation of the u(0) found by
the shooting method produces a solution which (numerically at least) quickly blows
up exponentially. The desired solution appears to be unstable in this sense, and this
effect appears more markedly for larger values of H. Still, in Fig. 4 we show the
behaviour of the solution for H between 0 and 2, which lets us nevertheless see the
general trend. In particular, it is clear that the director field angle becomes more
concentrated at the origin for larger values of H.
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Figure 4 Numerical approximation of the standing wave u(x) and
the director field angle ρ(x), solutions to (1.12), with varying mag-
netic field intensity H. Parameters are μ = 0.2, λ = 0.1, b = 2.
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