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On the Transport of Currents
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Abstract. In this work, we consider some evolutionary models for k-currents in
R

d. We study a transport-type equation which can be seen as a generalisation
of the transport/continuity equation and can be used to model the movement
of singular structures in a medium, such as vortex points/lines/sheets in fluids
or dislocation loops in crystals. We provide a detailed overview of recent results
on this equation obtained mostly in (Bonicatto et al. Transport of currents and
geometric Rademacher-type theorems. arXiv:2207.03922, 2022; Bonicatto et al.
Existence and uniqueness for the transport of currents by Lipschitz vector fields.
arXiv:2303.03218, 2023). We work within the setting of integral (sometimes merely
normal) k-currents, covering in particular existence and uniqueness of solutions,
structure theorems, rectifiability, and a number of Rademacher-type differentia-
bility results. These differentiability results are sharp and can be formulated in
terms of a novel condition we called “Negligible Criticality condition” (NC), which
turns out to be related also to Sard’s Theorem. We finally provide a new stability
result for integral currents satisfying (NC) in a uniform way.
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1. Introduction

Transport phenomena are widespread in physics and engineering. Given a bounded
(time-dependent) vector field bt = b(t, ·) : Rd → R

d, with t ∈ [0, 1], the transport
equation {

d
dtu + bt · ∇u = 0
u(0, ·) = u(·) (TE)

describes the transport of scalar fields u : [0, 1] × R
d → R. On the other hand, the

continuity equation {
d
dtρ + div(ρbt) = 0
ρ(0, ·) = ρ(·) (CE)

characterises the transport of densities or, more generally, measures μt = μ(t, ·)
representing (possibly singular) mass distributions. The initial data u and ρ are
usually given and the goal is to investigate existence, uniqueness and structure of
solutions.

Another instance of a transport phenomenon is the movement of dislocations,
serving as the primary mechanism for plastic deformation in crystalline materials,
such as metals [1,16]. Dislocations represent topological defects within the crystal
lattice, carrying both an orientation and a “topological charge” known as the Burg-
ers vector. When examining fields τt = τ(t, ·) : R3 → R

3 describing continuously-
distributed dislocations (with a fixed Burgers vector) being transported by a velocity
field bt, the resulting equation is the dislocation-transport equation:{

d
dtτt + curl(bt × τt) = 0
τ(0, ·) = τ .

(DT)

The three equations (CE), (TE) and (DT) can be cast into the single, unifying
geometric transport equation

∂tTt + LbtTt = 0 (GTE)
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where (Tt)t>0 is a family of k-currents in R
d, k ∈ {0, . . . , d}, and Lbt

Tt is the Lie
derivative of Tt in the direction of the field bt, defined as

Lbt
Tt = −bt ∧ ∂Tt − ∂(bt ∧ Tt).

This formula is obtained by duality via Cartan’s formula for differential forms. We
understand (GTE) in a weak sense, meaning that for every ψ ∈ C∞

c ((0, 1)) and each
smooth k-form ω ∈ Dk(Rd) it holds∫ 1

0

〈Tt, ω〉ψ′(t) − 〈Lbt
Tt, ω〉ψ(t) dt = 0.

Written in coordinates for different values of k, the geometric transport equation
(GTE) encompasses the classical transport equation (k = d), the continuity equation
(k = 0), as well as the equations for the transport of dislocation lines in crystals
(k = 1) – and even the movement of membranes in liquids (k = d−1). Notice that in
all these equations, the case of “singular” objects being transported is just as natural
as the case of fields. Apart from dislocations, which were previously discussed, the
movement of point masses, lines, or sheets is particularly relevant in fluid mechanics
when considering concentrated vorticity. Intermediate-dimensional structures also
emerge in the context of Ginzburg-Landau energies, even in static situations (e.g.
[2,13,17]).

This work offers a broad overview of the state of the art around (GTE). We pro-
vide a general theory for the geometric transport equation in the case of transported
integral (sometimes only normal) k-currents, including the case of intermediate di-
mensions (k �= 0, d). We present in particular:

• a comparison between the notions of weak solutions and of space-time solu-
tions (see below for more details); this includes a detailed analysis of various
possible definitions of variations, scattered in the literature and collected
and compared here;

• a structure theorem: For a space-time current, this theorem details the struc-
ture of its disintegration . We introduce the notion of “critical points” of a
space-time current, which turn out to be crucial in the study of transport-type
phenomena;

• various rectifiability results: we study under which conditions a time-indexed
collection of boundary-less integral k-currents can be seen as the slices of a
space-time integral current;

• the Advection Theorem : we show that a boundaryless space-time current
satisfies the negligible criticality condition (meaning that critical points are
negligible for the mass measure of the current) if and only if its slices are
advected by some vector field in the sense of (GTE);

• Existence & Uniqueness Theorem in the Lipschitz framework: In the case
where the driving vector field is assumed Lipschitz, we show the existence and
uniqueness of a path of integral currents solving (GTE);

• various Rademacher-type Differentiability Theorems, showing that a
time-indexed family of boundaryless integral currents, satisfying suitable Lip-
schitz assumptions, is a solution to (GTE) for some driving vector field;
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Figure 1 Evolution of an integral 1-current described via a space-
time integral 2-current.

• a new stability result , giving some sufficient conditions for the
“equi-integrability” of space-time currents. We show under which assumptions
a family of integral space-time currents satisfying the negligible criticality con-
dition in a uniform sense is pre-compact (in the topology of currents) and the
limit points also satisfy the criticality condition.
We conclude this short introduction with a few words on one of the pivotal

notions of this work, namely space-time solutions to (GTE). This concept builds on
the theory introduced in [19] and can be explained, in the case of integral currents,
as follows: Let S be a (k+1)-integral current in [0, 1]×R

d. Denote by S|t the slice of
S at time t (with respect to the time projection t(t, x) := t) and by S(t) := p∗(S|t)
its pushforward under the spatial projection p(t, x) := x. Standard theory gives that
S(t) is an integral k-current in R

d and that the orienting map �S ∈ L∞(‖S‖;
∧

k(R×
R

d)) (with |�S| = 1 ‖S‖-a.e.) decomposes orthogonally as

�S = ξ ∧ �S|t,
where �S|t is the orienting map of the slice S|t (see Fig. 1) and

ξ(t, x) :=
∇St(t, x)
|∇St(t, x)| .

Here, ∇St is approximate gradient of t with respect to S, i.e., the projection of ∇t
onto the approximate tangent space to (the rectifiable carrier of) S. We can now
define the geometric derivative of S as the (normal) change of position per time of
a point travelling on the current being transported, that is,

d
dt

S(t, x) :=
p(ξ(t, x))
|t(ξ(t, x))| =

p(ξ(t, x))
|∇St(t, x)| ,
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for ‖S‖-a.e. (t, x). Clearly, this quantity exists only outside the critical set Crit(S) :=
{(t, x) ∈ [0, 1] ×R

d : ∇St(t, x) = 0}, which is in turn related to Sard’s theorem and
play a major role in this work.

We then say that a space-time current S as above is a space-time solution of
(GTE) if

d
dt

S(t, x) = b(t, x) for ‖S‖-a.e. (t, x). (1.1)

One can see without too much effort that space-time solutions give rise to weak
solutions: The projected slices S(t) := p∗(S|t) of an integral (k + 1)-current S
satisfying (1.1) solve (GTE). The converse question, that is, when a collection of
currents {Tt}t solving (GTE) can be realised as the slices of a space-time current is
more challenging and will be one of the recurring themes of the paper.

2. Notation and Preliminaries

This section fixes our notation and recalls some basic facts. We refer the reader
to [15,18] for notation and the main results we use about differential forms and
currents.

2.1. Linear and Multilinear Algebra

Let d ∈ N be the ambient dimension. We will often use the projection maps t : R×
R

d → R, p : R × R
d → R

d from the (Euclidean) space-time R × R
d onto the time

and space variables, respectively, which are given as

t(t, x) = t, p(t, x) = x.

We also define, for every given t ∈ R, the immersion map ιt : Rd → R × R
d by

ιt(x) := (t, x), (t, x) ∈ R × R
d.

If V is a (finite-dimensional, real) vector space, for every k ∈ N, we let
∧k

V be the
space of k-covectors on V , and

∧
k(V ) be the space of k-vectors on V . We denote the

duality pairing between v ∈ ∧
kV and α ∈ ∧k

V by
〈
v, α

〉
. Referring to [4, Section

5.8], given a k-vector v in V , we denote by span(v) the smallest linear subspace W
of V such that v ∈ ∧

k(W ). A similar definition is given for a k-covector α in V .
Whenever V is an inner product space, we can endow

∧
kV with an inner

product (Euclidean) norm | · | by declaring eI := ei1 ∧ . . . ∧ eik
, as I varies in the k-

multi-indices of {1, . . . , n}, as orthonormal whenever e1, . . . , en are an orthonormal
basis of V . A simple k-vector η ∈ ∧

kV is called a unit if there exists an orthonormal
family v1, . . . , vk such that η = v1 ∧ . . . ∧ vk, or equivalently if its Euclidean norm
|η| equals 1. We define the comass of α ∈ ∧k

V as

‖α‖ := sup
{〈

η, α
〉

: η ∈ ∧
kV, simple, unit

}
and the mass of η ∈ ∧

kV as

‖η‖ := sup
{〈

η, α
〉

: α ∈ ∧k
V, ‖α‖ ≤ 1

}
.
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Given a linear map S : V → W , we define
∧k

S :
∧

kV → ∧
kW by

(
∧k

S)(v1 ∧ . . . ∧ vk) = (Sv1) ∧ . . . ∧ (Svk),

on simple vectors and then we extend this definition by linearity to all of
∧

kV . If
there is no risk of confusion, we will often write simply S instead of

∧k
S to denote

the extension of the map S to
∧k

V .
We denote by Dk(Rd) the space of smooth k-forms on R

d with compact support.
The integer k will also be called the degree of ω ∈ Dk(Rd) and the comass of a form
ω ∈ Dk(Rd) is

‖ω‖∞ := sup
x∈Rd

‖ω(x)‖.

The pullback of a covector α ∈ ∧k
V with respect to a linear map S : V → W

is given by 〈
v1 ∧ . . . ∧ vk, S∗α

〉
:=

〈
(Sv1) ∧ . . . ∧ (Svk), α

〉
on simple k-vectors and then extended by linearity. Therefore,〈

η, S∗α
〉

=
〈
(
∧k

S)η, α
〉
.

If f : Rd → R
d is differentiable and proper (meaning that preimages of compact sets

are themselves compact) and ω ∈ Dk(Rd), we define the pullback f∗ω ∈ Dk(Rd) to
be the differential form f∗ω given by〈

v, (f∗ω)(x)
〉

:=
〈
Df(x)[v], ω(f(x))

〉
, v ∈ ∧

k(Rd).

The properness of the pullback map f can be omitted if the pullback form f∗ω
is always integrated against a current of compact support. Here, we usually use t
and p as pullback maps, which are not proper, but in all instances the compound
expressions in which they appear are compactly supported and no issue of well-
definedness arises.

2.2. Currents

We refer to [15] for a comprehensive treatment of the theory of currents, summarising
here only the main notions that we will need. The space of k-dimensional currents
Dk(Rd) is defined as the dual of Dk(Rd), where the latter space is endowed with
the locally convex topology induced by local uniform convergence of all derivatives.
Then, the notion of (sequential weak*) convergence is the following:

Tn
∗
⇀ T in the sense of currents ⇐⇒ 〈

Tn, ω
〉 → 〈

T, ω
〉

for all ω ∈ Dk(Rd).

The boundary of a current is defined as the adjoint of De Rham’s differential:
if T is a k-current, then ∂T is the (k − 1)-current given by〈

∂T, ω
〉

=
〈
T, dω

〉
, ω ∈ Dk−1(Rd).

We denote by Mk(Rd) the space of k-currents with finite mass in R
d, where the

mass of a current T ∈ Dk(Rd) is defined as

M(T ) := sup
{〈

T, ω
〉

: ω ∈ Dk(Rd), ‖ω‖∞ ≤ 1
}

.
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Let μ be a finite measure on R
d and let τ : Rd → ∧

k(Rd) be a map in L1(μ).
Then we define the current T := τμ as〈

T, ω
〉

=
∫
Rd

〈
τ(x), ω(x)

〉
dμ(x).

We recall that all currents with finite mass can be represented as T = τμ for a
suitable pair τ, μ as above. In the case when ‖τ‖ = 1 μ-a.e., we denote μ by ‖T‖ and
we call it the mass measure of T . As a consequence, we can write T = �T‖T‖, where
‖�T‖ = 1 ‖T‖-almost everywhere. One can check that, if T = τμ with τ ∈ L1(μ),
then ‖T‖ = ‖τ‖μ, hence

M(T ) =
∫
Rd

‖τ(x)‖ dμ(x).

Given a current T = τμ ∈ Dk(Rd) with finite mass and a vector field v : Rd → R
d

defined ‖T‖-a.e., we define the wedge product

v ∧ T := (v ∧ τ)μ ∈ Dk+1(Rd).

The pushforward of T with respect to a proper C1-map f : Rd → R
d is defined by〈

f∗T, ω
〉

=
〈
T, f∗ω

〉
.

In the case of measures, we employ instead the standard notation f#μ for the push-
forward of μ under a map f , namely, the measure defined by f#μ(A) = μ(f−1(A)).

If T is simple, i.e., �T is a simple k-vector ‖T‖-almost everywhere, then the
same inequality holds with the mass norm ‖ · ‖ replaced by the Euclidean norm | · |.

Given two currents T1 ∈ Dk1(R
d1) and T2 ∈ Dk2(R

d2), their product T1 × T2 is
a well-defined current in Dk1+k2(R

d1 × R
d2).

A k-current on R
d is said to be normal if both T and ∂T have finite mass. The

space of normal k-currents is denoted by Nk(Rd). The weak* topology on the space
of (normal) currents has good properties of compactness and lower semicontinuity:
if (Tj)j is a sequence of currents with M(Tj)+M(∂Tj) ≤ C < +∞ for every j ∈ N,
then there exists a normal current T such that, up to a subsequence, Tj

∗
⇀ T .

Furthermore,

M(T ) ≤ lim inf
j→+∞

M(Tj), M(∂T ) ≤ lim inf
j→+∞

M(∂Tj).

An integer-multiplicity rectifiable k-current T is a k-current of the form

T = m �T H k R,

where:
(1) R ⊂ R

d is countably H k-rectifiable (that is, it can be covered up to a H k-
null set by countably many images of Lipschitz functions from R

k to R
d) with

H k(R ∩ K) < ∞ for all compact sets K ⊂ R
d;

(2) �T : R → ∧
kR

d is H k-measurable and for H k-a.e. x ∈ R the k-vector �T (x) is
simple, unit (|�T (x)| = 1), and its span coincides with the approximate tangent
space TanxR to R at x;

(3) m ∈ L1
loc(H

k R;Z);
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The map �T is called the orientation map of T and m is the multiplicity. Let T =
�T‖T‖ be the Radon–Nikodým decomposition of T with the total variation measure
‖T‖ = |m|H k R ∈ M+

loc(R
d). Then we have

M(T ) = ‖T‖(Rd) =
∫

R

|m(x)| dH k(x).

We then define the space of integral k-currents (k ∈ N ∪ {0}):

Ik(Rd) :=
{
T integer-multiplicity rectifiable k-current : M(T ) + M(∂T ) < ∞}

.

For F ⊂ R
d closed, the subspaces Ik(F ), Nk(F ) are defined as the spaces of all

T ∈ Ik(Rd), or T ∈ Nk(Rd), respectively, with support (in the sense of measures) in
F . Since F is closed, these subspaces are weakly* closed.

An important property of integral currents is the Federer-Fleming compactness
theorem [18, Theorems 7.5.2, 8.2.1]: Let (Tj)j ⊂ Ik(Rd) with

sup
j∈N

(M(Tj) + M(∂Tj)) < ∞.

Then, there exists a (not relabeled) subsequence and a T ∈ Ik(Rd) such that Tj
∗
⇀ T

in the sense of currents.

2.3. Flat Norms

For T ∈ Ik(Rd), the (Whitney) flat norm is given by

F(T ) := inf{M(Q) + M(R) : Q ∈ Nk+1(Rd), R ∈ Nk(Rd), T = ∂Q + R} (2.1)

and one can also consider the flat convergence F(T − Tj) → 0 as j → ∞. Under
the mass bound supj∈N

(
M(Tj)+M(∂Tj)

)
< ∞, this flat convergence is equivalent

to weak* convergence (see, for instance, [18, Theorem 8.2.1] for a proof). The flat
norm admits also a dual representation (see [15, 4.1.12]) as

F(T ) = sup{〈T, ω〉 : ω ∈ Dk(Rd), ‖ω‖∞ ≤ 1, ‖dω‖∞ ≤ 1}. (2.2)

When ∂T = 0, one can also consider the homogeneous flat norm

F(T ) := inf{M(Q) : Q ∈ Nk+1(Rd), T = ∂Q}, (2.3)

which also admits a dual representation as

F(T ) = sup{〈T, ω〉 : ω ∈ Dk(Rd), ‖dω‖∞ ≤ 1}. (2.4)

If T is integral, one can also consider the corresponding integral versions of (2.1)
and (2.3), called integral flat norm and integral homogeneous flat norm respectively:

FI(T ) := inf{M(Q) + M(R) : Q ∈ Ik+1(Rd), R ∈ Ik(Rd), T = ∂Q + R},

FI(T ) := inf{M(Q) : Q ∈ Ik+1(Rd), T = ∂Q}.

These, however, do not admit a dual representation as in (2.2) and (2.4). Notice that
these are not proper norms because Ik(Rd) is not a vector space. In the following, we
will also consider the homogeneous flat norms F,FI on the whole Nk(Rd) or Ik(Rd),
in which case they are understood to be +∞ on currents that are not boundaryless.
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2.4. Slicing and Coarea Formula for Integral Currents

Given a Lipschitz function f : Rn → R and S ∈ Nk+1(Rn), the slicing of S at level
t is defined by the following, which will be referred to as the cylinder formula:

S|t := ∂(S {f < t}) − (∂S) {f < t}.

The slices with respect to f are also characterised by the following property:∫
S|tψ(t) dt = S (ψ ◦ f)df for every ψ ∈ C∞

c (R). (2.5)

see, e.g., [9] or also [15, 4.3.2]. For integral currents the following coarea formula
holds [19, Section 2.4]: For every non-negative Borel function g : Rn → R we have∫

Rn

g(z)|∇Sf(z)| d‖S‖(z) =
∫
R

(∫
Rn

g(z)d‖S|t‖(z)
)

dt, (2.6)

where ∇Sf(z) denotes the tangential gradient of the map f on the approximate
tangent space to S at z, that is, the projection of the vector ∇f(z) onto the ap-
proximate tangent space to S at z (see [7, Theorem 2.90]). The equality (2.6) holds
also whenever g ∈ L1(|∇Sf |‖S‖).

2.5. Disintegration of Measures

Given the product structure of the space-time R×R
d, we will often work with prod-

uct measures or generalised product measures and we will consider the disintegration
of measures on R×R

d with respect to the map t, for which we follow the approach
of [3]. Let {μt} = {μt : t ∈ R} be a family of finite (vector) measures on R × R

d.
We say that such a family is Borel if

t �→
∫
R×Rd

φ dμt

is Borel for every test function φ ∈ Cc(R × R
d). Given a measure ν on R and a

family {ρt : t ∈ R} of measures on R
d such that∫

R

|ρt|(Rd) dν(t) < ∞,

we define the generalised product ν ⊗ ρt as the measure on R × R
d such that∫

R×Rd

φ(t, x) d(ν ⊗ ρt)(t, x) =
∫
R

(∫
Rd

φ(t, x) dρt(x)
)

dν(t)

for every φ ∈ Cc(Rd).
Let now μ be a (possibly vector-valued) measure in R × R

d and let ν be a
measure on R such that t#μ � ν. Then, there exists a Borel family {μt : t ∈ R} of
(possibly vector-valued) measures on R × R

d such that:
(i) μt is supported on {t} × R

d for ν-a.e. t ∈ R;
(ii) μ can be decomposed as

μ =
∫
R

μt dν(t),
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which means

μ(A) =
∫
R

μt(A) dν(t), (2.7)

for every Borel set A ⊂ R × R
d.

Any family {μt} satisfying the conditions (i) and (ii) above will be called a disinte-
gration of μ with respect to t and ν. We remark that, from (2.7) we obtain∫

R×Rd

φ dμ =
∫
R

(∫
{t}×Rd

φ dμt

)
dν(t)

for every Borel function φ : R × R
d → [0, +∞].

2.6. Decomposability Bundle

We recall from [4] the definition and a few basic facts about the decomposability
bundle of a measure.

Given a measure μ on R
n, the decomposability bundle is a μ-measurable map

x �→ V (μ, x) (defined up to μ-negligible sets) which associates to μ-a.e. x a subspace
V (μ, x) of Rn. The map V satisfies the following property: Every Lipschitz function
f : Rn → R is differentiable at x along the subspace V (μ, x), for μ-a.e. x ∈ R

n.
Moreover, this map is μ-maximal in a suitable sense, meaning that V (μ, x) is, for μ-
a.e. x, the biggest subspace with this property (see [4, Theorem 1.1]). The directional
derivative of f at x in direction v ∈ V (μ, x) will be denoted by Df(x)[v]. Observe
that this is a slight abuse of notation, as the full differential Df might not exist at
x, even though the directional derivative exists.

A key fact about the decomposability bundle with regard to the theory of
normal currents is the following [4, Theorem 5.10]: Given a normal k-current T =
�T‖T‖ in R

n, it holds that

span(�T ) ⊆ V (‖T‖, x) for ‖T‖-a.e. x ∈ R
n. (2.8)

In particular, given any Lipschitz function f , we can define DT f at ‖T‖-a.e. point
as the restriction of the differential of f to span(�T ). We will usually just write Df

instead of DT f when this differential is evaluated in a direction in span(�T ).
For a normal current T ∈ Nk(Rd), it is possible to define the pushforward f∗T

when f : Rd → R
d is merely Lipschitz [15, 4.1.14]. Classically, no explicit formula

for this pushforward was available. However, it is shown in [4, Proposition 5.17] that
the pushforward formula, in fact, remains true:

Lemma 2.1. Suppose that T = τμ is a normal k-current in R
n, and f : Rn → R

m

is a proper, injective Lipschitz map. Then, the pushforward current f∗T satisfies

f∗T = τ̃ μ̃,

where μ̃ = f#μ, and τ̃(y) = Df(x)[τ(x)] = DT f(x)[τ(x)] with y = f(x).
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3. Space-Time Currents: Variations and Disintegration

3.1. Notions of Variation and AC Integral Currents

Given a (locally compact) metric space (X, d) and a curve t �→ γ(t) ∈ X, t ∈ [a, b]
(a < b), we define the pointwise variation of γ as

d-pV(γ; [a, b]) := sup

{
N∑

i=1

d(γ(ti+1), γ(ti)) : a ≤ t1 ≤ . . . ≤ tN ≤ b

}
. (3.1)

We further define the essential variation of the curve γ as

d-eV(γ; [a, b]) := inf
{
d-pV(γ̃; [a, b]) : γ(t) = γ̃(t) for L 1-a.e. t ∈ [a, b]

}
.

We extend the same definition to curves γ which are only defined for L 1-a.e. t ∈
[a, b]. In this case, the supremum in (3.1) is taken over families of partitions such
that γ is defined at ti for every i. By [5, Remark 2.2], the infimum in the definition
of essential variation is achieved and therefore, if d-eV(γ : [a, b]) < ∞, then there
exist two good representatives, the right-continuous representative γ+ and the left-
continuous representative γ− such that

d-eV(γ±; [a, b]) = d-pV(γ̃; [a, b]).

If d-eV(γ; [a, b]) < ∞, then d-eV(γ; ) can be extended to a finite measure on the
Borel subsets of [a, b].

In this vein, for for S ∈ Ik+1([0, 1] × R
d) and U ∈ Nk+1([0, 1] × R

d) with
∂S (0, 1) × R

d = ∂U (0, 1) × R
d = 0 we set, with a little abuse of notation,

FI-eV(S; [a, b]) := FI-eV(t �→ S(t); [a, b]),

F-eV(U ; [a, b]) := F-eV(t �→ U(t); [a, b])

for every closed interval [a, b] ⊂ [0, 1]. Recall that we denote by S(t) := p∗(S|t)
the pushforward of the slice S|t onto R

d. Likewise we define the slices U |t and the
pushforwards U(t) := p∗(U |t) for L 1-a.e. t.

On the other hand, in the work [19] the author introduced the (space-time)
variation of an integral space-time current. Given a current S of finite mass, i.e.,
S ∈ Mk+1([0, 1]×R

d), we define the (space-time) variation of S on the interval [a, b]
to be

Var(S; [a, b]) :=
∫
[a,b]×Rd

‖p(�S)‖ d‖S‖.

Here and in the following, we will often write p(�S) instead of
∧k+1p(�S) for ease of

notation. We remark that, if S is integral, then �S is simple and so is p(�S). Therefore,
in this case, ‖p(�S)‖ = |p(�S)|. One can further see that Var(S; ) can be extended
to all Borel sets (by the very same formula) to define a non-negative finite measure
on R, which will still be denoted by Var(S; ).

One might wonder which relation exists between these various notions of vari-
ation. It is fairly easy to see that the space-time variation bounds from above the
pointwise variation; in general, however, the opposite inequality may not hold, due
to the possible presence of jumps in the path t �→ S|t. Indeed, whenever a jump



P. Bonicatto

occurs at a certain time t0, Var(S; ) depends on the particular current that con-
nects S|t−0 and S|t+0 , while FI-eV always measures the optimal connection. The next
theorem entails that jumps are in fact the only obstructions to the equality between
Var and FI-eV.

Theorem 3.1. (Equality of variations) Let S ∈ Ik+1([0, 1] × R
d) with ∂S (0, 1) ×

R
d = 0 and such that Var(S; ) is non-atomic. Then,

Var(S; ) = F-eV(S; ) = FI-eV(S; ).

Theorem 3.1 plays a central place in this work and can be seen as a generalisa-
tion to any codimension of the following formula, valid for a function u : [0, 1] → R

that is continuous and of bounded variation:

pV(u,R) =
∫
graph(u)

|p(τ)| dH 1 = Var(Su,R),

where Su := τH 1 graph(u) and τ is the forward-pointing unit tangent to graph(u).
We do not discuss here the proof of Theorem 3.1 and we refer the reader to

[10, Theorem 5.3]. We simply remark that it is obtained as a consequence of the
following space-time rectifiability result:

Theorem 3.2. (Rectifiability) Let t �→ Tt ∈ Ik(Rd), t ∈ [0, 1], with ∂Tt = 0 for every
t ∈ [0, 1], and such that

sup
t∈[0,1]

M(Tt) < ∞, FI-eV(t �→ Tt; [0, 1]) < ∞.

Then, there exists S ∈ Ik+1(R × R
d) with ∂S (0, 1) × R

d = 0 such that:
(a) S(t) = p∗(S|t) = Tt for L 1-a.e. t ∈ [0, 1];
(b) Var(S; ) = FI-eV(t �→ Tt; ) as measures on [0, 1].

Theorem 3.2 is indeed a space-time rectifiability result for general integral cur-
rents: Under a BV bound in time, we can “glue” the currents of a path t �→ Tt in a
space-time integral current, whose space-time variation coincides with the pointwise
one of the path. These gluing procedures play an important role in our analysis and
we will be exploited several times throughout this work.

Remark 3.3. It is possible to show that, if we further assume that the variation
is non-atomic, i.e. there are no jumps in the path t �→ Tt, then the current S in
Theorem 3.2 is unique. See, for more details, Corollary [10, Corollary 6.5].

We conclude this section introducing the class of absolutely continuous (AC)
integral space-time currents:

IAC
1+k([0, 1] × R

d) :=
{
S ∈ I1+k([0, 1] × R

d) : Var(S; ) � L 1, Var(∂S; ) (0, 1) � L 1
}
.

3.2. Disintegration of Space-Time Integral Currents

We now turn our attention to the disintegration structure of space-time integral
currents. Let S ∈ Ik+1([0, 1] × R

d) and let ‖S‖ denote its mass measure. We define
the critical set of S as

Crit(S) :=
{
(t, x) ∈ [0, 1] × R

d : ∇St(t, x) = 0
}
. (3.2)
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Here, ∇St is approximate gradient of t with respect to S, i.e., the projection of ∇t
onto the approximate tangent space to the H k+1-rectifiable carrier of S.

Theorem 3.4. (Disintegration structure) Let S ∈ Ik+1([0, 1] × R
d) and let {μt} the

disintegration of ‖S‖ with respect to the map t and the measure

λ := L 1 + (t#‖S‖)s,

where (t#‖S‖)s denotes the singular part (with respect to L 1) of t#‖S‖, i.e.

‖S‖ =
∫ 1

0

μt dλ(t) =
∫ 1

0

μt dt +
∫ 1

0

μt dλs(t).

Then the following statements hold:

(i) For λs-a.e. t ∈ R the measure μt is concentrated on Crit(S).
(ii) For L 1-a.e. t ∈ R the measure μt can be decomposed as

μt = |∇St|−1‖S|t‖ + μs
t ,

where μs
t is a measure which is concentrated on Crit(S) and is singular with

respect to |∇St|−1‖S|t‖ and also with respect to H k.

The disintegration of the mass measure ‖S‖ with respect to the map t can
therefore be written as

‖S‖ =
∫ 1

0

(|∇St|−1‖S|t‖ + μs
t

)
dt +

∫ 1

0

μt dλs(t). (3.3)

Observe that, by the Besicovitch differentiation theorem (see, e.g., [7, Thm. 2.22]),
μs

t can be identified (for L 1-a.e. t) with the restriction of μt to the set{
(t, x) : lim sup

ρ→0

μt(Bρ(x))
ρk

= ∞
}

.

This conveys the idea that μs
t is more concentrated than H k.

We remark that, in general, all terms in the disintegration (3.3) can be non-zero.
The measure λs takes into account singular-in-time behaviour and one can

surmise it vanishes if S is (absolutely) continuous in time. The next proposition
confirms this intuition and contains a characterisation of AC space-time current via
time projections.

Proposition 3.5. Let S ∈ Ik+1([0, 1] × R
d) with ∂S (0, 1) × R

d = 0. Then, S ∈
IAC
1+k([0, 1] × R

d) if and only if λs = 0, i.e.,

t#(‖S‖ Crit(S)) � L 1.

On the other hand, the measures μs
t in (3.3) account for a completely different

type of singularity, measuring a sort of diffuse concentration that is “smeared out
in time”. These aspects will be further investigated in the next section.
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3.3. Negligible Criticality Condition and Sard-type Property

The considerations at the end of the previous section inspire the following definitions,
which turn out to be central:

Definition 3.6. A space-time current S ∈ I1+k([0, 1] × R
d) is said to satisfy the

negligible-criticality condition (with respect to the map t) if

‖S‖ Crit(S) = 0, (NC)

where Crit(S) is the critical set of S defined in (3.2).

The condition (NC) means that for ‖S‖-a.e. (t, x), span (�S(t, x)) �⊆ {0} × R
d

(i.e., the approximate tangent space to S has almost always a non-trivial time
component).

We also consider the following (in general weaker) condition:

Definition 3.7. A current S ∈ I1+k([0, 1] × R
d) is said to have the Sard property

(with respect to the map t) if

μs
t = 0 for L 1-a.e. t ∈ R, (S)

where μs
t is as in Theorem 3.4.

The following lemma clarifies the relationship between (NC) and the Sard prop-
erty.

Lemma 3.8. Let S ∈ I1+k([0, 1]×R
d). Then, the following statements are equivalent:

(i) S has the Sard property, i.e., μs
t = 0 for L 1-a.e. t ∈ R;

(ii) t#(‖S‖ Crit(S)) is singular with respect to L 1.
Furthermore, (NC) implies both of them.

Notice that this is indeed a Sard-type property: if f : Rd → R is a C1 function
and Γ:={(f(x), x) : x ∈ R

d} ⊂ R×R
d denotes its graph, then f has the classical Sard

property (namely, L 1(f({x : ∇f(x) = 0})) = 0) if and only if the natural integral
d-current associated to Γ has the Sard property in the sense of Definition 3.7.

The following structure result offers some equivalent conditions to the negligible
criticality property for AC currents.

Proposition 3.9. Let S ∈ IAC
1+k([0, 1] × R

d). Then, the following are equivalent:
(i) S has the (NC) property, i.e., ‖S‖ Crit(S) = 0;
(ii) it holds that t#(‖S‖ Crit(S)) ⊥ L 1;
(iii) S has the Sard property, i.e., μs

t = 0 for L 1-a.e. t ∈ R;
(iv) ‖S‖ � ∫ 1

0
‖S|t‖ dt, that is, for every Borel set A ⊂ [0, 1] × R

d∫ 1

0

‖S|t‖(A) dt = 0 =⇒ ‖S‖(A) = 0.

Furthermore, if any of the above conditions holds, then the disintegration of the
mass measure ‖S‖ with respect to t and L 1 has the form

‖S‖ =
∫ 1

0

|∇St|−1‖S|t‖ dt.
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Figure 2 A space-time current without the Negligible Criticality condition.

Observe that if k = 0, the Sard property is always satisfied, that is, for every S ∈
I1(R×R

d) it holds that t#(‖S‖ C) ⊥ L 1, since by the area formula H 1(t(C)) = 0.
So, the effects related to the criticality are not present in all of the classical theory
of BV- or AC-maps (which can be recovered as the k = 0 endpoint of our theory).

For k > 1, instead, the Sard property is not always satisfied and it is possible to
construct AC (even Lipschitz) integral currents that do not have the Sard property.
We refer the reader to [10, Section 9] for the details of the construction of such an
example—see Fig. 2 for a visual depiction of some steps of the construction.

We conclude this section by observing that it is not clear how to extend the
theory developed within these paragraphs to normal space-time currents. This ex-
tension, beside having a purely mathematical interest, would be extremely impor-
tant in connection with applications, too. Indeed, the “diffuse” setting of normal
currents is the natural one to consider, allowing one to deal with fields of singular
objects, as it is often required in Materials Science.

4. Geometric Derivative and Advection Theorem

In this section, we show one of the main results, more precisely what we call the
advection theorem. This result entails that for space-time currents satisfying the
negligible criticality condition (NC), there exists an advecting vector field – namely
their slices satisfy the transport equation (GTE). Furthermore, also the converse
holds. These results should be compared with e.g. [8, Theorem 8.3.1], where a similar
advection theorem is established within the class of probability measures.

Recall that, if S ∈ IAC
k+1([0, 1]×R

d) then, by Proposition 3.9, the condition (NC)
is equivalent to S having the Sard property or also to

‖S‖ �
∫ 1

0

‖S|t‖ dt.

We define the geometric derivative of such an S as

b(t, x) :=
D
Dt

S(t, x) :=
p(ξ(t, x))
|∇St(t, x)| , (t, x) ∈ Crit(S)c, (4.1)
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where ξ = |∇St|−1∇St on Crit(S)c. Observe that b is well-defined (
∫ 1

0
‖S|t‖ dt)-

almost everywhere and under (NC), both ξ and b are well-defined also ‖S‖-almost
everywhere.

The main result reads as follows:

Theorem 4.1. (Advection) Let S ∈ IAC
k+1([0, 1] × R

d) with (∂S) (0, 1) × R
d = 0

satisfy (NC). Then, the geometric derivative b := D
DtS defined in (4.1) belongs to

L1(
∫ 1

0
‖S|t‖ dt) and it holds that

d
dt

S(t) + LbtS(t) = 0. (4.2)

Conversely, if there exists a vector field b ∈ L1(
∫ 1

0
‖S|t‖ dt) such that (4.2) holds,

then S satisfies (NC).

Proof. We here sketch only the proof of the sufficiency part, referring the interested
reader to the original paper [10] for the complete proof (notice that the proof of
the necessity part requires a suitable gluing techique that will be discussed later in
this work). Suppose we are given S ∈ IAC

k+1([0, 1] × R
d) with (∂S) (0, 1) × R

d = 0
satisfying (NC). We therefore have the disintegration

S Crit(S)c =
∫ 1

0

ξ

|∇St| ∧ S|t dt.

In particular, since S has (NC), then S = S Crit(S)c and therefore

S =
∫ 1

0

ξ

|∇St| ∧ S|t dt.

It will be convenient to write this conclusion in the following form:

∫ 1

0

(
ξ

|∇St| ∧ S|t
)

ψ(t) dt = (ψ ◦ t)S for every ψ ∈ C∞
c ((0, 1)). (4.3)

We now want to prove that for every ψ ∈ C∞
c ((0, 1)) and for every ω ∈ Dk(Rd) it

holds that

∫ 1

0

〈S(t), ω〉ψ′(t) − 〈LbtS(t), ω〉ψ(t) dt = 0. (4.4)
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Notice that

−
∫ 1

0

〈LbtS(t), ω〉ψ(t) dt =
∫ 1

0

〈bt ∧ S(t), dω〉ψ(t) dt

=
〈∫ 1

0

bt ∧ S(t)ψ(t) dt, dω

〉

=
〈∫ 1

0

p(ξ)
|∇St| ∧ p∗(S|t)ψ(t) dt, dω

〉

=
〈∫ 1

0

p∗

(
ξ

|∇St| ∧ S|t
)

ψ(t) dt, dω

〉

=
〈
p∗

(∫ 1

0

ξ

|∇St| ∧ S|tψ(t) dt

)
, dω

〉
= 〈p∗((ψ ◦ t)S), dω〉
= 〈∂p∗((ψ ◦ t)S), ω

where in the second-to-last equality we used (4.3). Using also the commutativity
between boundary and pushforward, we have thus shown

−
∫ 1

0

Lbt
(S(t))ψ(t) dt = ∂p∗[(ψ ◦ t)S] = p∗∂[(ψ ◦ t)S]. (4.5)

Observe now that for any k-current T , for any f ∈ C∞
c (R), and any ω ∈ Dk(Rd),

the Leibniz rule holds in the form

〈∂(fT ), ω〉 = 〈f∂T, ω〉 − 〈T df, ω〉.
Using this in (4.5) and also taking into account that d(ψ ◦ t) = (ψ′ ◦ t)dt as well
as (2.5),

−
∫ 1

0

〈Lbt
S(t), ω〉ψ(t) dt = 〈∂[(ψ ◦ t)S],p∗ω〉

= 〈(ψ ◦ t)∂S,p∗ω〉 − 〈S d(ψ ◦ t),p∗ω〉
= 〈(ψ ◦ t)∂S,p∗ω〉 − 〈S (ψ′ ◦ t)dt,p∗ω〉

= 〈(ψ ◦ t)∂S,p∗ω〉 −
∫ 1

0

〈S|t,p∗ω〉ψ′(t) dt.

Since ψ ∈ C∞
c ((0, 1)) and ∂S (0, 1) × R

d = 0, the term (ψ◦t)∂S vanishes. Recalling
that, by definition, S(t) = p∗(S|t), we finally obtain (4.4). �

5. Well-Posedness for Lipschitz Velocity Fields

Relying on the space-time approach, we now present a well-posedness result for
(GTE). We show that a Lipschitz condition on the vector field b is sufficient to
ensure existence and uniqueness of solutions to the initial-value problem for the
geometric transport equation.
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Theorem 5.1. Let b : Rd → R
d be a globally bounded and Lipschitz vector field with

flow Φt = Φ(t, ) : Rd → R
d and let T ∈ Nk(Rd) be a k-dimensional normal current

on R
d. Then, the initial-value problem{

d
dtTt + LbTt = 0, t ∈ (0, 1),
T0 = T

admits a solution (Tt)t∈(0,1) ⊂ Nk(Rd) of normal k-currents, which is unique in the
class of normal k-currents. The solution is given by the pushforward of the initial
current under the flow, namely, Tt = (Φt)∗T . In particular, if T is integral, then so
is Tt, t ∈ (0, 1).

Notice that, at a technical level, it is not immediately clear why Theorem
5.1 should hold true. We know that solutions to (GTE) can be understood as the
transport of the currents Tt along the flow lines of b. However, since the flow of b
is merely Lipschitz, it may well occur that it is not (fully) differentiable anywhere
on the support of the transported currents, therefore questioning the possibility of
performing pointwise computations.

In order to overcome these difficulties we combine the space-time approach
developed in the sections above with a relatively recent tool from Geometric Measure
Theory, namely the notion of decomposability bundle, introduced by Alberti and
Marchese [4]. This tool ensures that, while full differentiability of the flow Φt on the
support of T may fail, the derivative of Φt still exists in a sufficiently good sense to
define the pushforward (Φt)∗T pointwise (and not via the homotopy formula) – see
Lemma 2.1.

Additionally, we remark that the existence part of Theorem 5.1 can be proved
by means of a simple approximation argument that does not necessitate the decom-
posability bundle (but assumes the existence of solutions when the drift is smooth).
In this section we will therefore focus on the uniqueness part.

5.1. The Case k = 0: Uniqueness for the Continuity Equation

We present first a simple proof of uniqueness for the transport of 0-currents, i.e.,
signed measures advected via the continuity equation. Our proof differs from the
classical one that can be found, e.g., in [8, Proposition 8.3.1] – see also [6,12,14].

In the case of 0-currents the geometric transport equation (GTE) reduces to
the continuity equation

d
dt

μt + div(bμt) = 0 (5.1)

where (μt)t∈(0,1), is a family of signed measures. We understand this equation in
the usual distributional sense, i.e.∫ 1

0

∫
Rd

∂tψ(t, x) + b(x) · ∇ψ(t, x) dμt(x) dt = 0 (5.2)

for all ψ ∈ C1
c((0, 1) × R

d).
We illustrate our proof idea by showing uniqueness under the additional regu-

larity assumption that b is of class C1. The key is to show directly that the solution
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is necessarily given by

μt = (Φt)#μ

or, equivalently, that given a solution (μt)t∈(0,1), the map t �→ (Φ−t)#μt is constant.
It is therefore natural to test the weak formulation (5.2) with a function of the
form ψ(t, x) = α(t)β(Φ−t(x)). The field is C1, and so is its flow Φ, thus one can
differentiate ψ classically. On the one hand we have that

∂tψ(t, x) = α′(t)β(Φ−t(x)) + α(t)∇β(Φ−t(x)) · d
dt

Φ−t(x)

= α′(t)β(Φ−t(x)) − α(t)∇β(Φ−t(x)) · b(Φ−t(x)),

where we used the defining property of Φ. On the other hand, by an elementary
computation on the directional derivative of the flow (see [11, Lemma 2.3]) we have

b(x) · ∇xψ(t, x) = α(t)b(x) · (∇β(Φ−t(x))DΦ−t(x)
)

= α(t)∇β(Φ−t(x)) · (
DΦ−t(x)[b(x)]

)
= α(t)∇β(Φ−t(x)) · b(Φ−t(x)).

Plugging the two terms in the weak formulation gives that∫ 1

0

α′(t)
〈
μt, β(Φ−t(x))

〉
dt = 0

for all α ∈ C1((0, 1)) and all β ∈ C1(Rd). From this we deduce that t �→ (Φ−t)#μt

is constant, as required.

5.2. The Lipschitz Case

We now consider the case when b is Lipschitz. Notice that, setting μ := L 1(dt) ⊗
μt(dx), two equivalent ways of formulating the PDE are the following:∫

(0,1)×Rd

(1, b(x)) · ∇̃ψ(t, x) dμ(t, x) = 0 (5.3)

for all ψ ∈ C1
c((0, 1) × R

d), where ∇̃ψ(t, x) := (∂tψ(t, x), ∇ψ(t, x)). Equivalently,∫
(0,1)×Rd

Dψ(t, x)[(1, b(x))] dμ(t, x) = 0

for all ψ ∈ C1
c((0, 1) × R

d).
Having introduced this notation, we can present the following key result.

Lemma 5.2. In the setting above, (1, b(x)) ∈ V (μ, (t, x)) for μ-a.e. (t, x). In par-
ticular, every Lipschitz function ψ : (0, 1) × R

d → R is differentiable in direction
(1, b(x)) for μ-a.e. (t, x) ∈ (0, 1) × R

d.

Proof. Let U be the 1-current in (0, 1) × R
d defined by U := (1, b(x))μ. Then (5.3)

can be understood as

∂U = 0 in (0, 1) × R
d,

hence U is a normal 1-current without boundary in (0, 1) ×R
d. Thus, the assertion

follows by (2.8). �
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One can easily show, as a consequence of Lemma 5.2, that one can use any
Lipschitz test function in the distributional formulation of the continuity equation
(5.1). This crucial ingredient allows us to get the desired uniqueness, as we are about
to show.

Proof of the uniqueness statement of Theorem 5.1 in the case k = 0. We choose as
test function ψ(t, x) := α(t)β(Φ−t(x)), where α ∈ C1

c((0, 1)) and β ∈ C1
c(R

d).
Recalling that Φ−t is Lipschitz, also ψ is a Lipschitz function and therefore, by
Lemma 5.2, ∫

(0,1)×Rd

Dψ(t, x)[(1, b(x))] dμ(t, x) = 0. (5.4)

At this point, one can easily compute (at every point) the integrand, showing that

Dψ(t, x)[(1, b(x))] = α′(t)β(Φ−t(x)) for every (t, x) ∈ (0, 1) × R
d. (5.5)

Then, plugging (5.5) into (5.4), we have

0 =
∫
(0,1)×Rd

α′(t)β(Φ−t(x)) dμ(t, x)

=
∫ 1

0

α′(t)
〈
μt, β ◦ Φ−t

〉
dt

=
∫ 1

0

α′(t)
〈
(Φ−t)#μt, β

〉
dt.

This holds for every α ∈ C1
c((0, 1)), hence we obtain that the map t �→ 〈

(Φt)−1
# μt, β

〉
is constant for every β. Recalling the weak∗ continuity of t �→ μt it follows that〈

(Φt)−1
# μt, β

〉
=

〈
μ0, β

〉
for all β ∈ C1

c(R
d),

and since β is arbitrary we have (Φt)−1
# μt = μ0 as measures, i.e. μt = (Φt)#μ0. �

5.3. The Case k > 0: Gluing of Transported Currents

The strategy presented above for the continuity equation essentially carries over
to the case k > 0 and can be adapted with minor modifications. We single out
here a single technical difficulty: we need to find a replacement for Lemma 5.2 or,
more precisely, for the space-time 1-current U , defined directly as U = (1, b)μ in
the proof of Lemma 5.2. In order to do this, we need to resort once again to gluing
techniques. The following proposition constitutes another approach (beside the one
presented in Theorem 3.2) to turn a path of integral currents into a space-time
current. It applies when we know a priori that our path of integral currents satisfies
the geometric transport equation.

Lemma 5.3. Let (Tt)t∈(0,1) ⊂ Nk(Rd) with ∂Tt = 0 be a weakly∗-continuous solution
to (GTE). Write Tt = �Tt‖Tt‖, with �Tt unit k-vectors and let �T : (0, 1) × R

d →∧
k(R × R

d) be the k-vector field defined L 1
t ⊗ ‖Tt‖-almost everywhere by

�T (t, x) := (ιt)∗ �Tt(x),

where we recall that ιt(x) := (t, x). Define the current

U := [(1, b(x)) ∧ �T (t, x)]L 1(dt) ⊗ ‖Tt‖(dx).
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Then U is a normal (k + 1)-current in (0, 1) × R
d, and ∂U (0, 1) × R

d = 0.

The fact that U is normal allows one to use the Alberti-Marchese’s theory, and
in particular we immediately obtain the following result:

Corollary 5.4. Define the measure μ := L 1(dt) ⊗ ‖Tt‖ in R × R
d. Then, we have

span((1, b) ∧ �Tt(x)) ⊂ V (μ, (t, x)) for μ-a.e. (t, x) in (0, 1) × R
d.

We refer the reader to [11] for the complete proof.

6. Rademacher-type Differentiability Result

We collect in this section two Rademacher-type differentiability theorems for paths
of currents. Given a path t �→ Tt ∈ Ik(Rd), ∂Tt = 0, which is absolutely continuous
in time with respect to the homogeneous integral flat norm FI, we ask when we can
find a vector field bt : Rd → R

d that solves the geometric transport equation. The
existence of such a vector field implies that the path t �→ Tt is differentiable in a
geometric sense, hence the designation “Rademacher”.

Theorem 6.1. (Weak differentiability) Let t �→ Tt ∈ Ik(Rd), t ∈ [0, 1], with ∂Tt =
0 for every t ∈ [0, 1], be a path that is absolutely continuous with respect to the
homogeneous integral flat norm F (which is implied by FI-absolute continuity), that
is,

F(Ts − Tt) ≤
∫ t

s

g(r) dr

for some g ∈ L1([0, 1]) and all s < t. Then, there exists a finite-mass (k+1)-current
Rt ∈ Mk+1(Rd) that solves the equation

d
dt

Tt − ∂Rt = 0.

We next ask when the currents Rt are actually of the form −bt ∧ Tt for some
vector field bt, so that we can solve the geometric transport equation in the original
formulation (GTE). This question is more subtle, and after the previous sections it is
perhaps not surprising that a positive answer is strictly related to the property (NC)
or, equivalently, the Sard property (S).

Theorem 6.2. (Strong differentiability) Let t �→ Tt ∈ Ik(Rd), t ∈ [0, 1], be a path
that is absolutely continuous with respect to the homogeneous integral flat norm FI

and such that

∂Tt = 0, t ∈ [0, 1] and sup
t∈[0,1]

M(Tt) < ∞.

Let S be the unique current given by Theorem 3.2 (and Remark 3.3) in this setting.
If S satisfies (NC), then there exists b ∈ L1(L 1⊗‖Tt‖) such that (GTE) holds, that
is,

d
dt

Tt + LbtTt = 0.
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In some special cases – namely when k ∈ {0, d − 2, d − 1, d} – it is known that
FI coincides with F, and thus all the results can be stated using the latter norm.

Corollary 6.3. Let k ∈ {0, d − 2, d − 1, d} and let t �→ Tt ∈ Ik(Rd), t ∈ [0, 1], be
a path that is absolutely continuous with respect to the homogeneous (non-integral)
flat norm F and such that

∂Tt = 0, t ∈ [0, 1] and sup
t∈[0,1]

M(Tt) < ∞.

Let S be the unique current given by Theorem 3.2 (and Remark 3.3) in this setting.
If S satisfies (NC), then there exists b ∈ L1(L 1 ⊗ ‖Tt‖) such that (GTE) holds.

For general k it is not known whether, for T ∈ Ik(Rd), the definitions of ho-
mogeneous flat norm and homogeneous integral flat norm give rise to equivalent
norms.

7. Stability of AC Integral Currents with (NC)

In this final section, we study the stability properties of absolutely continuous space-
time integral currents and of the condition (NC).

Proposition 7.1. Let (t �→ T ε
t )ε>0 ⊂ AC((0, 1); Ik(Rd)) be a family of curves of

currents with ∂T ε
t = 0 for every ε > 0 and t ∈ (0, 1). Assume that

sup
ε>0

sup
t∈(0,1)

M(T ε
t ) < ∞.

For each ε > 0, denote by Sε ∈ IAC
1+k(R×R

d) the (unique) current given by Theorem
3.2 (and Remark 3.3) in this setting. Then the following statements are true:
(i) If supε>0 F-pV(t �→ T ε

t ;R) < ∞ or, equivalently, supε>0 Var(Sε;R) < ∞, then
there exists S ∈ I1+k(R × R

d) such that Sε ∗
⇀ S up to a (non-relabelled)

subsequence, in the sense of (1 + k)-currents on R × R
d.

(ii) Assume the currents Sε satisfy the uniform negligible criticality condition, i.e.
there exist vector fields bε

t ∈ L1(L 1 ⊗ ‖T ε
t ‖) such that

d
dt

T ε
t + Lbε

t
T e

t = 0,

and such that the maps Bε : (0, 1) → R defined by

t �→
∫
Rd

|bε(t, x)| d‖T t
ε‖(x)

are uniformly integrable on (0, 1). Then there exists S ∈ IAC
1+k(R×R

d) such that
Sε ∗

⇀ S up to a (non-relabelled) subsequence, in the sense of (1 + k)-currents
on R × R

d.
(iii) Suppose that the vector fields bε

t defined in Point (ii) converge uniformly, as
ε → 0, to a continuous vector field bt. Then there exists S ∈ IAC

1+k(R × R
d)

such that Sε ∗
⇀ S up to a (non-relabelled) subsequence, in the sense of (1 + k)-

currents on R × R
d and the current S has (NC).

Proof. We split the proof in various parts.
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(i) It is enough to apply [19, Theorem 3.7].
(ii) By the same arguments used in the proof of Lemma [10, Lemma 3.5], we have

that for every measurable set I ⊂ R it holds

Var(Sε; I) = F-pV(t �→ T ε
t ; I) ≤ 2

∫
I

Bε(τ) dτ,

whence we deduce that the (absolutely continuous) measures Var(Sε, ) have
uniform integrable densities. Applying Point (i) and Dunford-Pettis’ Theorem
we therefore conclude that the family Sε converges, up to a subsequence, to a
current S whose variation is still absolutely continuous.

(iii) It is clear that there exists a limit current S ∈ IAC
1+k(R × R

d) because the
assumption of Point (ii) is automatically satisfied. We now show that any such
limit S has (NC), because its slices solve the geometric transport equation with
vector field b (as we know, this is indeed equivalent to (NC) in view of Theorem
4.1). By assumption we have that for every ε > 0, for every ψ ∈ C∞

c ((0, 1))
and every ω ∈ Dk(Rd) it holds

0 =
∫ 1

0

(〈T ε
t , ω〉ψ′(t) + 〈bε

t ∧ T ε
t , dω〉ψ(t)) dt. (7.1)

By the weak convergence of currents we have that 〈T ε
t , ω〉 → 〈Tt, ω〉, where

Tt := S(t) are the projected slices of S and thus, by the Dominated convergence
theorem, ∫ 1

0

〈T ε
t , ω〉ψ′(t) dt →

∫ 1

0

〈Tt, ω〉ψ′(t) dt. (7.2)

For the other term, instead, we have

bε
t ∧ T ε

t − bt ∧ Tt = (bε
t − bt) ∧ T ε

t + bt ∧ (T ε
t − Tt).

For every fixed t ∈ (0, 1), the mass of the first term can be estimated by

M((bε
t − bt) ∧ T ε

t ) ≤ ‖bε
t − bt‖C0

x
M(T ε

t ) → 0, as ε → 0. (7.3)

Furthermore, since all currents T ε
t and Tt have uniformly bounded mass, we

can test them against continuous forms, not necessarily smooth and compactly
supported. Therefore for every t ∈ (0, 1) we have

〈bt ∧ (T ε
t − Tt), α〉 = 〈T ε

t − Tt, ibtα〉 → 0 as ε → 0 (7.4)

for every α ∈ Dk+1(Rd) (it is fairly easy to check that the k-form ibtα has
continuous coefficients, since bt is continuous). Choosing in particular α = dω
in (7.4) and combining it with (7.3) and (7.2), we can pass to the limit in (7.1)
obtaining

0 =
∫ 1

0

(〈Tt, ω〉ψ′(t) + 〈bt ∧ Tt, dω〉ψ(t)) dt,

which concludes the proof.

�
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