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A-Variational Principles
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Abstract. Though the A-quasiconvexity condition has been fully explored since
its introduction, no explicit examples of associated variational principles have
been considered except in the classical curl-case. Our aim is to propose such a
family of problems in the div − curl-situation, and explore the corresponding A-
polyconvexity condition as the main structural assumption to ensure weak lower
semicontinuity and existence results.
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1. Introduction

Vector variational problems for an integral functional of the form

E(u) =
∫

Ω

W (x, u(x), ∇u(x)) dx

are of paramount importance for hyper-elasticity, where the internal energy density

W (x, u, U) : Ω × IRm × IRm×N → IR ∪ {+∞}, Ω ⊂ IRN ,

has to comply with a bunch of important conditions. In particular, the structural
properties of W with respect to its gradient variable U are central to the existence
of equilibrium states under typical boundary conditions. Another fundamental mo-
tivation to examine this family of variational problems is the study of non-linear
systems of PDEs. As a matter of fact, this variational approach is the main method
to show existence of weak solutions for such systems beyond the convex case. Check
[7] for a discussion on these topics.

In these classic problems, the presence of the gradient variable U = ∇u stands
as a major feature to be understood to the point that it determines the kind of
structural assumption to be demanded on the dependence of W with respect to
U . This leads to the quasiconvexity condition in the sense of Morrey [24], property
that the community is still struggling to understand. This condition is precisely
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equivalent to the weak lower semicontinuity of functional E(u) above over usual
Sobolev classes of functions.

The main source of quasiconvex functions which are not convex is the class
of polyconvex integrands. These can be defined and determined in a very natural
way once the collection of weak continuous integrands has been identified. In known
existence results for minimizers of functional E under usual boundary conditions
in hyper-elasticity, the polyconvexity of W with respect to variable U is always
assumed, though it is known that the class of quasiconvex integrands is strictly
larger than that of polyconvex densities.

The weak lower semicontinuity property has been treated in a much more
general framework in which a constant-rank, linear partial differential operator of
the form

Av =
∑

i

Ai
∂v

∂xi
(1.1)

is involved. The concept of A-quasiconvexity is then suitably introduced [10], and
shown to be necessary and sufficient [16] for the weak lower semicontinuity of a
functional of the form

I(v) =
∫

Ω

W (x, v(x)) dx, (1.2)

under the differential constraint Av = 0, possibly in addition to suitable boundary
restrictions. The importance of such an extension cannot be underestimated as it
expands in an unbelievable way the analytical framework. For the particular case
A = curl, we fall back to the classical gradient case.

This new theory is by now very well understood covering the most fundamental
developments: Young measures and A-free measures, relaxation, homogenization,
regularity, dynamics, etc, (see [1,3,8,12–15,17,18,20,21,23,28], among others); and
yet explicit variational problems under more general differential constraints of the
kind Av = 0 have not been systematically pursued, probably due to a lack of such
examples of a certain relevance in Analysis or in applications. In the same vein,
the natural and straightforward concept of A-polyconvexity, as far as we can tell,
has not been explicitly examined (except recently in [18], and in a different form in
[4]), again possibly because of lack of examples where such concept could go beyond
plain convexity, and use in a fundamental way to show existence of solutions for
such variational problems.

Our goal in this contribution is two-fold. On the one hand, we would like to
focus on a particular example of a differential operator of the above kind distinct
from the gradient situation (but not far), provide and motivate some examples of
variational problems like (1.2) of a certain interest, and resort to A-polyconvexity
as the main hypothesis allowing existence of minimizers. On the other hand, given
that the representation form of polyconvexity in terms of compositions of convex and
weak continuous functions involves some ambiguity, we have pushed some standard
ideas and explicit calculations to gain more insight into this issue.
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1.1. A-Polyconvexity

Suppose a certain non-linear, vector function A(x) : IRn → IRm is given. This
function will play the role of encoding all (or some) independent weak continuous
functions for a certain constant-rank, differential operator of the kind given above.
Yet for the computations to be performed, it is not important where the vector
function A comes from. It is simply assumed to be given. For this reason, we will
not make any reference to the operator A here.

Definition 1. A function ψ(x) : IRn → IR is declared A-polyconvex if there is a
function Ψ(x, y) : IRn × IRm → IR, convex in the usual sense, such that ψ(x) =
Ψ(x, A(x)).

It is well-known that the representation of ψ(x) in terms of Ψ(x, y) is non-
unique. There is however a canonical representative which is the largest such convex
function Ψ. This is in fact standard (check for instance [11]). Consider the function

ψA(x, y) := ψ(x)1graph(A)(x, y) =

⎧⎨
⎩

ψ(x), y = A(x)

+∞, otherwise
,

for a function ψ(x) : IRn → IR. More in general, if φ(x, y) : IRn × IRm → IR, then

φA(x, y) := φ(x, y)1graph(A)(x, y) =

⎧⎨
⎩

φ(x, y), y = A(x)

+∞, otherwise
.

Proposition 2. A function ψ(x) : IRn → IR is A-polyconvex if and only if

ψ(x) ≡ CψA(x, A(x)),

where C stands for convexification in the usual sense. Moreover, if ψ(x) = φ(x, A(x))
with φ convex, then

φ(x, y) ≤ CψA(x, y).

The conclusion in this proposition lets us define a canonical representative for
A-polyconvex functions.

Definition 3. Let ψ(x) = φ(x, A(x)) be A-polyconvex with φ(x, y), convex. The
function CφA(x, y) is called its canonical representative as a A-polyconvex function.

Though the definition of the convex hull CφA(x, y) is pretty clear, it may be
worthwhile to go through explicit calculations to check its explicit form in some
distinguished examples like the ones below. Even in very simple situations, calcula-
tions turn out to be pretty demanding but they may help in gain insight into the
nature of A-polyconvexity. The following are the situations examined here:

1. First scalar case. Take A(x) = x3, and find the canonical representative of
ψ(x) = x2.

2. Second scalar case. Take again A(x) = x3, and find the canonical representative
for ψ(x) = x4 + x3 as a A-polyconvex function.

3. Separately convex case. Take A(x, y) = xy, and check if ψ(x, y) = x2 + y2 is its
own canonical representative.
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4. The true polyconvex case (2 × 2-situation). In this case

A(ξ) = det ξ, ψ(ξ) = |ξ|2, ξ =
(

ξ11 ξ12

ξ21 ξ22

)
.

Check if ψ is its own canonical representative.

1.2. A-Polyconvexity

Suppose a constant-rank operator A as in (1.1) is given.

Definition 4. A continuous, non-linear function a(v) : IRm → IR is weak continuous
under the differential constraint Av = 0 if, for a suitable exponent p ≥ 1,

vj ⇀ v in Lp(Ω,Rm), Avj = Av = 0,

implies

a(vj) ⇀ a(v) in D′(Ω) (in the sense of distributions).

Assume the components of the vector function A(v) : IRm → IRd are indepen-
dent, weakly continuous functions under Av = 0 according to Definition 4. Note
how this time the vector function A is precisely coming from a (partial) list of weak
continuous functions for the operator A as indicated in the above definition. It is
known that every component of A is a certain polynomial [25].

Definition 5. Let the constant-rank operator A as in (1.1) be given. An integrand
W (v) is said to be A-polyconvex if it can be written in the form W (v) = Ψ(A(v))
where A(v) : IRm → IRd is a collection of weak continuous functions for A according
to Definition 4, and Ψ : IRd → IR is a convex function in the usual sense.

Consider the variational problem

Minimize in v(x) : I(v) =
∫

Ω

W (x, v(x)) dx,

under suitable boundary conditions for feasible v ∈ Lp(Ω,Rm) or associated po-
tentials, where Ω ⊂ R

N is a bounded open set with Lipschitz boundary and W :
Ω×R

m → R is a Carathéodory function, in addition to complying with the previous
differential constraint. We take for granted that boundary conditions imposed in the
problem represent a set of competing fields that is weakly closed so that weak limits
preserve such boundary conditions. We will denote by

L ⊂ Lp
A = {v ∈ Lp(Ω,Rm) : Av = 0},

the set of such competing fields.
The following existence result is but a natural generalization of important ex-

istence results in hyperelasticity [2].

Theorem 6. Suppose, in addition to assumptions just indicated, that the integrand
W (x, ·) : IRm → IR complies with:
1. It satisfies the growth condition

W (x, F ) ≥ a|F |p + b,

for some p ≥ 2, a > 0, b ∈ R; and
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2. It is A-polyconvex in the sense of Definition 5 for a.e. x ∈ Ω, for a family of
weak continuous functions A : IRm → IRd such that

|A(F )| ≤ C|F |r, r < p, C > 0.

Then the above variational problem admits minimizers v ∈ L.
The main example corresponds to A = curl. This is the case for the classic

Calculus of Variations and it is very well studied. Another one is the div case when
complementary principles are utilized [6]. This particular case has been recently
retaken [9]. We would like to focus and motivate the div − curl case. Though varia-
tional principles under the div − curl-constraint have been considered sporadically
[19], they have not been pursued systematically as far as we can tell.

To be specific, we will stick to the framework in which Ω ⊂ IRN , and compet-
ing pairs of fields (v,∇u) belong to suitable Sobolev spaces under the differential
constraint div v = 0 in Ω. The family of integrands we would like to consider are of
the form

W (v,∇u) = Ψ(A(v,∇u)), A(v, λ) = (v, λ, v · λ), v, λ ∈ IRN ,

for

Ψ(v, λ, t) =
a|v|p + b|λ|q

tr
, (1.3)

if t > 0, and Ψ = +∞, if t ≤ 0, that is to say

W (v,∇u) =
a|v|p + b|∇u|q

(v · ∇u)r
, v · ∇u > 0. (1.4)

Densities a(x) and b(x), and exponents p, q, r may vary in suitable ranges, and
small coercive perturbation terms are typically added to it to ensure coercivity.
More specifically, the following lemma is elementary.

Lemma 7. If a, b > 0 and min{p, q} ≥ r + 1, the functionals given by (1.4) are
div−curl-polyconvex.

The proof of this lemma is elementary. Simply note that functions in (1.3) are
convex under the conditions just given.

In addition to proving Theorem 6, we will justify the form of the integrands in
(1.4), show an existence theorem for minimizers (that will be a corollary of Theorem
6), and treat an easy argument to better understand the role of small perturbations
added to ensure coerciveness. Needless to say, the div–curl Lemma [26,30] is central
to state some non-standard results in this context. It yields the weak continuity of
the inner product v · ∇u precisely under the differential constraint div v = 0.

2. Examples for A-Polyconvexity

We cover in this section the calculations involved for the explicit examples listed in
Sect. 1.1.
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Example 8. In this first scalar case, we take ψ, A : R → R with A(x) = x3 and
ψ(x) = φ(x, x3) = x2.

φA(x, y) := φ(x, y)1graph(x3)(x, y) =

⎧⎨
⎩

x2, y = x3

+∞, otherwise
,

CφA(x, y)

= inf
αi,xi,yi

{
3∑

i=1

αiφA(xi, yi) : αi ≥ 0,
3∑

i=1

αi = 1,
3∑

i=1

αi(xi, yi) = (x, y)

}
.

We can treat separately the case where only one of the αi is not zero, because it is
trivial to conclude that we get x2 for points (x, y) with y = x3 and +∞ otherwise.
Now, if at least two of the αi are non-zero, the above equality can be written as

inf
αi,xi

{
3∑

i=1

αix
2
i : αi ≥ 0,

3∑
i=1

αi = 1,
3∑

i=1

αi(xi, x
3
i ) = (x, y)

}
.

As a preliminary step, we study the case where exactly one of the αi is zero, Without
loss of generality, we take α3 = 0 and so, for each (x, y), we have to minimize

αx2
1 + (1 − α)x2

2

subject to ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αx1 + (1 − α)x2 = x

αx3
1 + (1 − α)x3

2 = y

0 < α < 1

.

From αx1 +(1−α)x2 = x we get α = x2−x
x2−x1

, for x2 �= x1 (otherwise we fall again in
a trivial case). From here and supposing e.g. x1 < x < x2, one is lead to minimize

−x1x2 + x(x1 + x2)

subject to

y + x1x2(x1 + x2) − x(x2
1 + x1x2 + x2

2) = 0.

The obtained optimality conditions are⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−x2 + x + λ(x2(x1 + x2) + x1x2 − x(2x1 + x2)) = 0

−x1 + x + λ(x1(x1 + x2) + x1x2 − x(x1 + 2x2)) = 0

y + x1x2(x1 + x2) − x(x2
1 + x1x2 + x2

2) = 0

⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x2 − x)[−1 + λ(2x1 + x2)] = 0

(x1 − x)[−1 + λ(x1 + 2x2)] = 0

y + x1x2(x1 + x2) − x(x2
1 + x1x2 + x2

2) = 0

,
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which have no solutions in its domain. The conclusion is that we have that x2 is the
minumum and it is attained for the points where y = x3 (with x1 = x2 = x) and
that the minimum cannot be attained when y �= x3.

To prove this, take the case where y > x3 (the other being analogue). It is
easy to observe that the infimum cannot be smaller than x2, because by hypotheses
α(x1, x

3
1) + (1 − α)(x2, x

3
2) = (x, y), so in particular αx1 + (1 − α)x2 = x and as x2

is convex, then αx2
1 + (1 − α)x2

2 ≥ x2. We will prove that the infimum is x2 and it
is obtained when x1 ↗ x (and x2 → +∞). To do this, suppose that (x, y) is fixed
(but arbitrary), with y > x3. We take three sequences of real numbers, αn, xn

1 , xn
2

such that xn
1 < x < xn

2 , αn ∈ (0, 1) and

αn(xn
1 , (xn

1 )3) + (1 − αn)(xn
2 , (xn

2 )3) = (x, y), ∀n ∈ N. (2.1)

If we take xn
1 ↗ x then we have αn = xn

2 −x
xn
2 −xn

1
↗ 1. From the other equation in (2.1),

we have

xn
2 = (1 − αn)− 1

3 3

√
y − αn(xn

1 )3.

One must take some care while computing this limit, avoiding possible indetermi-
nations. But as y − αn(xn

1 )3 → y − x3 > 0 in a monotone way, then

∃p ∈ N, ∃c1, c2 ∈ R
+ : ∀n ≥ p ⇒ c2 ≥ 3

√
y − αn(xn

1 )3 ≥ c1 > 0.

From here, we have

xn
2 → +∞

and

αn(xn
1 )2 + (1 − αn)(xn

2 )2 = αn(xn
1 )2 + (1 − αn)

1
3 (y − αn(xn

1 )3)
2
3 → x2.

To finish the computations, one has to consider the case with 3 points. But given
the solution obtained in the previous step, and again as the function x2 is convex,
the best possible value to obtain is indeed x2, and this value cannot be lowered by
taking convex combinations of 2 or more points. From here, the conclusion is that
in this case, one has

CφA(x, y) = x2,

that is, ψ is its own canonical representation as a A-polyconvex function.

We consider again a scalar function.

Example 9. In this second scalar case, we take ψ, A : R → R with A(x) = x3 and
ψ(x) = φ(x, x3) = x4 + x3.

φA(x, y) := φ(x, y)1graph(x3)(x, y) =

⎧⎨
⎩

x4 + x3, y = x3

+∞, otherwise
,

CφA(x, y)

= inf
αi,xi,yi

{
3∑

i=1

αiφA(xi, yi) : αi ≥ 0,
3∑

i=1

αi = 1,
3∑

i=1

αi(xi, yi) = (x, y)

}
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= inf
αi,xi

{
3∑

i=1

αi(x4
i + x3

i ) : αi ≥ 0,
3∑

i=1

αi = 1,
3∑

i=1

αi(xi, x
3
i ) = (x, y)

}
,

in which we supposed that at least two of the αi are non-zero, to avoid trivialities.
We will start again by dealing with the situation where one of the αi is zero. For
each (x, y), we have to minimize

α(x4
1 + x3

1) + (1 − α)(x4
2 + x3

2)

subject to ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αx1 + (1 − α)x2 = x

αx3
1 + (1 − α)x3

2 = y

0 ≤ α ≤ 1

.

For x1 �= x2 we have α = x2−x
x2−x1

, (notice that, as before, if x2 = x1 = x then y = x3

and so the minimum is x4+x3). From here and supposing without loss of generality,
that x1 < x < x2, one is lead to minimize

−x1x2(x2
1 + x1x2 + x2

2 + x1 + x2) + x(x3
1 + x2

1x2 + x1x
2
2 + x3

2 + x2
1 + x1x2 + x2

2)

subject to

y + x1x2(x1 + x2) − x(x2
1 + x1x2 + x2

2) = 0.

The optimality conditions are⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x − x2)(3x2
1 + 2x1x2 + x2

2 + 2x1 + x2) − λ(x − x2)(2x1 + x2) = 0

(x − x1)(x2
1 + 2x1x2 + 3x2

2 + x1 + 2x2) − λ(x − x1)(x1 + 2x2) = 0

y + x1x2(x1 + x2) − x(x2
1 + x1x2 + x2

2) = 0

⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − λ)(2x1 + x2) + (x1 + x2)2 + 2x2
1 = 0

(1 − λ)(x1 + 2x2) + (x1 + x2)2 + 2x2
2 = 0

y + x1x2(x1 + x2) − x(x2
1 + x1x2 + x2

2) = 0

⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x2
i + (1−λ)

2 xi − (1−λ)2

8 = 0, i = 1, 2

...

...

⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 = 1
4(−1 − √

3)γ

x2 = 1
4(−1 +

√
3)γ

γ3 − 6γ2x + 16y = 0

,

with γ = (1 − λ) in the last system. As

γ3 − 6γ2x + 16y = 0 (2.2)



Vol. 91 (2023) A-Variational Principles 301

is a cubic equation in γ, it always has at least one real solution. Substituting
they/them into the expressions of x1, x2 and then in the function that we are
minimizing will lead us to the minimum. Unfortunately it is not possible to have
an closed expression for the solution in this case, but at least we can still hope to
compute CφA(x, y), for each (x, y). Nevertheless, some interesting conclusions could
be made: for fixed γ, equation (2.2) defines the line that passes through the points
(x1, x

3
1) and (x2, x

3
2). This means that the minimum for any (x, y) that belongs to

this segment will always be attained at the extreme points (x1, x
3
1) and (x2, x

3
2)

and, furthermore, CφA(x, y) will be a linear function along this segments which, in
particular, this implies that we cannot have CφA(x, y) = x4 + y, if the minimum is
attained in the case where one of the αi is zero.

In order to obtain CφA(x, y), we must analyze the situation when α1α2α3 �= 0.
We followed here a different technique: instead of solving the corresponding system
of optimality conditions, we will consider two sub-cases, each of which will be reduce
to the situation of the previous case. The idea of the reduction came to our minds
after a couple of hundreds of numerical computations, where we always obtained
optimal solutions with only two distinct points instead of three.

First, we consider the sub-case when of the points ((x3, x
3
3), (x4, x

3
4) or (x5, x

3
5))

of the candidate to be a minimizer coincides with one of the two points (x1, x
3
1),

(x2, x
3
2) of the minimizer obtained from solving (2.2) (see Fig. 1). This case is easy

to rule out: suppose that the coinciding point is (x1, x
3
1). It is easy to see that

α3(x4
3 + x3

3) + α4(x4
4 + x3

4) + α5(x4
5 + x3

5)

= α3(x4
3 + x3

3) + (α4 + α5)
[

α4

α4 + α5
(x4

4 + x3
4) +

α5

α4 + α5
(x4

5 + x3
5)

]

≤ α3(x4
3 + x3

3) + (α4 + α5)
[
β(x4

1 + x3
1) + (1 − β)(x4

2 + x3
2),

]
with

α4

α4 + α5
(x4, x

3
4) +

α5

α4 + α5
(x5, x

3
5) = β(x1, x

3
1) + (1 − β)(x2, x

3
2),

for some β ∈ (0, 1), because for any point the lies within the segment (x1, x3
1), (x2, x3

2),
the minimum is attained exactly as a linear combination of the images of (x1, x

3
1)

and (x2, x
3
2).

In the second and last sub-case, none of the points (x3, x
3
3), (x4, x

3
4), (x5, x

3
5)

coincides with any point of the two points (x1, x
3
1), (x2, x

3
2), but at least of the

three segments (x3, x3
3), (x4, x3

4), (x4, x3
4), (x5, x3

5) or (x5, x3
5), (x3, x3

3) has to inter-
sect the segment (x1, x3

1), (x2, x3
2) (see Fig. 2). This case is also possible to rule

out. Suppose without loss of generality, that (x4, x3
4), (x5, x3

5) intersect the segment
(x1, x3

1), (x2, x3
2). Then

α3(x4
3 + x3

3) + α4(x4
4 + x3

4) + α5(x4
5 + x3

5)

= α3(x4
3 + x3

3) + (α5 + α4)
[

α5

α5 + α4
(x4

5 + x3
5) +

α4

α5 + α4
(x4

5 + x3
5)

]

≤ 0(x4
3 + x3

3) + (α5 + α4)(β(x4
1 + x3

1) + (1 − β)(x4
2 + x3

2))
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x

y

(x1, x
3
1) ≡ (x3, x

3
3)

(x2, x
3
2)

(x
, y
)

(x4, x
3
4)

(x5, x
3
5)

Figure 1 Sub-case 1

x

y

(x1, x
3
1)

(x2, x
3
2)

(x
, y
)

(x3, x
3
3)

(x4, x
3
4)

(x5, x
3
5)

Figure 2 Sub-case 2
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for some β ∈ (0, 1), otherwise the minimum at the common point of segments
(x5, x3

5), (x3, x3
3) and (x1, x3

1), (x2, x3
2), obtained with convex combinations of two

support points in the graph of x3, would be smaller than the minimum at (x, y),
which it is not possible.

Consequently the minimum is attained in the case where one of the αi is zero
and so we cannot have CφA(x, y) = x4 + y and so ψ is not its own canonical
representative. Nevertheless, we can compute CφA(x, y) at each (x, y) by the algorith
described before.

Next we proceed with the separately convex case. Although it is not associated
with a constant rank operator, it is a well-known important example which was
introduced by Tartar [31] as a model to study rank-one convexity.

Example 10. For ψ, A : R
2 → R with A(x, y) = xy and ψ(x, y) = φ(x, y, xy) =

x2 + y2, we have

φA(x, y, z) := φ(x, y, z)1graph(xy)(x, y, z) =

⎧⎨
⎩

x2 + y2, z = xy

+∞, otherwise
,

CφA(x, y, z)

= inf
αi,xi,yi,zi

{
4∑

i=1

αiφA(xi, yi, zi) : αi ≥ 0,
4∑

i=1

αi = 1,
4∑

i=1

αi(xi, yi, zi) = (x, y, z)

}

= inf
αi,xi,yi

{
4∑

i=1

αi(x2
i + y2

i ) : αi ≥ 0,
4∑

i=1

αi = 1,
4∑

i=1

αi(xi, yi, xiyi) = (x, y, z)

}
.

Again, we supposed that at least two of the αi are non-zero, to avoid trivialities,
in the last equality. Once again, in order to simplify the minimization problem, we
will start again by dealing with the situation where two of the αi are zero. We take
α3 = α4 = 0, without loss of generality. For each (x, y, z), we are left to minimize

α(x2
1 + y2

1) + (1 − α)(x2
2 + y2

2)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

αx1 + (1 − α)x2 = x

αy1 + (1 − α)y2 = y

αx1y1 + (1 − α)x2y2 = z

α ∈ (0, 1)

.
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The optimality conditions are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2αx1 + λ1α + λ3αy1 = 0

2αy1 + λ2α + λ3αx1 = 0

2(1 − α)x2 + λ1(1 − α) + λ3(1 − α)y2 = 0

2(1 − α)y2 + λ2(1 − α) + λ3(1 − α)x2 = 0

x2
1 + y2

1 − x2
2 − y2

2 + λ1(x1 − x2) + λ2(y1 − y2) + λ3(x1y1 − x2y2) = 0

αx1 + (1 − α)x2 = x

αy1 + (1 − α)y2 = y

αx1y1 + (1 − α)x2y2 = z

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α = (y2−y)2

(y2−y)2+xy−z

λ1 = −2x − 2y

λ2 = −2x − 2y

λ3 = 2

x1 = −xy2+z
−y2+y

x2 = x − y2 + y

y1 = −−y2+y2y−xy+z
−y2+y

y2 ∈ R\{y}

∨

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α = (y2−y)2

(y2−y)2−xy+z

λ1 = −2x + 2y

λ2 = 2x − 2y

λ3 = −2

x1 = −xy2+z
−y2+y

x2 = x + y2 − y

y1 = y2−y2y−xy+z
−y2+y

y2 ∈ R\{y}

.

The first solution is always well defined for z ≤ xy and the second for z ≥ xy (we
recall that, in particular, we can take y in the interior of the segment whose extreme
points are y1 and y2; otherwise we interchange the papers of y2 with x2). Computing
the minimum, one gets

CφA(x, y, z) = max{(x + y)2 − 2z, (x − y)2 + 2z}

=

⎧⎨
⎩

(x + y)2 − 2z, z ≤ xy

(x − y)2 + 2z, z ≥ xy
.

Notice that one need not take more than two of the αi �= 0 in the minimization
problem, because the function that we have obtained is already convex and lies below
φA(x, y, z). As in the previous case, ψ(x, y) is not its own canonical representative.
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Proposition 11. The canonical representative CφA(x, y, z) of ψ(x, y) = x2 + y2 as a
separately convex function of the two variables x, y, is

CφA(x, y, z) =

⎧⎨
⎩

(x + y)2 − 2z, z ≤ xy

(x − y)2 + 2z, z ≥ xy
.

We now proceed to the typical example of polyconvexity in R
2×2 case, see e.g.

[11].

Example 12. In this fully vector example, we take

ψ, A : R2×2 → R, ξ =
[

ξ11 ξ12

ξ21 ξ22

]
�→ (ξ11, ξ12, ξ21, ξ22),

with A(ξ) = det ξ and

ψ(ξ) = φ(ξ,det ξ) = |ξ|2 = ξ2
11 + ξ2

12 + ξ2
21 + ξ2

22.

We have

φA(ξ, t) := φ(ξ, t)1graph(det ξ)(ξ, t) =

⎧⎨
⎩

|ξ|2, t = det ξ

+∞, otherwise
,

CφA(ξ, t)

= inf
αi,ξi,ti

{
6∑

i=1

αiφA(ξi, ti) : αi ≥ 0,
6∑

i=1

αi = 1,
6∑

i=1

αi(ξi, ti) = (ξ, t)

}

= inf
αi,ξi

{
6∑

i=1

αi|ξi|2 : αi ≥ 0,
6∑

i=1

αi = 1,
6∑

i=1

αi(ξi, det ξi) = (ξ, t)

}
,

(in the last equality, we supposed as usual that at least two of the αi are non-zero)
Once again, in order to simplify the minimization problem, we will start again by
dealing with the simplest situation, which in here will be the case where four of the
αi are zero, which we take α3 = α4 = α5 = α6 = 0, without loss of generality. For
each (ξ, t) ∈ R

5, we have to minimize

α|ξ1|2 + (1 − α)|ξ2|2

subject to
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αξ1 + (1 − α)ξ2 = ξ

α det ξ1 + (1 − α) det ξ2 = t

α ∈ (0, 1)

.
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The optimality conditions are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2αξ1 + αλ + λ5α adj ξ1 = (0, 0, 0, 0)

2(1 − α)ξ2 + (1 − α)λ + λ5(1 − α) adj ξ2 = (0, 0, 0, 0)

|ξ1|2 − |ξ2|2 + 〈λ, ξ1 − ξ2〉 + λ5(det ξ1 − det ξ2) = 0

αξ1 + (1 − α)ξ2 = ξ

α det ξ1 + (1 − α) det ξ2 = t

,

where λ = (λ1, λ2, λ3, λ4), 〈a, b〉 stands for the inner product of the vectors a, b ∈
R

4 and adj ξi is the matrix (taken as a vector in R
4) of all the 1 × 1 minors of

matrix ξi. The solutions of the above system are (where, in order to drop some of
the indexes we will take, when necessary, ξ = (ξ11, ξ12, ξ21, ξ22) = (x, y, z, w) and
ξi = (ξi,11, ξi,12, ξi,21, ξi,22) = (xi, yi, zi, wi)).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α = (x2−x)2+(z2−z)2

(x2−x)2+(z2−z)2−det ξ+t

λ1 = 2w − 2x

λ2 = −2y − 2z

λ3 = −2y − 2z

λ4 = −2w + 2x

λ5 = −2

x1 = −x2yz+x2
2x+x2xw−2x2x2−x2t+xz2

2−2xz2z+xyz+xz2−x2w+x3+xt
(x2−x)2+(z2−z)2

x2 ∈ R\{x}

y1 = −−z2t+zt−yz2
2−zxw−x2

2y−x2y+2x2xy+z2yz+z2xw
(x2−x)2+(z2−z)2

y2 = y + z − z2

z1 = z2
2z−z2yz−2z2z2+z2xw−z2t+yz2+z3+zx2

2−2zx2x−zxw+zx2+zt
(x2−x)2+(z2−z)2

z2 ∈ R\{z}

w1 = −x2t+xt+wx2
2−x2yz−x2xw+xyz+wz2

2+wz2−2wz2z
(x2−x)2+(z2−z)2

w2 = w − x + x2
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and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α = (x2−x)2+(z2−z)2

(x2−x)2+(z2−z)2+det ξ−t

λ1 = −2w − 2x

λ2 = −2y + 2z

λ3 = 2y − 2z

λ4 = −2w − 2x

λ5 = 2

x1 = −−x2yz+x2xw−x2t−x2
2x+2x2x2+xyz−x2w+xt−xz2

2+2xz2z−xz2−x3

(x2−x)2+(z2−z)2

x2 ∈ R\{x}

y1 = −−zxw−yz2
2−z2t+zt+z2yz+z2xw+2x2xy−x2

2y−x2y
(x2−x)2+(z2−z)2

y2 = y − z + z2

z1 = −−z2yz+z2xw−z2t−z2
2z+2z2z2+yz2−zxw+zt−z3−zx2

2+2zx2x−zx2

(x2−x)2+(z2−z)2

z2 ∈ R\{z}

w1 = −x2yz−x2xw+xyz−x2t+xt+wx2
2−2wz2z+wz2

2+wz2

(x2−x)2+(z2−z)2

w2 = x + w − x2

.

The first solution is well defined for t ≥ det ξ and the second for t ≤ det ξ (notice
that ξ1, ξ2 �= ξ so, interchanging variables for which we solve the system of optimality
conditions, one can suppose without loss of generality that (x2−x)2+(z2−z)2 > 0).
Computing the minimum, one gets

CφA(ξ, t) = max{|ξ|2 − 2 det ξ + 2t, |ξ|2 + 2 det ξ − 2t}

=

⎧⎨
⎩

|ξ|2 − 2 det ξ + 2t, t ≥ det ξ

|ξ|2 + 2 det ξ − 2t, t ≤ det ξ
.

Notice that, as in the separately convex case, one need not to take more than two of
the αi �= 0 in the minimization problem, because the function that we have obtained
is already convex and lies below φA(ξ, t). And so, the answer to the question of
whether ψ is its own canonical representative is again negative.
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Proposition 13. The canonical representative CφA(ξ, t) of ψ(ξ) = |ξ|2 as a polycon-
vex function is

CφA(ξ, t) =

⎧⎨
⎩

|ξ|2 − 2 det ξ + 2t, t ≥ det ξ

|ξ|2 + 2 det ξ − 2t, t ≤ det ξ
.

3. Existence Theorems

We start by proving our general existence result Theorem 6. The proof is quite
standard (see e.g. [29]), and does not require any special ingredient. We restate it
here. It refers to the variational problem

Minimize in v(x) ∈ L : I(v) =
∫

Ω

W (x, v(x)) dx,

where

L ⊂ Lp
A = {v ∈ Lp(Ω,Rm) : Av = 0},

is a weakly closed subset.

Theorem 14. Suppose that the integrand W (x, ·) : IRm → IR is a Carathéodory
integrand and complies with:

1. It satisfies the growth condition

W (x, F ) ≥ a|F |p + b,

for some p ≥ 2, a > 0, b ∈ R; and
2. It is A-polyconvex in the sense of Definition 5 for a.e. x ∈ Ω, for a family of

weak continuous functions A : IRm → IRd such that

|A(F )| ≤ C|F |r, r < p, C > 0.

Then the above variational problem admits minimizers v ∈ L.
Proof. Suppose that (vj) is a minimizing sequence. Then, by coercivity of W , there
exists c ∈ R

+ such that

|vj |Lp(Ω,Rm) ≤ c

and so, for an appropriate subsequence (p ≥ 2), one has

vj ⇀ u in Lp(Ω,Rm) (3.1)

We first prove that I is strongly lower semicontinuous. Suppose that instead of weak
convergence in Lp(Ω) we have strong convergence, that is

vj → v in Lp(Ω,Rm)

Then, for an appropriated subsequence, it is true that

vj → v a.e. in Ω

By hypothesis, W (x, F ) ≥ 0 (eventually by adding some constant) so, applying
Fatou’s Lemma,

I(v) ≤ lim inf
j→∞

I(vj).
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This holds for all subsequences, so it follows for the sequence itself. We now prove the
(sequentially) weak lower semicontinuity of I. From (3.1), and as we are supposing
that W (x, ·) is A-polyconvex in the sense of Definition 5, and due to the upper
bound assumed on A, we have

Ai(vj) ⇀ Ai(v) in Lq(Ω,R), i = 1, ..., d,

for some q > 1, and so

(vi, A1(vi), ..., Ad(vi)) ⇀ (v, A1(v), ..., Ad(v))

in Lp(Ω,Rm) × Lq(Ω,Rd). From Mazur Lemma, we can find a sequence of convex
combinations

(ui, U
1
i ..., Ud

i ) =
τ(j)∑
i=j

αj,i(vi, A1(vi), ..., Ad(vi)),

with 0 ≤ αj,i ≤ 1 and
∑τ(j)

i=j αj,i = 1 such that

(ui, U
1
i ..., Ud

i ) → (v, A1(v), ..., Ad(v)) (3.2)

in Lp(Ω,Rm)×Lq(Ω,Rd). As W (x, ·) is A-polyconvex, there exists a convex Ψ(x, ·)
such that W (x, X) = Ψ(x, A(X)), and so

I(ui) =
∫

Ω

Ψ

⎛
⎝x,

τ(j)∑
i=j

αj,i(vi(x), A1(vi(x)), ..., Ad(vi(x)))

⎞
⎠ dx ≤

τ(j)∑
i=j

αj,iI(vi).

(3.3)

Put

m := lim inf
i→∞

I(vi).

Taking a subsequence, we can assume that I(vi) converges to m, and taking lim inf
in both sides of (3.3), we have

lim inf
i→∞

I(ui) ≤ m.

On the other hand, by (3.2) and because I is strongly lower semicontinuous,

I(v) ≤ lim inf
i→∞

I(ui) ≤ m = lim inf
i→∞

I(vi).

In particular the boundary conditions are ensured by the weak continuity of the
trace and consequently v is a minimizer. �

As indicated in the Introduction, Theorem 6 is a natural extension of important
results in classical settings. Our motivation was to look for new interesting explicit
examples in non-standard situations. We have been inspired by some variational
approaches to deal with the classic Calderón’s problem [5] in inverse 3D-conductivity
[22,27], in which we presume to aim at v = γ∇u for a certain unknown conductivity
coefficient γ(x). We intend to recover such unknown coefficient γ by minimizing the
functional corresponding to the integrand

W (v,∇u) = Ψ(A(v,∇u)), A(v, λ) = (v,∇u, v · λ), v, λ ∈ IR3,
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with

Ψ(v, λ, t) =
1
2

|v|2 + |λ|2
t

, t > 0. (3.4)

We take Ψ = +∞ whenever t ≤ 0. We plan to examine this approach more specifi-
cally in the future.

An existence theorem, as a corollary of Theorem 6, can then be proved based
on div–curl-polyconvexity. It can be very easily adapted to cover more general
situations for integrands of the form (1.4).

Corollary 15. Let Ω ⊂ R
3 be a bounded open set with Lipschitz boundary, and outer

normal vector n to ∂Ω. Consider the class

L+ :=
{
v ∈ L2(Ω,R3), u ∈ W 1,2(Ω,R), div v = 0, v · ∇u > 0 in Ω,

(v · n, u) = (v0, u0) on ∂Ω}
and for each, ε > 0, the functional

Iε(v, u) =
∫

Ω

Wε(v,∇u) dx,

where

Wε(v,∇u) =
1
2

|v|2 + |∇u|2
v · ∇u

+ ε(|v|2 + |∇u|2 + |v · ∇u|2). (3.5)

Then, for each ε > 0, the minimization problem

min
(v,u)∈L+

Iε(v, u)

has at least one solution.

Proof. Consider an arbitrary, but fixed, ε > 0. Wε is A-polyconvex and satisfies
the required growth condition. If (vj , ∇uj , vj · ∇uj) is a minimizing sequence, then,
possible for a subsequence, coercivity entails

vj ⇀ v in L2(Ω,R3) (3.6)

∇uj ⇀ ∇u in L2(Ω,R3) (3.7)

vj · ∇uj ⇀ X in L2(Ω,R) (3.8)

From (3.6) and (3.7), remembering that div vj = div v = 0, the div–curl Lemma
[26,30] gives us

vj · ∇uj ⇀ v · ∇u

in the sense of distributions; in fact, in L2(Ω,R) because of (3.8). Though elementary
to check, it is relevant to stress that the function in (3.4) is convex in the usual sense,
and so we are entitled to apply Theorem 6 (or rather its proof) with

w = (v,∇u), A(w) = A(v,∇u) = v · ∇u, p = 2,

�
to conclude that (v, u) ∈ L+ is a minimizer.
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There is nothing to prevent us from proving a similar existence theorem for a
family of integrands like in (1.3) based on Lemma 7.

It is finally interesting to stress that the effect of the small perturbation added
in (3.5) to ensure coercivity is quite innocent in the following sense.

Proposition 16. Let {(vε, uε)}ε>0 be a sequence where, for each ε > 0, (vε, uε) is the
minimizer of Iε, that is,

Iε(vε, uε) = min
u,v∈L+

Iε(v, u).

If we put I0(v, u) = Iε(v, u)|ε=0, then {(vε, uε)}ε>0 is minimizing for I0.

Proof. We have, by one side,

Iε(vε, uε) ≤ Iε(v, u) = I0(v, u) + ε|(v,∇u, v · ∇u)|2, ∀(v, u) ∈ L+, ∀ε > 0

and, on the other side,

Iε(vε, uε) = I0(vε, uε) + ε|(vε, ∇uε, vε · ∇uε)|2 ≥ I0(vε, uε).

In particular,

I0(vε, uε) ≤ I0(v, u) + ε|(v,∇u, v · ∇u)|2, ∀(v, u) ∈ L+, ∀ε > 0.

Taking limits in both sides of this last inequality leads us to

lim inf
ε→0

I0(vε, uε) ≤ I0(v, u), ∀(v, u) ∈ L+,

from where it follows that {(vε, uε)}ε>0 is a minimizing sequence for I0 due to the
arbitrariness of (v, u) ∈ L+. �
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