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Abstract. We show that the deficiency indices of magnetic Schrödinger operators
with several local singularities can be computed in terms of the deficiency indices
of operators carrying just one singularity each. We discuss some applications to
physically relevant operators.
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1. Introduction and Main Result

Schrödinger operators with singular magnetic fields are ubiquitous in physical mod-
els describing condensed matter systems and related phenomena. Just to mention a
few: the Aharonov–Bohm and Aharonov–Casher effects [2,3], the mechanism of Fes-
hbach resonances [11] and its applications to cold atom systems, the emergence of
anyonic quasi-particles excitation of a 2D electron gas in the fractional quantum Hall
regime [30]. It is known that singularities of the magnetic field might be responsible
for the possible occurrence of non-trivial deficiency spaces and the related emer-
gence of different self-adjoint realizations of the associated Schrödinger operators,
see [1,13,14,17,21,33] and references therein. In this note we address this precise
question for a generic magnetic Schrödinger operator with isolated singularities.

We are here mainly inspired by a previous work [10], also related to previous
investigations in [12,34,39] and [4, Chpt. 2.5] (see also [6,26,28,32] for similar studies
in the case of Dirac operators), concerning Schrödinger operators with electrostatic
singular potentials: taking into account a potential with (countably) many local
singularities, e.g. V (x) � ∑

j vj δ(x−xj) + W (x), for some regular W , it is proven
in [10, Thm. 2.5] that the deficiency indices of the Schrödinger operator −Δ + V
equal the sum of the deficiency indices of the operators “−Δ + vj δ(x − xj)”. In
connection with von Neumann or Krein’s theory, this result provides some useful
information to know a priori the existence and the number of self-adjoint extensions
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of the original operator, even when the deficiency spaces of the latter are not directly
accessible. In [24] such criterion is exploited to obtain the deficiency indices for the
Schrödinger Hamiltonian associated to a quantum particle on a two-dimensional
torus punctured by a finite number of Aharonov–Bohm fluxes. The result of [10]
was later reconsidered in [22], where a more abstract formulation is provided. We
further mention [20] (see also [35]), examining a specific family of scalar potentials
with several inverse-square local singularities.

Let us now specify the setting that we aim to study in more detail: we consider
a magnetic Schrödinger operator in L2(Rd) (d � 1) of the form

(−i∇ + A)2,

where

A � ∑
j Aj + A0 , A0 ∈ L∞

loc

(
R

d
)
,

and the Aj ’s are singular in non-intersecting regions Ξj of co-dimension � 1. The
idea is that the Aj ’s are locally singular vector potentials with a regular behaviour at
infinity, while A0 may diverge there but is locally regular. Our main result is stated
in Theorem 1.1 and proves that the deficiency indices of the full Hamiltonian can
be obtained by summing up the deficiency indices of the locally singular operators
(−i∇ + Aj)2 and, possibly, of (−i∇ + A0)2. The proof relies on the use of a local
partition of unity to relate the deficiency spaces of the full operator to those of
the locally singular ones. This strategy shares some similarities with other works
[8,15,31,38], on top of [10].

1.1. Main Results

As anticipated, our purpose is to study the deficiency indices of a magnetic
Schrödinger operator with several isolated singularities and to express them in terms
of those of much simpler operators with magnetic fields comprising only one sin-
gularity at a time. Heuristically, the idea is that each singularity contributes to
the deficiency spaces adding a subspace with a certain dimension—the deficiency
index of the Schrödinger operator with that singularity alone—and therefore the
deficiency indices of the whole operator are obtained by summing up the dimension
of each local deficiency space. We are going to discuss some examples to which our
results apply at the end of this section, but we anticipate that a paradigmatic case
satisfying our assumptions is given by singular magnetic Aharonov–Bohm fluxes
sitting at different points in R

2.
We are then interested in characterizing the behaviour of the magnetic

Schrödinger operator
Ḣ = (−i∇ + A)2,

where A contains (countably many) local singularities supported in non-intersecting
compact sets Ξj , j ∈ J , of zero Lebesgue measure in d � 1 dimensions. Concerning
A and such singular sets we make the assumptions below.

Assumption 1. The family of compact sets {Ξj}j∈J and the vector potential A
satisfy the following properties:
(H1) J ⊆ N (countably-many singular sets);
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(H2) Ξj ⊂ R
d is a compact subset of zero Lebesgue measure for any j ∈ J and we

set
Ξ :=

⋃
j ∈ J Ξj ;

(H3) there exists r > 0 such that

dist{Ξj , Ξj′} � r , for all j �= j′ ∈ J ; (1.1)

(H4) A ∈ L∞
loc(R

d\Ξ; Rd) is a real-valued vector potential such that ∇ · A ∈
L∞

loc(R
d\Ξ).

The goal is to investigate the relation between Ḣ and the Schrödinger operators
Hj containing just one singularity supported on Ξj and which are understandably
much easier to deal with. Let us then consider the symmetric realization of Ḣ with
domain D(Ḣ) := C∞

c (Rd \ Ξ) and its closure

H := Ḣ. (1.2)

We further refer to the adjoint operator H∗ with domain

D(H∗) =
{
ψ∈L2(Rd)

∣
∣ (−i∇ + A)2ψ ∈ L2(Rd)

}
. (1.3)

In particular, we shall be concerned with the deficiency indices

n±(H) := dim
[
ker(H∗∓ i)

]
.

Theorem 1.1. (Deficiency indices for magnetic Schrödinger operators) Let (H1)–
(H4) in Assumption 1 hold. Let also {Aj}j∈J ,A0 be a family of real-valued magnetic
potentials such that Aj ∈ L∞

loc(R
d\Ξj ; Rd), ∇ · Aj ∈ L∞

loc(R
d\Ξj), for any j ∈ J ,

A0 ∈ L∞
loc(R

d; Rd), ∇ · A0 ∈ L∞
loc(R

d) and

A − A0 − ∑
j∈J Aj ∈ L∞(Rd; Rd) ,

∇ ·
(
A − A0 − ∑

j∈J ∇ · Aj

)
∈ L∞(Rd) . (1.4)

Let Ḣj := (−i∇ + Aj)2 with domain D(Ḣj) := C∞
c (Rd\Ξj) and Hj be its closure

(with Ξ0 := ∅). Let also n±(Hj) := dim
[
ker(H∗

j ∓ i)
]

be the associated deficiency
indices. Then,

n±(H) = n±(H0) +
∑

j∈J n±(Hj) . (1.5)

Remark 1.2. (Behaviour at infinity) Since we made no assumption on the behaviour
of A at infinity, we have to take into account the possible presence of singularities
there by extracting the deficiency indices of the operator H0 = (−i∇+A0)2, where
A0 is a regular magnetic potential which possibly has an unbounded support and
may diverge at infinity. In typical examples, like a magnetic field which is uniform
outside of a compact set, the deficiency indices n±(H0) are actually zero.

Remark 1.3. (Real-valuedness of A) In the above Theorem 1.1 we assumed that A
is real-valued in order to ensure that the original operator H admits at least one
self-adjoint extension – namely, the Friedrichs’ one – thanks to its positivity (see,
e.g., [36, §13.3]).
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Remark 1.4. (Infinite deficiency indices) The identity (1.5) makes evident that H
has infinite deficiency indices if and only if at least one of the following two conditions
is satisfied:
(i) there exists at least one j ∈ J ∪{0} such that Hj has infinite deficiency indices;
(ii) J has infinite cardinality and the series on the r.h.s. of (1.5) is divergent.

Theorem 1.1 applies only to singular magnetic perturbations of the Laplacian,
but, combining it with [10, Thm. 2.5], one can deduce the general result reported
hereafter.

Corollary 1.5. (Deficiency indices for generic perturbations) Let the assumptions of
Theorem 1.1 hold and let V ∈ L2

loc(R
d\Ξ) be a real-valued electrostatic potential

bounded from below. Let also {Aj}j∈J ,A0 be a family of magnetic potentials as in
Theorem 1.1 and {Vj}j∈J , V0 be a family of electrostatic potentials bounded from
below such that Vj ∈ L2

loc(R
d\Ξj), for any j ∈ J , V0 ∈ L2

loc(R
d) and

V − V0 − ∑
j∈J Vj ∈ L2(Rd) .

Consider the Schrödinger operators

HV := (−i∇ + A)2 + V , HV,j := (−i∇ + Aj)2 + Vj ,

given by the closure of the symmetric realizations on C∞
c (Rd\Ξ) and C∞

c (Rd\Ξj)
(with Ξ0 := ∅), respectively. Let also n±(HV ) and n±(HV,j) be the associated defi-
ciency indices. Then,

n±(HV ) = n±(HV,0) +
∑

j∈J n±(HV,j) .

Remark 1.6. (Real-valuedness and lower-boundedness of V ) As in Remark 1.3, the
hypothesis that V is real and bounded from below is made to guarantee that HV

has self-adjoint extensions, due to the fact that it is bounded from below.

1.2. Physical Examples

We now discuss some physical models satisfying our assumptions and the related
consequences of our main result. Consider then a charged spinless quantum particle
moving in presence of many parallel straight cylindrical solenoids. In particular,
let us focus on a low-energy regime where the wave-length of the particle is much
larger than the solenoids diameter and, at the same time, much smaller than their
length. With this physical setting in mind, we henceforth refer to the idealized
configuration involving solenoids of zero diameter and infinite length. Accordingly,
by exploiting the invariance under translations along the axial direction and an
obvious factorization, we can reduce the analysis to a 2D problem.

More precisely, let J ⊆ N be the (finite or at most countably infinite) set of
indices labeling the solenoids and let {xj}j∈J ⊂ R

2 be the set of points identifying
their positions. We assume that

inf
j �=j′∈J

|xj − xj′ | � r , for some fixed r > 0 . (1.6)

The dynamics of the particle is described by the Schrödinger operator in R
2 given

by
H = (−i∇ + A)2, A(x) =

∑
j∈J αj

(x−xj)
⊥

|x−xj |2 , (1.7)
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where, for each j ∈ J , αj ∈ R\Z is a parameter related to the magnetic flux across
the j-th solenoid and we have introduced the notation x⊥ = (−x2, x1) for any
x = (x1, x2) ∈ R

2. We understand H to be initially defined as a symmetric operator
on the graph closure of C∞

c

(
R

2\{xj}j∈J

)
.

To make connection with the analysis outlined in Sect. 1.1, it is natural to fix
Ξj = {xj} for j ∈ J and to observe that all the conditions in Assumption 1 are
indeed satisfied. Furthermore, a family of magnetic potentials as in the statement
of Theorem 1.1 is given by

Aj = αj
(x−xj)

⊥

|x−xj | , for j ∈ J . (1.8)

We denote with Hj the associated single-flux Aharonov–Bohm operators (which are
the closures of the symmetric realizations of)

Hj = (−i∇ + Aj)
2
.

Recalling that αj ∈ R \ Z for all j ∈ J , each of the latter operators has finite
deficiency indices [1,16]

n±(Hj) = 2 , for all j ∈ J .

Keep also in mind that the free Laplacian H0 = −Δ on C∞
c (R2) has zero deficiency

indices.
Taking the above arguments into account, from Theorem 1.1 we deduce

n±(H) =
∑

j∈J n±(Hj) = 2|J | , (1.9)

understanding that H has infinite deficiency indices if J has countably infinite car-
dinality. This means that H admits exactly 2|J | self-adjoint extensions, by standard
von Neumann theory. In the case where J is finite, the same conclusion was derived
in [14] by means of resolvent techniques.

Remark 1.7. (Magnetic traps) Assuming that the number of singularities is finite
(|J | < ∞), the above result could be generalized to the case where, on top of the
Aharonov–Bohm fluxes, a real-valued regular potential S ∈ L∞

loc(R
2; R2) is also

present (compare with the results in [13,21]), possibly describing a magnetic trap-
ping. In this configuration, the reference operator becomes H0 = (−i∇ + S)2 on
C∞

c (R2), instead of the free Laplacian. Notice that the deficiency indices n±(H0)
may not vanish, depending on the behaviour of S at infinity. Considering this, (1.9)
generalizes to

n±(H) = n±(H0) + 2|J |.
Requiring J to have finite cardinality is here crucial in order to avoid the simultane-
ous occurrence of singularities Ξj accumulating at infinity with a divergent magnetic
perturbation S. For models of this kind it would be impossible in general to apply
our main result, or any straightforward variation thereof, given that there would be
no decoupling of the deficiency indices of H0 and Hj for all j ∈ J .

Remark 1.8. (Point interactions) Assume that some of the solenoids have integer
magnetic fluxes αj ∈ Z. Let Y ⊂ J be the set of labels associated to such solenoids.
As before we have n±(Hj) = 2 for any j ∈ J \ Y . On the opposite, for any j ∈
Y the symmetric operator Hj is unitarily equivalent to the Laplacian defined on
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C∞
c (R2\{xj}) and it therefore admits as self-adjoint extensions any one of the usual

Hamiltonians with a delta-type interaction concentrated at a point. Accordingly, we
have n±(Hj) = 1 for any j ∈ Y . In this case, Theorem 1.1 gives

n±(H) =
∑

j∈J\Y n±(Hj) +
∑

j∈Y n±(Hj) = 2 |J \ Y | + |Y |.
Remark 1.9. (Singular electrostatic interactions) A further generalization concerns
a model involving repulsive electrostatic interactions, with singularities centered on
top of the Aharonov–Bohm flux points. More precisely, let us fix αj ∈ R\Z, qj ∈ R,
pj � 0 for j ∈ J and consider the Hamiltonian operator

HV = (−i∇ + A)2 + V ,

A(x) =
∑

j∈J αj
(x−xj)

⊥

|x−xj |2 , V (x)=
∑

j∈J

(
qj

|x−xj | + pj

|x−xj |2
)

.

We are then let to consider the family of operators HV,j = (−i∇ + Aj)
2 +Vj , j ∈ J ,

where Aj is defined in (1.8) and

Vj(x) =
qj

|x − xj | +
pj

|x − xj |2 .

By decomposition in angular harmonics one infers that the radial operator related
to Hj and associated to the �j-th harmonic (�j ∈ Z) is unitarily equivalent to

hj := − d2

dr2
+

(�j + αj)2 + pj − 1/4
r2

+
qj

r
on C∞

c (R+) .

Building on classical results for such kinds of operators [9,10,17–19], we deduce that

n±(hj) =
{
1 if (�j + αj)2 + pj ∈ [0, 1),
0 otherwise.

It is remarkable that the deficiency indices do not depend on qj . Let us indicate
with �αj� the integer part of αj . Then, setting

J2 :=
{
j ∈J

∣
∣ max

{
(αj−�αj�)2, (αj−�αj� − 1)2

}
+ pj < 1

}
,

J1 :=
{
j ∈J

∣
∣ min

{
(αj−�αj�)2, (αj−�αj� − 1)2

}
+ pj < 1,

max
{
(αj−�αj�)2, (αj−�αj� − 1)2

}
+ pj � 1

}
,

Y := J \ (J2 ∪ J1) ,

we obtain

n±(HV,j) =

⎧
⎨

⎩

2 if j ∈ J2 ,
1 if j ∈ J1 ,
0 if j ∈ Y .

Then, by Theorem 1.5, we deduce that

n±(HV ) = 2 |J2| + |J1| .
In particular, for purely Coulomb interactions with non-integer magnetic fluxes
(pj = 0, αj ∈ R\Z, for all j ∈ J) one readily checks that J = J2 (J1 = Y = ∅), so
that the above relation reduces to

n±(H) = 2|J | .
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2. Proofs

2.1. Basic Assumptions and Definitions

For notational convenience, in the sequel we set J0 = J∪{0}, understanding Ξ0 = ∅.
Let us then refer to the family of vector potentials {Aj}j∈J0 introduced in the
statement of Theorem 1.1. We remark that the hypothesis (H3) in Assumption
1 and the condition (1.4) in Theorem 1.1 ensure that the sum

∑
j∈J0

Aj is well-
defined as an element of L2

loc(R
d\Ξ; Rd), also when J is a countable infinite set.

On the other hand, hypotheses (H2) and (H3) ensure that Ξ is closed and has zero
Lebesgue measure. The same assumptions further yield the following result, which
we report from [10, Lemma 2.1] and relies on the existence of partitions of unity
[23, Corollary 1.4.11].

Lemma 2.1. Assume hypotheses (H1)–(H3). Then, there exist three families
{ρj}j∈J0 , {ηj}j∈J0 , {η̃j}j∈J0 ⊂ C∞(Rd) of cut-off functions fulfilling the following
conditions:
(i) ∂αρj , ∂

αηj , ∂
αη̃j ∈ L∞(Rd) for all multi-indices α with 0 � |α| � 2 and for all

j ∈ J0;
(ii) the supports of functions in the same family are pairwise disjoints;
(iii) Ξj ⊂ supp (ρj) ⊂ supp (ηj) ⊂ supp (η̃j) and

ρj |Ξj
= 1, ηj |supp (ρj)

= 1, η̃j |supp (ηj)
= 1, for all j ∈ J0 ;

iv) there exists 0 < δ < r/2 such that dist{supp (1 − ηj), supp (ρj)} � δ for all
j ∈ J0.

We use the first partition of unity to define out of the Aj ’s a new family of
vector potentials with pairwise disjoint supports and set

Bj := ρj Aj , for all j ∈ J0 . (2.1)

Furthermore we introduce a new family of operators:

K =
(
−i∇ +

∑
j∈J0

Bj

)2

, Kj := (−i∇ + Bj)2, for all j ∈ J0 ,

regarded as the closures of the corresponding formal expressions restricted to smooth
functions with supports away from Ξ and Ξj , respectively. The idea behind the intro-
duction of the two other partitions {ηj}j∈J0 , {η̃j}j∈J0 is to have partition functions
equal to 1 in the support of the magnetic potentials Bj and decaying to zero in a
slightly larger region around Ξj (see the forthcoming Lemmas 2.3, 2.4, 2.6, as well
as Remark 2.5).

We notice that, since the vector potentials (Bj)j∈J0 are real-valued, the opera-
tors K and Kj , j ∈ J0, are certainly non-negative. As a consequence, they all admit
self-adjoint extensions in L2(Rd) (see once more [36, §13.3]) and, accordingly,

n+(K) = n−(K) , n+(Kj) = n−(Kj) . (2.2)

Lemma 2.2. n±(H) = n±(K) and n±(Hj) = n±(Kj), for all j ∈ J0.

Proof. We show that, for any choice of cut-off functions {ρj}j∈J0 as in Lemma 2.1,
the closed symmetric operator K is an infinitesimally Kato-small perturbation of H.
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Similar arguments can be employed to prove that Kj is an infinitesimal perturbation
of Hj , for all j ∈ J0. The thesis ultimately follows by a variant of the Kato-Rellich
theorem, see e.g. [5, Cor. 2], [7, Thm. 9, p. 100], and [27, Eq. (1.1) and related
references].

To prove our claim, let us first point out that, upon setting

S := A − ∑
j∈J0

Bj ,

a straightforward computation gives

H = K + 2S ·
(
−i∇ +

∑
j∈J0

Bj

)
− i(∇·S) + S2.

Notice that for any ψ ∈ C∞
c (Rd\Ξ) and for all ε > 0, using the Cauchy-Schwarz

inequality together with the basic relation
√

u v � ε u + 1
2ε v, we get

∥
∥
∥
(
−i∇ +

∑
j∈J0

Bj

)
ψ

∥
∥
∥

2
=

√
〈ψ| K |ψ〉 � ε ‖Kψ‖2 + 1

2ε ‖ψ‖2 .

Let us further remark that the hypotheses in (1.4) and the features of ρj stated
in Lemma 2.1 ensure that S and ∇ · S are indeed uniformly bounded everywhere.
Then, by standard density considerations we obtain, for any ψ ∈ D(K),

‖(H − K)ψ‖2 � 2ε ‖S‖∞ ‖Kψ‖2 +
(

1
ε ‖S‖∞ + ‖∇·S‖∞ + ‖S‖2

∞
)

‖ψ‖2 ,

which, in view of the arbitrariness of ε > 0, ultimately yields the thesis. �

On account of Lemma 2.2, in the following we study K in place of H. Accord-
ingly, we often refer to the adjoint operators K∗ and K∗

j , j ∈ J0, with domains
respectively given by

D(K∗) =
{
ψ∈L2(Rd)

∣
∣
( − i∇ +

∑
j∈J0

Bj

)2
ψ ∈ L2(Rd)

}
, (2.3)

D(K∗
j ) =

{
ψ∈L2(Rd)

∣
∣ (−i∇ + Bj)

2
ψ ∈ L2(Rd)

}
. (2.4)

Lemma 2.3. Assume hypotheses (H1)–(H4) and let {ηj}j∈J0 be a family of cut-off
functions as in Lemma 2.1. Then, for all j ∈ J0, the following implications hold
true:

ψ ∈ D(K∗
j ) =⇒ ηjψ ∈ D(K∗

j ) ∩ D(K∗) ; (2.5)

ψ ∈ D(K∗) =⇒ ηjψ ∈ D(K∗
j ) ∩ D(K∗) . (2.6)

Moreover, for ψ ∈ D(K∗
j ) or ψ ∈ D(K∗),

K∗(ηjψ) = K∗
j (ηjψ) = ηj(−i∇+Bj)2ψ − 2(∇ηj)·(∇ψ) + (−Δηj)ψ . (2.7)

Proof. As a foreplay, we show that D(K∗
j ) ⊂ H2

loc(R
d\suppBj) for any j ∈ J0.

To this avail, let ψ ∈ D(K∗
j ) and notice that the very definition (2.4) of D(K∗

j )
yields ξj(−i∇+Bj)2ψ = ξj(−Δψ) ∈ L2(R2) for any ξj ∈ C∞

c (Rd\suppBj), whence
Δψ ∈ L2

loc(R
d\suppBj). From here we deduce ψ ∈ H2

loc(R
d\suppBj) by standard

elliptic regularity, see e.g. [29, p. 125, Thm. 3.2]. It can be proved in a similar manner
that D(K∗) ⊂ H2

loc(R
d\ ⋃

j∈J0
suppBj).

Now, let us fix j ∈ J0 and take ψ ∈ D(K∗
j ). Let also ηj ∈ C∞(Rd) be the

associated cut-off function as in Lemma 2.1 and notice that ηj

∣
∣
suppBj

= 1, since
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suppBj ⊆ supp ρj (see (2.1)). Then, ηjψ ∈ L2(Rd) and, by direct inspection, we
infer

(−i∇ +
∑

k∈J0
Bk

)2 (ηjψ) = (−i∇ + Bj)2(ηjψ)

= (−Δηj)ψ + 2 (−i∇ηj) · (−i∇ψ) + ηj(−i∇ + Bj)2ψ ∈ L2(Rd) , (2.8)

where we have taken into account that ηj , Δηj ∈ L∞(Rd), ∇ηj ∈ L∞(Rd; Rd) with
supp (∇ηj) ⊂ R

d \ suppBj , together with ψ ∈ H2
loc(R

d \ suppBj) and (−i∇ +
Bj)2ψ ∈ L2(Rd).

By the same token it can be inferred that, for any ψ ∈ D(K∗) and ηj as before,
there holds

(−i∇ + Bj)2(ηjψ) =
(−i∇ +

∑
k∈J0

Bk

)2 (ηjψ)

= (−Δηj)ψ + 2(−i∇ηj) · (−i∇ +
∑

k∈J0
Bk

)
ψ

+ηj

(−i∇ +
∑

k∈J0
Bk

)2
ψ ∈ L2(Rd) . (2.9)

The thesis ultimately follows, recalling once more the definitions (2.3) and (2.4) of
D(K∗) and D(K∗

j ). �

Lemma 2.4. Assume hypotheses (H1)–(H4) and let {ηj}j∈J0 be a family of cut-off
functions as in Lemma 2.1. Then, for all j ∈ J0, the following implications hold
true:

ψ ∈ D(Kj) =⇒ ηjψ ∈ D(Kj) ∩ D(K) ; (2.10)

ψ ∈ D(K) =⇒ ηjψ ∈ D(Kj) ∩ D(K) . (2.11)

Moreover, for ψ ∈ D(Kj) or ψ ∈ D(K),

K(ηjψ) = Kj(ηjψ) = ηj(−i∇+Bj)2ψ − 2(∇ηj)·(∇ψ) + (−Δηj)ψ . (2.12)

Remark 2.5. (Partition {η̃j}j∈J0) Note that under the conditions of Lemma 2.1,
the result of Lemma 2.4 immediately applies also to the family of cut-off functions
{η̃j}j∈J0 . We are going to exploit this fact in the proof of Lemma 1.1.

Proof. We discuss the proof of (2.10) as an example. Similar arguments can be
employed to derive (2.11). Let us firstly recall that the domain D(Kj) is by definition
the closure in the graph-norm topology of the dense set C∞

c (Rd \ Ξj). So,

∀ψ∈D(Kj), ∃ {ψn}n∈N ⊂ C∞
c (Rd\Ξj) s.t. ψn

L2(Rd)−−−−−→
n→+∞ ψ, Kjψn

L2(Rd)−−−−−→
n→+∞ Kjψ .

Since ηj ∈ L∞(Rd), it follows immediately that ηjψn → ηjψ in L2(Rd). On the
other side, we have

Kj(ηjψn) = (−Δηj)ψn + 2(−i∇ηj) · (−i∇ + Bj)ψn + ηjKjψn . (2.13)

Notice that (−Δηj)ψn → (−Δηj)ψ and ηjKjψn → ηjKjψ in L2(Rd). Let us now
examine the second term on the r.h.s. of (2.13). We remark that ψ ∈ D(Kj) ⊂
D(K∗

j ) ⊂ H2
loc(R

d\suppBj) (see the proof of Lemma 2.3) and ∇ηj ∈ C∞
c (Rd\

suppBj ; Rd). Taking this into account, we infer (−i∇ηj) · (−i∇ + Bj)ψ = (∇ηj) ·
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(∇ψ) ∈ L2(Rd). Moreover, for any given ξ ∈ C∞
c (Rd\suppBj), an integration by

parts and elementary estimates yield

‖ξ(−i∇ + Bj)(ψn − ψ)‖2
2

=
∫

Rd

dx (ψn− ψ)∗ (−i∇ξ2) · (−i∇ + Bj)(ψn− ψ)

+
∫

Rd

dx ξ2 (ψn− ψ)∗ (−i∇ + Bj)2(ψn− ψ)

� 2 ‖∇ξ‖∞ ‖ψn − ψ‖2 ‖ξ(−i∇ + Bj)(ψn − ψ)‖2

+ ‖ξ‖2
∞ ‖ψn − ψ‖2

∥
∥(−i∇ + Bj)2(ψn − ψ)

∥
∥

2
.

Since ψn → ψ and Kjψn → Kjψ in L2(Rd) for n → +∞, from here we deduce that

∀ ε>0 ∃Nε >0 s.t. (1−2ε ‖∇ξ‖∞) ‖ξ(−i∇+Bj)(ψn−ψ)‖2 �ε2 ‖ξ‖2
∞ , ∀n>Nε ,

which implies ξ(−i∇+Bj)(ψn −ψ) → 0 in L2(Rd, Rd) for all ξ ∈ C∞
c (Rd\suppBj).

This, in turn, suffices to infer that (−i∇ηj) · (−i∇ + Bj)ψn → (−i∇ηj) · (−i∇ +
Bj)ψ ∈ L2(Rd, Rd). Summing up, the above arguments entail Kj(ηjψn) → Kj(ηjψ)
in L2(Rd), ultimately proving that ηjψ ∈ D(Kj).

Let us finally return to (2.13) and notice that, exploiting again basic features
of Bj and ηj , we get K(ηjψn) = Kj(ηjψn). Since we have just proved that the
sequence Kj(ηjψn) is convergent in L2(Rd) for n → +∞ and given that K is a
closed operator by definition, we readily obtain that ηjψ ∈ D(K) thus concluding
the proof. �

Lemma 2.6. Assume hypotheses (H1)–(H4) and let {ηj}j∈J0 be a family of cut-off
functions as in Lemma 2.1. Then, for all j ∈ J0, the following implications hold
true:

ψ ∈ D(K∗
j ) =⇒ (1 − ηj)ψ ∈ D(Kj) ; (2.14)

ψ ∈ D(K∗) =⇒
(
1 − ∑

j∈J0
ηj

)
ψ ∈ D(K) . (2.15)

Proof. We prove (2.14). The implication in (2.15) can be derived by similar con-
siderations. Let ψ ∈ D(K∗

j ) and set ξj := 1 − ηj ∈ C∞
c (Rd\suppBj). By (2.5)

we readily infer ξjψ ∈ D(K∗
j ). Furthermore, noting that supp ξj ⊂ R

d\suppBj , by
(2.7) we deduce K∗

j (ξjψ) = −Δ(ξjψ) ∈ L2(Rd), which in turn implies ξjψ ∈ H2(Rd)
by elliptic regularity.

Next, we proceed to construct a sequence of smooth approximants converging to
ξjψ in the graph-norm topology induced by Kj . To this purpose, let ζ, Z ∈ C∞

c (Rd)
be such that

ζ � 0, ζ(x) = 0, for |x| � 1,

∫

Rd

dx ζ(x) = 1,

Z � 0, Z(x) =

{
1 for |x|�1
0 for |x|�2

, sup
0�|α|�2

‖∂αZ‖∞ �M, for some finite M >0 ,

and set, for n ∈ N,

ζn(x) := nd ζ(nx) , Zn(x) := Z(x/n) , fj,n := ζn ∗ (Znξjψ) .
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It can be checked that fj,n ∈ C∞
c (Rd\suppBj), for any n large enough, and that

fj,n → ξjψ in H2(Rd) as n → +∞. In particular, we have ξjψ ∈ H2
0 (Rd \ suppBj)

and

Kjfj,n = −Δfj,n
L2(Rd)−−−−−→
n→+∞ −Δ(ξjψ) .

Since Kj is closed, the above arguments suffice to infer that ξjψ ∈ D(Kj) and
Kj(ξjψ) = −Δ(ξjψ). �

We are now in the position to prove our main result.

Proof of Theorem 1.1. We systematically refer to the families of cut-off functions
{ρj}j∈J0 , {ηj}j∈J0 and {η̃j}j∈J0 introduced in Lemma 2.1. In view of Lemma 2.2,
we henceforth consider the operators K and Kj , j ∈ J0, in place of H and Hj ,
respectively, and proceed to employ the auxiliary Lemmas 2.3,2.4,2.6 without further
concern. Recalling the basic identities reported in (2.2), we introduce the shorthand
notations

n = n+(K) , nj = n+(Kj) , for j ∈ J0 .

We remark that, for any given n ∈ N∪{∞}, there certainly exists a set
{
Φ�

}
1���2n

of elements in D(K∗) which are linearly independent modulo D(K), namely,
∑2n

� = 1 b� Φ� ∈ D(K), for some {b�}�∈{1,...,2n} ⊂ C ⇐⇒ b� =0, ∀1���2n .

(2.16)
Similarly, for any fixed j ∈ J0 and for any given nj ∈ N ∪ {∞}, there exists a
set

{
Ψj,�j

}
1��j�2nj

of elements in D(K∗
j ) which are linearly independent modulo

D(Kj), namely,
∑2nj

�j = 1 bj,�jΨj,�j ∈ D(Kj) ,

for some
{
bj,�j

}
�j∈{1,...,2n} ⊂ C ⇐⇒ bj,�j = 0, ∀1 � �j � 2nj .

(2.17)

We proceed to discuss in separate steps two complementary inequalities, ultimately
implying

n =
∑

j∈J0
nj , (2.18)

whence the thesis (1.5).

i) Proving that n �
∑

j∈J0
nj . Let

{
Φ�

}
1���2n

⊂ D(K∗) be any family fulfilling
(2.16). Lemma 2.3 implies

ηjΦ� ∈ D(K∗
j ) ∩ D(K∗) , for all j ∈J0 and 1 � � � 2n .

Assume that
∑2n

�=1 b� ηjΦ� ∈ D(Kj) , for some {b�}�∈{1,...,2n} ⊂ C . (2.19)

This requirement and Lemma 2.4 (see also Remark 2.5) entail
∑2n

�=1 b� ηjΦ� =

η̃j

(∑2n
�=1 b� ηjΦ�

)
∈ D(K) and, given that the supports of the cut-off functions

ηj are disjoint,
∑

j∈J0

∑2n
�=1 b� ηjΦ� ∈ D(K) . (2.20)
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On the other hand, by Lemma 2.6, we get
(
1 − ∑

j∈J0
ηj

)
Φ� ∈ D(K) . (2.21)

Summing up, (2.20) and (2.21) give
∑2n

�=1 b� ηjΦ� =
∑

j∈J0

∑2n
�=1 b� ηjΦ� +

∑2n
�=1 b�

(
1 − ∑

j∈J0
ηj

)
Φ� ∈ D(K) .

Due to (2.16), the above condition can be fulfilled only if b� = 0 for all 1 � � � 2n.
This means that {ηjΦ�}1���2n ⊂ D(K∗

j ) are linearly independent modulo D(Kj).
As a consequence, there exist

{
bj,�j

}
�j∈{1,...,2n} not identically zero and ϕj ∈ D(Kj)

such that

ηjΦ� =
∑2nj

�j=1 bj,�jΨj,�j + ϕj .

The above arguments ultimately prove that

2n � 2
∑

j∈J0
dim

[
D(K∗

j )/D(Kj)
]

= 2
∑

j∈J0
nj .

ii) Proving that n�
∑

j∈J0
nj . For any fixed j ∈J0, let

{
Ψj,�j

}
1��j�2nj

⊂D(K∗
j ) be

some given set fulfilling the condition (2.17). By Lemma 2.3, we readily infer that

ηjΨj,�j ∈ D(K∗
j ) ∩ D(K∗) , for all j ∈ J0 and 1 � �j � 2nj .

Assume now that
∑

j∈J0

∑2nj

�j=1 bj,�jηjΨj,�j ∈ D(K) , for some
{
bj,�j

}
�j∈{1,...,2n} ⊂ C . (2.22)

Since the supports of the cut-off functions {ηj}j∈J0 are disjoint, this condition entails

ηj

∑2nj

�j=1 bj,�jΨj,�j ∈ D(K) , for all j ∈ J0 ,

which, by Lemma 2.4, implies in turn

ηj

∑2nj

�j=1 bj,�jΨj,�j = η̃j

(
ηj

∑2nj

�j=1 bj,�jΨj,�j

)
∈ D(Kj) . (2.23)

On the other hand, Lemma 2.6 yields

(1 − ηj)
∑2nj

�j=1 bj,�jΨj,�j ∈ D(Kj) . (2.24)

Summing up, (2.23) and (2.24) give
∑2nj

�j=1 bj,�jΨj,�j ∈ D(Kj) , (2.25)

which, on account of condition (2.17), can be fulfilled if and only if bj,�j = 0 for all
1 � �j � 2nj . In view of (2.22), this shows that

{
ηjΨj,�j

}
j∈J0,1��j�2nj

is a set of
elements in D(K∗) which are linearly independent modulo D(K). In particular, it
follows that

2n = dim
[
D(K∗)/D(K)

]
� 2

∑
j∈J0

nj .

�
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[19] Dereziński, J., Richard, S.: On Schrödinger operators with inverse square potentials on
the half-line. Ann. H. Poincaré 18, 869–928 (2017)
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[23] Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Distribution
Theory and Fourier Analysis. Springer, Berlin (2003)

[24] Iwai, T., Yabu, Y.: Aharonov-Bohm quantum systems on a punctured 2-torus. J. Phys.
A Math. Gen. 39, 739–777 (2006)

[25] Kalf, H.: Gauss’s theorem and self-adjointness of Schrödinger operators. Ark. Mat. 18,
19 (1980)

[26] Karnarski, B.: Generalized operators with several singularities. J. Oper. Theory 13(1),
171–188 (1985)

[27] Kissin, E.: Stability of the deficiency indices of symmetric operators under self-adjoint
perturbations. Proc. Edinb. Math. Soc. 46, 383–394 (2003)

[28] Klaus, M.: Dirac operators with several Coulomb singularities. Helv. Phys. Acta 53,
463–482 (1980)

[29] Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applica-
tions, vol. I. Springer-Verlag, Berlin (1972)

[30] Lundholm, D.: Properties of 2D anyon gas, preprint arXiv:2303.09544 [math-ph]

http://arxiv.org/abs/2306.08910
http://arxiv.org/abs/2303.09544


Deficiency Indices for Singular Magnetic Schrödinger Operators

[31] Morgan, J.D., III.: Schrödinger operators whose potentials have separated singularities.
J. Oper. Theor. 1, 109–115 (1979)

[32] Nenciu, G.: Distinguished self-adjoint extension for Dirac operator with potential dom-
inated by multicenter Coulomb. Helv. Phys. Acta 50, 1–3 (1977)

[33] Pankrashkin, K., Richard, S.: Spectral and scattering theory for the Aharonov-Bohm
operators. Rev. Math. Phys. 23, 53–81 (2011)

[34] Pearson, D.B.: General theory of potential scattering with absorption at local singular-
ities. Helv. Phys. Acta 48, 639–653 (1975)

[35] Piepenbrink, J., Rejto, P.: Some singular Schrödinger operators with deficiency indices
(n2, n2). Duke Math. J. 41, 593–605 (1974)
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