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1. Introduction

The spectral theory for quaternionic operators was originally motivated by
the foundations of quaternionic quantum mechanics by Birkhoff and von Neumann
[12]. The discovery of the appropriate notion of quaternionic spectrum called, the
S-spectrum, in 2006, opened the way to an intensive development of the quater-
nionic and Clifford spectral theory with applications that go beyond the original
motivations of quantum mechanics. In fact this theory has applications in fractional
diffusion problems via the generation of fractional powers of vector operators, for
more details see the introduction of the book [27].

Furthermore, it has been recently demonstrated that both, the quaternionic
as well as the Clifford setting, are specific instances within a broader framework
where the spectral theory regarding the S-spectrum can be developed, as outlined
in [28,30], along with relevant references therein. By employing the notion of the
S-spectrum, researchers have also successfully established the quaternionic version
of the spectral theorem. We refer the reader to [3] where the spectral theorem for
unitary operators has been proven utilizing Herglotz’s functions, and to [2] where
it is proved the quaternionic spectral theorem for normal operators. More recently,
the spectral theorem grounded in the concept of the S-spectrum has been extended
to Clifford operators in [29].

The development of the spectral theory on the S-spectrum also has opened up
several research directions in hypercomplex analysis and operator theory. Without
claiming completeness, we mention the slice hyperholomorphic Schur analysis [4],
the characteristic operator functions [5], the quaternionic perturbation theory and
invariant subspaces [13], and new classes of fractional diffusion problems that are
based on the H-version of the S-functional calculus [21,22,25,26,31]. Moreover,
recently nuclear operators and Grothendieck—Lidskii formula for quaternionic oper-
ators has been studied in [15] and quaternionic triangular linear operators have been
investigated in [14]. Finally, we mention that the spectral theory on the S-spectrum
is systematically organized in the books [26,27,37].

In recent times a new branch of the spectral theory on the S-spectrum has
been developed, that is called fine structures on the S-spectrum. It consists of func-
tion spaces arising from the Fueter—Sce extension theorem [47,57,59], which in the
Clifford algebra R,, connects the class of slice hyperholomorphic functions with the
class of axially monogenic functions via the powers A"z of the Laplace operator in
dimension n + 1. Note, that for odd n the operator A" isa pointwise differential
operator, see [36,59], while for even values of n we are dealing with fractional pow-
ers of the Laplace operator, see [57]. Analogously, in the quaternions H, the Fueter
mapping theorem connects slice hyperholomorphic functions and axially monogenic
functions via the four dimensional Laplace operator A. Note, that although H is
classically identified with the Clifford algebra Rs, one has to choose n = 3 in A"
and the dimension of the Laplace operator is 4. If we denote by SH(U) the set of
slice hyperholomorphic functions on some axially symmetric domain U and AM (U)
the class of axially monogenic functions on U, the Fueter mapping theorem claims
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that
A:SH(U) — AM(U) is surjective.

For more information see the translation of the work of M. Sce in [36]. For a different
description of the Fueter—Sce theorem, see [40,41].

The quaternionic fine structures of Dirac type is now based on the two different
ways we can factorize the Laplacian

A = DD = DD, (1)
using the Cauchy—Fueter operator (also called Dirac-operator) and its conjugate
0 0 0 0
D.=— 2
200 +e1— o0 + 623 +e3— o5 (2a)
— 0 0 0 0
Di=— —e1— —c¢ —e3o—. 2b
dq0 01 “dgx  dgy (2b)

Depending on whether D or D is applied first on some function f € SH(U), we get
the following four function spaces:

SH(U) from Definition 2.2, (slice hyperholomorphic functions)  (3a
AH(U ) ={Df|feSHU)}, (azially harmonic functions) (
AP, (U)={Df|f € SH(U)}, (polyanalytic functionsof order 2) (3¢
AM(U ) ={Af|feSHWU)}. (axiallymonogenic functions) (3d

Observe that just the spaces AH(U) and AP, (U) depend on the factorization of the
Laplace operator. This construction can also be visualized in the following diagram:

SH(U AM(U).
\Ap2 / )

While slice hyperholomorphic, axially harmonic and axially monogenic func-
tions appear in many fields of pure and applied mathematics, the polyanalytic func-
tions are less known but still have several applications. They were first considered
by G.V. Kolossov in connection with his research on elasticity and also have appli-
cations in signal analysis, particularly in the context of Gabor frames with Hermite
functions, as shown by the results of Gréchenig and Lyubarskii. Polyanalytic func-
tions provide explicit representation formulas for functions in the eigenspaces of the
Euclidean Laplacian with a magnetic field, which are referred to as Landau levels.
This likely has significant implications in quantum mechanics and related fields. For
an overview of the applications of this class of functions see the paper [1] and also
[10,56,60] for further material on this theory.

The corresponding integral representation of the functions of the fine structures
(3) will now give rise to various functional calculi. The original idea comes from the
complex Riesz—Dunford functional calculus [45], which is based on the Cauchy inte-
gral formula and it allows to replace a complex variable z of a suitable holomorphic
function f(z) with a bounded linear operator A in order to define f(A). The gener-
alization of the holomorphic functional calculus to sectorial operators leads to the
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H*°-functional calculus that, in the complex setting, was introduced in the paper
[55], see also the books [50-52]. Moreover, the boundedness of the H> functional
calculus depends on suitable quadratic estimates and this calculus has several appli-
cations to boundary value problems, see [7-9,46].

We remark that the H*-functional calculus exists also for the monogenic func-
tional calculus (see [54]) and it was introduced by A. McIntosh and his collaborators,
see the books [53,58] for more details.

In the quaternionic setting the functional calculi for bounded operators and slice
hyperholomorphic functions (3a) is already done in [32,38], for bounded operators
and axially monogenic functions in [18,19,23,33-35] and for functions in the spaces
(3¢), (3d) more recently in [17,20,42,43].

Unbounded operators for a restricted class of functions were considered in
[16,34,38,48]. In the literature there exists the H°-functional calculus for slice
hyperholomorphic functions (3a) in [6,27] and for harmonic functions (3b) in [44].

This paper on the one hand we revisit these constructions for unbounded oper-
ators with commuting components and enlarges the class of admissible operators T'
for the S- and the @-functional calculus to operators of type (a, 3,w). On the other
hand we also treat the two not yet investigated cases introducing the H*°-functional
calculus for polynomially growing functions which are polyanalytic of order 2 (3c)
and for axially monogenic functions (3d).

Plan of the paper: In Sect. 2 we discuss the preliminary results on quaternionic func-
tion theory and several issues related to quaternionic closed operators. In particular,
we define the class of operators with commuting components in Definition 2.8 and
the operators of type («, 3,w) in Definition 2.21. Since the H°°-functional calculus
is a two step procedure we first introduce in Sect. 3 the functional calculus for func-
tions which decay suitably at infinity and at the origin. We will do this directly via
the integrals

f(T) = L S (s, T)dsyf(s), (S-functional calculus) (4a)
21 Jawne,)
Df(T) = _1/ Q- NT)dssf(s), (Q- functional calculus) (4b)
T Jowncy)
Df(T) = S PF(s,T)ds;f(s), (Pe- functional calculus) (4c)
21 Jawne,)
Af(T) = 1/ Fr(s,T)dsyf(s). (F- functional calculus) (4d)
21 Jawne,)

The kernel of the S-functional calculus (4a) is motivated by the quaternionic Cauchy
formula

1

=5 (s —@)(s = 2500 + |a”) ! dss f(s), (5)
T Jo(UuncCy)

=:S7'(s,9)

f(q)
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while the other kernels in (4b)—(4d) are generated by applying (2a), (2b) and (1),
to the Cauchy kernel S;l(s, q), ie.,

Q;i(Q)Z—%DSZI(s,q), Py (s,q) = DS; ' (s.q), Fr(s,q) = AS;'(s,q), (6)

and afterwards formally replacing the quaternion ¢ by the operator T'. The explicit
representations of the kernels are given in (49), (21), (51) and (52). For these func-
tional calculi it is now important to derive the respective product rules

(f9)(T) = fF(T)g(T), (7a)
D(f9)(T) = Df(T)g(T) + f(T)Dy(T), (7b)
D(fg)(T) = Df(T)g9(T) + f(T)Dg(T) + D (T)g(T) — Df(T)g(T),  (Tc)
A(fg)(T) = Af(T)g(T) + f(T)Ag(T) — DF(T)Dy(T), (7d)

see also Theorem 3.9, in order to define the H°°-functional calculus. For example
in the S-functional calculus case we consider a polynomially growing function f €
SH(U) and choose a regularizer function e € SH(U) which decays fast enough for
(ef)(T) and e(T') to be well defined in the sense (4a). Then we define the H -
functional calculus as

F(T) = e(T) " ef)(T),

and prove that it is independent of the regularizer e. The similar definitions for
the @-, the P»- and the F-functional calculus can be seen in Definition 4.2. This
regularization procedure is much more involved when the product rule of a given
functional calculus contains two or more addends.

2. Preliminaries on Quaternionic Function Theory and Operators

This section on the one hand presents several widely recognized concepts related
to slice hyperholomorphic functions and quaternionic operators. But it also extends
and improves, compared to previous results in the known literature, for instance
the notion of operators with commuting components in Definition 2.8, the growth
conditions of sectorial operators of type w in Definition 2.21 and the domain of the Q-
resolvent operator (21). When working with closed operators, the idea of operators
commuting with each other becomes intricate due to considerations involving their
domains. The definition of commuting components for quaternionic linear operators
holds significant importance throughout the entire paper, as it profoundly influences
the definitions of the spectrum and resolvent set for these operators.

The quaternionic numbers are defined as

H := {So + s1€1 + S2¢e2 + S3€3 ‘ S0, S1, 82,83 € R},
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with the three imaginary units eq, es, e3 satisfying the relations

€162 = —e€2€] = €3,
e% = e% = eg =-1 and €93 = —ezey = €1,
€3€1 — —€1€3 = €9.
For every quaternion s € H, we set
Re(s) := so, (real part)
Im(s) := sje1 + sae2 + sses, (imaginary part)
5:= 89 — 811 — Sa€2 — S3€3, (conjugate)
|s| := \/3% + 57+ 52+ s3. (modulus)

The unit sphere of purely imaginary quaternions is defined as
S:={seH|sp=0and |s| =1},
and for every J € S we consider the complex plane
Cy:={z+Jy|z,y € R},

which is an isomorphic copy of the complex numbers, since every J € S satisfies
J? = —1. Moreover, for every quaternion s € H we consider the corresponding
2-sphere

[s] := {Re(s) + J|Im(s)| | J € S}.

Next, we introduce the notion of slice hyperholomorphic functions, which is a quater-
nionic analog to the complex holomorphic functions. The sets upon which these
functions are defined are the following azially symmetric sets.

Definition 2.1. A subset U C H is called axially symmetric, if [s] C U for every
seU.

Definition 2.2. Let U C H be an axially symmetric open set and consider
U= {(z.y) €R* |z +Sy C U} ®)

A function f : U — His called left (resp. right) slice hyperholomorphic, if there exists
continuously differentiable functions «, 3 : Y — H, such that for every (z,y) € U:

(i) The function f admits for every J € S the representation

f(@+ Jy) = ala.y) + IB(y), (resp. f(+Jy) = alz.y) + Bz, p)J ). (9

(ii) The functions «, 3 satisfy the even-odd conditions

Oé(ﬂ?, _y) = Oé(l',y) and ﬁ(xv _y) = _ﬁ($7y) (10)
(iii) The functions «, 3 satisfy the Cauchy-Riemann equations
0 0 0 0
%Oé(.’ﬂ,y) - %ﬁ(xay) and @Q(x,y) - _%ﬁ(way) (11)

The class of left (resp. right) slice hyperholomorphic functions on U is denoted
by SHL(U) (resp. SHr(U)). In the special case that a and 3 are real valued, we
call the function f intrinsic and denote the space of intrinsic functions by N (U).



H*°-functional calculi for the quaternionic fine structures

For those slice hyperholomorphic functions we now introduce quaternionic path
integrals. Since it is sufficient to consider paths embedded in only one complex plane
Cj, the idea is to reduce it to a classical complex path integral.

Definition 2.3. Let U C H be an open, axially symmetric set and f € SHr(U),
g € SHL(U). For J € S and a continuously differentiable curve v : (a,b) — UNC,
we define the integral

[ 1)ssgr= [ s g

In the case that a,b are oo or lie on the boundary 9U, the functions f, g need to
satisfy certain decay properties in order for the integral to exist.

Next we turn our attention to quaternionic operator theory. From now on
V always denotes a two-sided linear Banach space over the quaternions H. The
set of bounded, everywhere defined operators will be denoted by B(V'), and the
set of closed operators with K(V'). In the following we will specify the class of
operators with commuting components, which will be of interest in this paper. We
start with a lemma providing the existence of two-sided linear components of right
linear operators. The proof of this lemma is left as an exercise, the same statement
for bounded operators can for example be found in [49].

Lemma 2.4. Let T : V. — V be some right linear operator with dom(T') being a
two-sided linear subspace of V. Then there exist unique two-sided linear operators

T; : V. — V with dom(T;) = dom(T"), i € {0,1,2,3}, such that
T = TO + €1T1 + GQTQ -+ 63T3. (12)

The components are explicitly given by
€; 5
T, = Zl eTei— Y  eTe; |,  i€{0,1,2,3}. (13)
§=0,j#i
Using the components Ty, 17,15, T3 from Lemma 2.4, we can now define some
more operators.

Definition 2.5. Let T': V' — V be right linear with a two-sided linear domain. With
the components Ty, 11,15, T3 from Lemma 2.4, we define the conjugate operator

T:=Ty—eiTh —exTy — e3T3, with dom(7T") := dom(T), (14)
and the modulus operator
3
T :=T5 + T + T3 +T5,  with dom(|T|?) := ()] dom(T}). (15)
k=0

Lemma 2.6. Let B € B(V). Then also B;,B € B(V) for every i € {0,1,2,3} and
they admit the norm estimates

IBil < IBl  and [IB] <2|B]|. (16)
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Proof. From the explicit representation (13) of the components, we get

3 3
1 1
HBiHSZ le:Beil| + > lle;Bes =1 IBl+ Y 1Bl ] =B
J=0,5#i =05

Also from the components (13) one easily deduces the representation
— 1
B = B() — €1Bl — 6232 — 63B3 = —5(3 + 61361 + 62362 + €3B€3),

from which the norm estimate ||B|| < 2||B|| follows immediately. O

The following lemma gives a characterization of the commutation property of
the components of bounded operators.

Lemma 2.7. Let B € B(V) and T : V. — V right linear with a two-sided linear
domain. Then the following statements are equivalent

(1) TZB] = BjTi, on dOIH(T), Z,] € {O, 1, 2, 3},

(2) T;B = BT;, on dom(T), i€{0,1,2,3},

(3) TB; = B;,T,  on dom(T), j€{0,1,2,3}.

Proof. The implication “(1) = (2)” and “(1) = (3)” are trivial. For “(2) = (1)” let
us fix ¢ € {0,1,2,3}. From to the explicit representation of the components (13), we
get

3 3
TiBj:Ti% e;Be;— > enBey :% e;Be; — > enBey | Ti = BT,
k:07k7£.7 k:07k7£.7

The implication “(3) = (1)” similarly holds by
€; 3 €; 3
TiBj = Zl eiTei — Z ‘ekTek Bj = szl eiTei — Z ‘ekTek = Bsz
k=0,k#i k=0,k#i
U

Definition 2.8. A right-linear T" : V — V with a two-sided linear domain is
called operator with commuting components, if the components T, 11,15, T3 from
Lemma 2.4 commute as

T, Tjv = T;Tv, for every v € dom(|T)?), i,j€{0,1,2,3}, (17)

where it is clear the dom(7;7;) C dom(|T'|?) since dom(7};) = dom(T) for every
j €{0,1,2,3}. We will denote the class of closed operators with commuting compo-
nents as KKC(V') and the class of bounded operators with commuting components

as BC(V).

Remark 2.9. 1t is obvious that for every operator T" with commuting components,
also its conjugate T is an operator with commuting components. However, from
T € KC(V) one cannot conclude T € KC(V'), because in general the conjugate T
may fail to be closed.

For the multiplication of an operator with commuting components with its
conjugate we obtain the following result.
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Lemma 2.10. Let T be an operator with commuting components. Then
dom(|T'|?) € dom(TT) N dom(TT), (18)
and there holds
|T|*v =TTv =TT, for every v € dom(|T|?). (19)
Proof. Let v € dom(|T|?), i.e. v € dom(T) and T;v € dom(T) for i € {0, 1,2, 3}, see

(15). Since dom(T") is two-sided linear and dom(7") = dom(T"), we also have
3 3
Tv = EeiTiv € dom(T) and Tv = ZeﬁTiv € dom(T).
i=0 i=0

This proves that v € dom(TT) as well as v € dom(TT). Moreover, there holds

3 3
TTv = Z eﬁ-Tiejij = Z eﬁejTZ-ij

i,j=0 i,j=0
3 3 3
22 — 2 2
= g le;|“T v + E eie; T;Tjv = g T v = |T|*v,
i=0 i#£j=0 i=0

where in the second equation we used the fact that the operators T; are two-sided
linear and the sum of the mixed terms vanishes in the second last equation due to
T;Tjv = T;T;v and epe; = —ejey,. Analogously there also holds TTv = |T|?v. O

Assumption 2.11. Let T,T € KC(V). Then we consider some two-sided linear and
dense subspace D C dom(|T'|?) with the following properties:

(i) For every i € {0,1,2,3}, there holds

T;v € D, for every v € Dy := {v € D||T|*v € dom(T)}. (20)
(ii) For every s € H, the operator
Qes(T) =8> — 25Ty +|T)?,  with dom(Q.+(T)) := D (21)
is closed.

Let us now prove some basic properties of the operator Q. s(T').

Lemma 2.12. Let T,T € KC(V) and D as in Assumption 2.11. Then there holds:

(i) For every s € H we have Q. 4(T) € KC(V) with Qcs(T) = Q.5(T).
(ii) For everyi € {0,1,2,3} we have the commutation relation

TiQc,s(T) = Qc,s(T)T;,  on Ds. (22)
(iii) For every s,p € H the domain of the product of two Q-operators is given by
dom(Qc,s(T)Qcp(T)) = {v € D||T|?v € D} =: Ds. (23)
(iv) For every s,p € H with sp = ps, also
Qe,s(T)Qe,p(T) = Qe p(T)Qe,s(T), on D. (24)

(v) For every s € H the operator Q. s(T)Q.s(T) is two-sided linear and writes as
Qcs(T)Qes(T) = (Is]” = |T*)* + 4(To — s0)(|s]*To — so|T[?),  on Ds. (25)
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Remark 2.13. Since the subspace D from Assumption 2.11 is contained in dom(|T|?),
it is in particular contained in dom(7") and it follows that Dy C Dy for the sets (20)
and (23).

Proof of Lemma 2.12. We start the proof by verifying the commutation relation
IT|*Tyw = T;|T|*v,  v€ Dy. (26)

In order to show this, let v € Dy. Then v € D and by the assumption (20) also
Tiv € D for every k € {0,1,2,3}. Using now (17) for the vector v and a second
time for Tjv, we conclude the stated commutation (26), namely

3 3 3
ITPTv =Y TLiTw=Y TWITw=>Y TTiTiw =T;|T|*v.
k=0 k=0 k=0
(i) First of all, writing s = Z?:o e;s;, where eg = 1, we decompose the operator
(21) into its components

3
Qe,s(T) = 255 — |5 — 250Tp + |T|> + D _ 2si(s0 — To) e, (27)
=1

= A
with dom(A4;) = D, i € {0, 1,2, 3}. To prove the commutation relation (17), we
only consider the case Im(s) # 0. For Im(s) = 0 it is 41 = Ay = A3 = 0 and
(17) is trivially satisfied. Since Im(s) # 0 means that s, # 0 for at least one
k € {1,2,3}, the domain on which we have to check (17) is given by

3 2y 3

ﬂk:O dom(A3) = ﬂk:o {veD|Ayv e D}
={ve D|(2s] —|s|* —2sTo + |T|*)v € D, 2sx(so — To)v € D, k € {1,2,3}}
={ve D|(-2sTo +|T|*)v, Tov € D}

=:A;

={veD||T]?ve D, Tove D} = {ve D||T|>v € D} = Da, (28)
where in the second last equation we used the assumption (20). Then, for every
v € Dy and 4, j € {1,2,3} we use (26) to show that there holds

AiAov = 2si(s0 — T0)(2s5 — |s|* — 2s0To + |T*)v
= (255 — |s|* — 2s0T0 + |T|*)2si(s0 — To)v = Ao Asv,
AiAjv = 2s4(so — To)2sj(s0 — To)v = 2s;(s0 — T0)2s:(so — To)v = Aj Aiv. (29)
Since Q.,s(T") is closed by definition (21), we have proven Q. (T) € KC(V).

The equality Q. s(T) = Q.5(T") follows immediately from (27).
(ii) Let v € D;. Then it follows from (17) and (26) that

TiQe.s(T)v = Ti(s> — 25To + |T|*)v = (s> — 25T + |T)*)Tiv = Qe.s(T) Tiv.

(iii) First, let v € dom(Qes(T)Qcp(T)), ie. v € D and (p* — 2pTy + |T|?)v € D.
Consequently

(—2pTo + |T|*)v € D C dom(T)

and since Tov € dom(T) by v € D C dom(T}), we have |T|?v € dom(T). It
then follows from (20), that Tov € D and hence also |T'|>v € D. For the inverse
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inclusion consider v € Dy, i.e. v € D with |T|?v € D. By (20) then also Tov € D
and

Qep(T)v = (p* — 2pTy + |T|*)v € D,

which proves v € dom(Q¢,s(T)Qcp(T)).

(iv) Let v € Dy. Then v € D, |T|?v € D and due to the assumption (20) also
Tov € D. Hence we are allowed to expand the product of the following two
brackets and rearrange the terms

Qs (T)Qe.p(T)v = (s* = 25To +|T|*)(p* — 2pTo + |T|*)v
= (sp— |T*)*v + (210 — s — p) (2spTo — (s + p)|T|*)v, (30)
where we also used the commutation (26). Since we assumed that sp = ps
commute, the right hand side of (30) stays the same when we replace s < p.
This proves the stated commutation of Q. s(T") and Q. (7).
(v) Plugging in p =35 in (30), gives
Qe.s(T)Qes(T)v = (|s* = |TI*)*v + 4(To — s0)(|s]*To — s0|T*)v, v € D2, (31)
which is obviously two-sided linear. O
Definition 2.14. (F-spectrum) Let T,T € KC(V) and D as in Assumption 2.11.
According to the invertibility of the operator (21), we define the F-resolvent set
pr(T) :={s € H| Q. (T) is bijective}, (32)
and the F-spectrum as the complement
op(T) :=H\ pp(T). (33)
Remark 2.15. When dealing with bounded operators T', the S-spectrum
os(T) :={s € H|Q,(T) is not bijective}, with Q,(T) := T? — 2s0T + |s|?,

coincides with F-spectrum in (33). The F-spectrum can be viewed as a commuta-
tive counterpart of the S-spectrum. However, for unbounded operators, additional
research is needed to establish the equivalence between the two quaternionic spectra,
especially considering the various definitions of operators with commuting compo-
nents.

Next, we collect some basic properties of the F-spectrum and the inverse oper-
ator Q7 1(T). The proof of next lemma is highly inspired by [26, Theorem 3.1.2],
where similar results are proven for different operators 7" with commuting compo-
nents in Definition 2.8 and with a different operator domain dom(Q. +(T)).

Lemma 2.16. Let T, T € KC(V) and D as in Assumption 2.11. Then the F-resolvent
set (32) and the inverse of the operator (21) have the following properties:
(i) pp(T) is an open subset of H.
(ii) pp(T) is azially symmetric.
(iii) For every s € pp(T') and i € {0,1,2,3} we have the commutation relations

T,Q.:(T) = Q. y(TT; on dom(T). (34)

c,s
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Proof. (i) Fix s € pp(T'). For every p € H we consider the operator
Ap(T) = (Qes(T) = Qep(T)) Qe (T) = (5* = p*)Qeo(T) = 2(s = p)ToQc o (T).

Since T, T are closed, TQ_(T),TQ_(T) are closed and everywhere defined and
hence bounded. Consequently also their sum

ThQ:H(T) = L(TQ;A(T) + TQ:L(T)) (3)
is a bounded operator. Choose now £ > 0 small enough, such that
1Ap(D)| < [5* = P |Qco (T)]| + 215 — pl | ToQc s (T
< e(2ls| + Qe (D) + 2| Qs (T <1, peUdls),
where in the second inequality we used
|52 = p?| = |s* = sp+ sp = p?| < |slls — pl +|s = pllp| < e(2]s] +¢).

Using Neumann series, we then conclude that the operator 1 — A,(T") is boundedly
invertible. The inverse operator then satisfies

Qep(T)(Qr s (T)(1=A(T)) ™) = (1-(Qe,s(T) = Qe p (T))Qr s (T)) (1=Ap(T))
=(1-AT)A=A(T) ™" =1, onV, (36)
but also

(Qea (1)1 = Ap(1)) ™) Qep(T) = Qe o (T)(1 = Ap(T)) (1 = Ap(T))Qe.s(T)
= Qc_,i (T)QC,S(T) =1, on D. (37)
The two identities (36) and (37) now prove that the operator Q. (1) is bijective
for every p € U.(s), and this proves the first claim.
We now anticipate the proof of point (iii) because it is necessary for point (ii).
(iii) Let v € dom(T") and define w := Q_}(T)v. Then (s* — 25Ty + |T|*)w =
v € dom(T). Since moreover w € D C dom(Tp)?, also Tow € dom(T'), which gives
IT)?w € dom(T), i.e. w € D;. From the assumption (22) we then conclude the
commutation

Tch,s(T)w = QC,S(T)E,UJ'
Applying QC_; (T') from the left and plugging in the element w = Q;;(T)v, gives

QT Tiw = T,Q; X(T)v.

(ii) Let s € pp(T). In the first step we will prove that 5 € pp(T'). Therefore, let
us consider the components Ao, A1, As, Ag of Q. s(T) from (27). Then from the
commutation relation (34) there follows

Qos(T)Ai = AQ.(T),  onD. (38)

If we also decompose Q, }(T) = Z??:O e;jB; with components B; € B(V), it follows
from Lemma 2.7, that there also commute the components
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From the explicit form of the quaternionic product we then get for every v € D
v = Qe (T)Qc,s(T)v
= (B()AU — BlAl — B2A2 — B3A3)’U + 61(BQA3 — B3A2 + BQA1 + Ble)v
+ ea(B3A; — B1As + BoAg + BaAg)v + e3(B1As — Bo Ay + ByAs + BsAg)v,
as well as
v = QCS(T)Q;; (T)v
= (B()AO — B1A; — By Ay — BgAg)U + e1 (B3A2 — By A3 + B1Ag + B()Al)v
+ ea(B1As — B3Ay + B2Ag + BoA2)v + e3(B2A1 — Bi1Az + B3 Ao + BoAs)v,

for every v € V. For v € D we now add and subtract these two equations and
obtain:

vV = (B()Ao — BlAl - B2A2 - BgAg)’U
+e1 (BUA1 + Ble)U -+ 82(BOA2 + BQA[))’U + 63(BOA3 + Bng)U, and (40&)
O = €1(B2A3 — B3A2)’U + 62(B3A1 — BlAg)U + 63(31142 — BQAl)U, (40b)

which both have to be satisfied for every component individually due to the unique-

ness of the components in Lemma 2.4. If we now multiply Q.+(T) = By — e1 By —
eaBy —e3B3 and Q. 5(T) = Ay — e1 A1 — eaAs — e3 Az and use the identities (40),
we get

Qc_,é (T)Qcs(T)v
= (BoAog — B1A1 — BoAs — B3A3z)v + e1(BaAs — BsAs — BoAy — B1Ap)v
+ e2(B3 A1 — B1As — BoAz — BaAo)v + e3(B1As — BaAy — BoAs — B3Ao)v
=v+e1(0—0)v+e2(0 —0)v+e3(0 —0)v =v.

Similarly, we also get

Qc,g(T)QC_,% (T)U
= (BQA() — BlAl — B2A2 — B?,Ag)?) + €1 (B3A2 — BgAg — Ble — B()Al)’l)
+ 62(B1A3 — BgAl — BQAO — B()Ag)’l) + 63(BQA1 — BlAQ — B3A0 — BoAg)’U

=v+4+e1(0—0)v+e3(0—0)v+e3(0—0)v=nw.
Since Q_1(T) € B(V), also Qz:(T) € B(V) by Lemma 2.6 and the product
Qe.s(T)Qe3(T) is closed as the product of a bounded and a closed operator. Since
it is also everywhere defined due to ran(B;) C D by (13) and the two-sided linearity
of D, we get

Qs (T)Qzs (T) € B(V).

This means, we can extend the identity Q.s(T)Qz3(T)v = v from the dense
subspace D to the whole space V' by continuity. Hence, Q.5(T) is bijective with

Qes(T) = Qes(T).
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In the second step we show that p € pp(T') for every p € [s]. To do so, we write
s=x+ Jyfor z,y € R, J € S and decompose Q. (1) into
Qe,s(T) = 2° —y? — 22Ty + |T|* +J 2y(z — Tp) - (41)

~~

:ZAO ::AJ

Since we have already proven in the first step that Q. 3s(7T") is bijective, we write its

inverse as
1

Qui(T) = Qes(T)Qz5(T)Qe: (T) = (Ao — JA)) (Qes(T)Qes(T)) . (42)
using the two-sided linear operator (31), given by
Qes(T)Qes(T) = (2% +y* — |T1*)? + 4(To — 2)((z® + y*)To — z[T|*), on Ds.
(43)
Since p € [s], we can decompose p = x + [y for some I € S. Consequently there
holds Q. ,(T) = Ap + I Ay, with Ay, Ay from (41), and also
Qc,p(T)Qc,ﬁ(T) = QC,S(T)QC,E(T)a

since (43) does not depend on the imaginary units J. Using this, we get

Qep(T)(Qep(T)(Qes(T)Qes(T)) ™)
= Qep(T)Qep(T)(Qep(T)Qep(T) ™' =1, on V. (44)
Due to (34) every individual term in (41) commutes with Q_}(7T") and Q_3(T) on
D. Consequently also Ag and A; and hence Q.p(T) commute with @ (T) and
Q-L(T) on D. We can now rearrange the left hand side of (44) to

(Qep(D)(Qes(T)Qe,s(T) ™) Qe p(T)
= Qep(T)Qep(T)(Qep(T)Qep(T)) ™ =1, on D. (45)
The Eqgs. (44), (45) then show that Q. ,(T) is bijective and hence p € pp(T). O

Lemma 2.17. Let T, T € KC(V) and D as in Assumption 2.11. Then every B €
B(V) which commutes with the components BT; = T;B on dom(T), i € {0,1,2,3},
also commutes with

(i) B|T|* =|T]?B,  on dom(|T[?),

.. -1 -1

(ii) B(QQS(T)QCE(T)) = (QQS(T)QCE(T)) B, for every s € pp(T).

Proof. (i) Let v € dom(|T)?). Then v € dom(T) and T;v € dom(T) for every i €
{0,1,2,3}. This means we are allowed to use the assumption BT; = T;B for T;v
and for v, which gives

3 3 3

BIT|’v =) BT,Tyw=>» T;BTw=» T:TiBv=|T|’Bu.

i=0 i=0 k=0
(ii) Let v € V and define w := (QQS(T)QCE(T))_lv. Then w € D9 by (23), i.e.
w € D with |T|?>w € D. This in particular implies w € dom(|T|?) € dom(T) and it
follows from the assumption and from (i) the commutation relations

ToBw = BTyw  and  |T|*Bw = B|T|*w. (46)
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Moreover, we also have (so|T|? — |s|*Tp)w € dom(T') as well as (|s|> — |T|?)w € D.
Again by assumption and by (i), there also commutes
BTy(so|T|> = |s|*Ty)w = ToB(so|T|* — |s|*To)w  and (47)
B|T]*(|s]* = |T|*)w = |T]*B(Is|* — IT|*)w. (48)
Combining now (46), (47) and (48) in the representation (25), we obtain
BQes(T)Qcs(T)w = Qe,s(T)Qes(T) Bw

Applying the operator (Qc,S(T)QC,g(T))_1 from the left and plugging in the vector
w = (Q(;’g(T)QC,S(T))JU, gives the stated commutation (ii). O
With the operator (21) and motivated by the Cauchy integral formula (5), we

define for every T,T € KC(V), D as in Assumption 2.11 and s € pp(T) the left and
the right S-resolvent

3
S71 65, T) o= (s = TIQIAT) and S5 (5. 7) = sQ1(T) — > TQ-A(T)er. (49)

Note, that on dom(T’) we are allowed to interchange T; and Q_1(T) due to (34),
which gives the more elegant form of the right S-resolvent

Spl(s,T) = Q.. 1(T)(sz), on dom(T). (50)

It is straight forward to verify, that the Cauchy—Fueter operator D from (2a), its
conjugate D from (2b) and the Laplace operator A from (1), applied to the Cauchy-
kernel S;'(s,q) from (5) are given by
2 (5,9) = —2Q.5(a),
55‘1(3 q) =257 (s,9)(S7 ' (s,0) + 57 (5,9))
AS7(s,9) = —487"(5,9)Qz 5 (a)-
We see, that the kernel —2Q;;(T) of the Q-functional calculus is already given

by the inverse of the Q-operator (21). Moreover, the above relations motivate the
Ps-resolvents

Py (s, T) :==2S7"(s,T)(S; " (s,T) + S; ' (s, 1)), (51a)
Pf(s,T) :=2(S"(s,T) + Sg'(s,T))Sx" (s, 1), (51b)

as well as the F-resolvents
Fr(s,T) = =4S (s, T)Q.+(T) and Fg(s,T) = —4Q_ (T)Sz (s, T). (52)

Next, we will find a similar structure for all four integral kernels (49), (21), (51) and
(52). In Sect. 3, this structure will play a crucial role in many important properties
of the respective functional calculi.

Lemma 2.18. Let T,T € KC(V) and D as in Assumption 2.11. Then for every
s € pp(T) we consider the following pairs of operators:

(1) Kr(s,T):=S;'(s,T) and Kg(s,T):=Sz"(s,T), or

(i) Kp(s,T) := —2Q_4(T) and Kg(s,T):=—-2Q_i(T), or
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(iii) Kr(s,T) := PF(s,T) and Kg(s,T):= Pf(s,T), or

(iv) K(s,T) := Fr(s,T) and Kg(s,T) := Fr(s,T).

Then for any pair (1)—(iv), these operators admit for s = x + Jy € pp(T) the
decomposition

Ki(s,T) = A(z,y,T) + B(x,y,T)J and Kg(s,T) = A(z,y,T) + JB(x,y,T),

(53)

with operators A(x,y,T), B(x,y,T) € B(V), satisfying
o Az, —y,T) = A(x,y,T), B(z,—y,T) = —B(x,y,T), (54a)
o A(z,y,T) = A, y,T), B(z,y,T) = B(z,y,T), (54b)

o A(z,y,T) and B(x,y,T) commute with T,T, Ty, Ty, To, T3 on dom(T). (54c)
Let C € B(V) and suppose that it commutes with T, Ty, Ty, T2, T3 on dom(T'), then
C' commutes with A(z,y,T) and B(x,y,T). (55)

Proof. For simplicity, we will write A = A(x,y,T) and B = B(z,y,T) in this proof.
We now anticipate the proof of point (ii) because it is necessary for point (i).
(i) For the Q-resolvent, we obtain from (41) and (42) the decomposition

Qea(T) = (2" = ¢ = 22To + T) (Qe,o(T)Qe.s(T)) " =2y(z = To) (Qe,s(T)Qes(T)) " J. (56)
—A; =B
We have ToQ_ H(T) € B(V) by (35), and so By € B(V). Because Q_:(T) € B(V),
also Ay € B(V) has to be bounded. Since

Qe,s(T)Qes(T) = (2% +y* — |T|*)* + 4(Tp — 2) ((2® + y*)Tp — z|T*),  on Ds,

by (25), the operators Ay, B; are two-sided linear, also the representation Q_ 1 (T) =
Ay + JB; of the right kernel follows. The properties (54a) and (54b) are clearly
satisfied. The property (54c) follows from the commutation properties (17), (26),
(34) and the fact that A; and B; are two-sided linear. Finally, (55) follows from
Lemma 2.17.

(i) From the representation (56) of the @-resolvent, we immediately get the
representation

S71(s,T) = (w+ Jy = T)(A1 + BrJ)
=(x—T)A1 —yBi1+ (yAi1 + (z = T)By) J, (57)

=:Ao =:Bs

for the S-resolvent (49), where we used that A; and B; commute with J. Since T is
closed, the products TA; and T'B; are closed operators and everywhere defined and
hence they are bounded. This implies that Ag, By € B(V). For the right S-resolvent
(49), we similarly obtain the representation
3
i=0
= (LL‘ — T)Al — yBl + J(yA1 + (33 — T)Bl) = AQ + JBQ, (58)
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using the same operators Az and B as in (57). The properties (54) and (55) of
As and B, follow from the respective properties of A; and By, where for (54c) we
additionally need that TT; = T;T and TT = TT on ran(A;) Uran(B;) C D, see
(17), (19) and (23). For (55) we note that since C' commutes with 7" and T, it also
commutes with T = 2Ty — T on dom(T'). Hence (55) for Ay and By follows from the
same property of A; and Bj.

(iii) We can now use (56), (57) and (58), to write the left and the right F-
resolvent (52) as

FL(S,T) = *4(142 + BgJ)(Al + BlJ)
— _4(As A, — BsBy) —4(AsBy + BoAy) J, (59)

:ZA3 :ZBS

and using the same operators As and Bs, we also get

FR(S,T) = —4(A1 + BlJ)(AQ + JBQ)
= —4(A1A2 — BlBg) - 4J(BlA2 + AlBQ) = A3 + J.Bg7 (60)
where in the last equation we used that A1 By = By Ay and A, B = By A; commute
due to (54c) and (55). The properties (54) and (55) of As, B3 follow immediately
from the respective properties of A, By, As, Bo.

(iv) Using the F-resolvents (52), it is straight forward to rewrite the Ps-
resolvents (51) as

Pf(s,T) = ToFp(s,T) — Fr(s,T)s  and  Pf(s,T) = (Tp — s)Fr(s,T).
Hence we can use (59) and (60), to write

PL(s,T) = Ty(As + BsJ) — (As + BsJ)(z + Jy)
= (To — x)As + yBs + ((To — x)Bs — yAs) J. (61)

=:Ay =:B4

Since T A3 and T Az are everywhere defined and closed, they are also bounded.
Consequently, also TyAs = +(T' A3 +TA3) € B(V) is bounded. For the same reason
also ToBs € B(V) and consequently Ay, By € B(V). Using the same operators Ay
and By, we also get

Pf(s,T) = (Ty — x — Jy)(As + JB3)
= (To — x)As +yBs + J((To — 2)Bs — yAs) = Ay + JBy.
The properties (54) and (55) of A4 and B, now follow from the respective properties

of Az and Bs, where for (54c) we additionally needed that T;7Ty = TpT; commutes
due to (17). O
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To draw a parallel with intrinsic slice hyperholomorphic functions, we will in the
following define slice holomorphicity of operator valued functions. In particular we
will prove in Corollary 2.20, that our resolvent kernels (49), (21), (51) and (52) are
indeed slice hyperholomorphic functions in the variable s.

Definition 2.19. Let U C H be an axially symmetric open set. An operator valued
function K : U — B(V) is called left (resp. right) slice hyperholomorphic, if there
exists operator valued functions A, B : U — B(V'), with U in (8), such that for every
(z,y) € U:

(i) The operators K admit for every J € S the representation

K(x+ Jy) = A(z,y) + JB(x,y), (resp. K(x+ Jy) = A(z,y) + B(:c,y)J).

(62)
(ii) The operators A, B satisfy the even-odd conditions
A(%, _y) = A(HZ‘, y) and B(.Z', _y) = —B($, y) (63)
(iii) The operators A, B satisfy the Cauchy—Riemann equations
0 0 0 0
—A —B d —A =——B 64
5 A& Y) = dy (z,y) an a9 (@,y) = —5_Blz,y), (64)

where the derivatives are understood in the norm convergence sense.

We moreover, call s — K (s) intrinsic, if the operators A, B are two-sided linear.

Corollary 2.20. Let T,T € KC(V) and D as in Assumption 2.11. Then
(i) Qc_;(T) is intrinsic,

(ii) S ( T), Pf(s,T), Fr(s,T) are right-slice hyperholomorphic,
(iii) Sg'(s,T), Pf(s,T), Fr(s,T) are left-slice hyperholomorphic.

Proof. (i) In order to show that Q_!(T) is intrinsic, we use the decomposition
Qc_s( ) Al(x y>T)+Bl(x7y>T)J7

from (56). It is then obvious, that A;, By satisfy the symmetry relation (63).
One can also straight forward calculate the derivatives

0A 0B -
T = B = AT~ 0)(Qes(T)Qes(T)) !
ST — ) (0 o 20T+ 203 — 1) Qe (T)Qes(T)
as well as
0A; . 0B, _ -1
37@/ = _87 = 2y(Qc,s<T)Q03(T))

— 8y(Ty — 2)* (22 + % — 22T + |T1?) (Qes (T) Qe s(T)) >

Hence the Cauchy—Riemann equations (64) are satisfied for A; and Bj. Since
the operators A, By are also two-sided linear we have verified that the operator
Q- L(T) is intrinsic.

c,s
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(ii) Since S;'(s,T) in (49) is defined as
Sp'(s,T) = (s = T)Qc (1),

c,s

it is an intrinsic function Q;}(7T") multiplied from the left with (s —T'). Hence
it is automatically right slice-hyperholomorphic.
If we write the Ps-resolvent (51a) in the form

Py (s,T) =4Sy (5, T)(s — To)Qz.+(T),

it is the product of the right slice-hyperholomorphic function Sgl(s,T )
with the intrinsic function (s — Tp)Q;i(T), and hence again right slice-
hyperholomorphic. Also the F-resolvent (52) is written in the form

Fr(s,T) = =4S (s, T)Qc+(T),

as the product of the right slice-hyperholomorphic function S;l(s,T ) with
the intrinsic function Q1 (T'). Hence also Fr(s,T) turns out to be right slice-
hyperholomorphic.

(iii) The left slice-holomorphicity of the respective right kernels follows from
the fact that they admit the common decomposition (53) with the left
kernels. U

In the last part of this section, we specify the class of operators, for which the
functional calculus will be established in this paper. Therefore, we define for every
angle w € (0, 7) the open sector

S = {s € H\ {0} || Arg(s)| <w}, (65)

where Arg(s) € [—m, 7] is the usual argument of complex numbers when we treat s
as an element in the complex plane C;. Note that, since C; = C_, the imaginary
unit of the complex plane is not uniquely defined, and so also the argument of a
quaternionic number is only unique up to a sign. However, this does not affect the
sector S, in (65).

Definition 2.21. Let a, 8 € R, w € (0,7). An operator 7" and a set D as in Assump-
tion 2.11 is called of type (o, B,w), if T,T € KC(V), the spectrum is contained in
the sector

OF (T) g E)
and for every ¢ € (w,7) there exists C, > 0, such that

|s|7%, Il <1,

NEENIC o

ISg (s, )] < C«p{

where S¢ :=H\ S, is the complement of the sector S,.

We will now show that the estimates (66) on the left S-resolvent imply similar
estimates on the right S-resolvents as well as on the left and right Q-, P>- and F-
resolvents. These estimates will then be crucial in defining the convergence of the
integrals in Definition 3.3.
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Lemma 2.22. Let o, 3 € R, w € (0,7) and T of type («, B,w) (see Definition 2.21).
Then also T is of type (o, B,w) and for every ¢ € (w,m) there exists C, > 0, such
that for every s € S, \ {0}, there holds

ISz (s, Tl

<1
A AT NN o]

— )

|72, Js| <1,
<C Fr(s,T)|,||Fr(s, T
< w{!«?!w 5> 1 IFL(s, T)|I, [ Fr(s, T)|l

Proof. Let us start by using (53) to decompose the S-resolvent as
S;'(s,T) = Az, y,T) + B(x,y,T)J,  s=az+Jye pp(T).
Due to the property (54a), we can write

Ay T) = 3(SP 465, T) + S5 (5 1) and BlayyT) = (5715, T) = 57 (5.T)) 55

which by (66) leads to the norm estimates

[s[7 sl < 1,

|s\ « |s| <1,
Alz,y, T)|| < C
H ( Y )H ®» {|S|B, |S| > 1’

and ||B(xz,y,T)| < C

Since we can write Si'(s,T) = A(x,y,T) + JB(z,y,T) by (53), we also get the
estimate

_ s|7%, |s] <1,
15" (5,7 szqa{;s;_ﬁ : (7

. ls| > 1.

Moreover, from (54a) and (54b) we obtain S;'(s,T) = S;'(5,7) and S;'(s,T) =
Sgl(E, T). Together with the norm estimate of the conjugate operator in
Lemma 2.6, it then follows from (67) and (66), that

|s|7,

_ e
Is (s Tl <4, 3 7, | |7, s <1,
ERA

[s]77, sl = 1.
(68)

| <1, 1, =
S ed SR Dl < 20

Hence, (66) is shown for the operator T', and since oz (T) = op(T) C S, is trivial, it
is indeed of type (a, 3,w). Next, it is shown in [44, Lemma 2.9], that the Q-resolvent
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admits the representation

QaA(T) = 1(S5H(5,T) + S5 (5, 7)) (5" (5. T) + 57 (5. T)

- i(Sﬁl(s,ﬂ — Sz (s, 1)) (S (5, T) = S; (s, 1))

Hence by (66), (67) and (68) it admits the norm estimate

[s|72 sl < 1,

“Lm)|| < 1002 69
QM <10C3 3 o’ 105 (69)

For the estimate of the Ps-resolvents (51), we also combine (66), (67) and (68), and
we get
El

El

[s|72, Isl <1,

5|72, Isl > 1,

s
|s

IV IA

<1,
[

Finally, it follows from (66), (67) and (69) that the F-resolvents (52) can be esti-
mated by

)

|5 (s,T)|| < 10C3 { and [Py (s, T)|| < 16C {

Elnat

s 7%, ls| <
517, Jsl > 1.

FL(s, 1| < 40C3 5
[F7 (s, T)|| < ¢{|s_357 5]

1
, and | FE (s, T)|| gsoc;“;{

3. The w-Functional Calculus for Decaying Functions

In this section we introduce the S-, the (-, the P»>- and the F-functional calculus
for operators of type (o, 3,w), see Definition 2.21, by giving a direct meaning to the
integrals (4a) — (4d). In order to make these integrals converge, we need to assume
certain decay properties on the function f. In particular, we treat for every a > 1,
B <1,0 € (0,7) and Sy the sector (65), we consider the following classes of slice
hyperholomorphic functions:

(i) w$P(Sp):= {f € SHL(50) s|P=1=8, |s| > 1

a—1+4+46 <1
35>0, CfZO’f(s)‘SCf{‘S‘ ) ’3|— 7}7

ii) UF(Sp) =
(i) T*7(Sp) {feN(Se) |s[B=1=6 |s| > 1

a—14+46 <1
The next theorem is crucial for the welldefinedness of the functional calculi in
Definition 3.3.

Theorem 3.1. Let w € (0,7) and consider a family of bounded linear operators
K(s) € B(V), for s € H\ S, such that s — K(s) is right slice hyperholomor-
phic. Moreover, suppose that there exists oo > 1, § € (0,1], such that for every
¢ € (w, ) there exists some C, with

[s|7, sl <1,

!!K(S)HSC@{|S|_B o1 SESEMON (70)

Then for any 0 € (w, ) and f € \II%’B(SQ), the integral
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C,

p\0

[ K, ()
9(S,NCy)

is absolute convergent and it depends neither of the angle ¢ € (w,8) nor on the
imaginary unit J € S.

Proof. For the absolute convergence of the integral (71), we use the integration path

—ted?, t <0,
t) = 72
") {teJ%f’, t>0, 72)

along the boundary of S,NC ;. Then the estimate (70) of the operator K (s) and the
decay of the function f € \Il%’ﬁ (Sp), gives the absolute convergence of the integral

/ 1K) @FLf (v(2)]dt
R\{0}

1 o 4
< 2C¢Cf</ t—1+5dt+/ t‘1_5dt> = % <oo. (73)
0 1

For the independence of the angle @, let us consider two angles 1 < @2 € (w,6)
and for every 0 < € < R the curves

C,
OR
Y2,e
€, R
(o (plg02
&R
V2,e,
OR
0'5(90) = EeJQO7 p e (_‘P27 _()01) U (9017 §02)7
UR(QP) = Re‘hpv (ZBS (_9027 _901) U (@17 ()02)7
_teJ<P17 ( )
t) :=
’Y17€7R( ) {te_J(p1’ (67 R)
_teJcpz7 € (—R,—¢),
M2en(t) = {tej‘”, € (e, R).
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Then the Cauchy integral theorem gives

/ K(s)dsy f(s) = / K (s)dsy f(s). (74)

0rR®7Y2,6,RO0:

In the limit € — 0T, the integral along o. vanishes, since for € < 1 we get

1
'/ K(s)dsjf(s) SC’%Cf/ jSa_1+5edgo
. p1<lpl<p2 €
e—07T
20, Cylps — 1) =2 0. -

Similarly, also the integral along or vanishes in the limit R — oo, since for R > 1
we get

Performing now the limits ¢ — 0" and R — oo in (74) and using the fact that the
integrals (75) and (76) vanish, we obtain the independence of the angle

/ K(s)dsyf(s) = / K(s)ds s £(s).
8(Sp,NC.)

8(Sap2 m(CJ)

< 2C,,C(p2 — p1)R =00, (76)

/ K)o

For the independence on the imaginary unit, we consider J,I € S. For any three
angles @1 < p2 < @3 € (w,0) and € > 0 we define the paths

Cr

Yd.e,

oe(p) ==ce’®, e (—p3,—p1) U (o1, 03),
or(p) == Re'?, € (—p3,—p1) U (¢1,93). (77)

Note, that v1 ¢ r,V3.e,r, 0, 0r are curves in C;, while v, . g is in C;.
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For s € ran(y2 ¢ 00) we choose R > [s|, such that the Cauchy formula (5) gives
1
fs) = o

5 / Sz (b 8)dp1 f(p). (78)
m Y3,6,RO0:971,e,ROOR

In the limit R — oo, the integral along or vanishes because of

R+ |s|

(2 S)dplf(p)‘ <Cy / T RTIORAe 20, (79)
(2]

L <|pl<ps (B —1s])?

where the integral vanishes since the integrand asymptotically behaves as O(R8~179)
and we assumed 3 < 1. Hence (78) becomes

1 _
f6) =5 | S 0 )dprf(p), s €ran(pon)  (80)
T V3,e,00 00071, e,00

Next, we consider the curves

Cy

TR Y2

v/:‘m\,

—tele2

£ t) .=
72’275( ) {te_Jw27 t c (57 )

For p € ran(vs,¢,00), we choose R > |p|, such that the Cauchy formula gives

(81)

-1 _
K(p) = 2/ K(S)dSJSRl(Svp)
n ’72,%,R+1@T§97R
1 _
=0 K (s)ds ;ST (p, s), (82)

V2, R+1DPTEOTR

where the negative sign in front of the first integral above comes from the negative
orientation of integration path, and in the second equality we used the connection

SEl(s,p) = —SZl(p, s) between the left and the right Cauchy kernel. So we obtain
that

2T —p2 R
< C,, / R*ﬁLRdgp =g, (83)
%)

/ K(s)dssS;*(p,s) (R — |p|)?
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where the integral vanishes since the integrand asymptotically behaves as O(R™7)
and we assumed (3 > 0. This reduces the Eq. (82) to

K(p) = 217r/ K(s)dsJSgl(p, s), p € ran(ys e o0)- (84)

Let p € ran(7y1 ¢,00) We now reason as in (82), (83), (84) with the difference that
the left hand side of (82) equals zero instead of K (p) because the points [p] N C lie
outside the integration path, so we obtain the formula

1 _
0-+ K()ds;S; (0s). b€ ran(ineme). (85)
T Jyg e 0u®T

[N}
NG

Combining now (80), (84) and (85), leads to the formula

[ K@i =5 [ K ( . 5)db )
V2,e,00 V2,e,00 V3,6,0000e071,¢,00

(50~ 5 [ Keds ) )i ()

+ 5 (/ K(s)ds;S; " (p, s)>dp1f(p)
™ Y1,e,00 72,%,5697—5

2

1 _

o [ ([ KOs w9)arw. 60
T Oe Y2,e,00

Note, that in the above manipulations we were allowed to interchange the order

of integration since the double integrals over two unbounded paths are absolute

convergent due to

' /73,1,00 </72,1m K(s)dss Sz (p, 5)> dprf(p)

oo oo t Tps _ pp—Jp2
< 4C,,Cy / / rp pe ™ —re” 7| 1910 drdt
1 1

[tel#s — relez||teles — re—1v2]|

< 160¢20f e > —ﬁ
= leles — e%”e% - —1902’ "
0
16C, Cr07(1 = — = drdt < oo,
- |eI‘P3 — eILPZHQILPS — e~ ILPZ’ 7*/8+9t2+6 0—p

where in the second inequality we used

7]
third inequality — 0 < %, for some arbitrary 6 € (0,1) with 1 < §+8 < 1+9.

Analogously the integral along 71 1 and 721,00 is absolute convergent. Since every
s € ran('yg,%g @ 7'5) lies outside 71, r © V3,c,r © OR © 0O¢, see also the graphic in
(77), the Cauchy formula (5) gives

and in the

[teles — rei1w2| < leles — ei1w2|(t+ )

/ S7(p, 8)dprf(p) = — / S (p$)dprf(p), s € ran(as.e & 7).
Y1,e,00973,e,00 o
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where we used the fact that in the limit R — oo the integral along o vanishes, see
(79). This then reduces Eq. (86) to

A Ko

- / R -5/ ( / 2

Finally, we perform the limits when ¢ — 07 in this equation and show that the
double integral vanishes. For the first part of the claim, we get

(] xdsss o0 )amso)|
O¢ ’72,%,00
#3 ! e+r e+ 148
S40“920]0/ </s re|eel® — relez||gely — re—Tez] +/ rﬁ(s—r)zdr>6 edy
P1 5 1
¢s [t 1+ ©  e+r
= 4C,,Cpe’ - d / T L
A e e A

g3 (e 1+ ®  eqr ot
=100 [T ? a / = )ae =2 o,
#E o Ny polete = petenllere = peTea P ) i =2

The second part of the double integral (87) vanishes in the limit ¢ — 0% because of

|/ ( [ Kass5 09) ) n 1)|

o (Ao €+5 146 €
a— —
<4C¢1Cf/ / Joleel = ef¢>||sef%0—§e*1¢\€ 2d¢€d<ﬂ

s, (p, ))dpzf(p)~ (87)

e EBTQ
120 2

£
2

/27‘1’ P2 1 d¢d €_>0+ 0
— .
B o T

2

= 20‘30%71 Cfs /

Y1

Therefore, the limit ¢ — 0% turns (87) into the desired independence of the imagi-

nary unit
[ K@i = [ K@)
9(SpyNCy) 9(SpsNCr) (]

For the welldefinedness of the functional calculi in Definition 3.3 (ii)—(iv), we
also have to show that there are no two functions f; # f2 for which Dfy = Df,
Dfl = ng or Afl = Afg

Lemma 3.2. Let a > 1, f < 1. Then for every 6 € (0,7), f € \IJ%”B(SQ) there holds
(i) Vs € Sp : Df(s) =0=Vs € Sp: f(s) =0,

(ii) Vs € Sy : Df(s) =0=Vs € Sy: f(s) =0,

(iii) Vs € Sp: Af(s) =0=Vs € Sp: f(s) =0.

Proof. We will prove that in all three cases there exists some ¢ € H, such that
the function  in the decomposition (9) is of the form [(z,y) = cy, for every
(z,y) € U with y > 0. This is sufficient, since by the symmetry condition (10) and
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the continuity of 3 then also ((z,y) = cy for every (x,y) € U. From (11) we then
get the two differential equations

0 0
%a(x, y)=c and a—ya(az, y) =0,

which admit the explicit solution a(z,y) = cx + d, for some d € H. Altogether, the
function f is then of the form f(s) = ¢s + d, which is only possible for ¢ = d = 0,
since it has to vanish in the limits |s|] — 0 and |s| — oo due to the assumption
fewr’(Sy).

(i)

We write the si-, so-, ss-derivatives of the Cauchy—Fueter operator D in spher-
ical coordinates, i.e. with respect to the decomposition s = x + Jy, with x € R
and y > 0, as
0 0 0 0 0 o JI'y
D= _—+e—+e—+e3—=—+J—+—, 88
0sp ! 0sy 2 0s9 3 Os3 Ox y Y (88)

where I'; is a symbol for the angular derivatives. Using now the identity

JU;J =Ty -2, (89)
see [39, Paragraph 1.12.1], it follows from the assumption Df(s) = 0, that «
and [ satisfy

o 0 JT, o 0 T,-2 B

Since « and [ also satisfy the Cauchy—Riemann equations (11) and I'ja =
I' ;8 = 0 vanish since o and § only depend on z and the radial variable y, this
turns (90) into %ﬁ(x,y) = 0 and hence §(z,y) = 0.

Similar to (88), also the conjugate Cauchy-Fueter operator D can be written
as

— 0 0 0 0 0 o JI'y
=2 % % 2 -2 ;2 2 91
050 “ 0s1 2 052 e 0s3 Oz oy y (1)
and from the assumption Df(s) = 0, together with (89), there follows
0 o JI'y 0 o T;-2
2 gLt Jo S =0
<8:z; %y )a(ﬂf,y)+< oz " oy y )5(96,3/)
With the Cauchy—Riemann equations (11) and I'yaw = ' ;8 = 0, this equation

reduces to
0 0 1
<J8x + —+ y) B(z,y) = 0.

Since this equation has to be satisfied for every J € S, while the function 3
may not depend on J, the real and the imaginary part of this equation has to
be satisfied separately. This leads to the two ordinary differential equations

0 0
SoB@n) =0 and AG) = — B0,

which have the explicit solution §(z,y) = 5, ¢ € H. However, since the positive
real line is contained in the domain Sy, where f is holomorphic, this is only
possible for ¢ = 0.
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(iii) Combining (88), (91) and using (89), gives the Laplace operator in spherical
coordinates
. 0? 02 20 T;-TI?
A=DD=2_ 4+ % 429 2" 2J
o "o Ty v
From the assumption Af(s) =0 and with I ;J = 2J — JT';, there follows

0* 092 29 TI,-TI?
(gt ot im ) e
N <a2 9> 20 2-30;+4T1?

@4‘@‘*—5%_ y2 >B(x,y)=0.

Since the Cauchy—Riemann equations (11) in particular imply

0% B 0% B 0?3 B 0%3 B
ox2  Oy?  0x2 Oy

0,

together with I'ja = I' ;8 = 0, they reduce the above equation to

Since this equation has to be satisfied for every J € S, while the function
may not depend on J, the real and the imaginary part of this equation has to
be satisfied separately. This leads to the two ordinary differential equations

0 0
GoB@y) =0 and B0 = B,

which has the explicit solution ((x,y) = cy, for some constant ¢ € H. O

Next we give a proper meaning to the functional calculi (4). In particular,
Theorem 3.1 together with Lemma 2.22 show that the integrals converge and are
independent of the integration path 9(S, N C;) for every J € S. It is moreover
proven in Lemma 3.2, that the functional calculus is independent of the chosen
representative f in the spaces (3).

Definition 3.3. Let o > é, g € (0, é], w € (0,7) and T of type (o, 3,w). Then for
every 8 € (w, ), f € U3*?0(Sy), we define

1

f(T) :=— Sy (s, T)dsyf(s), (S-functional calculus)

27 Ja(s,ncy)
-1

Df(T) :=— Q. N Tdssf(s), (Q- functional calculus)
T Jas,ncy)

Df(T) ::1/ Pl (s, T)ds;f(s), (Ps- functional calculus)
21 Ja(s,ncy)

Af(T) ::i / Fr(s,T)dssf(s). (F-functional calculus)
21 Ja(s,.nc,)
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For fe{f, Df,Df, Af} we will also use the kernels Kr,(s,T) from Lemma 2.18
and write

~ 1
Fy =g [ KT g (92)

The next lemma collects some basic properties of the functional calculi in
Definition 3.3.

Lemma 3.4. Let o > 3, 3 € (0, 3], w € (0,7) and T of type (a, 3,w). Then for every
0 (wm), f€ \Ilia’?’ﬁ(Sg) and any choice f € {f,Df,Df, Af}, there holds
(i) f(T) e BC(V),
(ii) If f is intrinsic, then f(T) = f(T);
(iii) If f is intrinsic, we can use the right resolvent Kg(s,T) from Lemma 2.18, to
write

~ 1

f(T) f(s)ds KR(s,T). (93)

- % 9(Sx,NCy)

Proof. (i) The boundedness of the operator f(T ) follows immediately from the
estimate (73). In order to show that the components of f(7") commute, we
decompose the kernel K (s,T) according to (53) into

Kp(te*7? T) = A, (tcos g, tsing, T) + B, (t cos p, tsin @, T)).J. (94)
With the property (54a) of the operators A and B we can write (92) as

~

f(I) = % /_O Ki(—te??,T)Je’? f(—te’¥)dt

1 o
- / Kp(te™7?,T)Je 7% f(te™7¥)dt
2 0

N % i (Kp(te”?, T)Je’¢ f(te’?) — Kp(te™'?, T)Je™ 7% f(te™7%)) dt
0
=5 [ (Alcosputsing TV (0e7) — 70 1e0%))
2 Jo
~ Bltcosi, tsin g, T)(e”? f(te’#) + e~ 7% f(te™7%) )dt. (95)

~

This representation shows that the components of f(T') are integrals over linear
combinations of the components of A and B. However, the components of A
and B do pairwise commute, which can either be seen from their explicit form
in (56), (57), (59) and (61), or it is also a consequence of (54c), (55) and
Lemma 2.7. Hence also the components of f(T) commute.

(i) If we assume that f is intrinsic, we know that f(te=/%) = f(te/¥) € C; and
hence the integral (95) simplifies to

oo
F(T) = 1 / <A(t cos g, tsing, T) Re (Je’? f(te’¥))
0

s

— B(tcosp,tsinp,T)Re (eJ‘Pf(teJ‘P))>dt. (96)
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Hence it follows from (54b), that f(T ) = f(T)
(iii) Similar to (94), we can write the right kernel Kr(s,T) from (53) as

Kr(te™/% T) = A(tcos o, tsinp, T) + JB(t cos @, tsinp, T).
With the same calculations as in (95) and (96) we get

QL f(s)dsJKR(s,T)—l/ <Re (f(te’?)Je’?) A(tcos o, tsing, T)
T Jo(S,NCy) T Jo

— Re (f(teJ“D)eJ“’)B(t cos p, tsin ¢, T)) dt.

(97)
Since the right hand sides of (96) and (97) coincide, the representation (93) is
proven. O

Proposition 3.5. Let o > é, g€ (0, %], w € (0,7) and T of type (o, B,w). Moreover,
let B € B(V) which commutes with T,Ty,T1,T>,T5 on dom(T'). Then for every
0 € (w,m), g € U3*35(Sy) and any choice § € {g,Dg, Dg, Ag}, there also commutes

By(T)=9(T)B. (98)
Proof. Since B commutes with T, Ty, 11,1, T3, it is stated in (55), that B also
commutes with the operators A(t,z,y) and B(t,z,y) in the decomposition (53). It

follows then from the representation (96) of the functional calculus, that B also
commutes with g(7). O

Corollary 3.6. Let o > %, g € (0, %], w € (0,m) and T of type («, B,w). Then
for every 0 € (w,n), f,g € \II?EQ’B’B(SQ) and any choice f € {f,Df,Df,Af} and
g € {9,Dg,Dg, Ag}, there holds

() FT)G(T); = G); F(T); and FT)GT),; = 5T, 7T, iv € {0,1,2,3).
(i) If f,g € N(Sp), then  f(T)g(T) =g(T)f(T) and f(T)g(T) =g(T)f(T).
(i) f(T)T; =T, f(T), on dom(T), j€{0,1,2,3}.

~ ~ ~

(iv) If f is intrinsic, then f(T)T =Tf(T) and f(T)T =Tf(T), ondom(T).
Proof. (iii), (iv) Since, by (54c), the operators A(z,y,T) and B(z,y,T) of the

decomposition of the kernel of ]?(T) commute with Tg,T7,Ts, T3, it follows from

~

the integral representation (95), that also f(7") commutes with Ty, Ty, 75, T3, on
dom(T). If f is intrinsic, it follows from (96) that f(T') even commutes with T, T,
on dom(T).

(i) It is shown in (iii) that g(7T") commutes with Ty, T1, T, T3, on dom(T). It fol-
lows then from Lemma 2.7 that its components g(7"); commute with 7', Ty, T, T, T3
as well. The property (55) then shows that g(7T"); commutes with the operators

~

A(z,y,T) and B(x,y,T) from the decomposition of the resolvent of f(7T'). Again,

~ ~ ~

by the representation (95) of f(T') we then get g(T'),f(T) = f(T)g(T),; and by

~

Lemma 2.7 then the commutation of the components g(T'); f(T); = f(T)ig(T);.
The second commutation g(7') jf(T)i = ]?(T)ZE(T) j, follows the same steps.

(ii) It is already shown in (iii), (iv) that g(7T") commutes with T, Ty, T1, 1>, T5,
on dom(7"). By (55) it then also commutes with A(z,y,T) and B(zx,y,T). Since

f is intrinsic as well, the commutation of f(7") and g(7") then follows from the
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representation (96) of the integrals. The commutation of f(T) and G(T) follows
analogously. O
Next we want to derive the very important product rules (7) of the four func-
tional calculi. The basic ingredient will be the following resolvent identities.
Lemma 3.7. Let T,T € KC(V) and D as in Assumption 2.11. Then for s,p € pp(T)

with s ¢ [ |, there holds the following resolvent identities
(i) (Sg'(s,T)p = S ' (p, T)p = 55% ' (s, T) + 35" (p, 7)) (0 — 2s0p + [s|*) ™"

- SR (S T)SL ( b, )7 (998,)
(it) (Qee(T)p — Qup(T)p —3Q-4(T) +3Q- (1)) (p° — 2s0p + |s*) ™"
= Qo (1S (0, T) + Sg' (0, T)Qcp(T) (99b)

= Qes(T)SL (0. T) + Si' (0. T)Qep (1),
(iii) (P5*(s, T)p = Py (p, T)p = 5P5' (s, 1) + 5Py (p, T)) (p* — 20p + |s[*) ™"
= P, 1), (0, T) + Sp' (s, T)Py (0. T) = 2Qcs(T) (S (0. T) = L (. 7)), (99¢)
(iv) (Fr(s,T)p = Fr(p,T)p = 5Fr(s, T) +3FL(p, T)) (p* — 2s0p + |s|*) ™"
= Fr(s,T)S; " (p,T) + Sg" (s, T)Fr(p, T) — 4Q +(T)Q »(T). (99d)
Proof. Although the assumptions on the operator 7" and the domain of the operator
Qec,s(T) are different, the proof of the S-resolvent identity (99a) and the Q-resolvent

identities (99b) follow the same steps as in [24, Theorem 2.33] and [44, Lemma 3.9].
For the proof of the Py-resolvent identity (99c), we use (99a) and

Py (s, T)S7 (0, T) (0 — 2s0p + |s[*)
=2(Sz'(s,T) + S5 '(5,T)) Sz (s, T)SL ' (0. T) (p* — 2s0p + | s)
:2(S§I(S,T)+S§1(S,T)) (S Y(s, T)p — Sy Yp, T)p - 355, (5,T)+§Sgl(p,T))
=Py, T)p— 3P (s,T) — 2(Sz"(s,T) + S5' (s, 1)) (S ' (0. T)p — 357 ' (p, 1))

= P3¥(s,T)p —5P3"(s,T) —4Q_ :(T)(s = To)((p = T)p — 5(p — T)) Q. »(T).
(100)

The same calculation also gives
Si' (s, T) Py (p, T)(p* = 250p + |s]*)
=5Py (p,T) — Py (s, T)p +4Qc s (T)((s = T)p = 5(s = T)) (p — To) Qe (1)

(101)
Adding now (100) and (101) leads to the stated Ps-resolvent identity
(P (s, T)S. (0, T) + Sg* (s, )Py (p, 7)) (0 — 250p + |s|°)
= P3'(s,T)p — 5Py (s, T) + 5P (p,T) — Py (p, T)p
—4QzN(T)((s = To) (0 = Thp = 5(p = 1) — (5 = Thp — 5(s = T)) (p — To) ) Qep(T)
= P3'(s,T)p— 5Py'(s,T) + 5P (p,T) — Py (p, T)p
+2Qc s (T)(T = T)(p* — 2s0p + |s|*) Qe p(T)

= P3¥(s,T)p — 5Py (s,T) +3P5 (p,T) — P (p, T)p
+2Qc: (1) (S (p, T) — SL.(p, T)) (p° — 2s0p + |[?).
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For the proof of the F-resolvent identity (99d), we again use (99a) and get
(Fr(s,T)SL ' (0, T) + Sz (s, T)Fr(p, T)) (p* — 2s0p + |s|°)
= —4(Qcs(T)SR" (5, T)SL (0, T) + Sz (5, T)SL " (0, T) Qe p (T)) (P — 250p + |s|*)
= —4Q. (1) (Sx" (5, T)p — S; (0, T)p — 585" (s, T) +3S; " (p, 1))
—4(Sg"(s,T)p— 81 (p, T)p = 3S5" (5,T) + 55, (0, T)) Qe p(T)
= Fr(s,T)p —5Fr(s,T) — Fr(p, T)p +5FL(p, T)
+4Q. 5 (p—Tp—35(p—T) — (s = Tp+35(s — T)) Q. (T)
= Fr(s,T)p — 5Fr(s,T) — Fp(p, T)p +5FL(p, T) + 4Qz 5 (T)(p* — 2s0p + |s) Qe p(T).
O

The forthcoming lemma holds significant importance for the upcoming product
rule in Theorem 3.9.

Lemma 3.8. Let B € B(V), g € ¥*8(Sy) for some a > 1, <1, 0 c (0,7). Then
for every ¢ € (0,0), J €S there holds

1

= — g(s)ds; (3B — Bp)(p* — 2sop + |s]*)™, p€ S,  (102)
21 Ja(s,ncy)

Bg(p)

Proof. First, we note that the integral (102) is absolute convergent due to the asymp-
totics

9(s)(3B — Bp)(p* — 2s0p + |s|*) "1 = O(|s|*711?), as|s| — 0T,
9(s)(3B — Bp)(p* — 2s0p + |s|*) ' = O(|s|°°72), as |s| — oo. (103)

Next, one immediately verifies the identity
(s* = 2pos + [p[*) (3B — Bp) = (sB — Bp)(p* — 2s0p + |s]*),

by expanding both sides of the equation. Multiplying (s? — 2pgs + |p|?) ! from the
left, (p? — 2sop + |s]?)~! from the right and plugging it into (102), gives

/ 9(s)ds y(3B — Bp)(p* — 2sop + |s*) 7!
8(S,NCy)

B g(s) s (sB — BF
/mwm G p)(s—py) 7 (B~ BP):

where we factorized p* — 2sop + |s|> = (s — ps)(s — Pj), using those two zeros
{ps,p7} := [p] N C; which lie in the complex plane C;. Apart from the constant
factors B and p, this makes the right hand side a classical complex path integral
in the complex plane C;. If we close the path 9(S, N C;) on the right at infinity,
the integral along this path vanishes due to the asymptotic decay (103). Since this
closed path surrounds both singularities p; and p;, we are able to evaluate the
integrals using the Cauchy formula and distinguish two cases:
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o If Im(py) #0, i.e. pj # Dy, we get
1 9(s)
21 Jas,nc,) (8 —pa)(s — D7)

ds;(sB — Bp)

= 90D 5 pp) + 2P (55— )
 ps—DJ by—DpJ

_ 9@s)ps —9P7)ps 5 9(ps) — 9(P7) Bp
PJs—DPJ Ps—DPJ
_5 (g(p)p - 9@ _ 9(v) :g(p)p> — By(p),
p—P p—D

where we are allowed to replace p; by p and shift B to the left since

9ws)ps —9®r)ps _ 9l —9®p o 9s) —9@5) _ 9() — 9(p)
ps—DJ p—p ps—DJ p=p
and both equations are real valued. This can be seen by decomposing p = v + Iv
for u,v € R, I € S, which leads to py = u + Jv and according to (9) also to
9(ps) = a(u,v) + JB(u,v) and g(p) = a(u,v) + I5(u,v) with real valued functions
« and 3. Moreover, in the fourth line we are allowed to shift the operator B all the
way to the left since the two fractions are real valued.

oIf Im(ps) =0, i.e. py = pj = p € R, we get by the Cauchy formula of the
derivative

S 9(5) sy(s d s)(sB —
27 Jois.oc,) (5~ )2 ds;(sB — Bp) = —-(9(s)(sB — Bp))

= ¢'(p)(pB — Bp) + g(p) B = By(p),

where we interchange pB = Bp and g(p)B = Bg(p) since both p and g(p) are real
valued. 0

Equipped with the resolvent formulas in Lemma 3.7 and the integral iden-
tity of Lemma 3.8, we are now ready to prove the product rules of the four func-
tional calculi in Definition 3.3. In particular such product rules will be the start-
ing point for the H®-versions of the functional calculi for the fine structure, see
Definition 4.2.

Theorem 3.9. Let o > 3, B € (0,3], w € (0,7) and T of type (c, B,w). Then for
any 0 € (w,m), g € U3438(Sy), f € \1130‘ 3’6(5’9) we obtain the product rules
(i) (gNH)(T) =g(T)f(T), (104a)
(i) D(gf)(T) = Dg(T)f(T) + 9(T)Df(T)
= Dg(T)f(T) + g(T)Df(T), (104b)
(iit) D(g.f)(T) = Dg(T) f(T) + g(T)DF(T) + Dg(T)(f(T) - f(T)),  (104c)
(iv) A(gf)(T) = Ag(T)f(T) + g(T)Af(T) — Dg(T)DS(T). (104d)

Proof. Tt is obvious that for g € W3%35(Sy) and f € \Il:za’gﬂ(Sg) also their product
isingf € \Ilio"?’ﬁ (Sp) and hence all the functional calculi in (104a)—(104d) are well
defined.
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In the first step we fix g3 < ¢1 € (w,0) and use the functional calculi of
Definition 3.3 and the resolvent identities of Lemma 3.7, to write all the right hand
sides of (104a)—(104d) in a similar form. For the right hand side of (104a) we use
(99a) and get

1

42 Jas, ey
1

—a || s (S e T S . D
T Jo(Sy,NCy) JO(Se,NCr)
— 355" (5, 1) +557 ' (p, 1)) (p* — 2s0p + [s|*) "Ldp1 f (p)-

Regarding the @)-, the P»- and the F-resolvent identities (99b), (99¢) and (99d), we
rewrite the right hand sides of (104b)—(104d) in a similar way. Considering all the
additional terms we end up with all the right hand sides (RHS) of (104a)-(104d)
written in the form

o(T)F(T) /8 o SOV (. ST (0 T )

1
RHS = 2/ / 9(s)ds s (Kr(s, T)p — Kr(p,T)p
42 Jo(s,,ncy) Jo(s,,ncr)
—5Kp(s,T) +5K1(p, 7)) (p* — 2s0p + |s|*) ""dp1 f (p), (105)

using the operators K, (p,T") and Kr(s,T) from Lemma 2.18.

In the second step we will further simplify (105). Since ¢ < @1, for every
s € 9(S,, NCy), all the singularities [s] N Cy of (p? — 2sop + |s[*)~! in the plane
Cr, lie outside the integration path d(S,, NCy), if we close the path on the right at
infinity. Since the integrals along this closing path vanish due to the asymptotics

(Kr(s,T)p—sKr(s,T))(p* — 2s0p + [s]*) " g(p) = O(|p| >**77?), as |p| — oo,

and the assumption § < % Hence the Cauchy integral formula gives
[ (Kl = SKR(T)) 0~ 2500+ o) dpaf () = 0
8(S4,NCr)

which reduces (105) to

1
RHS = — / 9(s)ds; (sKr(p,T) — K1(p,T)p)
42 Jo(s,,ncy) Jos,,ncr)

x (p* = 2s0p + |s|*) " dp1 f (p)-
Next, the integral identity (102) further reduces this integral to

1 1
rits = - [ ey KT @M 0) = 5 / oy e TIPI90) )

where in the second equation we were allowed to interchange g(p)dpr = dprg(p)
since g is intrinsic. However, by the possible choices of Ky (p,T) in Lemma 2.18, it
turns out that the right hand side is exactly the left hand side in the product rules
(104a) — (104d). 0
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Next we want to derive a connection between the S-, the Q- and the P»-
functional calculus, which is motivated by the fact that

0

D+D=2—.
+ O.CL'()

Proposition 3.10. Let o > % 5, B3 € (0, ] w € (0,m) and T of type («, B,w). Then for
any 0 € (w, ) and f € \If?’a 0(8p) with f' € W3*3P(Sy), there holds

Df(T) = 2f(T) — D(T),
where f'(T') is understood as the S-functional calculus in Definition 3.3 (i) for the

function f'.

Proof. First, we use the path (72) to parametrize the integral of the S-functional
calculus as

Fy== [ s am.0) R e
2 R\{0} J
_ 1 1 1d
=5: |, SE OO a0
Integration by parts then gives
iy — L g 1

P =5 [ ESE OO0

- 0.5 (s, T)ds 1 (5), (106)

21 Ja(s,ncy)
where there are no boundary terms since the integrand vanishes for ¢ = 0 and
|t| — oo. Explicitly, calculating the derivative, we get

05715, 7) = 2 ((s = T)QEA(D)) = QH(T) — 2(s — T)(s ~ T))Q:(T)

= QuHT) — S5 (. T)(S7 (5, T) + 5745, 7)) = QA1) — 3 PE(s,T).
and plugging it into (106) we obtain

2f(T) = 1/ (=2Q.XT)+ Py (s,T))ds; f(s) =Df(T)+ Df(T). O
21 Ja(s,ncy)

We conclude this section investigating how the functional calculi of Definition
3.3 act on functions of the form s™ f(s). In particular, we give a recurrence relation
between the functional calculi associated with s™ f(s) and with s”~! f(s). An impli-
cation of the following Proposition 3.11, contained in Proposition 4.7, demonstrates
that the H®-functional calculus of powers yields the operators defined using the
quaternionic derivatives.

Proposition 3.11. Let o > 1 , B € (0, ] w € (0,7) and T of type (o, B,w). Consider
now 0 € (w,m), N € N, f € wi™ 35 N(Sp). Then for every n € {1,...,N} there
holds

() (")) =T (1), 1

(if) D(s"f)(T) = TD(s"~ f)YT) = 2T f(T) =TD(s" ' f)(T) — 27"~ f(T),



F. Colombo et al.

(i) D(s" f)(T) = TD(s" f)(T) + 2"~ {(T) + 21"~ {(T),

(iv) A(s"f)T) = TA(s""Hf)(T) +2D(s"~Hf)(T).

Proof. First, we observe that s"f € Wi tm36-Ntn(gy c @330 (5.) for every
n € {0,...,N} and hence all the functional calculi in (i)—(iv) are well defined.

(i) We reason by induction and the step n = 0 is trivial. For the induction
step n — 1 to n we use the identity

S;N(s, T)s =TS; (s, T) + 1, (107)
to get

(s"F)(T) = —

"o
1

S 2r 8(S,NC.)

LT[ S T () = T ) = T (D),
8(S,NC.)

/ S (s, T)dsys"f(s)
a(S,NCy)

(TS (s, T) +1)dsys" ' f(s)

T o

where in the third term above we used Hills theorem to carry the closed operator
T outside the integral and then we observe that the integral over s"~! f(s) vanishes
due to the holomorphicity of the function on S,.

(ii) For the @Q-functional calculus we use the identity

Qus(T)s = TQ. L (T) + 57 (s,T),

which immediately follows from the definition (49) of the left S-resolvent, to get the
recurrence relation

D(s"f)(T) = - /8 e G )

w
-1 _
= — (TQ;; (T) + Sgl(s, T))dsjsnflf(s)
T Jo(s,NCy)
n— n— ool n— =l .o
=TD(s" f)(T) = 2(s" " )(T) =TD(s" )(T) - 2T (D),
where in the last line we used (i). Analogously, from the identity
Qs (T)s =TQ(T) + S (s,T),
there get the second recurrence relation
D(s"f)(T) = TD(s"~ f)(T) + T f(T).

(iii) For the Ps-functional calculus we use (107) and the fact that s commutes
with the sum

Sy (s.T) + Sp (s, T) = 2(s — To) Qg s (T).
This leads to
Py (s,T)s =257 (s,T)(S; " (s, T) + S; ' (s,T))s
=2(TS; (s, T7) +1)(S; (s, T) + S; (s, 7))
=TP§(s,T)+2S; (s, T) + 25 (s,T),
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and consequently we obtain the recurrence relation

_ 1
D(s" f)(T) = o o )PQL(S,T)dSJSnf(s)

1 _
- (TPy (s, T)+2S; (s, T) +25; ' (s,T))dsss" ' f(s)
27 Ja(s,ncy)

=TD(s"  f)(T) +2(s" )(T) +2(s" f)(T)
= TD(s" " f)(T) + 2T ' f(T) + 201 f(T).

(iv) For the F-functional calculus we use (107), to get

Fr(s,T)s = —45;1(3,T)Q;; (T)s
= —4(TS7"(5,T) + 1)Qu5(T) = TFr(s,T) — 4Q. :(T).

This then gives the final relation

A(s"fUT) = % - )FL(S,T)dSJSnf(S)

1
- (TFL(s,T) — 4Q1(T))ds ;5" f(s)
27 Ja(s,ncy)

— TA(s" 1 f)(T) + 2D(s" " £)(T). .

4. The Quaternionic H °°-Functional Calculi

In this section we will extend the quaternionic functional calculi of
Definition 3.3 for decaying functions, to slice hyperholomorphic functions on a sec-
tor which are polynomially growing at 0 and at co. More precisely, we consider the
following spaces of functions.

Definition 4.1. For every 6 € (0, 7) we define the function spaces
(i) FL(So) i= {f € SHL(S)) |3k >0, Ci 2 0+ |f(s)] < Cu(lsl* + ke, 5 € S0 }
(i1) F(Sp) := {f € N(Syp) ’ Jk>0,C, >0:]f(s)] < Ck(|s\k + ﬁ), s € 5’9}

The main idea behind the H°-functional calculi is to choose a regularizer
function e which imposes enough decay at 0 and at oo, such that ef is regular
enough in order to apply the functional calculus of Definition 3.3. Motivated by the
product rules in Theorem 3.9, we define the so called quaternionic H-functional
caleulus, where it is crucial for e(T') and e(T) to be injective, and hence in contrast
to the bounded functional calculus of Sect.3 we are only able to treat injective
operators T and T by using the choice (108) for the regularizing function.
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Definition 4.2. Let o > %, g€ (0, %], w € (0,7) and T of type (o, B,w) with T,T
injective. Then for every 6 € (w,7), f € FL(S¢) we define the H>-functional calculi

(i) £(T):=e(T)" " (ef)(T), (S- functional calculus)
(ii) DF(T) = (e(T)e(T)) " (e(T)D(e F)(T) — De(T)(e f)(T)), (Q- functional calculus)
(iil) DF(T) := (e(T)?e(T))~ ! (e(T)e(T)ﬁ(ef) (T) — e(T)De(T)(ef)(T) (Pa2- functional calculus)

+e(T)De(T)(ef )(T) — 6(T)De(T)(ef)(T)),
(iv) Af(T) == (e(T)%e(T)) -1 (e(T)e(T)A(ef)(T) —e(T)Ae(T)(ef)(T) (F-functional calculus)
+ e(T)De(T)D(ef)(T) - (De(T))(ef)(T)),

where e € U3938(Sy) is such that e(T), e(T) are injective and ef € \Ilia’gﬁ(Sg). Here
e(T), e(T), (ef)(T), (ef)(T) are understood as the S-functional calculus, De(T),
D(ef)(T) as the Q-functional calculus, De(T), D(ef)(T) as the Ps-functional cal-
culus and Ae(T), A(ef)(T) as the F-functional calculus of Definition 3.3.

Theorem 4.3. Let o > %, B € (0, %], w € (0,7) and T of type (o, B,w) with T,T
injective. Then for every 0 € (w,m), f € Fr(Sy) there exists a reqularizer function
e in the sense of Definition 4.2 and no one of the functional calculi (i)—(iv) in

Definition 4.2 depend on the choice of the regularizer e.

Proof. Let f € Fr(Sp), i.e. there exists k > 0, Cj, > 0, such that

F(s)| < Ci <|s|k + |51|k> |

Choosing now n € N with n > max{k+3a—1,k—35+1} and consider the function
s

e(s) = At

it is obvious that ecW3*35(Sy) as well as ef € U3*38(Sy). From [44, Equation (58)]
and Proposition 3.11 (i), it then follows that (1 + T)?" is bijective and e(T) =
T"(1+T)~2". Since T is injective, e(T) is then injective as well. Analogously, the
injectivity of e(T) =T (1 + T)2" follows from the assumed injectivity of T'.

For the independence of the regularizer, let ej,es € W3%35(Sy), with
e1(T),e1(T),ea(T),ea(T) are injective and e f,eaf € ‘11‘20"3’6(59). Note, that the
symbols e; and es for the regularizers are the same as the one for the imaginary
units of the quaternions. This fact doesn’t pose an issue, as they do not appear in
the proofs of the following theorems.

To enhance the clarity of the calculations in this proof, we will adopt the
following notation

e for e(T), (ef) for (ef)(T), e~ for e(T)~!, De for De(T),

€ for e(T'), @) for (ei)(T), (e)~ for e(T)~1, D(ef) for D(ef)(T), (109)
De for De(T), D(ef) for D(ef)(T), Ae for Ae(T), A(ef) for Aef)(T).

Throughout this proof we will always use the fact that (which is due to
Corollary 3.6 (ii)):

e;, € commute with ej,Dej,fej, Ae;, for every i,j € {1, 2}.

n

(108)
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(i) For the S-functional calculus, it follows from the product rule (104a), that
ez(erf) = (e2e1f) = (ere2f) = ex(e2f). (110)
Multiplying (ejez)™! from the left gives the independence of the regularizer
ert(erf) = e (eaf).

(ii) For the Q-functional calculus, the two versions of the product rule (104b) state,
that

Des(e1f) + e2D(erf) = D(ezerf) = D(erezf) = Der(eaf) + eDlexf).
Rearranging this equation, gives
e2D(e1f) — Dei(eaf) = eD(eaf) — Dea(er f). (111)
Multiplying eje3 from the left and using (110), gives
esez(e1D(erf) — Der(erf)) = erer(ezD(ezf) — Dea(eaf))
= ere1(e2D(ezf) — Dea(eaf)), (112)

where the second equation comes from (111) with the choice e; = e5. Multiply-
ing (ejes€1e3) ! from the left, then gives the independence of the regularizer

(eren) " (e1D(erf) — Deilerf)) = (exez) ' (e2D(eaf) — Dea(eaf)).
(iii) For the P,-functional calculus we apply (104c) to both sides of (110) and get
Des(e1f) + eaD(erf) + Dex((exf) — (exf))
= Dei(eaf) + e1D(eaf) + Der((eaf) — (e2f)).
Rearranging the terms leads to
eaD(e1f) + Dei(eaf) — (Der + Der)(eaf)
= e1D(eaf) + Dea(e1 f) — (Deg + Des)(er f).
Multiplying ejeseies from the left and using again (110), gives
62@(616255(61f) + e1ezDey(e1 f) — exer(Dey + ﬁ61)(61f))
= e1e1(e1eeaD(eaf) 4 exerDes(ea f) — e1€2(Dea + Dez)(eaf)).  (113)

Furthermore, similar to (111), the two versions of the product rule (104b) give the
identity

€3De; —e1Dey = e3Deq — e1Dey,
which, multiplied by ejeaz(ejeaf) from the right, becomes

esezereaDer(e1 f) — erereserDes(ea f)
= e%@elDel(W) — €%a€2D€2(a).

Using this in (113) gives
e%@(elaﬁ(elf) +e1Dey(e1f) —e1(Dey + fel)(elf))
= eer(e2e2D(eaf) + exDes(eaf) — €2(Des + Des)(e2f)).
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Multiplying now (e?e3eez) ! from the left, gives the independence of the regularizer
(eie1) ' (er&rD(erf) + e1Der (e f) — €1(Der + Deq)(er f))
= (e3e3) ' (e2e3D(eaf) + e2Des(eaf) — e2(Des + Dea)(eaf)).

(iv) For the F-functional calculus, we apply (104d) to both sides of (110) and get
Aes(erf) + eaAlerf) — DeaD(erf) = Aer(eaf) + e1A(eaf) — DerD(eaf).
Rearranging the terms and multiplying the resulting equation with ejeseqes, gives

e1ez€e1es (€2A(6’1f) — Aey(eaf) + D€1D(€2f))
= 61626162(61A(€2f) —Aea(erf) + D€2D(€1f))-
Using the identity (111) on the left hand side, and the same one with e; < es
exchanged on the right hand side, turns this equation into
16373 (Fre2tAe1 /) — E1les (e f) + Dey (Dea(er ) + e2Dlen f) — Des(eaf)) )
= eleza<5e1A(ezf) —e3Aex(e1 f) + Dez(Dey(eaf) + e1D(eaf) — Dez(e1f)))-

Since the term ejepezDe;Des(er f) cancels with ejeserDesDey(eaf) on the right
due, this equation reduces to

ezez(ererA(er f) —erAei(erf) + erDeiD(er f) — (Der)*(erf))
= eier(exeaA(eaf) — eaAez(eaf) + e2DeaD(eaf) — (Dez)*(eaf)),
where we once more used (110). Multiplying both sides with (eZe3ejes) ! gives the
independence of the regularizer
(efer) ' (ererA(er f) — erler(er f) + exDerD(er f) — (Der)?(erf))
= (e5e2) ' (e2e3A (€2 f) — €2ea(eaf) + e2DeaD(es f) — (Dez)?(e2f)). O

Lemma 4.4. Let « > &, 3 € (0,3], w € (0,7) and T of type (o, B,w) with T,T

injective. Then for every 0 € (0,7), f € Fr(Sy) the functional calculi

f(T), DF(T), DF(T), Af(T) are closed operators.
Proof. Since in the Definition 4.2 (i)—(iv) the operators e(T), e(T) are bounded and

injective, the inverses e(T) ™, (e(T)e(T )) and( (T )26(7))71 are closed operators.
Moreover, the remaining term (ef)(T") in (i) and the large brackets in (ii)—(iv), are
bounded operators. Altogether, f(T),Df(T),Df(T),Af(T) are the product of a
bounded and a closed operator and hence are closed operators themselves. ]

Proposition 4.5. Let o > 3, B € (0,3], w € (0,7) and T of type (o, B,w) with T, T
injective. Moreover, let B € B(V') which commutes with T', Ty, Ty, T, T35 on dom(T).
Then for every 0 € (w,n), g € F(Sy) and any choice § € {g,Dg, Dg, Ag}, there
holds

By(T) c 9(T)B.
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Proof. First of all, we note that for any injective operator A € B(V') which commutes
with B, we get the inclusion

BA™'=AT'ABAT' = AT'BAAT  C AT'B.
By Proposition 3.5 this in particular holds true for all prefactors in
Definition 4.2 (i)—(iv), i.e. A = e(T), A = e(T)e(T) and A = e(T)?e(T). Also by
Proposition 4.5, B commutes with (ef)(T") from Definition 4.2 (i) and with the big
bracket terms from Definition 4.2 (ii)—(iv). Altogether, this shows the commutation

Bg(T) C g(T)B, O
Theorem 4.6. Let o > %, § € (0,3], w € (0,7) and T of type (o, B,w) with T, T
injective. Then for any 6 € (0,7), g € F(Sp), f € Fr(Sy), there holds the product
rules

(i) (@NT) 2 g(T)F(T), (114a)

(i) D(af)(T) 2 Do(T)F(T) + o(TYDAT) and
D(gf)(T) 2 Dg(T)f(T) + g(T)DF(T), (114b)
(i) Do f)(T) 2 Dg(T)(T) + g(TYBF(T) + Dg(T) (F(T) — (D)), (114c)
(iv) Alg/NT) 2 Ag(T)f(T) + g(T)AF(T) — Dg(T)DS(T). (114d)

Proof. In this proof we will use again the notation (109). Let e; be a regularizer of
g and es a regularizer of f according to Definition 4.2. Then it is clear that ejes is a
regularizer of the product gf. Note, that the symbols e; and e, for the regularizers
are the same as the one for the imaginary units of the quaternions. This fact doesn’t
pose an issue, as they do not appear in the proofs of the following theorems.

In the following we will do many manipulations like interchanging the order of
operators which will be allowed by Corollary 3.6. We will also use the following list
of operator identities (or inclusions) and we will not mention them any more at any
point where they appear in the proof:

o A7'BD BA™! for any A, B € B(V,V) with A injective and AB = BA,

o (AB)"'=A"'B71 = B7'A~! for any injective A, B € B(V) with AB = BA.

o AAY(B+C)D2 A !B+ A™IC for any A, B,C € B(V) with A injective.

(i) For (114a), we use the product rule (104a) for (e;gesf) in Definition 4.2 (i),
to get

(9f) = (ere2) " ereagf) = 1 'es ' (e19)(eaf) 2 ey (erg)es Heaf) = gf-

(ii) For the @-functional calculus, we only prove the first equation in (114b),
while the second one follows the same steps. Using the product rule (104a)
for (ergeaf) as well as (104b) for D(e1geaf) and D(ejes), we can rewrite the
Definition 4.2 (ii) as

D(gf)(T) = (6162@)_1((6162)D(€1ezgf) - (61629f)D(6162))
= (ereseien) ! (eres (D(erg)(exf) + (e19)Dlea )

— (e19)(€2Dey + 61962)(€2f))-



F. Colombo et al.

The identity (111) with g instead of f, then turns the above equation into

D(gf)(T) = (erese1€3) " (e182D(er1g) (e2f) + erea(erg)Dlexf)
— (e19)ezDey (eaf) — (e1g)erDes(eaf))
D (ere281) "' (e1D(erg) — (e19)Der) (e2f)
+ (e2€7e2) ' (€19) (e2D(eaf) — Dea(eaf))
D (erer)”H(e1D(e1g) — (e1g)Der)es  (eaf)
+ (e1) "' (e1g9)(e2e3) " (e2D(e2f) — Dez(e2f)) =Dy f + gD .

(iii) For (114c), we use the product rule (104a) for (e1geaf) and (ejgeaf), (104b)
for D(ejez), as well as (104c) for D(ejgeaf) and D(eleg) we can rewrite
Definition 4.2 (iii) as

D(gf) = (e3ederes) " (erese1e3D(ereagf) — e1ezD(eres)(ereagf)
+ elez'D(elez)(elezg f) — ziezD(eres)(e1e2gf))
efcseren) " (erecerea(Dlerg)(exf) + (erg)Dlexf) + Dlerg)(exf) — Dlerg)(e2f))
— eleg(elg)('Deleg + e1Des + Deres — Derez) (e2f)
+ ere2(e19) (Derez + eiDes) (eaf) — erea(erg) (Deies + e1Dez) (e2 f))
= (efeeren) ! (exez(ereiD(erg) — exDer(erg) + e1Des (¢19) — erDei(erg)) (e2f)
+erei(erg) (e2eaD(e2f) — EaDea(eaf) + eaDea(ea f) — €2 Dex(e2f))

+ erez(e1D(e1g) — Dei(e1g)) (€z(e2f) — e2(ezf))
+ ereze1(D(e1g)ez + (€1g)De2 — D(e1g)ez — Dez(erg)) (e f)- (115)

Carrying now parts of the inverse (efe3ereés) ! inside the bracket gives the
inclusion

D(gf) 2 (eier) " (ereiD(e1g) — eiDei(e1g) + e1Dex(e1g) — erDex(e1g))es ' (eaf)
+ efl(elg)(egﬁ)_l (6255(62]”) —e3Dea(eaf) + eaDea(eaf) — 5D62(62f))
+ (ere1) " (€1D(e1g) — Der(e1g)) (e2 ' (e2f) — (€2) ' (e2f))
=Dg [ +9Df +Dg(f - f),

where in the third equation we simply rearranged the terms, and the line (115)
vanishes due to (111) with g instead of f.

(iv) For (114d), we use the product rules (104a) for (eyge2f), (104b) for D(eigesf)
and D(ejez) as well as (104d) for A(ejgeaf) and A(ejes), to rewrite
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Definition 4.2 (iv) as

Algf) = (eleserez) " (ereserezA(ereagf) — erezA(eren)(ereagf)
+ereaD(erea)D(ereagf) — (Dlerea))?(ere2gf))
— (cfeferen) ! (ereseren(A(erg)(eaf) + (19)Ale2f) — Dlerg)Dleaf))
—erez(e1g) (Aeres + e1Aey — DeyDey) (2 f)
+ e1eaD(ere2)D(er1g)(eaf) + erea(Deres +e1Dez)(e19)D(eaf)
— (e19)(Deyez + e1Dey) (Deyey + €1 Dey) (egf)) :

Rearranging the terms and using in (115) the identity

D(erez)(eaf) — ereaD(exf) = D(erez)(e2f) — ereaD(eaf)
=e3Deq(eaf) + e1Dea(eaf) — ereaDl(eaf),
which is a result of the two versions of the product rule (104b), in the fourth
line of the upcoming equation, turns (115) into.
A(gf) = (efeserez) (eza(elaﬁ(elg) —e1ei(e1g) — (De1)*(exg))(e2f)
+erei(erg) (e2ezA(ezf) — e3Aez(e2f) + eaDeaD(ea f) — (Dea)?(e2f))
—eirexDeq(e1g) (D62(€2f) — egD(egf))
+ere2D(e1g) (D(eren)(e2 f) — ereaD(ezf))
= (efegm)_l (ez@(elﬁA(elg) —etAei(erg) + eiDeiD(erg) — (Del)2(elg))(egf)
+erei(erg) (eaezA(ezf) — e3lez(ezf) + eaDeaD(ea f) — (Dea)?(e2f))
—elea (elD(elg) — ’Del(elg)) (62D(€2f) — Des (egf))
D (eien) ! (e1eiA(erg) — e1ler(e1g) + erDerD(erg) — (Der)’(erg))es ' (e2f)
+e1 ' (e1g)(e3em) ' (e2e2A(eaf) — e2lea(eaf) + e2DeaD(ea f) — (Dez)*(e2f))
— (e181) "' (e1D(e19) — Der(erg))(e2ea) " (e2D(eaf) — Dez(e2f))
=Agf+gAf—DgDf. ]

As the final result of this paper, we investigate the action of the H°°-functional
calculi act on powers f(s) = s". Comparing it, to how D, D and A from (2a), (2b)
and (1) act as quaternionic derivatives on powers (see also [11, Lemma 1]) as

:_22771 1-k k

5( )_2nqn 1_‘_227711]6]6

(¢") = —42 g g
k=1
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Proposition 4.7. Let a > %, B € (0, %], w € (0,7) and T of type (c, B,w) with T, T
injective. Then for every n € N there holds

() (")(T) =17, (iii) D(s™)(T) 2 2nT" " + ZETn_l_ka
k=0

(i) D(s")(T) 2 —znz_:T”‘l"“T’f, (iv) A(s")(T) 2 —4nz_: KT Rkt
k=0 k=1

Proof. Throughout this proof we will use the commutation properties from
Corollary 3.6 (iv) and relation in Proposition 3.11 (i), namely

~ ~

T CTHT) = (sf)(T) and  f(T)T CTHT).
In order to make the calculations more readable, we will again use the notation
(109).
(i) Let us choose the special regularizer function e(s) = % from (108) with

N large enough. Then with the Definition 4.2 (i) of the S-functional calculus,
we get

(s")(T) = e(T) ™" (aijm) (T) = (L+T)*NT-NT+N (14 1) 2N
=1+ +T)N =T1"A+T)*N1+T) 2N =77,
(ii) For the induction start n = 0, the Definition 4.2 (ii) with f(s) = 1 gives
D(1) = (e€)"!(eDe — Dee) = 0,
where we used that Dee = eDe commutes due to Corollary 3.6. For the

induction step n — 1 — n we know by the induction assumption and
Definition 4.2 (ii), that

. ni T"?7"T* C (ce) 7} (eD(es™ 1) — Defes™ ). (116)
k=0

Multiplying this equation with 7" from the left, subtracting the term o7

and using the recurrence relation from Proposition 3.11 (ii), gives

n—1

-2 ZTnflfka C (ee) ' (eD(es" ') — De(es" )T — o7

C (ee)~' (eTD(es" ") — De(es™) — QeTn_lé)
C (ee) ! (eD(es™) — De(es™)) = D(s").
(iii) For the induction start n = 0, it follows from the commutation of De and De

with e and €, see Corollary 3.6 (ii), that Definition 4.2 (iii) with f(s) =1 turns
into

D(1) = (e’e) ' (eeDe — €Dee + eDe€ — eDee) = 0.
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For the induction step n — 1 — n we know by the induction assumption, that

- —n—2—k

20n — 1)T""2 4+ 2 Z T TF C (e%e)~! (665(68"_1) —eDe(es" ™)
k=0

+ eDe(esn1) — EDe(esn_1)>.

Multiplying 7 from the right, adding 277! + oT" " and using
Proposition 3.11 (iii), gives

n—1
anT" "t 42y TR
k=0

C (e?e)™ ! (eéﬁ(es”_l) —eDe(es™ 1) + eDe(esm—1) — E’De(es"‘l)>T o7t 4ot
C (e%e)~1 (eéT@(es"_l) —€De(es™) + eT'De(es"—1) — eDe(es™) + 2e(es™ 1)e + 262(63"*1)>

= (e%e)7! (eéﬁ(es”) —eDe(es™) — eDe(es™) + e(TDe + 2e — 28) (es”*l)).

Using now the identity TDe + 2e = TDe + 2€, which follows from the two
equivalent versions of the recurrence relation in Proposition 3.11 (ii) with n = 1,
reduces the last term to

n—1
2Tt 42 Y TR C (ePe) (eéﬁ(es") — &De(es™) — eDe(es™) + eDe(eTn)) =D(s").
k=0

(iv) For the induction start n = 0 we get from the commutation in Corollary 3.6,
A1) = (e*e)! (eeAe — eAee + eDeDe — (De)Qe) = 0.

For n =1, we use (es) = Te, D(es) = TDe — 2¢ and A(es) = T Ae + 2De from
Proposition 3.11 (i), (ii) and (iv) with n = 1, to get

A(s) = (625)_1 (eéA(es) —eAe(es) + eDeD(es) — (De)Q(es))
= (%) " (ee(TAe + 2De) — eAeTe + eDe(TDe — 2€) — (De)QTe) =0.

For the induction step n — 1 — n we know by the induction assumption, that

n—2
—4 Z K"kt C (e’e)™" (eeA(es" ') —eAe(es" )
k=1
+eDeD(es" ') — (De)*(es"1)).
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n—1—k

n—1__
Multiplying T' from the right and subtracting 4 > T TE=1 gives

k=1
n—1 1k
—4 Z KT Tk C (e?e) ! <e€A(es"*1) —eAe(es" ) 4 eDeD(es" )
k=1
n—1 Lk
— (De)Q(esnfl))T —4 Z T TR C (%)t (eéTA(es”fl) —eAe(es")

k=1

n—1
+ eDeTD(es" 1) — (De)?(es™) — 4e’e z Tn_l_ka_l)
k=1
= (e®e)! <eéA(es") —eAe(es™) + eDeD(es™) — (De)*(es™)
n—1
— 2¢eD(es" 1) + 2eDe(esn—1) — 46252 Tn_l_kT’“l), (117)
k=1

where in the last equation we used the recurrence relation in Proposition 3.11
(ii) and (iv). Multiplying (116) with ee and using the two versions of the product
rule (104b), gives

n—2
erEZTn_Z_ka C eD(es" 1) — De(es" ) = eD(es" ') — De(esn1).
k=0

This now turns (117) into the stated

n—1

—4 Z KT Rkt C (e’e) " (eeA(es™) — eAe(es™)
k=1
+eDeD(es™) — (De)?(es™)) = A(s™). O
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