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Abstract. In recent works, various integral representations have been proposed for
specific sets of functions. These representations are derived from the Fueter–Sce
extension theorem, considering all possible factorizations of the Laplace operator
in relation to both the Cauchy–Fueter operator (often referred to as the Dirac
operator) and its conjugate. The collection of these function spaces, along with
their corresponding functional calculi, are called the quaternionic fine structures
within the context of the S-spectrum. In this paper, we utilize these integral rep-
resentations of functions to introduce novel functional calculi tailored for quater-
nionic operators of sectorial type. Specifically, by leveraging the aforementioned
factorization of the Laplace operator, we identify four distinct classes of functions:
slice hyperholomorphic functions (leading to the S-functional calculus), axially
harmonic functions (leading to the Q-functional calculus), axially polyanalytic
functions of order 2 (leading to the P2-functional calculus), and axially mono-
genic functions (leading to the F -functional calculus). By applying the respective
product rule, we establish the four different H∞-versions of these functional cal-
culi.
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1. Introduction

The spectral theory for quaternionic operators was originally motivated by
the foundations of quaternionic quantum mechanics by Birkhoff and von Neumann
[12]. The discovery of the appropriate notion of quaternionic spectrum called, the
S-spectrum, in 2006, opened the way to an intensive development of the quater-
nionic and Clifford spectral theory with applications that go beyond the original
motivations of quantum mechanics. In fact this theory has applications in fractional
diffusion problems via the generation of fractional powers of vector operators, for
more details see the introduction of the book [27].

Furthermore, it has been recently demonstrated that both, the quaternionic
as well as the Clifford setting, are specific instances within a broader framework
where the spectral theory regarding the S-spectrum can be developed, as outlined
in [28,30], along with relevant references therein. By employing the notion of the
S-spectrum, researchers have also successfully established the quaternionic version
of the spectral theorem. We refer the reader to [3] where the spectral theorem for
unitary operators has been proven utilizing Herglotz’s functions, and to [2] where
it is proved the quaternionic spectral theorem for normal operators. More recently,
the spectral theorem grounded in the concept of the S-spectrum has been extended
to Clifford operators in [29].

The development of the spectral theory on the S-spectrum also has opened up
several research directions in hypercomplex analysis and operator theory. Without
claiming completeness, we mention the slice hyperholomorphic Schur analysis [4],
the characteristic operator functions [5], the quaternionic perturbation theory and
invariant subspaces [13], and new classes of fractional diffusion problems that are
based on the H∞-version of the S-functional calculus [21,22,25,26,31]. Moreover,
recently nuclear operators and Grothendieck–Lidskii formula for quaternionic oper-
ators has been studied in [15] and quaternionic triangular linear operators have been
investigated in [14]. Finally, we mention that the spectral theory on the S-spectrum
is systematically organized in the books [26,27,37].

In recent times a new branch of the spectral theory on the S-spectrum has
been developed, that is called fine structures on the S-spectrum. It consists of func-
tion spaces arising from the Fueter–Sce extension theorem [47,57,59], which in the
Clifford algebra Rn connects the class of slice hyperholomorphic functions with the
class of axially monogenic functions via the powers Δ

n−1
2 of the Laplace operator in

dimension n + 1. Note, that for odd n the operator Δ
n−1
2 is a pointwise differential

operator, see [36,59], while for even values of n we are dealing with fractional pow-
ers of the Laplace operator, see [57]. Analogously, in the quaternions H, the Fueter
mapping theorem connects slice hyperholomorphic functions and axially monogenic
functions via the four dimensional Laplace operator Δ. Note, that although H is
classically identified with the Clifford algebra R2, one has to choose n = 3 in Δ

n−1
2

and the dimension of the Laplace operator is 4. If we denote by SH(U) the set of
slice hyperholomorphic functions on some axially symmetric domain U and AM(U)
the class of axially monogenic functions on U , the Fueter mapping theorem claims



H∞-functional calculi for the quaternionic fine structures

that

Δ : SH(U) → AM(U) is surjective.

For more information see the translation of the work of M. Sce in [36]. For a different
description of the Fueter–Sce theorem, see [40,41].

The quaternionic fine structures of Dirac type is now based on the two different
ways we can factorize the Laplacian

Δ = DD = DD, (1)

using the Cauchy–Fueter operator (also called Dirac-operator) and its conjugate

D :=
∂

∂q0
+ e1

∂

∂q1
+ e2

∂

∂q2
+ e3

∂

∂q3
, (2a)

D :=
∂

∂q0
− e1

∂

∂q1
− e2

∂

∂q2
− e3

∂

∂q3
. (2b)

Depending on whether D or D is applied first on some function f ∈ SH(U), we get
the following four function spaces:

SH(U) from Definition 2.2, (slice hyperholomorphic functions) (3a)

AH(U) = {Df | f ∈ SH(U)} , (axially harmonic functions) (3b)

AP2(U) =
{Df | f ∈ SH(U)

}
, (polyanalytic functions of order 2) (3c)

AM(U) = {Δf | f ∈ SH(U)} . (axially monogenic functions) (3d)

Observe that just the spaces AH(U) and AP2(U) depend on the factorization of the
Laplace operator. This construction can also be visualized in the following diagram:

SH(U)
AH(U)

AP2(U)
AM(U).

D

D

D

D

While slice hyperholomorphic, axially harmonic and axially monogenic func-
tions appear in many fields of pure and applied mathematics, the polyanalytic func-
tions are less known but still have several applications. They were first considered
by G.V. Kolossov in connection with his research on elasticity and also have appli-
cations in signal analysis, particularly in the context of Gabor frames with Hermite
functions, as shown by the results of Gröchenig and Lyubarskii. Polyanalytic func-
tions provide explicit representation formulas for functions in the eigenspaces of the
Euclidean Laplacian with a magnetic field, which are referred to as Landau levels.
This likely has significant implications in quantum mechanics and related fields. For
an overview of the applications of this class of functions see the paper [1] and also
[10,56,60] for further material on this theory.

The corresponding integral representation of the functions of the fine structures
(3) will now give rise to various functional calculi. The original idea comes from the
complex Riesz–Dunford functional calculus [45], which is based on the Cauchy inte-
gral formula and it allows to replace a complex variable z of a suitable holomorphic
function f(z) with a bounded linear operator A in order to define f(A). The gener-
alization of the holomorphic functional calculus to sectorial operators leads to the
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H∞-functional calculus that, in the complex setting, was introduced in the paper
[55], see also the books [50–52]. Moreover, the boundedness of the H∞ functional
calculus depends on suitable quadratic estimates and this calculus has several appli-
cations to boundary value problems, see [7–9,46].

We remark that the H∞-functional calculus exists also for the monogenic func-
tional calculus (see [54]) and it was introduced by A. McIntosh and his collaborators,
see the books [53,58] for more details.

In the quaternionic setting the functional calculi for bounded operators and slice
hyperholomorphic functions (3a) is already done in [32,38], for bounded operators
and axially monogenic functions in [18,19,23,33–35] and for functions in the spaces
(3c), (3d) more recently in [17,20,42,43].

Unbounded operators for a restricted class of functions were considered in
[16,34,38,48]. In the literature there exists the H∞-functional calculus for slice
hyperholomorphic functions (3a) in [6,27] and for harmonic functions (3b) in [44].

This paper on the one hand we revisit these constructions for unbounded oper-
ators with commuting components and enlarges the class of admissible operators T
for the S- and the Q-functional calculus to operators of type (α, β, ω). On the other
hand we also treat the two not yet investigated cases introducing the H∞-functional
calculus for polynomially growing functions which are polyanalytic of order 2 (3c)
and for axially monogenic functions (3d).

Plan of the paper : In Sect. 2 we discuss the preliminary results on quaternionic func-
tion theory and several issues related to quaternionic closed operators. In particular,
we define the class of operators with commuting components in Definition 2.8 and
the operators of type (α, β, ω) in Definition 2.21. Since the H∞-functional calculus
is a two step procedure we first introduce in Sect. 3 the functional calculus for func-
tions which decay suitably at infinity and at the origin. We will do this directly via
the integrals

f(T ) =
1
2π

∫

∂(U∩CJ)

S−1
L (s, T )dsJf(s), (S-functional calculus) (4a)

Df(T ) =
−1
π

∫

∂(U∩CJ)

Q−1
c,s(T )dsJf(s), (Q-functional calculus) (4b)

Df(T ) =
1
2π

∫

∂(U∩CJ)

PL
2 (s, T )dsJf(s), (P2-functional calculus) (4c)

Δf(T ) =
1
2π

∫

∂(U∩CJ)

FL(s, T )dsJf(s). (F -functional calculus) (4d)

The kernel of the S-functional calculus (4a) is motivated by the quaternionic Cauchy
formula

f(q) =
1
2π

∫

∂(U∩CJ)

(s − q)(s2 − 2sq0 + |q|2)−1

︸ ︷︷ ︸
=:S−1

L (s,q)

dsJf(s), (5)
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while the other kernels in (4b)–(4d) are generated by applying (2a), (2b) and (1),
to the Cauchy kernel S−1

L (s, q), i.e.,

Q−1
c,s(q) = −1

2
DS−1

L (s, q), PL
2 (s, q) = DS−1

L (s, q), FL(s, q) = ΔS−1
L (s, q), (6)

and afterwards formally replacing the quaternion q by the operator T . The explicit
representations of the kernels are given in (49), (21), (51) and (52). For these func-
tional calculi it is now important to derive the respective product rules

(fg)(T ) = f(T )g(T ), (7a)

D(fg)(T ) = Df(T )g(T ) + f(T )Dg(T ), (7b)

D(fg)(T ) = Df(T )g(T ) + f(T )Dg(T ) + Df(T )g(T ) − Df(T )g(T ), (7c)

Δ(fg)(T ) = Δf(T )g(T ) + f(T )Δg(T ) − Df(T )Dg(T ), (7d)

see also Theorem 3.9, in order to define the H∞-functional calculus. For example
in the S-functional calculus case we consider a polynomially growing function f ∈
SH(U) and choose a regularizer function e ∈ SH(U) which decays fast enough for
(ef)(T ) and e(T ) to be well defined in the sense (4a). Then we define the H∞-
functional calculus as

f(T ) := e(T )−1(ef)(T ),

and prove that it is independent of the regularizer e. The similar definitions for
the Q-, the P2- and the F -functional calculus can be seen in Definition 4.2. This
regularization procedure is much more involved when the product rule of a given
functional calculus contains two or more addends.

2. Preliminaries onQuaternionic FunctionTheory and Operators

This section on the one hand presents several widely recognized concepts related
to slice hyperholomorphic functions and quaternionic operators. But it also extends
and improves, compared to previous results in the known literature, for instance
the notion of operators with commuting components in Definition 2.8, the growth
conditions of sectorial operators of type ω in Definition 2.21 and the domain of the Q-
resolvent operator (21). When working with closed operators, the idea of operators
commuting with each other becomes intricate due to considerations involving their
domains. The definition of commuting components for quaternionic linear operators
holds significant importance throughout the entire paper, as it profoundly influences
the definitions of the spectrum and resolvent set for these operators.

The quaternionic numbers are defined as

H := {s0 + s1e1 + s2e2 + s3e3 | s0, s1, s2, s3 ∈ R} ,
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with the three imaginary units e1, e2, e3 satisfying the relations

e21 = e22 = e23 = −1 and
e1e2 = −e2e1 = e3,
e2e3 = −e3e2 = e1,
e3e1 = −e1e3 = e2.

For every quaternion s ∈ H, we set

Re(s) := s0, (real part)

Im(s) := s1e1 + s2e2 + s3e3, (imaginary part)

s := s0 − s1e1 − s2e2 − s3e3, (conjugate)

|s| :=
√

s20 + s21 + s22 + s23. (modulus)

The unit sphere of purely imaginary quaternions is defined as

S := {s ∈ H | s0 = 0 and |s| = 1} ,

and for every J ∈ S we consider the complex plane

CJ := {x + Jy |x, y ∈ R} ,

which is an isomorphic copy of the complex numbers, since every J ∈ S satisfies
J2 = −1. Moreover, for every quaternion s ∈ H we consider the corresponding
2-sphere

[s] := {Re(s) + J | Im(s)| |J ∈ S} .

Next, we introduce the notion of slice hyperholomorphic functions, which is a quater-
nionic analog to the complex holomorphic functions. The sets upon which these
functions are defined are the following axially symmetric sets.

Definition 2.1. A subset U ⊆ H is called axially symmetric, if [s] ⊆ U for every
s ∈ U .

Definition 2.2. Let U ⊆ H be an axially symmetric open set and consider

U :=
{
(x, y) ∈ R

2 |x + Sy ⊆ U
}

. (8)

A function f : U → H is called left (resp. right) slice hyperholomorphic, if there exists
continuously differentiable functions α, β : U → H, such that for every (x, y) ∈ U :
(i) The function f admits for every J ∈ S the representation

f(x + Jy) = α(x, y) + Jβ(x, y),
(
resp. f(x + Jy) = α(x, y) + β(x, y)J

)
. (9)

(ii) The functions α, β satisfy the even-odd conditions

α(x,−y) = α(x, y) and β(x,−y) = −β(x, y). (10)

(iii) The functions α, β satisfy the Cauchy–Riemann equations
∂

∂x
α(x, y) =

∂

∂y
β(x, y) and

∂

∂y
α(x, y) = − ∂

∂x
β(x, y). (11)

The class of left (resp. right) slice hyperholomorphic functions on U is denoted
by SHL(U) (resp. SHR(U)). In the special case that α and β are real valued, we
call the function f intrinsic and denote the space of intrinsic functions by N (U).
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For those slice hyperholomorphic functions we now introduce quaternionic path
integrals. Since it is sufficient to consider paths embedded in only one complex plane
CJ , the idea is to reduce it to a classical complex path integral.

Definition 2.3. Let U ⊆ H be an open, axially symmetric set and f ∈ SHR(U),
g ∈ SHL(U). For J ∈ S and a continuously differentiable curve γ : (a, b) → U ∩CJ ,
we define the integral

∫

γ

f(s)dsJg(s) :=
∫ b

a

f(γ(t))
γ′(t)

J
g(γ(t))dt.

In the case that a, b are ∞ or lie on the boundary ∂U , the functions f, g need to
satisfy certain decay properties in order for the integral to exist.

Next we turn our attention to quaternionic operator theory. From now on
V always denotes a two-sided linear Banach space over the quaternions H. The
set of bounded, everywhere defined operators will be denoted by B(V ), and the
set of closed operators with K(V ). In the following we will specify the class of
operators with commuting components, which will be of interest in this paper. We
start with a lemma providing the existence of two-sided linear components of right
linear operators. The proof of this lemma is left as an exercise, the same statement
for bounded operators can for example be found in [49].

Lemma 2.4. Let T : V → V be some right linear operator with dom(T ) being a
two-sided linear subspace of V . Then there exist unique two-sided linear operators
Ti : V → V with dom(Ti) = dom(T ), i ∈ {0, 1, 2, 3}, such that

T = T0 + e1T1 + e2T2 + e3T3. (12)

The components are explicitly given by

Ti =
ei

4

⎛

⎝eiTei −
3∑

j=0,j �=i

ejTej

⎞

⎠ , i ∈ {0, 1, 2, 3}. (13)

Using the components T0, T1, T2, T3 from Lemma 2.4, we can now define some
more operators.

Definition 2.5. Let T : V → V be right linear with a two-sided linear domain. With
the components T0, T1, T2, T3 from Lemma 2.4, we define the conjugate operator

T := T0 − e1T1 − e2T2 − e3T3, with dom(T ) := dom(T ), (14)

and the modulus operator

|T |2 := T 2
0 + T 2

1 + T 2
2 + T 2

3 , with dom(|T |2) :=
3⋂

k=0

dom(T 2
k ). (15)

Lemma 2.6. Let B ∈ B(V ). Then also Bi, B ∈ B(V ) for every i ∈ {0, 1, 2, 3} and
they admit the norm estimates

‖Bi‖ ≤ ‖B‖ and ‖B‖ ≤ 2‖B‖. (16)
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Proof. From the explicit representation (13) of the components, we get

‖Bi‖ ≤ 1
4

⎛

⎝‖eiBei‖ +
3∑

j=0,j �=i

‖ejBej‖
⎞

⎠ =
1
4

⎛

⎝‖B‖ +
3∑

j=0,j �=i

‖B‖
⎞

⎠ = ‖B‖.

Also from the components (13) one easily deduces the representation

B = B0 − e1B1 − e2B2 − e3B3 = −1
2
(B + e1Be1 + e2Be2 + e3Be3),

from which the norm estimate ‖B‖ ≤ 2‖B‖ follows immediately. �
The following lemma gives a characterization of the commutation property of

the components of bounded operators.

Lemma 2.7. Let B ∈ B(V ) and T : V → V right linear with a two-sided linear
domain. Then the following statements are equivalent
(1) TiBj = BjTi, on dom(T ), i, j ∈ {0, 1, 2, 3},
(2) TiB = BTi, on dom(T ), i ∈ {0, 1, 2, 3},
(3) TBj = BjT , on dom(T ), j ∈ {0, 1, 2, 3}.
Proof. The implication “(1) ⇒ (2)” and “(1) ⇒ (3)” are trivial. For “(2) ⇒ (1)” let
us fix i ∈ {0, 1, 2, 3}. From to the explicit representation of the components (13), we
get

TiBj = Ti
ej

4

⎛

⎝ejBej −
3∑

k=0,k �=j

ekBek

⎞

⎠ =
ej

4

⎛

⎝ejBej −
3∑

k=0,k �=j

ekBek

⎞

⎠Ti = BjTi.

The implication “(3) ⇒ (1)” similarly holds by

TiBj =
ei

4

⎛

⎝eiTei −
3∑

k=0,k �=i

ekTek

⎞

⎠Bj = Bj
ei

4

⎛

⎝eiTei −
3∑

k=0,k �=i

ekTek

⎞

⎠ = BjTi.

�
Definition 2.8. A right-linear T : V → V with a two-sided linear domain is
called operator with commuting components, if the components T0, T1, T2, T3 from
Lemma 2.4 commute as

TiTjv = TjTiv, for every v ∈ dom(|T |2), i, j ∈ {0, 1, 2, 3}, (17)

where it is clear the dom(TiTj) ⊆ dom(|T |2) since dom(Tj) = dom(T ) for every
j ∈ {0, 1, 2, 3}. We will denote the class of closed operators with commuting compo-
nents as KC(V ) and the class of bounded operators with commuting components
as BC(V ).

Remark 2.9. It is obvious that for every operator T with commuting components,
also its conjugate T is an operator with commuting components. However, from
T ∈ KC(V ) one cannot conclude T ∈ KC(V ), because in general the conjugate T
may fail to be closed.

For the multiplication of an operator with commuting components with its
conjugate we obtain the following result.
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Lemma 2.10. Let T be an operator with commuting components. Then

dom(|T |2) ⊆ dom(TT ) ∩ dom(TT ), (18)

and there holds

|T |2v = TTv = TTv, for every v ∈ dom(|T |2). (19)

Proof. Let v ∈ dom(|T |2), i.e. v ∈ dom(T ) and Tiv ∈ dom(T ) for i ∈ {0, 1, 2, 3}, see
(15). Since dom(T ) is two-sided linear and dom(T ) = dom(T ), we also have

Tv =
3∑

i=0

eiTiv ∈ dom(T ) and Tv =
3∑

i=0

ei Tiv ∈ dom(T ).

This proves that v ∈ dom(TT ) as well as v ∈ dom(TT ). Moreover, there holds

TTv =
3∑

i,j=0

ei TiejTjv =
3∑

i,j=0

eiejTiTjv

=
3∑

i=0

|ei|2T 2
i v +

3∑

i �=j=0

eiejTiTjv =
3∑

i=0

T 2
i v = |T |2v,

where in the second equation we used the fact that the operators Ti are two-sided
linear and the sum of the mixed terms vanishes in the second last equation due to
TiTjv = TjTiv and ekel = −elek. Analogously there also holds TTv = |T |2v. �

Assumption 2.11. Let T, T ∈ KC(V ). Then we consider some two-sided linear and
dense subspace D ⊆ dom(|T |2) with the following properties:
(i) For every i ∈ {0, 1, 2, 3}, there holds

Tiv ∈ D, for every v ∈ D1 :=
{
v ∈ D | |T |2v ∈ dom(T )

}
. (20)

(ii) For every s ∈ H, the operator

Qc,s(T ) := s2 − 2sT0 + |T |2, with dom(Qc,s(T )) := D (21)

is closed.

Let us now prove some basic properties of the operator Qc,s(T ).

Lemma 2.12. Let T, T ∈ KC(V ) and D as in Assumption 2.11. Then there holds:
(i) For every s ∈ H we have Qc,s(T ) ∈ KC(V ) with Qc,s(T ) = Qc,s(T ).
(ii) For every i ∈ {0, 1, 2, 3} we have the commutation relation

TiQc,s(T ) = Qc,s(T )Ti, on D1. (22)

(iii) For every s, p ∈ H the domain of the product of two Q-operators is given by

dom(Qc,s(T )Qc,p(T )) =
{
v ∈ D | |T |2v ∈ D

}
=: D2. (23)

(iv) For every s, p ∈ H with sp = ps, also

Qc,s(T )Qc,p(T ) = Qc,p(T )Qc,s(T ), on D2. (24)

(v) For every s ∈ H the operator Qc,s(T )Qc,s(T ) is two-sided linear and writes as

Qc,s(T )Qc,s(T ) = (|s|2 − |T |2)2 + 4(T0 − s0)(|s|2T0 − s0|T |2), on D2. (25)
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Remark 2.13. Since the subspace D from Assumption 2.11 is contained in dom(|T |2),
it is in particular contained in dom(T ) and it follows that D2 ⊆ D1 for the sets (20)
and (23).

Proof of Lemma 2.12. We start the proof by verifying the commutation relation

|T |2Tiv = Ti|T |2v, v ∈ D1. (26)

In order to show this, let v ∈ D1. Then v ∈ D and by the assumption (20) also
Tkv ∈ D for every k ∈ {0, 1, 2, 3}. Using now (17) for the vector v and a second
time for Tkv, we conclude the stated commutation (26), namely

|T |2Tiv =
3∑

k=0

TkTkTiv =
3∑

k=0

TkTiTkv =
3∑

k=0

TiTkTkv = Ti|T |2v.

(i) First of all, writing s =
∑3

i=0 eisi, where e0 = 1, we decompose the operator
(21) into its components

Qc,s(T ) = 2s20 − |s|2 − 2s0T0 + |T |2
︸ ︷︷ ︸

=:A0

+
3∑

i=1

2si(s0 − T0)︸ ︷︷ ︸
=:Ai

ei, (27)

with dom(Ai) = D, i ∈ {0, 1, 2, 3}. To prove the commutation relation (17), we
only consider the case Im(s) 
= 0. For Im(s) = 0 it is A1 = A2 = A3 = 0 and
(17) is trivially satisfied. Since Im(s) 
= 0 means that sk 
= 0 for at least one
k ∈ {1, 2, 3}, the domain on which we have to check (17) is given by
⋂3

k=0
dom(A2

k) =
⋂3

k=0
{v ∈ D |Akv ∈ D}

=
{
v ∈ D | (2s20 − |s|2 − 2sT0 + |T |2)v ∈ D, 2sk(s0 − T0)v ∈ D, k ∈ {1, 2, 3}}

=
{
v ∈ D | (−2sT0 + |T |2)v, T0v ∈ D

}

=
{
v ∈ D | |T |2v ∈ D, T0v ∈ D

}
=

{
v ∈ D | |T |2v ∈ D

}
= D2, (28)

where in the second last equation we used the assumption (20). Then, for every
v ∈ D2 and i, j ∈ {1, 2, 3} we use (26) to show that there holds

AiA0v = 2si(s0 − T0)(2s20 − |s|2 − 2s0T0 + |T |2)v
= (2s20 − |s|2 − 2s0T0 + |T |2)2si(s0 − T0)v = A0Aiv,

AiAjv = 2si(s0 − T0)2sj(s0 − T0)v = 2sj(s0 − T0)2si(s0 − T0)v = AjAiv. (29)

Since Qc,s(T ) is closed by definition (21), we have proven Qc,s(T ) ∈ KC(V ).
The equality Qc,s(T ) = Qc,s(T ) follows immediately from (27).

(ii) Let v ∈ D1. Then it follows from (17) and (26) that

TiQc,s(T )v = Ti(s
2 − 2sT0 + |T |2)v = (s2 − 2sT0 + |T |2)Tiv = Qc,s(T )Tiv.

(iii) First, let v ∈ dom(Qc,s(T )Qc,p(T )), i.e. v ∈ D and (p2 − 2pT0 + |T |2)v ∈ D.
Consequently

(−2pT0 + |T |2)v ∈ D ⊆ dom(T )

and since T0v ∈ dom(T ) by v ∈ D ⊆ dom(T 2
0 ), we have |T |2v ∈ dom(T ). It

then follows from (20), that T0v ∈ D and hence also |T |2v ∈ D. For the inverse
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inclusion consider v ∈ D2, i.e. v ∈ D with |T |2v ∈ D. By (20) then also T0v ∈ D
and

Qc,p(T )v = (p2 − 2pT0 + |T |2)v ∈ D,

which proves v ∈ dom(Qc,s(T )Qc,p(T )).
(iv) Let v ∈ D2. Then v ∈ D, |T |2v ∈ D and due to the assumption (20) also

T0v ∈ D. Hence we are allowed to expand the product of the following two
brackets and rearrange the terms

Qc,s(T )Qc,p(T )v = (s2 − 2sT0 + |T |2)(p2 − 2pT0 + |T |2)v
= (sp − |T |2)2v + (2T0 − s − p)

(
2spT0 − (s + p)|T |2)v, (30)

where we also used the commutation (26). Since we assumed that sp = ps
commute, the right hand side of (30) stays the same when we replace s ↔ p.
This proves the stated commutation of Qc,s(T ) and Qc,p(T ).

(v) Plugging in p = s in (30), gives

Qc,s(T )Qc,s(T )v = (|s|2 − |T |2)2v + 4(T0 − s0)(|s|2T0 − s0|T |2)v, v ∈ D2, (31)

which is obviously two-sided linear. �

Definition 2.14. (F -spectrum) Let T, T ∈ KC(V ) and D as in Assumption 2.11.
According to the invertibility of the operator (21), we define the F -resolvent set

ρF (T ) := {s ∈ H |Qc,s(T ) is bijective} , (32)

and the F -spectrum as the complement

σF (T ) := H \ ρF (T ). (33)

Remark 2.15. When dealing with bounded operators T , the S-spectrum

σS(T ) := {s ∈ H |Qs(T ) is not bijective} , with Qs(T ) := T 2 − 2s0T + |s|2,
coincides with F -spectrum in (33). The F -spectrum can be viewed as a commuta-
tive counterpart of the S-spectrum. However, for unbounded operators, additional
research is needed to establish the equivalence between the two quaternionic spectra,
especially considering the various definitions of operators with commuting compo-
nents.

Next, we collect some basic properties of the F -spectrum and the inverse oper-
ator Q−1

c,s(T ). The proof of next lemma is highly inspired by [26, Theorem 3.1.2],
where similar results are proven for different operators T with commuting compo-
nents in Definition 2.8 and with a different operator domain dom(Qc,s(T )).

Lemma 2.16. Let T, T ∈ KC(V ) and D as in Assumption 2.11. Then the F -resolvent
set (32) and the inverse of the operator (21) have the following properties:
(i) ρF (T ) is an open subset of H.
(ii) ρF (T ) is axially symmetric.
(iii) For every s ∈ ρF (T ) and i ∈ {0, 1, 2, 3} we have the commutation relations

TiQ
−1
c,s(T ) = Q−1

c,s(T )Ti, on dom(T ). (34)
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Proof. (i) Fix s ∈ ρF (T ). For every p ∈ H we consider the operator

Λp(T ) :=
(
Qc,s(T ) − Qc,p(T )

)
Q−1

c,s(T ) = (s2 − p2)Q−1
c,s(T ) − 2(s − p)T0Q

−1
c,s(T ).

Since T, T are closed, TQ−1
c,s(T ), TQ−1

c,s(T ) are closed and everywhere defined and
hence bounded. Consequently also their sum

T0Q
−1
c,s(T ) =

1
2
(TQ−1

c,s(T ) + TQ−1
c,s(T )) (35)

is a bounded operator. Choose now ε > 0 small enough, such that

‖Λp(T )‖ ≤ |s2 − p2| ‖Q−1
c,s(T )‖ + 2|s − p| ‖T0Q

−1
c,s(T )‖

≤ ε(2|s| + ε)‖Q−1
c,s(T )‖ + 2ε‖T0Q

−1
c,s(T )‖ < 1, p ∈ Uε(s),

where in the second inequality we used

|s2 − p2| = |s2 − sp + sp − p2| ≤ |s||s − p| + |s − p||p| ≤ ε(2|s| + ε).

Using Neumann series, we then conclude that the operator 1 − Λp(T ) is boundedly
invertible. The inverse operator then satisfies

Qc,p(T )
(
Q−1

c,s(T )(1−Λp(T ))−1
)

=
(
1−(Qc,s(T )−Qc,p(T ))Q−1

c,s(T )
)
(1−Λp(T ))−1

= (1 − Λp(T ))(1 − Λp(T ))−1 = 1, on V, (36)

but also
(
Q−1

c,s(T )(1 − Λp(T ))−1
)
Qc,p(T ) = Q−1

c,s(T )(1 − Λp(T ))−1(1 − Λp(T ))Qc,s(T )

= Q−1
c,s(T )Qc,s(T ) = 1, on D. (37)

The two identities (36) and (37) now prove that the operator Qc,p(T ) is bijective
for every p ∈ Uε(s), and this proves the first claim.

We now anticipate the proof of point (iii) because it is necessary for point (ii).
(iii) Let v ∈ dom(T ) and define w := Q−1

c,s(T )v. Then (s2 − 2sT0 + |T |2)w =
v ∈ dom(T ). Since moreover w ∈ D ⊆ dom(T0)2, also T0w ∈ dom(T ), which gives
|T |2w ∈ dom(T ), i.e. w ∈ D1. From the assumption (22) we then conclude the
commutation

TiQc,s(T )w = Qc,s(T )Tiw.

Applying Q−1
c,s(T ) from the left and plugging in the element w = Q−1

c,s(T )v, gives

Q−1
c,s(T )Tiv = TiQ

−1
c,s(T )v.

(ii) Let s ∈ ρF (T ). In the first step we will prove that s ∈ ρF (T ). Therefore, let
us consider the components A0, A1, A2, A3 of Qc,s(T ) from (27). Then from the
commutation relation (34) there follows

Q−1
c,s(T )Ai = AiQ

−1
c,s(T ), on D. (38)

If we also decompose Q−1
c,s(T ) =

∑3
j=0 ejBj with components Bj ∈ B(V ), it follows

from Lemma 2.7, that there also commute the components

BjAi = AiBj , on D. (39)
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From the explicit form of the quaternionic product we then get for every v ∈ D

v = Q−1
c,s(T )Qc,s(T )v

= (B0A0 − B1A1 − B2A2 − B3A3)v + e1(B2A3 − B3A2 + B0A1 + B1A0)v

+ e2(B3A1 − B1A3 + B0A2 + B2A0)v + e3(B1A2 − B2A1 + B0A3 + B3A0)v,

as well as

v = Qc,s(T )Q−1
c,s(T )v

= (B0A0 − B1A1 − B2A2 − B3A3)v + e1(B3A2 − B2A3 + B1A0 + B0A1)v

+ e2(B1A3 − B3A1 + B2A0 + B0A2)v + e3(B2A1 − B1A2 + B3A0 + B0A3)v,

for every v ∈ V . For v ∈ D we now add and subtract these two equations and
obtain:

v = (B0A0 − B1A1 − B2A2 − B3A3)v

+ e1(B0A1 + B1A0)v + e2(B0A2 + B2A0)v + e3(B0A3 + B3A0)v, and (40a)

0 = e1(B2A3 − B3A2)v + e2(B3A1 − B1A3)v + e3(B1A2 − B2A1)v, (40b)

which both have to be satisfied for every component individually due to the unique-
ness of the components in Lemma 2.4. If we now multiply Q−1

c,s(T ) = B0 − e1B1 −
e2B2 − e3B3 and Qc,s(T ) = A0 − e1A1 − e2A2 − e3A3 and use the identities (40),
we get

Q−1
c,s(T )Qc,s(T )v

= (B0A0 − B1A1 − B2A2 − B3A3)v + e1(B2A3 − B3A2 − B0A1 − B1A0)v

+ e2(B3A1 − B1A3 − B0A2 − B2A0)v + e3(B1A2 − B2A1 − B0A3 − B3A0)v

= v + e1(0 − 0)v + e2(0 − 0)v + e3(0 − 0)v = v.

Similarly, we also get

Qc,s(T )Q−1
c,s(T )v

= (B0A0 − B1A1 − B2A2 − B3A3)v + e1(B3A2 − B2A3 − B1A0 − B0A1)v

+ e2(B1A3 − B3A1 − B2A0 − B0A2)v + e3(B2A1 − B1A2 − B3A0 − B0A3)v

= v + e1(0 − 0)v + e2(0 − 0)v + e3(0 − 0)v = v.

Since Q−1
c,s(T ) ∈ B(V ), also Q−1

c,s(T ) ∈ B(V ) by Lemma 2.6 and the product

Qc,s(T )Q−1
c,s(T ) is closed as the product of a bounded and a closed operator. Since

it is also everywhere defined due to ran(Bj) ⊆ D by (13) and the two-sided linearity
of D, we get

Qc,s(T )Q−1
c,s(T ) ∈ B(V ).

This means, we can extend the identity Qc,s(T )Q−1
c,s(T )v = v from the dense

subspace D to the whole space V by continuity. Hence, Qc,s(T ) is bijective with
Q−1

c,s(T ) = Q−1
c,s(T ).



F. Colombo et al.

In the second step we show that p ∈ ρF (T ) for every p ∈ [s]. To do so, we write
s = x + Jy for x, y ∈ R, J ∈ S and decompose Qc,s(T ) into

Qc,s(T ) = x2 − y2 − 2xT0 + |T |2
︸ ︷︷ ︸

=:A0

+J 2y(x − T0)︸ ︷︷ ︸
=:AJ

. (41)

Since we have already proven in the first step that Qc,s(T ) is bijective, we write its
inverse as

Q−1
c,s(T ) = Qc,s(T )Q−1

c,s(T )Q−1
c,s(T ) = (A0 − JAJ)

(
Qc,s(T )Qc,s(T )

)−1
, (42)

using the two-sided linear operator (31), given by

Qc,s(T )Qc,s(T ) = (x2 + y2 − |T |2)2 + 4(T0 − x)
(
(x2 + y2)T0 − x|T |2), on D2.

(43)

Since p ∈ [s], we can decompose p = x + Iy for some I ∈ S. Consequently there
holds Qc,p(T ) = A0 + IAJ , with A0, AJ from (41), and also

Qc,p(T )Qc,p(T ) = Qc,s(T )Qc,s(T ),

since (43) does not depend on the imaginary units J . Using this, we get

Qc,p(T )
(
Qc,p(T )(Qc,s(T )Qc,s(T ))−1

)

= Qc,p(T )Qc,p(T )(Qc,p(T )Qc,p(T ))−1 = 1, on V. (44)

Due to (34) every individual term in (41) commutes with Q−1
c,s(T ) and Q−1

c,s(T ) on
D. Consequently also A0 and AJ and hence Qc,p(T ) commute with Q−1

c,s(T ) and
Q−1

c,s(T ) on D. We can now rearrange the left hand side of (44) to
(
Qc,p(T )(Qc,s(T )Qc,s(T ))−1

)
Qc,p(T )

= Qc,p(T )Qc,p(T )(Qc,p(T )Qc,p(T ))−1 = 1, on D. (45)

The Eqs. (44), (45) then show that Qc,p(T ) is bijective and hence p ∈ ρF (T ). �

Lemma 2.17. Let T, T ∈ KC(V ) and D as in Assumption 2.11. Then every B ∈
B(V ) which commutes with the components BTi = TiB on dom(T ), i ∈ {0, 1, 2, 3},
also commutes with
(i) B|T |2 = |T |2B, on dom(|T |2),
(ii) B

(
Qc,s(T )Qc,s(T )

)−1 =
(
Qc,s(T )Qc,s(T )

)−1
B, for every s ∈ ρF (T ).

Proof. (i) Let v ∈ dom(|T |2). Then v ∈ dom(T ) and Tiv ∈ dom(T ) for every i ∈
{0, 1, 2, 3}. This means we are allowed to use the assumption BTi = TiB for Tiv
and for v, which gives

B|T |2v =
3∑

i=0

BTiTiv =
3∑

i=0

TiBTiv =
3∑

k=0

TiTiBv = |T |2Bv.

(ii) Let v ∈ V and define w :=
(
Qc,s(T )Qc,s(T )

)−1
v. Then w ∈ D2 by (23), i.e.

w ∈ D with |T |2w ∈ D. This in particular implies w ∈ dom(|T |2) ⊆ dom(T ) and it
follows from the assumption and from (i) the commutation relations

T0Bw = BT0w and |T |2Bw = B|T |2w. (46)
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Moreover, we also have (s0|T |2 − |s|2T0)w ∈ dom(T ) as well as (|s|2 − |T |2)w ∈ D.
Again by assumption and by (i), there also commutes

BT0(s0|T |2 − |s|2T0)w = T0B(s0|T |2 − |s|2T0)w and (47)

B|T |2(|s|2 − |T |2)w = |T |2B(|s|2 − |T |2)w. (48)

Combining now (46), (47) and (48) in the representation (25), we obtain

BQc,s(T )Qc,s(T )w = Qc,s(T )Qc,s(T )Bw.

Applying the operator
(
Qc,s(T )Qc,s(T )

)−1 from the left and plugging in the vector
w =

(
Qc,s(T )Qc,s(T )

)−1
v, gives the stated commutation (ii). �

With the operator (21) and motivated by the Cauchy integral formula (5), we
define for every T, T ∈ KC(V ), D as in Assumption 2.11 and s ∈ ρF (T ) the left and
the right S-resolvent

S−1
L (s, T ) := (s − T )Q−1

c,s(T ) and S−1
R (s, T ) := sQ−1

c,s(T ) −
3∑

i=0

TiQ
−1
c,s(T )ei. (49)

Note, that on dom(T ) we are allowed to interchange Ti and Q−1
c,s(T ) due to (34),

which gives the more elegant form of the right S-resolvent

S−1
R (s, T ) = Q−1

c,s(T )(s − T ), on dom(T ). (50)

It is straight forward to verify, that the Cauchy–Fueter operator D from (2a), its
conjugate D from (2b) and the Laplace operator Δ from (1), applied to the Cauchy-
kernel S−1

L (s, q) from (5), are given by

DS−1
L (s, q) = −2Q−1

c,s(q),

DS−1
L (s, q) = 2S−1

L (s, q)
(
S−1

L (s, q) + S−1
L (s, q)

)

ΔS−1
L (s, q) = −4S−1

L (s, q)Q−1
c,s(q).

We see, that the kernel −2Q−1
c,s(T ) of the Q-functional calculus is already given

by the inverse of the Q-operator (21). Moreover, the above relations motivate the
P2-resolvents

PL
2 (s, T ) := 2S−1

L (s, T )
(
S−1

L (s, T ) + S−1
L (s, T )

)
, (51a)

PR
2 (s, T ) := 2

(
S−1

R (s, T ) + S−1
R (s, T )

)
S−1

R (s, T ), (51b)

as well as the F -resolvents

FL(s, T ) := −4S−1
L (s, T )Q−1

c,s(T ) and FR(s, T ) := −4Q−1
c,s(T )S−1

R (s, T ). (52)

Next, we will find a similar structure for all four integral kernels (49), (21), (51) and
(52). In Sect. 3, this structure will play a crucial role in many important properties
of the respective functional calculi.

Lemma 2.18. Let T, T ∈ KC(V ) and D as in Assumption 2.11. Then for every
s ∈ ρF (T ) we consider the following pairs of operators:
(i) KL(s, T ) := S−1

L (s, T ) and KR(s, T ) := S−1
R (s, T ), or

(ii) KL(s, T ) := −2Q−1
c,s(T ) and KR(s, T ) := −2Q−1

c,s(T ), or
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(iii) KL(s, T ) := PL
2 (s, T ) and KR(s, T ) := PR

2 (s, T ), or
(iv) KL(s, T ) := FL(s, T ) and KR(s, T ) := FR(s, T ).
Then for any pair (i)–(iv), these operators admit for s = x + Jy ∈ ρF (T ) the
decomposition

KL(s, T ) = A(x, y, T ) + B(x, y, T )J and KR(s, T ) = A(x, y, T ) + JB(x, y, T ),

(53)

with operators A(x, y, T ), B(x, y, T ) ∈ B(V ), satisfying

◦ A(x,−y, T ) = A(x, y, T ), B(x,−y, T ) = −B(x, y, T ), (54a)

◦ A(x, y, T ) = A(x, y, T ), B(x, y, T ) = B(x, y, T ), (54b)

◦ A(x, y, T ) and B(x, y, T ) commute with T, T , T0, T1, T2, T3 on dom(T ). (54c)

Let C ∈ B(V ) and suppose that it commutes with T, T0, T1, T2, T3 on dom(T ), then

C commutes with A(x, y, T ) and B(x, y, T ). (55)

Proof. For simplicity, we will write A = A(x, y, T ) and B = B(x, y, T ) in this proof.
We now anticipate the proof of point (ii) because it is necessary for point (i).
(ii) For the Q-resolvent, we obtain from (41) and (42) the decomposition

Q−1
c,s(T ) = (x2 − y2 − 2xT0 + |T |2)(Qc,s(T )Qc,s(T )

)−1

︸ ︷︷ ︸
=:A1

−2y(x − T0)
(
Qc,s(T )Qc,s(T )

)−1

︸ ︷︷ ︸
=:B1

J. (56)

We have T0Q
−1
c,s(T ) ∈ B(V ) by (35), and so B1 ∈ B(V ). Because Q−1

c,s(T ) ∈ B(V ),
also A1 ∈ B(V ) has to be bounded. Since

Qc,s(T )Qc,s(T ) = (x2 + y2 − |T |2)2 + 4(T0 − x)
(
(x2 + y2)T0 − x|T |2), on D2,

by (25), the operators A1, B1 are two-sided linear, also the representation Q−1
c,s(T ) =

A1 + JB1 of the right kernel follows. The properties (54a) and (54b) are clearly
satisfied. The property (54c) follows from the commutation properties (17), (26),
(34) and the fact that A1 and B1 are two-sided linear. Finally, (55) follows from
Lemma 2.17.

(i) From the representation (56) of the Q-resolvent, we immediately get the
representation

S−1
L (s, T ) = (x + Jy − T )(A1 + B1J)

= (x − T )A1 − yB1︸ ︷︷ ︸
=:A2

+
(
yA1 + (x − T )B1

)

︸ ︷︷ ︸
=:B2

J, (57)

for the S-resolvent (49), where we used that A1 and B1 commute with J . Since T is
closed, the products TA1 and TB1 are closed operators and everywhere defined and
hence they are bounded. This implies that A2, B2 ∈ B(V ). For the right S-resolvent
(49), we similarly obtain the representation

S−1
R (s, T ) = (x + Jy)(A1 + B1J) −

3∑

i=0

Ti(A1 + B1J)ei

= (x − T )A1 − yB1 + J
(
yA1 + (x − T )B1

)
= A2 + JB2, (58)
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using the same operators A2 and B2 as in (57). The properties (54) and (55) of
A2 and B2 follow from the respective properties of A1 and B1, where for (54c) we
additionally need that TTi = TiT and TT = TT on ran(A1) ∪ ran(B1) ⊆ D, see
(17), (19) and (23). For (55) we note that since C commutes with T and T0, it also
commutes with T = 2T0 −T on dom(T ). Hence (55) for A2 and B2 follows from the
same property of A1 and B1.

(iii) We can now use (56), (57) and (58), to write the left and the right F -
resolvent (52) as

FL(s, T ) = −4(A2 + B2J)(A1 + B1J)

= −4(A2A1 − B2B1)︸ ︷︷ ︸
=:A3

−4(A2B1 + B2A1)︸ ︷︷ ︸
=:B3

J, (59)

and using the same operators A3 and B3, we also get

FR(s, T ) = −4(A1 + B1J)(A2 + JB2)

= −4(A1A2 − B1B2) − 4J(B1A2 + A1B2) = A3 + JB3, (60)

where in the last equation we used that A1B2 = B2A1 and A2B1 = B1A2 commute
due to (54c) and (55). The properties (54) and (55) of A3, B3 follow immediately
from the respective properties of A1, B1, A2, B2.

(iv) Using the F -resolvents (52), it is straight forward to rewrite the P2-
resolvents (51) as

PL
2 (s, T ) = T0FL(s, T ) − FL(s, T )s and PR

2 (s, T ) = (T0 − s)FR(s, T ).

Hence we can use (59) and (60), to write

PL
2 (s, T ) = T0(A3 + B3J) − (A3 + B3J)(x + Jy)

= (T0 − x)A3 + yB3︸ ︷︷ ︸
=:A4

+
(
(T0 − x)B3 − yA3

)

︸ ︷︷ ︸
=:B4

J. (61)

Since TA3 and TA3 are everywhere defined and closed, they are also bounded.
Consequently, also T0A3 = 1

2(TA3 + TA3) ∈ B(V ) is bounded. For the same reason
also T0B3 ∈ B(V ) and consequently A4, B4 ∈ B(V ). Using the same operators A4

and B4, we also get

PR
2 (s, T ) = (T0 − x − Jy)(A3 + JB3)

= (T0 − x)A3 + yB3 + J
(
(T0 − x)B3 − yA3

)
= A4 + JB4.

The properties (54) and (55) of A4 and B4 now follow from the respective properties
of A3 and B3, where for (54c) we additionally needed that TiT0 = T0Ti commutes
due to (17). �
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To draw a parallel with intrinsic slice hyperholomorphic functions, we will in the
following define slice holomorphicity of operator valued functions. In particular we
will prove in Corollary 2.20, that our resolvent kernels (49), (21), (51) and (52) are
indeed slice hyperholomorphic functions in the variable s.

Definition 2.19. Let U ⊆ H be an axially symmetric open set. An operator valued
function K : U → B(V ) is called left (resp. right) slice hyperholomorphic, if there
exists operator valued functions A,B : U → B(V ), with U in (8), such that for every
(x, y) ∈ U :
(i) The operators K admit for every J ∈ S the representation

K(x + Jy) = A(x, y) + JB(x, y),
(
resp. K(x + Jy) = A(x, y) + B(x, y)J

)
.

(62)

(ii) The operators A,B satisfy the even-odd conditions

A(x,−y) = A(x, y) and B(x,−y) = −B(x, y). (63)

(iii) The operators A,B satisfy the Cauchy–Riemann equations

∂

∂x
A(x, y) =

∂

∂y
B(x, y) and

∂

∂y
A(x, y) = − ∂

∂x
B(x, y), (64)

where the derivatives are understood in the norm convergence sense.
We moreover, call s �→ K(s) intrinsic, if the operators A,B are two-sided linear.

Corollary 2.20. Let T, T ∈ KC(V ) and D as in Assumption 2.11. Then
(i) Q−1

c,s(T ) is intrinsic,
(ii) S−1

L (s, T ), PL
2 (s, T ), FL(s, T ) are right-slice hyperholomorphic,

(iii) S−1
R (s, T ), PR

2 (s, T ), FR(s, T ) are left-slice hyperholomorphic.

Proof. (i) In order to show that Q−1
c,s(T ) is intrinsic, we use the decomposition

Q−1
c,s(T ) = A1(x, y, T ) + B1(x, y, T )J,

from (56). It is then obvious, that A1, B1 satisfy the symmetry relation (63).
One can also straight forward calculate the derivatives

∂A1

∂x
=

∂B1

∂y
= 2(T0 − x)

(
Qc,s(T )Qc,s(T )

)−1

− 8y2(T0 − x)
(
x2 + y2 − 2xT0 + 2T 2

0 − |T |2)(Qc,s(T )Qc,s(T )
)−2

,

as well as
∂A1

∂y
= −∂B1

∂x
= 2y

(
Qc,s(T )Qc,s(T )

)−1

− 8y(T0 − x)2
(
x2 + y2 − 2xT0 + |T |2)(Qc,s(T )Qc,s(T )

)−2
.

Hence the Cauchy–Riemann equations (64) are satisfied for A1 and B1. Since
the operators A1, B1 are also two-sided linear we have verified that the operator
Q−1

c,s(T ) is intrinsic.
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(ii) Since S−1
L (s, T ) in (49) is defined as

S−1
L (s, T ) = (s − T )Q−1

c,s(T ),

it is an intrinsic function Q−1
c,s(T ) multiplied from the left with (s − T ). Hence

it is automatically right slice-hyperholomorphic.
If we write the P2-resolvent (51a) in the form

PL
2 (s, T ) = 4S−1

L (s, T )(s − T0)Q−1
c,s(T ),

it is the product of the right slice-hyperholomorphic function S−1
L (s, T )

with the intrinsic function (s − T0)Q−1
c,s(T ), and hence again right slice-

hyperholomorphic. Also the F -resolvent (52) is written in the form

FL(s, T ) = −4S−1
L (s, T )Q−1

c,s(T ),

as the product of the right slice-hyperholomorphic function S−1
L (s, T ) with

the intrinsic function Q−1
c,s(T ). Hence also FL(s, T ) turns out to be right slice-

hyperholomorphic.
(iii) The left slice-holomorphicity of the respective right kernels follows from

the fact that they admit the common decomposition (53) with the left
kernels. �

In the last part of this section, we specify the class of operators, for which the
functional calculus will be established in this paper. Therefore, we define for every
angle ω ∈ (0, π) the open sector

Sω := {s ∈ H \ {0} | |Arg(s)| < ω} , (65)

where Arg(s) ∈ [−π, π] is the usual argument of complex numbers when we treat s
as an element in the complex plane CJ . Note that, since CJ = C−J , the imaginary
unit of the complex plane is not uniquely defined, and so also the argument of a
quaternionic number is only unique up to a sign. However, this does not affect the
sector Sω in (65).

Definition 2.21. Let α, β ∈ R, ω ∈ (0, π). An operator T and a set D as in Assump-
tion 2.11 is called of type (α, β, ω), if T, T ∈ KC(V ), the spectrum is contained in
the sector

σF (T ) ⊆ Sω,

and for every ϕ ∈ (ω, π) there exists Cϕ ≥ 0, such that

‖S−1
L (s, T )‖ ≤ Cϕ

{
|s|−α, |s| ≤ 1,

|s|−β, |s| ≥ 1,
s ∈ Sc

ϕ \ {0} (66)

where Sc
ϕ := H \ Sϕ is the complement of the sector Sϕ.

We will now show that the estimates (66) on the left S-resolvent imply similar
estimates on the right S-resolvents as well as on the left and right Q-, P2- and F -
resolvents. These estimates will then be crucial in defining the convergence of the
integrals in Definition 3.3.
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Lemma 2.22. Let α, β ∈ R, ω ∈ (0, π) and T of type (α, β, ω) (see Definition 2.21).
Then also T is of type (α, β, ω) and for every ϕ ∈ (ω, π) there exists Cϕ ≥ 0, such
that for every s ∈ Sc

ϕ \ {0}, there holds

‖S−1
R (s, T )‖

≤ Cϕ

{
|s|−α, |s| ≤ 1,

|s|−β, |s| ≥ 1,
‖PL

2 (s, T )‖, ‖PR
2 (s, T )‖

≤ Cϕ

{
|s|−2α, |s| ≤ 1,

|s|−2β, |s| ≥ 1,

‖Q−1
c,s(T )‖

≤ Cϕ

{
|s|−2α, |s| ≤ 1,

|s|−2β, |s| ≥ 1,
‖FL(s, T )‖, ‖FR(s, T )‖

≤ Cϕ

{
|s|−3α, |s| ≤ 1,

|s|−3β, |s| ≥ 1.

Proof. Let us start by using (53) to decompose the S-resolvent as

S−1
L (s, T ) = A(x, y, T ) + B(x, y, T )J, s = x + Jy ∈ ρF (T ).

Due to the property (54a), we can write

A(x, y, T ) =
1

2

(
S−1

L (s, T ) + S−1
L (s, T )

)
and B(x, y, T ) =

(
S−1

L (s, T ) − S−1
L (s, T )

) 1

2J
,

which by (66) leads to the norm estimates

‖A(x, y, T )‖ ≤ Cϕ

{
|s|−α, |s| ≤ 1,

|s|−β, |s| ≥ 1,
and ‖B(x, y, T )‖ ≤ Cϕ

{
|s|−α, |s| ≤ 1,

|s|−β, |s| ≥ 1.

Since we can write S−1
R (s, T ) = A(x, y, T ) + JB(x, y, T ) by (53), we also get the

estimate

‖S−1
R (s, T )‖ ≤ 2Cϕ

{
|s|−α, |s| ≤ 1,

|s|−β, |s| ≥ 1.
(67)

Moreover, from (54a) and (54b) we obtain S−1
L (s, T ) = S−1

R (s, T ) and S−1
R (s, T ) =

S−1
L (s, T ). Together with the norm estimate of the conjugate operator in

Lemma 2.6, it then follows from (67) and (66), that

‖S−1
L (s, T )‖ ≤ 4Cϕ

{
|s|−α, |s| ≤ 1,

|s|−β, |s| ≥ 1.
and ‖S−1

R (s, T )‖ ≤ 2Cϕ

{
|s|−α, |s| ≤ 1,

|s|−β, |s| ≥ 1.

(68)

Hence, (66) is shown for the operator T , and since σF (T ) = σF (T ) ⊆ Sω is trivial, it
is indeed of type (α, β, ω). Next, it is shown in [44, Lemma 2.9], that the Q-resolvent
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admits the representation

Q−1
c,s(T ) =

1
4
(
S−1

R (s, T ) + S−1
R (s, T )

)(
S−1

L (s, T ) + S−1
L (s, T )

)

− 1
4
(
S−1

R (s, T ) − S−1
R (s, T )

)(
S−1

L (s, T ) − S−1
L (s, T )

)
.

Hence by (66), (67) and (68) it admits the norm estimate

‖Q−1
c,s(T )‖ ≤ 10C2

ϕ

{
|s|−2α, |s| ≤ 1,

|s|−2β, |s| ≥ 1.
(69)

For the estimate of the P2-resolvents (51), we also combine (66), (67) and (68), and
we get

‖P L
2 (s, T )‖ ≤ 10C2

ϕ

{
|s|−2α, |s| ≤ 1,

|s|−2β , |s| ≥ 1,
and ‖P R

2 (s, T )‖ ≤ 16C2
ϕ

{
|s|−2α, |s| ≤ 1,

|s|−2β , |s| ≥ 1,

Finally, it follows from (66), (67) and (69) that the F -resolvents (52) can be esti-
mated by

‖F L(s, T )‖ ≤ 40C3
ϕ

{
|s|−3α, |s| ≤ 1,

|s|−3β , |s| ≥ 1,
and ‖F R(s, T )‖ ≤ 80C3

ϕ

{
|s|−3α, |s| ≤ 1,

|s|−3β , |s| ≥ 1.
�

3. The ω-Functional Calculus for Decaying Functions

In this section we introduce the S-, the Q-, the P2- and the F -functional calculus
for operators of type (α, β, ω), see Definition 2.21, by giving a direct meaning to the
integrals (4a) – (4d). In order to make these integrals converge, we need to assume
certain decay properties on the function f . In particular, we treat for every α ≥ 1,
β ≤ 1, θ ∈ (0, π) and Sθ the sector (65), we consider the following classes of slice
hyperholomorphic functions:

(i) Ψα,β
L (Sθ) :=

{

f ∈ SHL(Sθ)
∣∣
∣
∣ ∃δ>0, Cf ≥0 : |f(s)|≤Cf

{
|s|α−1+δ, |s| ≤ 1,

|s|β−1−δ, |s| ≥ 1

}

,

(ii) Ψα,β(Sθ) :=

{

f ∈ N (Sθ)
∣∣
∣∣ ∃δ > 0, Cf ≥ 0 : |f(s)| ≤ Cf

{
|s|α−1+δ, |s| ≤ 1,

|s|β−1−δ, |s| ≥ 1

}

.

The next theorem is crucial for the welldefinedness of the functional calculi in
Definition 3.3.

Theorem 3.1. Let ω ∈ (0, π) and consider a family of bounded linear operators
K(s) ∈ B(V ), for s ∈ H \ Sω, such that s �→ K(s) is right slice hyperholomor-
phic. Moreover, suppose that there exists α ≥ 1, β ∈ (0, 1], such that for every
ϕ ∈ (ω, π) there exists some Cϕ with

‖K(s)‖ ≤ Cϕ

{
|s|−α, |s| ≤ 1,

|s|−β |s| ≥ 1,
s ∈ Sc

ϕ \ {0}. (70)

Then for any θ ∈ (ω, π) and f ∈ Ψα,β
L (Sθ), the integral
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ω ϕ θ

CJ

∫

∂(Sϕ∩CJ)

K(s)dsJf(s), (71)

is absolute convergent and it depends neither of the angle ϕ ∈ (ω, θ) nor on the
imaginary unit J ∈ S.

Proof. For the absolute convergence of the integral (71), we use the integration path

γ(t) :=

{
−teJϕ, t < 0,

te−Jϕ, t > 0,
(72)

along the boundary of Sϕ∩CJ . Then the estimate (70) of the operator K(s) and the
decay of the function f ∈ Ψα,β

L (Sθ), gives the absolute convergence of the integral
∫

R\{0}
‖ K(s)‖ |γ′(t)| |f(γ(t))|dt

≤ 2CϕCf

( ∫ 1

0

t−1+δdt +
∫ ∞

1

t−1−δdt

)
=

4CϕCf

δ
< ∞. (73)

For the independence of the angle ϕ, let us consider two angles ϕ1 < ϕ2 ∈ (ω, θ)
and for every 0 < ε < R the curves

CJ

ϕ1
ϕ2σε

σε

γ1,ε,R

γ1,ε,R

γ2,ε,R

γ2,ε,R

σR

σR

σε(ϕ) := εeJϕ, ϕ ∈ (−ϕ2,−ϕ1) ∪ (ϕ1, ϕ2),

σR(ϕ) := ReJϕ, ϕ ∈ (−ϕ2,−ϕ1) ∪ (ϕ1, ϕ2),

γ1,ε,R(t) :=

{
−teJϕ1 , t ∈ (−R,−ε),
te−Jϕ1 , t ∈ (ε,R),

γ2,ε,R(t) :=

{
−teJϕ2 , t ∈ (−R,−ε),
te−Jϕ2 , t ∈ (ε,R).
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Then the Cauchy integral theorem gives
∫

γ1,ε,R

K(s)dsJf(s) =
∫

σR⊕γ2,ε,R�σε

K(s)dsJf(s). (74)

In the limit ε → 0+, the integral along σε vanishes, since for ε ≤ 1 we get
∥
∥
∥
∥

∫

σε

K(s)dsJf(s)
∥
∥
∥
∥ ≤ Cϕ1Cf

∫

ϕ1<|ϕ|<ϕ2

1
εα

εα−1+δεdϕ

= 2Cϕ1Cf (ϕ2 − ϕ1)εδ ε→0+−→ 0. (75)

Similarly, also the integral along σR vanishes in the limit R → ∞, since for R ≥ 1
we get

∥∥
∥
∥

∫

σR

K(s)dsJf(s)
∥∥
∥
∥ ≤ 2Cϕ1Cf (ϕ2 − ϕ1)R−δ R→∞−→ 0. (76)

Performing now the limits ε → 0+ and R → ∞ in (74) and using the fact that the
integrals (75) and (76) vanish, we obtain the independence of the angle

∫

∂(Sϕ1∩CJ)

K(s)dsJf(s) =
∫

∂(Sϕ2∩CJ)

K(s)dsJf(s).

For the independence on the imaginary unit, we consider J, I ∈ S. For any three
angles ϕ1 < ϕ2 < ϕ3 ∈ (ω, θ) and ε > 0 we define the paths

CI

σε

σε

σR

σR

γ1,ε,R

γ1,ε,R

γ3,ε,R

γ3,ε,R

γ2,ε,R

[s]

[s]

γ1,ε,R(t) :=

{
−teIϕ1 , t ∈ (−R,−ε),
te−Iϕ1 , t ∈ (ε,R),

γ2,ε,R(t) :=

{
−teJϕ2 , t ∈ (−R,−ε),
te−Jϕ2 , t ∈ (ε, R),

γ3,ε,R(t) :=

{
−teIϕ3 , t ∈ (−R,−ε),
te−Iϕ3 , t ∈ (ε,R),

σε(ϕ) := εeIϕ, ϕ ∈ (−ϕ3,−ϕ1) ∪ (ϕ1, ϕ3),

σR(ϕ) := ReIϕ, ϕ ∈ (−ϕ3,−ϕ1) ∪ (ϕ1, ϕ3). (77)

Note, that γ1,ε,R, γ3,ε,R, σε, σR are curves in CI , while γ2,ε,R is in CJ .



F. Colombo et al.

For s ∈ ran(γ2,ε,∞) we choose R > |s|, such that the Cauchy formula (5) gives

f(s) =
1
2π

∫

γ3,ε,R�σε�γ1,ε,R⊕σR

S−1
L (p, s)dpIf(p). (78)

In the limit R → ∞, the integral along σR vanishes because of
∣
∣
∣
∣

∫

σR

S−1
L (p, s)dpIf(p)

∣
∣
∣
∣ ≤ Cf

∫

ϕ1<|ϕ|<ϕ3

R + |s|
(R − |s|)2Rβ−1−δRdϕ

R→∞−→ 0, (79)

where the integral vanishes since the integrand asymptotically behaves as O(Rβ−1−δ)
and we assumed β ≤ 1. Hence (78) becomes

f(s) =
1
2π

∫

γ3,ε,∞�σε�γ1,ε,∞
S−1

L (p, s)dpIf(p), s ∈ ran(γ2,ε,∞). (80)

Next, we consider the curves

CJ [p]

[p]

γ3,ε,R

γ1,ε,R

γ2,ε,R

γ2,ε,Rγ2, ε
2 ,ε

γ2, ε
2 ,ε

τ ε
2

τR

τ ε
2
(ϕ) :=

ε

2
eJϕ, ϕ ∈ (ϕ2, 2π − ϕ2),

τR(ϕ) := ReJϕ, ϕ ∈ (ϕ2, 2π − ϕ2),

γ2, ε
2 ,ε(t) :=

{
−teJϕ2 , t ∈ (−ε, − ε

2),
te−Jϕ2 , t ∈ ( ε

2 , ε).
(81)

For p ∈ ran(γ3,ε,∞), we choose R > |p|, such that the Cauchy formula gives

K(p) =
−1
2π

∫

γ2, ε
2 ,R+1⊕τ ε

2
�τR

K(s)dsJS−1
R (s, p)

=
1
2π

∫

γ2, ε
2 ,R+1⊕τ ε

2
�τR

K(s)dsJS−1
L (p, s), (82)

where the negative sign in front of the first integral above comes from the negative
orientation of integration path, and in the second equality we used the connection
S−1

R (s, p) = −S−1
L (p, s) between the left and the right Cauchy kernel. So we obtain

that
∥
∥∥
∥

∫

τR

K(s)dsJS−1
L (p, s)

∥
∥∥
∥ ≤ Cϕ2

∫ 2π−ϕ2

ϕ2

R−β |p| + R

(R − |p|)2Rdϕ
R→∞−→ 0, (83)
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where the integral vanishes since the integrand asymptotically behaves as O(R−β)
and we assumed β > 0. This reduces the Eq. (82) to

K(p) =
1
2π

∫

γ2, ε
2 ,∞⊕τ ε

2

K(s)dsJS−1
L (p, s), p ∈ ran(γ3,ε,∞). (84)

Let p ∈ ran(γ1,ε,∞) we now reason as in (82), (83), (84) with the difference that
the left hand side of (82) equals zero instead of K(p) because the points [p] ∩CJ lie
outside the integration path, so we obtain the formula

0 =
1
2π

∫

γ2, ε
2 ,∞⊕τ ε

2

K(s)dsJS−1
L (p, s), p ∈ ran(γ1,ε,∞). (85)

Combining now (80), (84) and (85), leads to the formula
∫

γ2,ε,∞
K(s)dsJf(s) =

1
2π

∫

γ2,ε,∞
K(s)dsJ

( ∫

γ3,ε,∞�σε�γ1,ε,∞
S−1

L (p, s)dpIf(p)
)

=
∫

γ3,ε,∞

(
K(p) − 1

2π

∫

γ2, ε
2 ,ε⊕τ ε

2

K(s)dsJS−1
L (p, s)

)
dpIf(p)

+
1
2π

∫

γ1,ε,∞

( ∫

γ2, ε
2 ,ε⊕τ ε

2

K(s)dsJS−1
L (p, s)

)
dpIf(p)

− 1
2π

∫

σε

(∫

γ2,ε,∞
K(s)dsJS−1

L (p, s)
)

dpIf(p). (86)

Note, that in the above manipulations we were allowed to interchange the order
of integration since the double integrals over two unbounded paths are absolute
convergent due to

∥
∥
∥∥

∫

γ3,1,∞

( ∫

γ2,1,∞
K(s)dsJS−1

L (p, s)
)

dpIf(p)
∥
∥
∥∥

≤ 4Cϕ2Cf

∫ ∞

1

∫ ∞

1

r−β |teIϕ3 − re−Jϕ2 |
|teIϕ3 − reIϕ2 ||teIϕ3 − re−Iϕ2 | t

β−1−δdrdt

≤ 16Cϕ2Cf

|eIϕ3 − eIϕ2 ||eIϕ3 − e−Iϕ2 |
∫ ∞

1

∫ ∞

1

r−β 1
t + r

tβ−1−δdrdt

≤ 16Cϕ2Cfθθ(1 − θ)1−θ

|eIϕ3 − eIϕ2 ||eIϕ3 − e−Iϕ2 |
∫ ∞

1

∫ ∞

1

1
rβ+θt2+δ−θ−β

drdt < ∞,

where in the second inequality we used 1
|teIϕ3−re±Iϕ2 | ≤ 2

|eIϕ3−e±Iϕ2 |(t+r)
and in the

third inequality 1
t+r ≤ θθ(1−θ)1−θ

rθt1−θ , for some arbitrary θ ∈ (0, 1) with 1 < θ+β < 1+δ.
Analogously the integral along γ1,1,∞ and γ2,1,∞ is absolute convergent. Since every
s ∈ ran(γ2, ε

2 ,ε ⊕ τ ε
2
) lies outside γ1,ε,R � γ3,ε,R � σR ⊕ σε, see also the graphic in

(77), the Cauchy formula (5) gives
∫

γ1,ε,∞�γ3,ε,∞
S−1

L (p, s)dpIf(p) = −
∫

σε

S−1
L (p, s)dpIf(p), s ∈ ran(γ2, ε

2 ,ε ⊕ τ ε
2
),
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where we used the fact that in the limit R → ∞ the integral along σR vanishes, see
(79). This then reduces Eq. (86) to

∫

γ2,ε,∞
K(s)dsJf(s)

=
∫

γ3,ε,∞
K(p)dpIf(p) − 1

2π

∫

σε

(∫

γ2, ε
2 ,∞⊕τ ε

2

K(s)dsJS−1
L (p, s)

)
dpIf(p). (87)

Finally, we perform the limits when ε → 0+ in this equation and show that the
double integral vanishes. For the first part of the claim, we get
∥∥
∥
∥

∫

σε

( ∫

γ2, ε
2 ,∞

K(s)dsJS−1
L (p, s)

)
dpIf(p)

∥∥
∥
∥

≤ 4Cϕ2Cf

∫ ϕ3

ϕ1

( ∫ 1

ε
2

ε + r

rα|εeIϕ − reIϕ2 ||εeIϕ − re−Iϕ2 |dr +

∫ ∞

1

ε + r

rβ(ε − r)2
dr

)
εα−1+δεdϕ

= 4Cϕ2Cfεδ

( ∫ ϕ3

ϕ1

∫ 1
ε

1
2

1 + ρ

ρα|eIϕ − ρeIϕ2 ||eIϕ − ρe−Iϕ2 |dρdϕ + εα(ϕ3 − ϕ1)

∫ ∞

1

ε + r

rβ(ε − r)2
dr

)

= 4Cϕ2Cfεδ

∫ ϕ3

ϕ1

( ∫ 1
ε

1
2

1 + ρ

ρα|eIϕ − ρeIϕ2 ||eIϕ − ρe−Iϕ2 |dρ + εα

∫ ∞

1

ε + r

rβ(ε − r)2
dr

)
dϕ

ε→0+−→ 0.

The second part of the double integral (87) vanishes in the limit ε → 0+ because of
∥
∥
∥∥

∫

σε

( ∫

τ ε
2

K(s)dsJS−1
L (p, s)

)
dpIf(p)

∥
∥
∥∥

≤ 4Cϕ1Cf

∫ ϕ3

ϕ1

∫ 2π−ϕ2

ϕ2

ε + ε
2

( ε
2)α|εeIϕ − ε

2eIφ||εeIϕ − ε
2e−Iφ|ε

α−1+δ ε

2
dφεdϕ

= 2α3Cϕ1Cfεδ

∫ ϕ3

ϕ1

∫ 2π−ϕ2

ϕ2

1
|eIϕ − 1

2eIφ||eIϕ − 1
2e−Iφ|dφdϕ

ε→0+−→ 0.

Therefore, the limit ε → 0+ turns (87) into the desired independence of the imagi-
nary unit

∫

∂(Sϕ2∩CJ)

K(s)dsJf(s) =
∫

∂(Sϕ3∩CI)

K(p)dpIf(p).
�

For the welldefinedness of the functional calculi in Definition 3.3 (ii)–(iv), we
also have to show that there are no two functions f1 
= f2 for which Df1 = Df2,
Df1 = Df2 or Δf1 = Δf2.

Lemma 3.2. Let α ≥ 1, β ≤ 1. Then for every θ ∈ (0, π), f ∈ Ψα,β
L (Sθ) there holds

(i) ∀s ∈ Sθ : Df(s) = 0 ⇒ ∀s ∈ Sθ : f(s) = 0,
(ii) ∀s ∈ Sθ : Df(s) = 0 ⇒ ∀s ∈ Sθ : f(s) = 0,
(iii) ∀s ∈ Sθ : Δf(s) = 0 ⇒ ∀s ∈ Sθ : f(s) = 0.

Proof. We will prove that in all three cases there exists some c ∈ H, such that
the function β in the decomposition (9) is of the form β(x, y) = cy, for every
(x, y) ∈ U with y > 0. This is sufficient, since by the symmetry condition (10) and
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the continuity of β then also β(x, y) = cy for every (x, y) ∈ U . From (11) we then
get the two differential equations

∂

∂x
α(x, y) = c and

∂

∂y
α(x, y) = 0,

which admit the explicit solution α(x, y) = cx + d, for some d ∈ H. Altogether, the
function f is then of the form f(s) = cs + d, which is only possible for c = d = 0,
since it has to vanish in the limits |s| → 0 and |s| → ∞ due to the assumption
f ∈ Ψα,β

L (Sθ).
(i) We write the s1-, s2-, s3-derivatives of the Cauchy–Fueter operator D in spher-

ical coordinates, i.e. with respect to the decomposition s = x + Jy, with x ∈ R

and y > 0, as

D =
∂

∂s0
+ e1

∂

∂s1
+ e2

∂

∂s2
+ e3

∂

∂s3
=

∂

∂x
+ J

∂

∂y
+

JΓJ

y
, (88)

where ΓJ is a symbol for the angular derivatives. Using now the identity

JΓJJ = ΓJ − 2, (89)

see [39, Paragraph 1.12.1], it follows from the assumption Df(s) = 0, that α
and β satisfy

(
∂

∂x
+ J

∂

∂y
+

JΓJ

y

)
α(u, v) +

(
J

∂

∂x
− ∂

∂y
+

ΓJ − 2
y

)
β(u, v) = 0. (90)

Since α and β also satisfy the Cauchy–Riemann equations (11) and ΓJα =
ΓJβ = 0 vanish since α and β only depend on x and the radial variable y, this
turns (90) into 2

yβ(x, y) = 0 and hence β(x, y) = 0.
(ii) Similar to (88), also the conjugate Cauchy–Fueter operator D can be written

as

D =
∂

∂s0
− e1

∂

∂s1
− e2

∂

∂s2
− e3

∂

∂s3
=

∂

∂x
− J

∂

∂y
− JΓJ

y
, (91)

and from the assumption Df(s) = 0, together with (89), there follows
(

∂

∂x
− J

∂

∂y
− JΓJ

y

)
α(x, y) +

(
J

∂

∂x
+

∂

∂y
− ΓJ − 2

y

)
β(x, y) = 0.

With the Cauchy–Riemann equations (11) and ΓJα = ΓJβ = 0, this equation
reduces to (

J
∂

∂x
+

∂

∂y
+

1
y

)
β(x, y) = 0.

Since this equation has to be satisfied for every J ∈ S, while the function β
may not depend on J , the real and the imaginary part of this equation has to
be satisfied separately. This leads to the two ordinary differential equations

∂

∂x
β(x, y) = 0 and

∂

∂y
β(x, y) = −1

y
β(x, y),

which have the explicit solution β(x, y) = c
y , c ∈ H. However, since the positive

real line is contained in the domain Sθ, where f is holomorphic, this is only
possible for c = 0.
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(iii) Combining (88), (91) and using (89), gives the Laplace operator in spherical
coordinates

Δ = DD =
∂2

∂x2
+

∂2

∂y2
+

2
y

∂

∂y
+

ΓJ − Γ2
J

y2
.

From the assumption Δf(s) = 0 and with ΓJJ = 2J − JΓJ , there follows
(

∂2

∂x2
+

∂2

∂y2
+

2
y

∂

∂y
+

ΓJ − Γ2
J

y2

)
α(x, y)

+J

(
∂2

∂x2
+

∂2

∂y2
+

2
y

∂

∂y
− 2 − 3ΓJ + Γ2

J

y2

)
β(x, y) = 0.

Since the Cauchy–Riemann equations (11) in particular imply

∂2α

∂x2
=

∂2α

∂y2
=

∂2β

∂x2
=

∂2β

∂y2
= 0,

together with ΓJα = ΓJβ = 0, they reduce the above equation to
(

∂

∂x
− J

∂

∂y
+

J

y

)
β(x, y) = 0.

Since this equation has to be satisfied for every J ∈ S, while the function β
may not depend on J , the real and the imaginary part of this equation has to
be satisfied separately. This leads to the two ordinary differential equations

∂

∂x
β(x, y) = 0 and

∂

∂y
β(u, v) =

1
y
β(x, y),

which has the explicit solution β(x, y) = cy, for some constant c ∈ H. �

Next we give a proper meaning to the functional calculi (4). In particular,
Theorem 3.1 together with Lemma 2.22 show that the integrals converge and are
independent of the integration path ∂(Sϕ ∩ CJ) for every J ∈ S. It is moreover
proven in Lemma 3.2, that the functional calculus is independent of the chosen
representative f in the spaces (3).

Definition 3.3. Let α ≥ 1
3 , β ∈ (0, 1

3 ], ω ∈ (0, π) and T of type (α, β, ω). Then for
every θ ∈ (ω, π), f ∈ Ψ3α,3β

L (Sθ), we define

f(T ) :=
1
2π

∫

∂(Sϕ∩CJ)

S−1
L (s, T )dsJf(s), (S-functional calculus)

Df(T ) :=
−1
π

∫

∂(Sϕ∩CJ)

Q−1
c,s(T )dsJf(s), (Q-functional calculus)

Df(T ) :=
1
2π

∫

∂(Sϕ∩CJ)

PL
2 (s, T )dsJf(s), (P2-functional calculus)

Δf(T ) :=
1
2π

∫

∂(Sϕ∩CJ)

FL(s, T )dsJf(s). (F -functional calculus)
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For f̂∈{f,Df,Df,Δf} we will also use the kernels KL(s, T ) from Lemma 2.18
and write

f̂(T ) =
1
2π

∫

∂(Sϕ∩CJ)

KL(s, T )dsJf(s). (92)

The next lemma collects some basic properties of the functional calculi in
Definition 3.3.

Lemma 3.4. Let α ≥ 1
3 , β ∈ (0, 1

3 ], ω ∈ (0, π) and T of type (α, β, ω). Then for every
θ ∈ (ω, π), f ∈ Ψ3α,3β

L (Sθ) and any choice f̂ ∈ {f,Df,Df,Δf}, there holds

(i) f̂(T ) ∈ BC(V ),

(ii) If f is intrinsic, then f̂(T ) = f̂(T );
(iii) If f is intrinsic, we can use the right resolvent KR(s, T ) from Lemma 2.18, to

write

f̂(T ) =
1
2π

∫

∂(Sϕ∩CJ)

f(s)dsJKR(s, T ). (93)

Proof. (i) The boundedness of the operator f̂(T ) follows immediately from the
estimate (73). In order to show that the components of f̂(T ) commute, we
decompose the kernel KL(s, T ) according to (53) into

KL(te±Jϕ, T ) = A, (t cos ϕ, t sinϕ, T ) ± B, (t cos ϕ, t sinϕ, T )J. (94)

With the property (54a) of the operators A and B we can write (92) as

f̂(T ) =
1
2π

∫ 0

−∞
KL(−teJϕ, T )JeJϕf(−teJϕ)dt

− 1
2π

∫ ∞

0

KL(te−Jϕ, T )Je−Jϕf(te−Jϕ)dt

=
1
2π

∫ ∞

0

(
KL(teJϕ, T )JeJϕf(teJϕ) − KL(te−Jϕ, T )Je−Jϕf(te−Jϕ)

)
dt

=
1
2π

∫ ∞

0

(
A(t cos ϕ, t sinϕ, T )J

(
eJϕf(teJϕ) − e−Jϕf(te−Jϕ)

)

− B(t cos ϕ, t sinϕ, T )
(
eJϕf(teJϕ) + e−Jϕf(te−Jϕ)

))
dt. (95)

This representation shows that the components of f̂(T ) are integrals over linear
combinations of the components of A and B. However, the components of A
and B do pairwise commute, which can either be seen from their explicit form
in (56), (57), (59) and (61), or it is also a consequence of (54c), (55) and
Lemma 2.7. Hence also the components of f̂(T ) commute.

(ii) If we assume that f is intrinsic, we know that f(te−Jϕ) = f(teJϕ) ∈ CJ and
hence the integral (95) simplifies to

f̂(T ) =
1
π

∫ ∞

0

(
A(t cos ϕ, t sinϕ, T ) Re

(
JeJϕf(teJϕ)

)

− B(t cos ϕ, t sinϕ, T ) Re
(
eJϕf(teJϕ)

))
dt. (96)
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Hence it follows from (54b), that f̂(T ) = f̂(T ).
(iii) Similar to (94), we can write the right kernel KR(s, T ) from (53) as

KR(te±Jϕ, T ) = A(t cos ϕ, t sin ϕ, T ) ± JB(t cos ϕ, t sin ϕ, T ).

With the same calculations as in (95) and (96) we get
1
2π

∫

∂(Sϕ∩CJ)

f(s)dsJKR(s, T )=
1
π

∫ ∞

0

(
Re

(
f(teJϕ)JeJϕ

)
A(t cos ϕ, t sinϕ, T )

− Re
(
f(teJϕ)eJϕ

)
B(t cos ϕ, t sinϕ, T )

)
dt.

(97)

Since the right hand sides of (96) and (97) coincide, the representation (93) is
proven. �

Proposition 3.5. Let α ≥ 1
3 , β ∈ (0, 1

3 ], ω ∈ (0, π) and T of type (α, β, ω). Moreover,
let B ∈ B(V ) which commutes with T, T0, T1, T2, T3 on dom(T ). Then for every
θ ∈ (ω, π), g ∈ Ψ3α,3β(Sθ) and any choice ĝ ∈ {g,Dg,Dg, Δg}, there also commutes

B ĝ(T ) = ĝ(T )B. (98)
Proof. Since B commutes with T, T0, T1, T2, T3, it is stated in (55), that B also
commutes with the operators A(t, x, y) and B(t, x, y) in the decomposition (53). It
follows then from the representation (96) of the functional calculus, that B also
commutes with ĝ(T ). �
Corollary 3.6. Let α ≥ 1

3 , β ∈ (0, 1
3 ], ω ∈ (0, π) and T of type (α, β, ω). Then

for every θ ∈ (ω, π), f, g ∈ Ψ3α,3β
L (Sθ) and any choice f̂ ∈ {f,Df,Df,Δf} and

ĝ ∈ {g,Dg,Dg, Δg}, there holds
(i) f̂(T )iĝ(T )j = ĝ(T )j f̂(T )i and f̂(T )iĝ(T )j = ĝ(T )j f̂(T )i, i, j ∈ {0, 1, 2, 3}.
(ii) If f, g ∈ N (Sθ), then f̂(T )ĝ(T ) = ĝ(T )f̂(T ) and f̂(T )ĝ(T ) = ĝ(T )f̂(T ).
(iii) f̂(T )Tj = Tj f̂(T ), on dom(T ), j ∈ {0, 1, 2, 3}.
(iv) If f is intrinsic, then f̂(T )T = T f̂(T ) and f̂(T )T = T f̂(T ), on dom(T ).
Proof. (iii), (iv) Since, by (54c), the operators A(x, y, T ) and B(x, y, T ) of the
decomposition of the kernel of f̂(T ) commute with T0, T1, T2, T3, it follows from
the integral representation (95), that also f̂(T ) commutes with T0, T1, T2, T3, on
dom(T ). If f is intrinsic, it follows from (96) that f̂(T ) even commutes with T, T ,
on dom(T ).

(i) It is shown in (iii) that ĝ(T ) commutes with T0, T1, T2, T3, on dom(T ). It fol-
lows then from Lemma 2.7 that its components ĝ(T )j commute with T, T0, T1, T2, T3

as well. The property (55) then shows that ĝ(T )j commutes with the operators
A(x, y, T ) and B(x, y, T ) from the decomposition of the resolvent of f̂(T ). Again,
by the representation (95) of f̂(T ) we then get ĝ(T )j f̂(T ) = f̂(T )ĝ(T )j and by
Lemma 2.7 then the commutation of the components ĝ(T )j f̂(T )i = f̂(T )iĝ(T )j .
The second commutation ĝ(T )j f̂(T )i = f̂(T )iĝ(T )j , follows the same steps.

(ii) It is already shown in (iii), (iv) that ĝ(T ) commutes with T, T0, T1, T2, T3,
on dom(T ). By (55) it then also commutes with A(x, y, T ) and B(x, y, T ). Since
f is intrinsic as well, the commutation of f̂(T ) and ĝ(T ) then follows from the
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representation (96) of the integrals. The commutation of f̂(T ) and ĝ(T ) follows
analogously. �

Next we want to derive the very important product rules (7) of the four func-
tional calculi. The basic ingredient will be the following resolvent identities.
Lemma 3.7. Let T, T ∈ KC(V ) and D as in Assumption 2.11. Then for s, p ∈ ρF (T )
with s /∈ [p], there holds the following resolvent identities

(i)
(
S−1

R (s, T )p − S−1
L (p, T )p − sS−1

R (s, T ) + sS−1
L (p, T )

)
(p2 − 2s0p + |s|2)−1

= S−1
R (s, T )S−1

L (p, T ), (99a)

(ii)
(
Q−1

c,s(T )p − Q−1
c,p(T )p − sQ−1

c,s(T ) + sQ−1
c,p(T )

)
(p2 − 2s0p + |s|2)−1

= Q−1
c,s(T )S−1

L (p, T ) + S−1
R (p, T )Q−1

c,p(T ) (99b)

= Q−1
c,s(T )S−1

L (p, T ) + S−1
R (p, T )Q−1

c,p(T ),

(iii)
(
P R
2 (s, T )p − P L

2 (p, T )p − sP R
2 (s, T ) + sP L

2 (p, T )
)
(p2 − 2s0p + |s|2)−1

= P R
2 (s, T )S−1

L (p, T ) + S−1
R (s, T )P L

2 (p, T ) − 2Q−1
c,s(T )

(
S−1

L (p, T ) − S−1
L (p, T )

)
, (99c)

(iv)
(
FR(s, T )p − FL(p, T )p − sFR(s, T ) + sFL(p, T )

)
(p2 − 2s0p + |s|2)−1

= FR(s, T )S−1
L (p, T ) + S−1

R (s, T )FL(p, T ) − 4Q−1
c,s(T )Q−1

c,p(T ). (99d)
Proof. Although the assumptions on the operator T and the domain of the operator
Qc,s(T ) are different, the proof of the S-resolvent identity (99a) and the Q-resolvent
identities (99b) follow the same steps as in [24, Theorem 2.33] and [44, Lemma 3.9].
For the proof of the P2-resolvent identity (99c), we use (99a) and

PR
2 (s, T )S−1

L (p, T )(p2 − 2s0p + |s|2)
= 2

(
S−1

R (s, T ) + S−1
R (s, T )

)
S−1

R (s, T )S−1
L (p, T )(p2 − 2s0p + |s|2)

= 2
(
S−1

R (s, T ) + S−1
R (s, T )

)(
S−1

R (s, T )p − S−1
L (p, T )p − sS−1

R (s, T ) + sS−1
L (p, T )

)

= PR
2 (s, T )p − sPR

2 (s, T ) − 2
(
S−1

R (s, T ) + S−1
R (s, T )

)(
S−1

L (p, T )p − sS−1
L (p, T )

)

= PR
2 (s, T )p − sPR

2 (s, T ) − 4Q−1
c,s(T )(s − T0)

(
(p − T )p − s(p − T )

)
Q−1

c,p(T ).
(100)

The same calculation also gives

S−1
R (s, T )PL

2 (p, T )(p2 − 2s0p + |s|2)
= sPL

2 (p, T ) − PL
2 (s, T )p + 4Q−1

c,s(T )
(
(s − T )p − s(s − T )

)
(p − T0)Q−1

c,s(T ).
(101)

Adding now (100) and (101) leads to the stated P2-resolvent identity
(
P R
2 (s, T )S−1

L (p, T ) + S−1
R (s, T )P L

2 (p, T )
)
(p2 − 2s0p + |s|2)

= P R
2 (s, T )p − sP R

2 (s, T ) + sP L
2 (p, T ) − P L

2 (p, T )p

− 4Q−1
c,s(T )

(
(s − T0)

(
(p − T )p − s(p − T )

) − (
(s − T )p − s(s − T )

)
(p − T0)

)
Q−1

c,p(T )

= P R
2 (s, T )p − sP R

2 (s, T ) + sP L
2 (p, T ) − P L

2 (p, T )p

+ 2Q−1
c,s(T )(T − T )(p2 − 2s0p + |s|2)Q−1

c,p(T )

= P R
2 (s, T )p − sP R

2 (s, T ) + sP L
2 (p, T ) − P L

2 (p, T )p

+ 2Q−1
c,s(T )

(
S−1

L (p, T ) − S−1
L (p, T )

)
(p2 − 2s0p + |s|2).
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For the proof of the F -resolvent identity (99d), we again use (99a) and get
(
FR(s, T )S−1

L (p, T ) + S−1
R (s, T )FL(p, T )

)
(p2 − 2s0p + |s|2)

= −4
(
Q−1

c,s(T )S−1
R (s, T )S−1

L (p, T ) + S−1
R (s, T )S−1

L (p, T )Q−1
c,p(T )

)
(p2 − 2s0p + |s|2)

= −4Q−1
c,s(T )

(
S−1

R (s, T )p − S−1
L (p, T )p − sS−1

R (s, T ) + sS−1
L (p, T )

)

− 4
(
S−1

R (s, T )p − S−1
L (p, T )p − sS−1

R (s, T ) + sS−1
L (p, T )

)
Q−1

c,p(T )

= FR(s, T )p − sFR(s, T ) − FL(p, T )p + sFL(p, T )

+ 4Q−1
c,s

(
(p − T )p − s(p − T ) − (s − T )p + s(s − T )

)
Q−1

c,p(T )

= FR(s, T )p − sFR(s, T ) − FL(p, T )p + sFL(p, T ) + 4Q−1
c,s(T )(p2 − 2s0p + |s|2)Q−1

c,p(T ).

�

The forthcoming lemma holds significant importance for the upcoming product
rule in Theorem 3.9.

Lemma 3.8. Let B ∈ B(V ), g ∈ Ψα,β(Sθ) for some α ≥ 1, β ≤ 1, θ ∈ (0, π). Then
for every ϕ ∈ (0, θ), J ∈ S there holds

Bg(p) =
1
2π

∫

∂(Sϕ∩CJ)

g(s)dsJ(sB − Bp)(p2 − 2s0p + |s|2)−1, p ∈ Sϕ. (102)

Proof. First, we note that the integral (102) is absolute convergent due to the asymp-
totics

g(s)(sB − Bp)(p2 − 2s0p + |s|2)−1 = O(|s|α−1+δ), as |s| → 0+,

g(s)(sB − Bp)(p2 − 2s0p + |s|2)−1 = O(|s|β−δ−2), as |s| → ∞. (103)

Next, one immediately verifies the identity

(s2 − 2p0s + |p|2)(sB − Bp) = (sB − Bp)(p2 − 2s0p + |s|2),

by expanding both sides of the equation. Multiplying (s2 − 2p0s + |p|2)−1 from the
left, (p2 − 2s0p + |s|2)−1 from the right and plugging it into (102), gives

∫

∂(Sϕ∩CJ)

g(s)dsJ(sB − Bp)(p2 − 2s0p + |s|2)−1

=
∫

∂(Sϕ∩CJ)

g(s)
(s − pJ)(s − pJ)

dsJ(sB − Bp),

where we factorized p2 − 2s0p + |s|2 = (s − pJ)(s − pJ), using those two zeros
{pJ , pJ} := [p] ∩ CJ which lie in the complex plane CJ . Apart from the constant
factors B and p, this makes the right hand side a classical complex path integral
in the complex plane CJ . If we close the path ∂(Sϕ ∩ CJ) on the right at infinity,
the integral along this path vanishes due to the asymptotic decay (103). Since this
closed path surrounds both singularities pJ and pJ , we are able to evaluate the
integrals using the Cauchy formula and distinguish two cases:
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◦ If Im(pJ) 
= 0, i.e. pJ 
= pJ , we get

1
2π

∫

∂(Sϕ∩CJ)

g(s)
(s − pJ)(s − pJ)

dsJ(sB − Bp)

=
g(pJ)

pJ − pJ
(pJB − Bp) +

g(pJ)
pJ − pJ

(pJB − Bp)

=
g(pJ)pJ − g(pJ)pJ

pJ − pJ
B − g(pJ) − g(pJ)

pJ − pJ
Bp

= B

(
g(p)p − g(p)p

p − p
− g(p) − g(p)

p − p
p

)
= Bg(p),

where we are allowed to replace pJ by p and shift B to the left since
g(pJ)pJ − g(pJ)pJ

pJ − pJ
=

g(p)p − g(p)p
p − p

and
g(pJ) − g(pJ)

pJ − pJ
=

g(p) − g(p)
p − p

,

and both equations are real valued. This can be seen by decomposing p = u + Iv
for u, v ∈ R, I ∈ S, which leads to pJ = u + Jv and according to (9) also to
g(pJ) = α(u, v) + Jβ(u, v) and g(p) = α(u, v) + Iβ(u, v) with real valued functions
α and β. Moreover, in the fourth line we are allowed to shift the operator B all the
way to the left since the two fractions are real valued.

◦ If Im(pJ) = 0, i.e. pJ = pJ = p ∈ R, we get by the Cauchy formula of the
derivative

1
2π

∫

∂(Sϕ∩CJ)

g(s)
(s − p)2

dsJ(sB − Bp) =
d

ds

(
g(s)(sB − Bp)

)∣∣∣
s=p

= g′(p)(pB − Bp) + g(p)B = Bg(p),

where we interchange pB = Bp and g(p)B = Bg(p) since both p and g(p) are real
valued. �

Equipped with the resolvent formulas in Lemma 3.7 and the integral iden-
tity of Lemma 3.8, we are now ready to prove the product rules of the four func-
tional calculi in Definition 3.3. In particular such product rules will be the start-
ing point for the H∞-versions of the functional calculi for the fine structure, see
Definition 4.2.

Theorem 3.9. Let α ≥ 1
3 , β ∈ (0, 1

3 ], ω ∈ (0, π) and T of type (α, β, ω). Then for
any θ ∈ (ω, π), g ∈ Ψ3α,3β(Sθ), f ∈ Ψ3α,3β

L (Sθ) we obtain the product rules

(i) (gf)(T ) = g(T )f(T ), (104a)

(ii) D(gf)(T ) = Dg(T )f(T ) + g(T )Df(T )

= Dg(T )f(T ) + g(T )Df(T ), (104b)

(iii) D(gf)(T ) = Dg(T )f(T ) + g(T )Df(T ) + Dg(T )
(
f(T ) − f(T )

)
, (104c)

(iv) Δ(gf)(T ) = Δg(T )f(T ) + g(T )Δf(T ) − Dg(T )Df(T ). (104d)

Proof. It is obvious that for g ∈ Ψ3α,3β(Sθ) and f ∈ Ψ3α,3β
L (Sθ) also their product

is in gf ∈ Ψ3α,3β
L (Sθ) and hence all the functional calculi in (104a)–(104d) are well

defined.
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In the first step we fix ϕ2 < ϕ1 ∈ (ω, θ) and use the functional calculi of
Definition 3.3 and the resolvent identities of Lemma 3.7, to write all the right hand
sides of (104a)–(104d) in a similar form. For the right hand side of (104a) we use
(99a) and get

g(T )f(T ) =
1

4π2

∫

∂(Sϕ1∩CJ)

∫

∂(Sϕ2∩CI)

g(s)dsJS−1
R (s, T )S−1

L (p, T )dpIf(p)

=
1

4π2

∫

∂(Sϕ1∩CJ)

∫

∂(Sϕ2∩CI)

g(s)dsJ

(
S−1

R (s, T )p − S−1
L (p, T )p

− sS−1
R (s, T ) + sS−1

L (p, T )
)
(p2 − 2s0p + |s|2)−1dpIf(p).

Regarding the Q-, the P2- and the F -resolvent identities (99b), (99c) and (99d), we
rewrite the right hand sides of (104b)–(104d) in a similar way. Considering all the
additional terms we end up with all the right hand sides (RHS) of (104a)–(104d)
written in the form

RHS =
1

4π2

∫

∂(Sϕ1∩CJ)

∫

∂(Sϕ2∩CI)

g(s)dsJ

(
KR(s, T )p − KL(p, T )p

− sKR(s, T ) + sKL(p, T )
)
(p2 − 2s0p + |s|2)−1dpIf(p), (105)

using the operators KL(p, T ) and KR(s, T ) from Lemma 2.18.
In the second step we will further simplify (105). Since ϕ2 < ϕ1, for every

s ∈ ∂(Sϕ1 ∩ CJ), all the singularities [s] ∩ CI of (p2 − 2s0p + |s|2)−1 in the plane
CI , lie outside the integration path ∂(Sϕ2 ∩CI), if we close the path on the right at
infinity. Since the integrals along this closing path vanish due to the asymptotics
(
KR(s, T )p − sKR(s, T )

)
(p2 − 2s0p + |s|2)−1g(p) = O(|p|−2+3β−δ

)
, as |p| → ∞,

and the assumption β ≤ 1
3 . Hence the Cauchy integral formula gives

∫

∂(Sϕ2∩CI)

(
KR(s, T )p − sKR(s, T )

)
(p2 − 2s0p + |s|2)−1dpIf(p) = 0,

which reduces (105) to

RHS =
1

4π2

∫

∂(Sϕ1∩CJ)

∫

∂(Sϕ2∩CI)

g(s)dsJ

(
sKL(p, T ) − KL(p, T )p

)

× (p2 − 2s0p + |s|2)−1dpIf(p).

Next, the integral identity (102) further reduces this integral to

RHS =
1
2π

∫

∂(Sϕ2∩CI)

KL(p, T )f(p)dpIf(p) =
1
2π

∫

∂(Sϕ2∩CI)

KL(p, T )pIg(p)f(p),

where in the second equation we were allowed to interchange g(p)dpI = dpIg(p)
since g is intrinsic. However, by the possible choices of KL(p, T ) in Lemma 2.18, it
turns out that the right hand side is exactly the left hand side in the product rules
(104a) – (104d). �
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Next we want to derive a connection between the S-, the Q- and the P2-
functional calculus, which is motivated by the fact that

D + D = 2
∂

∂x0
.

Proposition 3.10. Let α ≥ 1
3 , β ∈ (0, 1

3 ], ω ∈ (0, π) and T of type (α, β, ω). Then for
any θ ∈ (ω, π) and f ∈ Ψ3α,3β

L (Sθ) with f ′ ∈ Ψ3α,3β
L (Sθ), there holds

Df(T ) = 2f ′(T ) − Df(T ),

where f ′(T ) is understood as the S-functional calculus in Definition 3.3 (i) for the
function f ′.

Proof. First, we use the path (72) to parametrize the integral of the S-functional
calculus as

f ′(T ) =
1
2π

∫

R\{0}
S−1

L

(
γ(t), T

)γ′(t)
J

f ′(γ(t))dt

=
1
2π

∫

R\{0}
S−1

L

(
γ(t), T

) 1
J

d

dt
f(γ(t))dt.

Integration by parts then gives

f ′(T ) = − 1
2π

∫

R\{0}

d

dt
S−1

L (γ(t), T )
1
J

f(γ(t))dt

= − 1
2π

∫

∂(Sϕ∩CJ)

∂sS
−1
L (s, T )dsJf(s), (106)

where there are no boundary terms since the integrand vanishes for t = 0 and
|t| → ∞. Explicitly, calculating the derivative, we get

∂sS
−1
L (s, T ) =

∂

∂s

(
(s − T )Q−1

c,s(T )
)

= Q−1
c,s(T ) − 2(s − T )(s − T0)Q−2

c,s(T )

= Q−1
c,s(T ) − S−1

L (s, T )
(
S−1

L (s, T ) + S−1
L (s, T )

)
= Q−1

c,s(T ) − 1
2
PL
2 (s, T ).

and plugging it into (106) we obtain

2f ′(T ) =
1
2π

∫

∂(Sϕ∩CJ)

( − 2Q−1
c,s(T ) + PL

2 (s, T )
)
dsJf(s) = Df(T ) + Df(T ). �

We conclude this section investigating how the functional calculi of Definition
3.3 act on functions of the form snf(s). In particular, we give a recurrence relation
between the functional calculi associated with snf(s) and with sn−1f(s). An impli-
cation of the following Proposition 3.11, contained in Proposition 4.7, demonstrates
that the H∞-functional calculus of powers yields the operators defined using the
quaternionic derivatives.

Proposition 3.11. Let α ≥ 1
3 , β ∈ (0, 1

3 ], ω ∈ (0, π) and T of type (α, β, ω). Consider
now θ ∈ (ω, π), N ∈ N, f ∈ Ψ3α,3β−N

L (Sθ). Then for every n ∈ {1, . . . , N} there
holds
(i) (snf)(T ) = Tnf(T ),
(ii) D(snf)(T ) = TD(sn−1f)(T ) − 2T

n−1
f(T ) = TD(sn−1f)(T ) − 2Tn−1f(T ),
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(iii) D(snf)(T ) = TD(sn−1f)(T ) + 2T
n−1

f(T ) + 2Tn−1f(T ),
(iv) Δ(snf)(T ) = TΔ(sn−1f)(T ) + 2D(sn−1f)(T ).

Proof. First, we observe that snf ∈ Ψ3α+n,3β−N+n
L (Sθ) ⊆ Ψ3α,3β

L (Sθ) for every
n ∈ {0, . . . , N} and hence all the functional calculi in (i)–(iv) are well defined.

(i) We reason by induction and the step n = 0 is trivial. For the induction
step n − 1 to n we use the identity

S−1
L (s, T )s = TS−1

L (s, T ) + 1, (107)

to get

(snf)(T ) =
1
2π

∫

∂(Sϕ∩CJ)

S−1
L (s, T )dsJsnf(s)

=
1
2π

∫

∂(Sϕ∩CJ)

(
TS−1

L (s, T ) + 1
)
dsJsn−1f(s)

=
1
2π

T

∫

∂(Sϕ∩CJ)

S−1
L (s, T )dsJsn−1f(s) = T (sn−1f)(T ) = Tnf(T ),

where in the third term above we used Hills theorem to carry the closed operator
T outside the integral and then we observe that the integral over sn−1f(s) vanishes
due to the holomorphicity of the function on Sϕ.

(ii) For the Q-functional calculus we use the identity

Q−1
c,s(T )s = TQ−1

c,s(T ) + S−1
L (s, T ),

which immediately follows from the definition (49) of the left S-resolvent, to get the
recurrence relation

D(snf)(T ) =
−1
π

∫

∂(Sϕ∩CJ)

Q−1
c,s(T )dsJsnf(s)

=
−1
π

∫

∂(Sϕ∩CJ)

(
TQ−1

c,s(T ) + S−1
L (s, T )

)
dsJsn−1f(s)

= TD(sn−1f)(T ) − 2(sn−1f)(T ) = TD(sn−1f)(T ) − 2T
n−1

f(T ),

where in the last line we used (i). Analogously, from the identity

Q−1
c,s(T )s = TQ−1

c,s(T ) + S−1
L (s, T ),

there get the second recurrence relation

D(snf)(T ) = TD(sn−1f)(T ) + Tn−1f(T ).

(iii) For the P2-functional calculus we use (107) and the fact that s commutes
with the sum

S−1
L (s, T ) + S−1

L (s, T ) = 2(s − T0)Q−1
c,s(T ).

This leads to

PL
2 (s, T )s = 2S−1

L (s, T )
(
S−1

L (s, T ) + S−1
L (s, T )

)
s

= 2
(
TS−1

L (s, T ) + 1
)(

S−1
L (s, T ) + S−1

L (s, T )
)

= TPL
2 (s, T ) + 2S−1

L (s, T ) + 2S−1
L (s, T ),
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and consequently we obtain the recurrence relation

D(snf)(T ) =
1
2π

∫

∂(Sϕ∩CJ)

PL
2 (s, T )dsJsnf(s)

=
1
2π

∫

∂(Sϕ∩CJ)

(
TPL

2 (s, T ) + 2S−1
L (s, T ) + 2S−1

L (s, T )
)
dsJsn−1f(s)

= TD(sn−1f)(T ) + 2(sn−1f)(T ) + 2(sn−1f)(T )

= TD(sn−1f)(T ) + 2T
n−1

f(T ) + 2Tn−1f(T ).

(iv) For the F -functional calculus we use (107), to get

FL(s, T )s = −4S−1
L (s, T )Q−1

c,s(T )s

= −4
(
TS−1

L (s, T ) + 1
)
Q−1

c,s(T ) = TFL(s, T ) − 4Q−1
c,s(T ).

This then gives the final relation

Δ(snf)(T ) =
1
2π

∫

∂(Sϕ∩CJ)

FL(s, T )dsJsnf(s)

=
1
2π

∫

∂(Sϕ∩CJ)

(
TFL(s, T ) − 4Q−1

c,s(T )
)
dsJsn−1f(s)

= TΔ(sn−1f)(T ) + 2D(sn−1f)(T ). �

4. The Quaternionic H∞-Functional Calculi

In this section we will extend the quaternionic functional calculi of
Definition 3.3 for decaying functions, to slice hyperholomorphic functions on a sec-
tor which are polynomially growing at 0 and at ∞. More precisely, we consider the
following spaces of functions.

Definition 4.1. For every θ ∈ (0, π) we define the function spaces

(i) FL(Sθ) :=
{

f ∈ SHL(Sθ)
∣
∣ ∃k > 0, Ck ≥ 0 : |f(s)| ≤ Ck

(|s|k + 1
|s|k

)
, s ∈ Sθ

}

(ii) F(Sθ) :=
{
f ∈ N (Sθ)

∣
∣∃k > 0, Ck ≥ 0 : |f(s)| ≤ Ck

(|s|k + 1
|s|k

)
, s ∈ Sθ

}

The main idea behind the H∞-functional calculi is to choose a regularizer
function e which imposes enough decay at 0 and at ∞, such that ef is regular
enough in order to apply the functional calculus of Definition 3.3. Motivated by the
product rules in Theorem 3.9, we define the so called quaternionic H∞-functional
calculus, where it is crucial for e(T ) and e(T ) to be injective, and hence in contrast
to the bounded functional calculus of Sect. 3 we are only able to treat injective
operators T and T by using the choice (108) for the regularizing function.
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Definition 4.2. Let α ≥ 1
3 , β ∈ (0, 1

3 ], ω ∈ (0, π) and T of type (α, β, ω) with T, T
injective. Then for every θ ∈ (ω, π), f ∈ FL(Sθ) we define the H∞-functional calculi

(i) f(T ) := e(T )−1(ef)(T ), (S-functional calculus)

(ii) Df(T ) :=
(
e(T )e(T )

)−1
(
e(T )D(ef)(T ) − De(T )(ef)(T )

)
, (Q-functional calculus)

(iii) Df(T ) :=
(
e(T )2e(T )

)−1
(
e(T )e(T )D(ef)(T ) − e(T )De(T )(ef)(T ) (P2-functional calculus)

+ e(T )De(T )(ef)(T ) − e(T )De(T )(ef)(T )
)
,

(iv) Δf(T ) :=
(
e(T )2e(T )

)−1
(
e(T )e(T )Δ(ef)(T ) − e(T )Δe(T )(ef)(T ) (F -functional calculus)

+ e(T )De(T )D(ef)(T ) − (De(T ))2(ef)(T )
)
,

where e ∈ Ψ3α,3β(Sθ) is such that e(T ), e(T ) are injective and ef ∈ Ψ3α,3β
L (Sθ). Here

e(T ), e(T ), (ef)(T ), (ef)(T ) are understood as the S-functional calculus, De(T ),
D(ef)(T ) as the Q-functional calculus, De(T ), D(ef)(T ) as the P2-functional cal-
culus and Δe(T ), Δ(ef)(T ) as the F -functional calculus of Definition 3.3.

Theorem 4.3. Let α ≥ 1
3 , β ∈ (0, 1

3 ], ω ∈ (0, π) and T of type (α, β, ω) with T, T
injective. Then for every θ ∈ (ω, π), f ∈ FL(Sθ) there exists a regularizer function
e in the sense of Definition 4.2 and no one of the functional calculi (i)–(iv) in
Definition 4.2 depend on the choice of the regularizer e.

Proof. Let f ∈ FL(Sθ), i.e. there exists k > 0, Ck ≥ 0, such that

|f(s)| ≤ Ck

(
|s|k +

1
|s|k

)
.

Choosing now n ∈ N with n > max{k+3α−1, k−3β+1} and consider the function

e(s) :=
sn

(1 + s)2n
, (108)

it is obvious that e∈Ψ3α,3β(Sθ) as well as ef ∈ Ψ3α,3β(Sθ). From [44, Equation (58)]
and Proposition 3.11 (i), it then follows that (1 + T )2n is bijective and e(T ) =
Tn(1 + T )−2n. Since T is injective, e(T ) is then injective as well. Analogously, the
injectivity of e(T ) = T

n
(1 + T )2n follows from the assumed injectivity of T .

For the independence of the regularizer, let e1, e2 ∈ Ψ3α,3β(Sθ), with
e1(T ), e1(T ), e2(T ), e2(T ) are injective and e1f, e2f ∈ Ψ3α,3β

L (Sθ). Note, that the
symbols e1 and e2 for the regularizers are the same as the one for the imaginary
units of the quaternions. This fact doesn’t pose an issue, as they do not appear in
the proofs of the following theorems.

To enhance the clarity of the calculations in this proof, we will adopt the
following notation

e for e(T ), (ef) for (ef)(T ), e−1 for e(T )−1, De for De(T ),
e for e(T ), (ef) for (ef)(T ), (e)−1 for e(T )−1, D(ef) for D(ef)(T ),
De for De(T ), D(ef) for D(ef)(T ), Δe for Δe(T ), Δ(ef) for Δ(ef)(T ).

(109)

Throughout this proof we will always use the fact that (which is due to
Corollary 3.6 (ii)):

ei, ei commute with ej ,Dej ,Dej , Δej , for every i, j ∈ {1, 2}.
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(i) For the S-functional calculus, it follows from the product rule (104a), that

e2(e1f) = (e2e1f) = (e1e2f) = e1(e2f). (110)

Multiplying (e1e2)−1 from the left gives the independence of the regularizer

e−1
1 (e1f) = e−1

2 (e2f).

(ii) For the Q-functional calculus, the two versions of the product rule (104b) state,
that

De2(e1f) + e2D(e1f) = D(e2e1f) = D(e1e2f) = De1(e2f) + e1D(e2f).

Rearranging this equation, gives

e2D(e1f) − De1(e2f) = e1D(e2f) − De2(e1f). (111)

Multiplying e1e2 from the left and using (110), gives

e2e2
(
e1D(e1f) − De1(e1f)

)
= e1e1

(
e2D(e2f) − De2(e2f)

)

= e1e1
(
e2D(e2f) − De2(e2f)

)
, (112)

where the second equation comes from (111) with the choice e1 = e2. Multiply-
ing (e1e2e1e2)−1 from the left, then gives the independence of the regularizer

(e1e1)−1
(
e1D(e1f) − De1(e1f)

)
= (e2e2)−1

(
e2D(e2f) − De2(e2f)

)
.

(iii) For the P2-functional calculus we apply (104c) to both sides of (110) and get

De2(e1f) + e2D(e1f) + De2
(
(e1f) − (e1f)

)

= De1(e2f) + e1D(e2f) + De1
(
(e2f) − (e2f)

)
.

Rearranging the terms leads to

e2D(e1f) + De1(e2f) − (De1 + De1)(e2f)

= e1D(e2f) + De2(e1f) − (De2 + De2)(e1f).

Multiplying e1e2e1e2 from the left and using again (110), gives

e2e2
(
e1e2e1D(e1f) + e1e2De1(e1f) − e2e1(De1 + De1)(e1f)

)

= e1e1
(
e1e2e2D(e2f) + e2e1De2(e2f) − e1e2(De2 + De2)(e2f)

)
. (113)

Furthermore, similar to (111), the two versions of the product rule (104b) give the
identity

e2De1 − e1De2 = e2De1 − e1De2,

which, multiplied by e1e2(e1e2f) from the right, becomes

e2e2e1e2De1(e1f) − e1e1e2e1De2(e2f)

= e22e2e1De1(e1f) − e21e1e2De2(e2f).

Using this in (113) gives

e22e2
(
e1e1D(e1f) + e1De1(e1f) − e1(De1 + De1)(e1f)

)

= e21e1
(
e2e2D(e2f) + e2De2(e2f) − e2(De2 + De2)(e2f)

)
.
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Multiplying now (e21e
2
2e1e2)

−1 from the left, gives the independence of the regularizer

(e21e1)
−1

(
e1e1D(e1f) + e1De1(e1f) − e1(De1 + De1)(e1f)

)

= (e22e2)
−1

(
e2e2D(e2f) + e2De2(e2f) − e2(De2 + De2)(e2f)

)
.

(iv) For the F -functional calculus, we apply (104d) to both sides of (110) and get

Δe2(e1f) + e2Δ(e1f) − De2D(e1f) = Δe1(e2f) + e1Δ(e2f) − De1D(e2f).

Rearranging the terms and multiplying the resulting equation with e1e2e1e2, gives

e1e2e1e2
(
e2Δ(e1f) − Δe1(e2f) + De1D(e2f)

)

= e1e2e1e2
(
e1Δ(e2f) − Δe2(e1f) + De2D(e1f)

)
.

Using the identity (111) on the left hand side, and the same one with e1 ↔ e2
exchanged on the right hand side, turns this equation into

e1e2e2

(
e1e2Δ(e1f) − e1Δe1(e2f) + De1

(De2(e1f) + e2D(e1f) − De1(e2f)
))

= e1e2e1

(
e2e1Δ(e2f) − e2Δe2(e1f) + De2

(De1(e2f) + e1D(e2f) − De2(e1f)
))

.

Since the term e1e2e2De1De2(e1f) cancels with e1e2e1De2De1(e2f) on the right
due, this equation reduces to

e22e2
(
e1e1Δ(e1f) − e1Δe1(e1f) + e1De1D(e1f) − (De1)2(e1f)

)

= e21e1
(
e2e2Δ(e2f) − e2Δe2(e2f) + e2De2D(e2f) − (De2)2(e2f)

)
,

where we once more used (110). Multiplying both sides with (e21e
2
2e1e2)

−1 gives the
independence of the regularizer

(e21e1)
−1

(
e1e1Δ(e1f) − e1Δe1(e1f) + e1De1D(e1f) − (De1)2(e1f)

)

= (e22e2)
−1

(
e2e2Δ(e2f) − e2Δe2(e2f) + e2De2D(e2f) − (De2)2(e2f)

)
. �

Lemma 4.4. Let α ≥ 1
3 , β ∈ (0, 1

3 ], ω ∈ (0, π) and T of type (α, β, ω) with T, T
injective. Then for every θ ∈ (0, π), f ∈ FL(Sθ) the functional calculi

f(T ), Df(T ), Df(T ), Δf(T ) are closed operators.

Proof. Since in the Definition 4.2 (i)–(iv) the operators e(T ), e(T ) are bounded and
injective, the inverses e(T )−1,

(
e(T )e(T )

)−1 and
(
e(T )2e(T )

)−1 are closed operators.
Moreover, the remaining term (ef)(T ) in (i) and the large brackets in (ii)–(iv), are
bounded operators. Altogether, f(T ),Df(T ),Df(T ), Δf(T ) are the product of a
bounded and a closed operator and hence are closed operators themselves. �

Proposition 4.5. Let α ≥ 1
3 , β ∈ (0, 1

3 ], ω ∈ (0, π) and T of type (α, β, ω) with T, T
injective. Moreover, let B ∈ B(V ) which commutes with T, T0, T1, T2, T3 on dom(T ).
Then for every θ ∈ (ω, π), g ∈ F(Sθ) and any choice ĝ ∈ {g,Dg,Dg, Δg}, there
holds

Bĝ(T ) ⊆ ĝ(T )B.
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Proof. First of all, we note that for any injective operator A ∈ B(V ) which commutes
with B, we get the inclusion

BA−1 = A−1ABA−1 = A−1BAA−1 ⊆ A−1B.

By Proposition 3.5 this in particular holds true for all prefactors in
Definition 4.2 (i)–(iv), i.e. A = e(T ), A = e(T )e(T ) and A = e(T )2e(T ). Also by
Proposition 4.5, B commutes with (ef)(T ) from Definition 4.2 (i) and with the big
bracket terms from Definition 4.2 (ii)–(iv). Altogether, this shows the commutation
Bĝ(T ) ⊆ ĝ(T )B, �

Theorem 4.6. Let α ≥ 1
3 , β ∈ (0, 1

3 ], ω ∈ (0, π) and T of type (α, β, ω) with T, T
injective. Then for any θ ∈ (0, π), g ∈ F(Sθ), f ∈ FL(Sθ), there holds the product
rules

(i) (gf)(T ) ⊇ g(T )f(T ), (114a)

(ii) D(gf)(T ) ⊇ Dg(T )f(T ) + g(T )Df(T ) and

D(gf)(T ) ⊇ Dg(T )f(T ) + g(T )Df(T ), (114b)

(iii) D(gf)(T ) ⊇ Dg(T )f(T ) + g(T )Df(T ) + Dg(T )
(
f(T ) − f(T )

)
, (114c)

(iv) Δ(gf)(T ) ⊇ Δg(T )f(T ) + g(T )Δf(T ) − Dg(T )Df(T ). (114d)

Proof. In this proof we will use again the notation (109). Let e1 be a regularizer of
g and e2 a regularizer of f according to Definition 4.2. Then it is clear that e1e2 is a
regularizer of the product gf . Note, that the symbols e1 and e2 for the regularizers
are the same as the one for the imaginary units of the quaternions. This fact doesn’t
pose an issue, as they do not appear in the proofs of the following theorems.

In the following we will do many manipulations like interchanging the order of
operators which will be allowed by Corollary 3.6. We will also use the following list
of operator identities (or inclusions) and we will not mention them any more at any
point where they appear in the proof:

◦ A−1B ⊇ BA−1 for any A,B ∈ B(V, V ) with A injective and AB = BA,
◦ (AB)−1 = A−1B−1 = B−1A−1 for any injective A,B ∈ B(V ) with AB = BA.
◦ A−1(B + C) ⊇ A−1B + A−1C for any A,B,C ∈ B(V ) with A injective.

(i) For (114a), we use the product rule (104a) for (e1ge2f) in Definition 4.2 (i),
to get

(gf) = (e1e2)−1(e1e2gf) = e−1
1 e−1

2 (e1g)(e2f) ⊇ e−1
1 (e1g)e−1

2 (e2f) = gf.

(ii) For the Q-functional calculus, we only prove the first equation in (114b),
while the second one follows the same steps. Using the product rule (104a)
for (e1ge2f) as well as (104b) for D(e1ge2f) and D(e1e2), we can rewrite the
Definition 4.2 (ii) as

D(gf)(T ) = (e1e2e1e2)−1
(
(e1e2)D(e1e2gf) − (e1e2gf)D(e1e2)

)

= (e1e2e1e2)−1
(
e1e2

(D(e1g)(e2f) + (e1g)D(e2f)
)

− (e1g)
(
e2De1 + e1De2

)
(e2f)

)
.
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The identity (111) with g instead of f , then turns the above equation into

D(gf)(T ) = (e1e2e1e2)−1
(
e1e2D(e1g)(e2f) + e1e2(e1g)D(e2f)

− (e1g)e2De1(e2f) − (e1g)e1De2(e2f)
)

⊇ (e1e2e1)−1
(
e1D(e1g) − (e1g)De1

)
(e2f)

+ (e2e1e2)−1(e1g)
(
e2D(e2f) − De2(e2f)

)

⊇ (e1e1)−1
(
e1D(e1g) − (e1g)De1

)
e−1
2 (e2f)

+ (e1)−1(e1g)(e2e2)−1
(
e2D(e2f) − De2(e2f)

)
= Dg f + g Df.

(iii) For (114c), we use the product rule (104a) for (e1ge2f) and (e1ge2f), (104b)
for D(e1e2), as well as (104c) for D(e1ge2f) and D(e1e2), we can rewrite
Definition 4.2 (iii) as

D(gf) = (e21e
2
2e1e2)

−1(e1e2e1e2D(e1e2gf) − e1e2D(e1e2)(e1e2gf)

+ e1e2D(e1e2)(e1e2gf) − e1e2D(e1e2)(e1e2gf)
)

= (e21e
2
2e1e2)

−1
(
e1e2e1e2

(D(e1g)(e2f) + (e1g)D(e2f) + D(e1g)(e2f) − D(e1g)(e2f)
)

− e1e2(e1g)
(De1e2 + e1De2 + De1e2 − De1e2

)
(e2f)

+ e1e2(e1g)
(De1e2 + e1De2

)
(e2f) − e1e2(e1g)

(De1e2 + e1De2
)
(e2f)

)

= (e21e
2
2e1e2)

−1
(
e2e2

(
e1e1D(e1g) − e1De1(e1g) + e1De1(e1g) − e1De1(e1g)

)
(e2f)

+ e1e1(e1g)
(
e2e2D(e2f) − e2De2(e2f) + e2De2(e2f) − e2De2(e2f)

)

+ e1e2
(
e1D(e1g) − De1(e1g)

)(
e2(e2f) − e2(e2f)

)

+ e1e2e1
(D(e1g)e2 + (e1g)De2 − D(e1g)e2 − De2(e1g)

)
(e2f). (115)

Carrying now parts of the inverse (e21e
2
2e1e2)

−1 inside the bracket gives the
inclusion

D(gf) ⊇ (e21e1)
−1(e1e1D(e1g) − e1De1(e1g) + e1De1(e1g) − e1De1(e1g)

)
e−1
2 (e2f)

+ e−1
1 (e1g)(e22e2)

−1(e2e2D(e2f) − e2De2(e2f) + e2De2(e2f) − e2De2(e2f)
)

+ (e1e1)
−1(e1D(e1g) − De1(e1g)

)(
e−1
2 (e2f) − (e2)

−1(e2f)
)

= Dg f + gDf + Dg(f − f),

where in the third equation we simply rearranged the terms, and the line (115)
vanishes due to (111) with g instead of f .

(iv) For (114d), we use the product rules (104a) for (e1ge2f), (104b) for D(e1ge2f)
and D(e1e2) as well as (104d) for Δ(e1ge2f) and Δ(e1e2), to rewrite
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Definition 4.2 (iv) as

Δ(gf) = (e21e
2
2e1e2)

−1
(
e1e2e1e2Δ(e1e2gf) − e1e2Δ(e1e2)(e1e2gf)

+ e1e2D(e1e2)D(e1e2gf) − (D(e1e2))2(e1e2gf)
)

= (e21e
2
2e1e2)

−1
(
e1e2e1e2

(
Δ(e1g)(e2f) + (e1g)Δ(e2f) − D(e1g)D(e2f)

)

− e1e2(e1g)
(
Δe1e2 + e1Δe2 − De1De2

)
(e2f)

+ e1e2D(e1e2)D(e1g)(e2f) + e1e2(De1e2 + e1De2)(e1g)D(e2f)

− (e1g)
(De1e2 + e1De2

)(De1e2 + e1De2
)
(e2f)

)
.

Rearranging the terms and using in (115) the identity

D(e1e2)(e2f) − e1e2D(e2f) = D(e1e2)(e2f) − e1e2D(e2f)

= e2De1(e2f) + e1De2(e2f) − e1e2D(e2f),

which is a result of the two versions of the product rule (104b), in the fourth
line of the upcoming equation, turns (115) into.

Δ(gf) = (e21e
2
2e1e2)

−1
(
e2e2

(
e1e1Δ(e1g) − e1Δe1(e1g) − (De1)

2(e1g)
)
(e2f)

+ e1e1(e1g)
(
e2e2Δ(e2f) − e2Δe2(e2f) + e2De2D(e2f) − (De2)

2(e2f)
)

− e1e2De1(e1g)
(De2(e2f) − e2D(e2f)

)

+ e1e2D(e1g)
(D(e1e2)(e2f) − e1e2D(e2f)

)

= (e21e
2
2e1e2)

−1
(
e2e2

(
e1e1Δ(e1g) − e1Δe1(e1g) + e1De1D(e1g) − (De1)

2(e1g)
)
(e2f)

+ e1e1(e1g)
(
e2e2Δ(e2f) − e2Δe2(e2f) + e2De2D(e2f) − (De2)

2(e2f)
)

− e1e2
(
e1D(e1g) − De1(e1g)

)(
e2D(e2f) − De2(e2f)

)

⊇ (e21e1)
−1(e1e1Δ(e1g) − e1Δe1(e1g) + e1De1D(e1g) − (De1)

2(e1g)
)
e−1
2 (e2f)

+ e−1
1 (e1g)(e22e2)

−1(e2e2Δ(e2f) − e2Δe2(e2f) + e2De2D(e2f) − (De2)
2(e2f)

)

− (e1e1)
−1(e1D(e1g) − De1(e1g)

)
(e2e2)

−1(e2D(e2f) − De2(e2f)
)

= Δg f + gΔf − DgDf. �

As the final result of this paper, we investigate the action of the H∞-functional
calculi act on powers f(s) = sn. Comparing it, to how D, D and Δ from (2a), (2b)
and (1) act as quaternionic derivatives on powers (see also [11, Lemma 1]) as

D(qn) = −2
n−1∑

k=0

qn−1−kqk,

D(qn) = 2nqn−1 + 2
n−1∑

k=0

qn−1−kqk,

Δ(qn) = −4
n−1∑

k=1

kqn−1−kqk−1.
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Proposition 4.7. Let α ≥ 1
3 , β ∈ (0, 1

3 ], ω ∈ (0, π) and T of type (α, β, ω) with T, T
injective. Then for every n ∈ N there holds

(i) (sn)(T ) = Tn, (iii) D(sn)(T ) ⊇ 2nTn−1 + 2
n−1∑

k=0

T
n−1−k

T k

(ii) D(sn)(T ) ⊇ −2
n−1∑

k=0

T
n−1−k

T k, (iv) Δ(sn)(T ) ⊇ −4
n−1∑

k=1

kT
n−1−k

T k−1.

Proof. Throughout this proof we will use the commutation properties from
Corollary 3.6 (iv) and relation in Proposition 3.11 (i), namely

f(T )T ⊆ Tf(T ) = (sf)(T ) and f̂(T )T ⊆ T f̂(T ).

In order to make the calculations more readable, we will again use the notation
(109).

(i) Let us choose the special regularizer function e(s) = sN

(1+s)2n from (108) with
N large enough. Then with the Definition 4.2 (i) of the S-functional calculus,
we get

(sn)(T ) = e(T )−1
( sn+N

(1 + s)2N

)
(T ) = (1 + T )2NT−NTn+N (1 + T )−2N

= (1 + T )2NTn(1 + T )−2N = Tn(1 + T )2N (1 + T )−2N = Tn.

(ii) For the induction start n = 0, the Definition 4.2 (ii) with f(s) = 1 gives

D(1) = (ee)−1(eDe − De e) = 0,

where we used that De e = eDe commutes due to Corollary 3.6. For the
induction step n − 1 → n we know by the induction assumption and
Definition 4.2 (ii), that

− 2
n−2∑

k=0

T
n−2−k

T k ⊆ (ee)−1
(
eD(esn−1) − De(esn−1)

)
. (116)

Multiplying this equation with T from the left, subtracting the term 2T
n−1

and using the recurrence relation from Proposition 3.11 (ii), gives

−2
n−1∑

k=0

T
n−1−k

T k ⊆ (ee)−1
(
eD(esn−1) − De(esn−1)

)
T − 2T

n−1

⊆ (ee)−1
(
eTD(esn−1) − De(esn) − 2eT

n−1
e
)

⊆ (ee)−1
(
eD(esn) − De(esn)

)
= D(sn).

(iii) For the induction start n = 0, it follows from the commutation of De and De
with e and e, see Corollary 3.6 (ii), that Definition 4.2 (iii) with f(s) = 1 turns
into

D(1) = (e2e)−1
(
eeDe − eDe e + eDe e − eDe e

)
= 0.
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For the induction step n − 1 → n we know by the induction assumption, that

2(n − 1)Tn−2 + 2
n−2∑

k=0

T
n−2−k

T k ⊆ (e2e)−1
(
eeD(esn−1) − eDe(esn−1)

+ eDe(esn−1) − eDe(esn−1)
)
.

Multiplying T from the right, adding 2Tn−1 + 2T
n−1

and using
Proposition 3.11 (iii), gives

2nTn−1 + 2

n−1∑

k=0

T
n−1−k

Tk

⊆ (e2e)−1
(
eeD(esn−1) − eDe(esn−1) + eDe(esn−1) − eDe(esn−1)

)
T + 2Tn−1 + 2T

n−1

⊆ (e2e)−1
(
eeTD(esn−1) − eDe(esn) + eTDe(esn−1) − eDe(esn) + 2e(esn−1)e + 2e2(esn−1)

)

= (e2e)−1
(
eeD(esn) − eDe(esn) − eDe(esn) + e

(
TDe + 2e − 2e

)
(esn−1)

)
.

Using now the identity TDe + 2e = TDe + 2e, which follows from the two
equivalent versions of the recurrence relation in Proposition 3.11 (ii) with n = 1,
reduces the last term to

2nTn−1 + 2

n−1∑

k=0

T
n−1−k

Tk ⊆ (e2e)−1
(
eeD(esn) − eDe(esn) − eDe(esn) + eDe(esn)

)
= D(sn).

(iv) For the induction start n = 0 we get from the commutation in Corollary 3.6,

Δ(1) = (e2e)−1
(
eeΔe − eΔe e + eDeDe − (De)2e

)
= 0.

For n = 1, we use (es) = Te, D(es) = TDe − 2e and Δ(es) = TΔe + 2De from
Proposition 3.11 (i), (ii) and (iv) with n = 1, to get

Δ(s) = (e2e)−1(eeΔ(es) − eΔe(es) + eDeD(es) − (De)2(es)
)

= (e2e)−1(ee(TΔe + 2De) − eΔeTe + eDe(TDe − 2e) − (De)2Te
)

= 0.

For the induction step n − 1 → n we know by the induction assumption, that

−4
n−2∑

k=1

kT
n−2−k

T k−1 ⊆ (e2e)−1
(
eeΔ(esn−1) − eΔe(esn−1)

+eDeD(esn−1) − (De)2(esn−1)
)
.
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Multiplying T from the right and subtracting 4
n−1∑

k=1

T
n−1−k

T k−1, gives

− 4
n−1∑

k=1

kT
n−1−k

T k−1 ⊆ (e2e)−1
(
eeΔ(esn−1) − eΔe(esn−1) + eDeD(esn−1)

− (De)2(esn−1)
)
T − 4

n−1∑

k=1

T
n−1−k

T k−1 ⊆ (e2e)−1
(
eeTΔ(esn−1) − eΔe(esn)

+ eDeTD(esn−1) − (De)2(esn) − 4e2e
n−1∑

k=1

T
n−1−k

T k−1
)

= (e2e)−1
(
eeΔ(esn) − eΔe(esn) + eDeD(esn) − (De)2(esn)

− 2eeD(esn−1) + 2eDe(esn−1) − 4e2e
n−1∑

k=1

T
n−1−k

T k−1
)
, (117)

where in the last equation we used the recurrence relation in Proposition 3.11
(ii) and (iv). Multiplying (116) with ee and using the two versions of the product
rule (104b), gives

−2ee
n−2∑

k=0

T
n−2−k

T k ⊆ eD(esn−1) − De(esn−1) = eD(esn−1) − De(esn−1).

This now turns (117) into the stated

−4
n−1∑

k=1

kT
n−1−k

T k−1 ⊆ (e2e)−1
(
eeΔ(esn) − eΔe(esn)

+eDeD(esn) − (De)2(esn)
)

= Δ(sn). �
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