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Positive Solutions for Slightly Subcritical
Elliptic Problems Via Orlicz Spaces
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Abstract.This paper concerns semilinear elliptic equations involving sign-changing
weight function and a nonlinearity of subcritical nature understood in a general-
ized sense. Using an Orlicz–Sobolev space setting, we consider superlinear non-
linearities which do not have a polynomial growth, and state sufficient conditions
guaranteeing the Palais–Smale condition. We study the existence of a bifurcated
branch of classical positive solutions, containing a turning point, and providing
multiplicity of solutions.
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1. Introduction

In this paper we study the classical positive solutions to the Dirichlet problem for
a class of semilinear elliptic equations whose nonlinear term is of subcritical nature
in a generalized sense and involves indefinite nonlinearities. More precisely, given
Ω ⊂ R

N , N > 2, a bounded, connected open subset, with C2 boundary ∂Ω, we look
for positive solutions to:

− Δu = λu + a(x)f(u), in Ω, u = 0, on ∂Ω, (1.1)

where λ ∈ R is a real parameter, a ∈ C1(Ω̄) changes sign in Ω,

f(s) := g(s) + h(s), with h(s) :=
|s|2∗−2s

[ln(e + |s|)]α , (1.2)
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2∗ = 2N
N−2 is the critical Sobolev exponent, α > 0 is a fixed exponent, and

f, g ∈ C1(R) satisfy

(H)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(H)0 lims→0
f(s)

|s|p−2s = L1, for some L1 > 0, and p ∈
(
2, 2N

N−2

]

(H)∞ lims→∞
g(s)

|s|q−2s = L2, for some L2 ≥ 0, and q ∈
(
2, 2N

N−2

)

(H)g′ |g′(s)| ≤ C(1 + |s|q−2), for s ∈ R.

We will say that f satisfies hypothesis (H) whenever (H)0, (H)∞, and (H)g′ are
satisfied. Since we are interested in positive solutions, we

redefine f to be zero on (−∞, 0], (1.3)

note that, since (H)0, f(0) = 0 and that

lim
s→0+

(
f(s)

s
− L1|s|p−2

)

= 0. (1.4)

When λ = 0, a(x) ≡ 1 and g(s) ≡ 0, this kind of nonlinearity has been studied
in [5–7,16], and in [11] for the case of the p−laplacian operator, with α > p

N−p .
It is known the existence of uniform L∞ a-priori bounds for any positive classical
solution, and as a consequence, the existence of positive solutions. When α → 0,
there is a positive solution blowing up at a non-degenerate point of the Robin
function as α → 0, see [9] for details.

Let (λ1, ϕ1) stands for the first eigen-pair of the Dirichlet eigenvalue problem
−Δϕ = λϕ in Ω, ϕ = 0 on ∂Ω . From [10] it is known that (λ1, 0) is a bifurcation
point of positive solutions (λ, uλ) to the equation (1.1). If f behaves like |u|p−2u at
zero with 2 ≤ p ≤ 2∗, the influence of the negative part of the weight a is displayed
under the sign of

∫

Ω
a(x)ϕ1(x)p dx, where ϕ1 is the first positive eigenfunction for

−Δ in H1
0 (Ω). Specifically, whenever

∫

Ω

a(x)ϕ1(x)p dx < 0 (1.5)

the bifurcation of positive solutions from the trivial solution set is ’on the right’ of
the first eigenvalue, in other words, for values of λ > λ1. When

∫

Ω

a(x)ϕ1(x)p dx > 0

the bifurcation from the trivial solution set is ’on the left’ of the first eigenvalue, in
other words, for values of λ < λ1.

Inspired by the work of Alama and Tarantello in [1], we will focus our attention
to the case of a(x) changing sign and (1.5) is being satisfied, and, among other
things, we will prove the existence of a turning point for a value of the parameter
Λ > λ1, and in particular the existence of solutions when λ = λ1. We will use local
bifurcation and variational techniques.

All throughout the paper, for v : Ω → R, v = v+ − v− where

v+(x) := max{v(x), 0} and v−(x) := max{−v(x), 0}.
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Let us also define

Ω± := {x ∈ Ω : ±a(x) > 0}, Ω0 := {x ∈ Ω : a(x) = 0},

and assume that both Ω+, Ω− are non empty sets.
For this nonlinearity the Palais–Smale condition of the energy functional be-

comes a delicate issue, needing Orlicz spaces and a Orlicz–Sobolev embedding the-
orem.

In order to prove (PS) condition, Alama and Tarantello ([1]) assume that the
zero set Ω0 has a non empty interior. This is also a common hypothesis for other au-
thors when dealing with changing sign superlinear nonlinearities [8,20,23]. But this
is a technical hypothesis. (PS)-condition will be proved in Proposition 3.1 without
assuming that hypothesis. We neither use Ambrosetti-Rabinowitz condition.

Let us now denote

C0 = inf{C ≥ 0 : f ′(s) + C ≥ 0 for all s ≥ 0}, (1.6)

and remark that hypothesis (H) implies that C0 < +∞. Observe also that

f(s) + C0s ≥ 0, for all s ≥ 0; f(s)s + C0s
2 ≥ 0, for all s ∈ R. (1.7)

Let u be a weak solution to (1.1). By a regularity result, see Lemma 2.1, u ∈
C2(Ω) ∩ C1,μ(Ω). So by a solution, we mean a classical solution.

Assume that u is a non-negative nontrivial solution. It is easy to see that the
solution is strictly positive. Indeed, adding ±C0a(x)u to the r.h.s. of the equation,
splitting a = a+ − a−, taking into account (1.4) and (1.7), and letting in each side
the nonnegative terms, we can write

(

−Δ + a−(x)
[
f(u)

u
+ C0

]

+ C0a(x)+
)

u

= λu + a(x)+
[
f(u) + C0u

]
+ C0a(x)−u, in Ω. (1.8)

Now, the strong Maximum Principle implies that u > 0 in Ω, and ∂u
∂ν < 0 on ∂Ω.

Our main result is the following theorem.

Theorem 1.1. Assume that g ∈ C1(R) satisfies hypothesis (H). Let C0 > 0 be defined
by (1.6). If a changes sign in Ω, and (1.5) holds, then there exists a Λ ∈ R,

λ1 < Λ < min
{
λ1

(
int (Ω0)

)
, λ1

(
int

(
Ω+ ∪ Ω0

))
+ C0 sup a+

}

and such that (1.1) has a classical positive solution if and only if λ ≤ Λ.
Moreover, there exists a continuum (a closed and connected set) C of classical

positive solutions to (1.1) emanating from the trivial solution set at the bifurcation
point (λ, u) = (λ1, 0) which is unbounded. Furthermore,

(a) For every, λ ∈ (
λ1, Λ), (1.1) admits at least two classical ordered positive solu-

tions.
(b) For λ = Λ, problem (1.1) admits at least one classical positive solution.
(c) For every λ ≤ λ1, problem (1.1) admits at least one classical positive solution.
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The paper is organized in the following way. Section 2 contains a regularity
result and a non existence result. (PS)-condition and an existence of solutions result
for λ < λ1 based in the Mountain Pass Theorem will be proved in Sect. 3. A
bifurcation result for λ > λ1 is developed in Sect. 4. The main result is proved in
Sect. 5. Appendix A contains some useful estimates. Orlicz spaces, and a Orlicz–
Sobolev embeddings theorems, will be treated in Appendix B.

2. A Regularity Result and a Non Existence Result

Next, we recall a regularity Lemma stating that any weak solution is in fact a
classical solution.

Lemma 2.1. If u ∈ H1
0 (Ω) weakly solves (1.1) with a continuous function f with

polynomial critical growth

|f(x, s)| ≤ C(1 + |s|2∗−1),

then, u ∈ C2(Ω) ∩ C1,μ(Ω) and

‖u‖C1,μ(Ω) ≤ C
(
1 + ‖u‖2∗−1

L(2∗−1)r(Ω)

)
,

for any r > N and μ = 1 − N/r. Moreover, if ∂Ω ∈ C2,μ, then u ∈ C2,μ(Ω).

Proof. Due to an estimate of Brézis-Kato [3], based on Moser’s iteration technique
[17], u ∈ Lr(Ω) for any r > 1; and by elliptic regularity u ∈ W 2,r(Ω), for any r > 1
(see [22, Lemma B.3] and comments below).

Moreover, by Sobolev embeddings for r > N and interior elliptic regularity
u ∈ C1,α(Ω) ∩ C2(Ω). Furthermore, if ∂Ω ∈ C2,α, then u ∈ C2,α(Ω). �
Proposition 2.2. Let f satisfy hypothesis (H) and let C0 be defined in (1.6). Assume
that a changes sign in Ω.
1. Problem (1.1) does not admit a positive solution u ∈ H1

0 (Ω) for any

λ ≥ λ1

(
int

(
Ω+ ∪ Ω0

))
+ C0 sup a+.

2. If int (Ω0) �= ∅, then λ1

(
int (Ω0)

)
< +∞ and (1.1) does not admit a positive

solution for any

λ ≥ λ1

(
int (Ω0)

)
.

Proof. 1. Let λ ≥ λ1

(
int

(
Ω+ ∪ Ω0

))
+ C0 sup a+, and assume by contradiction that

there exists a non-negative non-trivial solution u ∈ H1
0 (Ω) to (1.1) for the parameter

λ. Since the Maximum Principle u > 0 in Ω, see (1.8).
Let ϕ̂ be the positive eigenfunction of

( − Δ, H1
0 (int

(
Ω+ ∪ Ω0

)))
of L2-norm

equal to 1. For simplicity, we will also denote by ϕ̂ the extension by 0 of ϕ̂ in all Ω.
By Hopf’s maximum principle, we have ∂ϕ̂

∂ν < 0 on ∂
(
int

(
Ω+ ∪ Ω0

))
, where ν is the

outward normal.
Again, if we multiply the equation (1.1) by ϕ̂ and integrate along int

(
Ω+ ∪Ω0

)

we find, after integrating by parts,

0 >

∫

∂(int (Ω+∪Ω0))

u
∂ϕ̂

∂ν
dσ
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+
∫

int(Ω+∪Ω0)

[
λ1

(
int (Ω+ ∪ Ω0)

) − λ + C0a
+(x)

]
uϕ̂ dx

=
∫

Ω+
a+(x)

[
f(u) + C0u

]
ϕ̂ dx > 0,

a contradiction.
2. Let λ ≥ λ1

(
int (Ω0)

)
and, by contradiction, assume the existence of a positive

solution u ∈ H1
0 (Ω) of problem (1.1) for the parameter λ. Let ϕ̃ be a positive

eigenfunction associated to λ1

(
int (Ω0)

)
< +∞. For simplicity, we will also denote

by ϕ̃ the extension by 0 in all Ω. If we multiply equation (1.1) by ϕ̃ and integrate
along Ω0 we find, after integrating by parts,

∫

int (Ω0)

∇u · ∇ϕ̃ dx = λ

∫

int (Ω0)

uϕ̃ dx.

On the other hand
∫

int (Ω0)

∇u · ∇ϕ̃ dx = λ1(int (Ω0))
∫

int (Ω0)

ϕ̃u dx +
∫

∂(int (Ω0))

u
∂ϕ̃

∂ν
dσ.

Hence

0 >

∫

∂(int (Ω0))

u
∂ϕ̃

∂ν
dσ =

(
λ − λ1

(
int (Ω0)

))
∫

int (Ω0)

uϕ̃ dx ≥ 0,

a contradiction. �

3. An Existence Result for λ < λ1

In this section, we prove the existence of a nontrivial solution to equation (1.1) for
λ < λ1, through the Mountain Pass Theorem.

3.1. On Palais–Smale Sequences

In this subsection, we define the framework for the functional Jλ associated to the
problem (1.1)λ. Hereafter, we denote by ‖ · ‖ the usual norm of H1

0 (Ω):

‖u‖ =
(∫

Ω

|∇u|2 dx

)1/2

.

Given f(s) = h(s) + g(s) defined by (1.2), let us denote by F (s) :=
∫ s

0
f(t) dt.

Observe that (1.7) implies the following

F (s) +
1
2
C0s

2 ≥ 0, for all s ≥ 0. (3.1)

Consider the functional Jλ : H1
0 (Ω) → R given by

Jλ[v] :=
1
2

∫

Ω

|∇v|2 dx − λ

2

∫

Ω

(v+)2 dx −
∫

Ω

a(x)F (v+) dx.

Take note that for all v ∈ H1
0 (Ω), Jλ

[
v+

] ≤ Jλ[v].
The functional Jλ is well defined and belongs to the class C1 with

J ′
λ[v] ψ =

∫

Ω

∇v∇ψ dx − λ

∫

Ω

v+ψ dx −
∫

Ω

a(x)f(v+)ψ dx,
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for all ψ ∈ H1
0 (Ω). As a result, non-negative critical points of the functional Jλ

correspond to non-negative weak solutions to (1.1).
The next Proposition establishes that Palais–Smale sequences are bounded

whenever λ < λ1(int Ω0), where λ1(int Ω0) may be infinite.

Proposition 3.1. Assume that g ∈ C1(R) fulfills hypothesis (H) and that
λ < λ1(int Ω0) ≤ +∞.

Then any (PS) sequence, that is, a sequence satisfying the conditions
(J1) Jλ[un] ≤ C,
(J2) |J ′

λ[un] ψ| ≤ εn ‖ψ‖, where εn → 0 as n → +∞
is a bounded sequence.

Proof. 1. Let {un}n∈N be a (PS) sequence in H1
0 (Ω) and, in contradiction, assume

that ‖un‖ → +∞. Let us first prove the following claim:

Claim. Let v ∈ H1
0 (Ω) be the weak limit of vn = un

‖un‖ and assume that vn → v,
strongly in L2∗−1(Ω) and a.e. Then v = 0 a.e. in Ω.

Assume that v �≡ 0 and write γn = ‖un‖. Let ωn := {x ∈ Ω : v+
n (x) > 1}, then

for any ψ ∈ C1
0 (Ω),

∣
∣
∣
∣
ln(e + γn)α

γ2∗−1
n

(u+
n (x))2

∗−1

[ln(e + γn v+
n (x))]α

|ψ|
∣
∣
∣
∣ ≤ |v+

n (x)|2∗−1‖ψ‖∞, ∀x ∈ ωn.

Let x ∈ Ω \ ωn, based on the estimates (A.1),
∣
∣
∣
∣
ln(e + γn)α

γ2∗−1
n

(u+
n (x))2

∗−1

[ln(e + γn v+
n (x))]α

|ψ|
∣
∣
∣
∣ ≤

(
|v+

n (x)|2∗−2
)
‖ψ‖∞ ≤ ‖ψ‖∞

Besides, by the reverse of the Lebesgue dominated convergence theorem, see
for instance [2, Theorem 4.9, p. 94] , there exists hi ∈ L1(Ω), 1 ≤ i ≤ 3 such that,
up to a subsequence,

|v+
n |2∗−1 ≤ h1, |v+

n |p−1 ≤ h2, |v+
n |2∗−2 ≤ h3, a.e. x ∈ Ω,

for all n ∈ N, and therefore
∣
∣
∣
∣
ln(e + γn)α

γ2∗−1
n

f(u+
n )ψ

∣
∣
∣
∣ ≤ C (h1 + h2 + h3 + 1)) ‖ψ‖∞ ∈ L1(Ω).

By Lebesgue’s dominated convergent theorem, we have

ln(e + γn)α

γ2∗−1
n

a(·)f(u+
n )ψ → a(·)(v+)2

∗−1ψ strongly in L1(Ω).

We have used here that if v+(x) �= 0, then

lim
n→+∞

ln(e + γn)
ln(e + γn v+

n (x))
= 1,

and if v+(x) = 0, then

lim
n→+∞

(
ln(e + γn)

ln(e + γn v+
n (x))

)α

|v+
n (x)|2∗−1 ≤ lim

n→+∞ |v+
n (x)|2∗−2 = 0.
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On the other hand
ln(e + γn)α

γ2∗−1
n

∫

Ω

∇un · ∇ψ dx → 0.

Hence, using (J2) for an arbitrary test function ψ, multiplying by ln(e+γn)α

γ2∗−1
n

and
passing to the limit we find

∫

Ω

a(x)(v+)2
∗−1ψ dx = 0 ∀ψ ∈ C1

0 (Ω).

In particular v+ = 0 a.e. in Ω \ Ω0.
Assume that int Ω0 �= ∅, and that λ < λ1(int Ω0). Thus, for any ψ ∈ C1

0 (int Ω0)
we have from (J2)

∫

int Ω0
∇un · ∇ψ dx − λ

∫

int Ω0
u+

n ψ dx = o(1).

Dividing by ‖un‖ and passing to the limit we have
∫

int Ω0
∇v · ∇ψ dx = λ

∫

int Ω0
v+ψ dx.

From the Maximum Principle, v ≥ 0 in int Ω0. Since λ < λ1(int Ω0) then it must be
v+ ≡ 0 in int Ω0. Hence v+ ≡ 0 in Ω.

On the other hand, taking u−
n as a test function in the condition (J2),

∣
∣
∣
∣−

∫

Ω

|∇u−
n |2dx −

∫

Ω

a(x)f(u+
n )u−

n dx

∣
∣
∣
∣ =

∫

Ω

|∇u−
n |2dx ≤ εn‖u−

n ‖

so ‖u−
n ‖ → 0 and then v− ≡ 0, and we conclude the proof of the claim.

2. In order to achieve a contradiction, we use a Hölder inequality, and properties
on convergence into an Orlicz space, cf. Appendix B.

To this end, the analysis of Lemma A.2 gives us the existence of α∗ > 0 such
that the function s → s2∗−1

[ln(e+s)]α is increasing along [0, +∞[ if α ≤ α∗. In this case,
we will denote

m(s) =
s2∗−1

[ln(e + s)]α
(3.2)

If α > α∗ the function s → s2∗−1

[ln(e+s)]α possesses a local maximum s1 in [0, +∞[. Let
us denote by s1 the unique solution s > s1 such that

s2∗−1
1

[ln(e + s1)]α
=

s2∗−1

[ln(e + s)]α

and define the non-decreasing function

m(s) :=

⎧
⎨

⎩

s2∗−1

[ln(e+s)]α if s �∈ [s1, s1],
s2∗−1
1

[ln(e+s1)]α
if s ∈ [s1, s1].

(3.3)

It follows that

s → M(s) =
∫ s

0

m(t) dt is a N − function in [0, +∞[. (3.4)
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By using

lim
s→+∞

ln(e + s)
ln(e + 2s)

= 1 and lim
s→0

ln(e + s)
ln(e + 2s)

= 1,

we get that

lim
s→+∞

m(2s)
m(s)

< +∞ and lim
s→0+

m(2s)
m(s)

< +∞,

which implies that there exists K > 0 such that m(2s) ≤ Km(s) for all s ≥ 0 and
consequently M satisfies the Δ2-condition (B.1).

Since vn ⇀ 0 in H1
0 (Ω) and strongly in L2(Ω), it follows from (J2) applied to

ψ = un that

lim
n→∞

∫

Ω

a(x)
f(u+

n )un

‖un‖2
dx = lim

n→∞

∫

Ω

a(x)
f(u+

n )
‖un‖ v+

n dx = 1. (3.5)

Since the Hölder inequality into Orlicz spaces, see Proposition B.11.(ii),
∫

Ω

∣
∣
∣
∣a(x)

f(u+
n )

‖un‖ v+
n

∣
∣
∣
∣ dx ≤ ‖a‖∞

‖un‖
∥
∥f(u+

n )
∥
∥

M∗
∥
∥v+

n

∥
∥

M
(3.6)

By Theorem B.3 and Theorem B.12 we have

‖vn − v‖M → 0. (3.7)

Moreover, since there exists C > 0 such that m(s) ≤ Cs2∗−1, M(s) ≤ Cs2∗
for all

s ≥ 0, and the sequence {un}n∈N ⊂ H1
0 (Ω), then, for each n ∈ N, there exists a Cn

such that
∫

Ω

|u+
n |m(|u+

n |) ≤ Cn,

∫

Ω

M
(|u+

n |) ≤ Cn.

By using definition B.8 of M∗ and identities of Proposition B.9 we have

M∗ (
m

(|u+
n |)) = |u+

n |m(|u+
n |) − M

(|u+
n |)

then, for each n ∈ N,
∫

Ω

M∗ (
m

(|u+
n |)) dx ≤ 2Cn.

Observe that |f(s)| ≤ C(1 + m(s)), so then

‖f(u+
n )‖M∗ ≤ C

∥
∥1 + m

(
u+

n

)∥
∥

M∗ ≤ C

[

1 +
∫

Ω

M∗
(
m

(|u+
n |)

)]

≤ C ′
n,

see Proposition B.11.(iii) and (i), concluding that the l.h.s. is bounded for each n.
Consequently, a(x)f(u+

n )
‖un‖ ∈ LM∗(Ω), which is the dual of LM (Ω) (see [15],

Theorem 14.2).
On the other hand, from J2, for all ψ ∈ C∞

c (Ω),
∣
∣
∣
∣

∫

Ω

∇vn∇ψ dx − λn

∫

Ω

vnψ dx −
∫

Ω

a(x)
f(u+

n )
‖un‖ ψ dx

∣
∣
∣
∣ ≤ εn

‖un‖‖ψ‖. (3.8)

Taking the limit, and since C∞
c (Ω) is dense in LM (Ω) (see [13]),

lim
n→∞

∫

Ω

a(x)
f(u+

n )
‖un‖ ψ dx = 0, for all ψ ∈ LM (Ω). (3.9)
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Moreover, since (3.7), vn → v = 0 in LM (Ω), [2, Proposition 3.13 (iv)], and (3.9)
imply

lim
n→∞

∫

Ω

a(x)
f(u+

n )
‖un‖ vn dx = 0,

which contradicts (3.5). This concludes the proof. �
Theorem 3.2. Assume the hypothesis of Proposition 3.1 and let {un}n∈N be a (PS)
sequence in H1

0 (Ω).
Then, there exists a subsequence, denoted by {un}n∈N, such that

un → u in H1
0 (Ω).

Proof. From Proposition 3.1 we know that the sequence is bounded. Consequently,
there exists a subsequence, denoted by {un}n∈N, and some u ∈ H1

0 (Ω) such that

un ⇀ u weakly in H1
0 (Ω), (3.10)

∫

Ω

a(x)g(un)|un − u| dx → 0, (3.11)

un → u a.e. (3.12)

By testing (J2) against ψ = un − u and using (3.10), and (3.11) we get

‖un − u‖2 =
∫

Ω

∇un · ∇(un − u) dx + o(1)

≤ ‖a‖∞
∫

Ω

|un|2∗−1

[ln(e + |un|)]α |un − u| dx + o(1).

Claim.
∫

Ω

|un|2∗−1

[ln(e + |un|)]α |un − u|dx = o(1),

In order to prove this claim, we use, as in the above proposition, a Hölder inequality
and a compact embedding into some Orlicz space, c.f. Appendix B.

By Theorem B.3 and Theorem B.12 we have

‖un − u‖M → 0, (3.13)

where m, and M are defined by (3.2)–(3.4), as in the above proposition. On the
other hand, because there exists C > 0 such that m(s) ≤ Cs2∗−1 and M(s) ≤ Cs2∗

for all s ≥ 0, and the sequence {un}n∈N is bounded in H1
0 (Ω), then

‖un m(|un|)‖L1(Ω) ≤ C, ‖M(|un|)‖L1(Ω) ≤ C for all n ∈ N

By using definition B.8 of M∗ and identities of Proposition B.9 we have

M∗ (m(|un|)) = |un|m(|un|) − M(|un|)
then

∫

Ω

M∗ (m(|un|)) dx ≤ C

for all n ∈ N. Finally, by inequality (B.5) of Proposition B.12 we get

sup
{

‖m(|un|)‖M∗ , n ∈ N

}
≤ C + 1.
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Now, using Holder’s inequality (B.6) and that s2∗−1

[ln(e+s)]α ≤ m(s) for all s ≥ 0, we
get

∫

Ω

|un|2∗−1

[ln(e + |un|)]α |un − u|dx ≤ ‖un − u‖M ‖m(|un|)‖M∗ ≤ (C + 1)‖un − u‖M

and it follows from (3.13) that ‖un − u‖ → 0. �

3.2. An Existence Result for λ < λ1

The next theorem provides a solution to (1.1) for λ < λ1 based on the Mountain
Pass Theorem.

Theorem 3.3. Assume that Ω ⊂ R
N is a bounded domain with C2 boundary. Assume

that the nonlinearity f defined by (1.2) satisfies (H), and that the weight a ∈ C1(Ω).
Then, the boundary value problem (1.1)λ has at least one classical positive solution
for any λ < λ1.

Proof. We verify the hypothesis of the Mountain Pass Theorem, see [14, Theorem
2, Section 8.5]. Observe that the derivative of the functional J ′

λ : H1
0 (Ω) → H1

0 (Ω) is
Lipschitz continuous on bounded sets of H1

0 (Ω); also the (PS) condition is satisfied,
see Proposition 3.1. Clearly Jλ[0] = 0.

1. Let now u ∈ H1
0 (Ω) with ‖u‖ = r, for r > 0 to be chosen below. Then,

Jλ[u] =
r2

2
− λ

2

∫

Ω

(u+)2 dx −
∫

Ω

a(x)F (u+) dx. (3.14)

From hypothesis (H) we have
∣
∣
∣
∣

∫

Ω

a(x)G(u+) dx

∣
∣
∣
∣ ≤ C

∫

Ω

(|u|p + |u|q) dx ≤ C (rp + rq) .

where G(s) :=
∫ s

0
g(t) dt. Now, definition (1.2) implies that

∣
∣
∣
∣

∫

Ω

a(x)F (u+) dx

∣
∣
∣
∣ ≤ C

(
rp + rq + r2∗)

.

In view of (3.14), and as a result of the Poincaré inequality, we get

Jλ[u] ≥ 1
2

(

1 − |λ|
λ1

)

r2 − C
(
rp + rq + r2∗)

≥ C1r
2,

taking |λ| < λ1, r > 0 small enough, and using that p, q, 2∗ > 2.
2. Now, fix some element 0 ≤ u0 ∈ H1

0 (Ω), u0 > 0 in Ω+, u0 ≡ 0 in Ω−. Let
v = tu0 for a certain t = t0 > 0 to be selected a posteriori. Since

f(tu0) = |t|2∗−2t f(u0)
(

ln(e + |u0|)
ln(e + |tu0|)

)α

+ g(tu0), (3.15)

then f(tu0)/t → +∞ as t → +∞ in Ω+.
From definition, and integrating by parts,

F (s) =
∫ s

0

(
t2

∗−1

ln(e + t)α
+ g(t)

)

dt
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=
1
2∗ sh(s) + G(s) +

α

2∗

∫ s

0

(
1

ln(e + t)

)α+1
t2

∗

e + t
dt.

It can be easily seen that lims→+∞
G(s)
sf(s) = 0.

Therefore, using l’Hôpital’s rule we can write

lim
s→+∞

F (s)
sf(s)

=
1
2∗ ∈

(

0,
1
2

)

, (3.16)

hence

lim
t→+∞

F (tu0)
tu0f(tu0)

=
1
2∗ ∈

(

0,
1
2

)

in Ω+. (3.17)

Let C0 ≥ 0 be such that F (s) + 1
2C0s

2 ≥ 0 for all s ≥ 0 (see (1.7)), and let

Ω̃+
δ := {x ∈ Ω+ : a(x) = a+(x) > δ}. (3.18)

By definition, u0 ≡ 0 in Ω−, so, introducing ±1
2C0(tu0)2, splitting the integral, and

using (3.17)–(3.18) we obtain

−
∫

Ω

a(x)F (tu0) dx = −
∫

Ω+
a+(x)F (tu0) dx

≤ C0t
2

2

∫

Ω+
a+(x)u2

0 dx −
∫

Ω̃+
δ

a+(x)
[
1
2
C0(tu0)2 + F (tu0)

]

dx

≤ C +
C0t

2

2

∫

Ω+
a+(x)u2

0 dx − δt2

2

∫

Ω̃+
δ

[

C0u
2
0 +

u0f(tu0)
2∗t

]

dx.

Hence, there exists a positive constant C > 0 such that

Jλ[tu0] =
t2

2
‖u0‖2 − t2

λ

2
‖u0‖2

L2(Ω) −
∫

Ω+
a+(x)F (tu0)

≤ C(1 + t2) − δ t2

2

∫

Ω̃+
δ

[

C0(u0)2 +
u0f(tu0)

2∗t

]

dx < 0

for t = t0 > 0 big enough.
Step 3. We have at last checked that all the hypothesis of the Mountain Pass

Theorem are accomplished. Let

Γ := {g ∈ C
(
[0, 1];H1

0 (Ω)
)

: g(0) = 0, g(1) = t0u0},

then, there exists c ≥ C1 r2 > 0 such that

c := inf
g∈Γ

max
0≤t≤1

Jλ[g(t)]

is a critical value of Jλ, that is, the set Kc := {v ∈ H1
0 (Ω) : Jλ[v] = c, J ′

λ[v] = 0} �=
∅. Thus there exists u ∈ H1

0 (Ω), u ≥ 0, u �= 0 such that for each ψ ∈ H1
0 (Ω), we

have
∫

Ω

∇u · ∇ψ dx =
∫

Ω

[
λu+ + a(x)f(u+)

]
ψ dx. (3.19)

and thereby, u is a nontrivial weak solution to (3.19). By Lemma 2.1, u is a classical
solution, and by (1.8), u > 0 in Ω. �
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4. A Bifurcation Result for λ > λ1

Next Proposition uses Crandall-Rabinowitz’s local bifurcation theory, see [10], and
Rabinowitz’s global bifurcation theory, see [19].

Proposition 4.1. Let us define

Λ := sup{λ > 0 : (1.1)λ admits a positive solution}.

If (1.5) holds then,

λ1 < Λ < min
{

λ1

(
int (Ω0)

)
, λ1

(
int

(
Ω+ ∪ Ω0

))
+ C0 sup a+

}

where C0 > 0 is such that f(s) + C0s ≥ 0 for all s ≥ 0, (see definition (1.6)).
Moreover, there exists an unbounded continuum (a closed and connected set)

C of classical positive solutions to (1.1) emanating from the trivial solution set at
the bifurcation point (λ, u) = (λ1, 0).

Proof. Proposition 2.2 establish the upper bounds for Λ. Next, we concentrate our
attention in proving that Λ > λ1. Choosing λ as the bifurcation parameter, we
check that the conditions of Crandall - Rabinowitz’s Theorem [10] are satisfied. For
r > N , we define the set W 2,r

+ := {u ∈ W 2,r(Ω) : u > 0 in Ω}, and consider
W 2,r

+ (Ω) ∩ W 1,r
0 (Ω) endowed with the topology of W 2,r(Ω). If r > N , we have that

W 2,r
+ (Ω) ∩ W 1,r

0 (Ω) ↪→ C1,μ
0 (Ω) for μ = 1 − N

r ∈ (0, 1). Moreover, from Hopf’s
lemma, we know that if ũ is a positive solution to (1.1) then ũ lies in the interior of
W 2,r

+ (Ω) ∩ W 1,r
0 (Ω).

We consider the map F : R × W 2,r
+ (Ω) ∩ W 1,r

0 (Ω) → Lr(Ω) for r > N ,

F : (λ, u) → −Δu − λu − a(x)f(u)

The map F is a continuously differentiable map. Since hypothesis (i), g(0) = 0, and
so a(x)F (0) = 0, F (λ, 0) = 0 for all λ ∈ R, and since Fu(x, 0) = 0,

DuF (λ1, 0)w := −Δw − λ1w,

Dλ,uF (λ1, 0)w := −w.

Observe that

N
(
DuF (λ1, 0)

)
= span[ϕ1], codim R

(
DuF (λ1, 0)

)
= 1,

Dλ,uF (λ1, 0)ϕ1 = −ϕ1 �∈ R
(
DuF (λ1, 0)

)
,

where N(·) is the kernel, and R(·) denotes the range of a linear operator.
Hence, the hypotheses of Crandall-Rabinowitz’s Theorem are satisfied and

(λ1, 0) is a bifurcation point. Thus, decomposing

C1,μ
0 (Ω) = span[ϕ1] ⊕ Z,

where Z = span[ϕ1]⊥, there exists a neighborhood U of (λ1, 0) in R×C1,μ
0 (Ω), and

continuous functions λ(s), w̃(s), s ∈ (−ε, ε), λ : (−ε, ε) → R, w̃ : (−ε, ε) → Z such
that λ(0) = λ1, w̃(0) = 0, with

∫

Ω
w̃ϕ1 dx = 0, and the only nontrivial solutions to

(1.1) in U , are
{(

λ(s), sϕ1 + s w̃(s)
)

: s ∈ (−ε, ε)
}
. (4.1)
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Set u = u(s) = sϕ1 + s w̃(s). Note that by continuity w̃(s) → 0 as s → 0, which
guarantees that u(s) > 0 in Ω for all s ∈ (0, ε) small enough.

Next, we show that λ(s) > λ1 for all s small enough. Since (3.15), and hy-
pothesis (H)0 on f , note that a(x)f(su)

sp−1up−1 → L1a(x) as s → 0. In fact, as w̃(s) → 0
uniformly as s → 0, hypothesis (H)0 yields

a(x)f
(
sϕ1 + s w̃(s)

)

sp−1
(
ϕ1 + w̃(s)

)p−1 −→ L1a(x) uniformly in Ω as s → 0.

Hence, multiplying and dividing by
(
ϕ1 + w̃(s)

)p−1, we deduce

1
sp−1

∫

Ω

a(x)f
(
u(s)

)
ϕ1 →

s→0
L1

∫

Ω

a(x)ϕp
1.

Now we prove that λ(s) > λ1 arguing by contradiction. Assume that there
is a sequence (λn, un) =

(
λ(sn), u(sn)

)
of bifurcated solutions to (1.1) in U , with

λ(sn) ≤ λ1. Multiplying (1.1)λn
by ϕ1 and integrating by parts

0 ≤
(
λ1 − λ(sn)

)

sp−1
n

∫

Ω

u(sn)ϕ1 =
1

sp−1
n

∫

Ω

a(x)f
(
u(sn)

)
ϕ1 → L1

∫

Ω

a(x)ϕp
1 < 0

which yields a contradiction, and consequently, Λ > λ1.
Finally, Rabinowitz’s global bifurcation Theorem [19] states that, in fact, the

set C of positive solutions to (1.1) emanating from (λ1, 0) is a continuum (a closed
and connected set) which is either unbounded, or contains another bifurcation point,
or contains a pair of points (λ, u), (λ, −u) with u �= 0. Since (1.8), any non-negative
non-trivial solution is strictly positive, and moreover (λ1, 0) is the only bifurcation
point to positive solutions, so C can not reach another bifurcation point. Since (1.3),
neither C contains a pair of points (λ, u), (λ, −u) with u �= 0, which states that C
is unbounded, ending the proof. �

5. Proof of Theorem 1.1

First we prove an auxiliary result.

Proposition 5.1. For each λ ∈ (λ1, Λ), the following holds:
(i) Problem (1.1)λ admits a positive solution

uλ = inf
{
u(x) : u > 0 solving (1.1)λ

}
,

in other words uλ is minimal.
(ii) Moreover, the map λ → uλ is strictly monotone increasing, that is, if λ < μ <

Λ, then uλ(x) < uμ(x) for all x ∈ Ω, and ∂uλ

∂ν (x) >
∂uμ

∂ν (x) for all x ∈ ∂Ω.
(iii) Furthermore, uλ is a local minimum of the functional Jλ.

Proof. (i.a) Step 1. Existence of positive solutions for any λ ∈ (λ1, Λ).

Let λ ∈ (λ1, Λ) be fixed. By definition of Λ, there exists a λ0 ∈ (λ, Λ) such that the
problem (1.1)λ0 admits a positive solution u0. It is easy to verify that u0 > 0 is a
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supersolution to (1.1)λ. Indeed, for any ψ ∈ H1
0 (Ω) with ψ ≥ 0 in Ω

∫

Ω

∇u0 · ∇ψ dx − λ

∫

Ω

u0ψ dx −
∫

Ω

a(x)f(u0)ψ dx = (λ0 − λ)
∫

Ω

u0ψ dx ≥ 0.

Moreover, for every δ > 0 satisfying

0 < δ <

(
λ − λ1

2L1 ‖a−‖∞

) 1
p−2 1

‖ϕ1‖∞
(5.1)

the function u = δϕ1 is a subsolution for (1.1)λ whenever λ > λ1. Let δ > 0 satisfying
(5.1) and such that g(s) ≥ 0 for any s ∈ [0, δ‖ϕ1‖L∞(Ω)]. For any ψ ∈ H1

0 (Ω), ψ > 0
with in Ω we deduce

δ

∫

Ω

∇ϕ1 · ∇ψ dx − λδ

∫

Ω

ϕ1ψ dx −
∫

Ω

a(x)f(δϕ1)ψ dx

= −(λ − λ1)δ
∫

Ω

ϕ1ψ dx −
∫

Ω

a(x)f(δϕ1)ψ dx

= −(λ − λ1)δ
∫

Ω

ϕ1ψ dx −
∫

Ω

a(x)
[

(δϕ1)2
∗−1

[ln(e + δϕ1)]α
+ g(δϕ1)

]

ψ dx

≤ −(λ − λ1)δ
∫

Ω

ϕ1ψ dx + ‖a−‖∞
∫

Ω

[
h(δϕ1) + g(δϕ1)

]
ψ dx < 0.

This allows us to take u = δϕ1 as a subsolution for (1.1)λ with u < u0. The
sub- and supersolution method now guarantees a positive solution u to (1.1)λ, with
u ≤ u ≤ u0.

(i.b) Step 2. Existence of a minimal positive solution uλ for any λ ∈ (λ1, Λ).
To show that there is in fact a minimal solution, for each x ∈ Ω we define

uλ(x) := inf
{
u(x) : u > 0 solving (1.1)λ

}
.

Firstly, we claim that uλ ≥ 0, uλ �≡ 0. Assume that uλ ≡ 0 by contradiction. This
would yield a sequence un of positive solutions to (1.1)λ such that ‖un‖C(Ω) → 0 as
n → ∞, or in other words, (λ, 0) is a bifurcation point from the trivial solution set
to positive solutions. Set vn := un

‖un‖C(Ω)
. Observe that vn is a weak solution to the

problem

− Δvn = λvn + a(x)f(un)/‖un‖C(Ω) in Ω ; vn = 0 on ∂Ω . (5.2)

It follows from (H)0 that a(x)f(un)
‖un‖C(Ω)

→ 0 in C(Ω) as n → ∞. Therefore, the right-hand

side of (5.2) is bounded in C(Ω). Hence, by the elliptic regularity, vn ∈ W 2,r(Ω)
for any r > 1, in particular for r > N . Then, the Sobolev embedding theorem
implies that ||vn||C1,α(Ω) is bounded by a constant C that is independent of n.
Then, the compact embedding of C1,μ(Ω) into C1,β(Ω) for 0 < β < μ yields, up
to a subsequence, vn → Φ ≥ 0 in C1,β(Ω). Since ‖vn‖C(Ω) = 1, we have that
‖Φ‖C(Ω) = 1. Hence, Φ ≥ 0, Φ �≡ 0.

Using the weak formulation of equation (5.2), passing to the limit, and taking
into account that λ is fixed and vn → Φ, we obtain that Φ ≥ 0, Φ �≡ 0, is a weak
solution to the equation

−ΔΦ = λΦ in Ω , Φ = 0 on ∂Ω.
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Then, by the maximum principle, it follows that Φ = ϕ1 > 0, the first eigenfunction,
and λ = λ1 is its corresponding eigenvalue, which contradicts that λ > λ1.

Secondly, we show that uλ solves (1.1)λ. We argue on the contrary. Observe
that the minimum of any two positive solutions to (1.1)λ furnishes a supersolution to
(1.1)λ. Assume that there are a finite number of solutions to (1.1)λ, then uλ(x) :=
min

{
u(x) : u > 0 solves (1.1)λ

}
and uλ is a supersolution. Choosing ε0 small

enough so that ε0ϕ1 < uλ, the sub- supersolution method provides a solution ε0ϕ1 ≤
v ≤ uλ. Since v is a solution and uλ is not, then v ≤ uλ, v �= u, contradicting the
definition of uλ, and achieving this part of the proof.

Assume now that there is a sequence un of positive solutions to (1.1)λ such that,
for each x ∈ Ω, inf un(x) = uλ(x) ≥ 0, uλ �≡ 0. Let u1 := min{u1, u2}. Choosing ε1

small enough so that ε1ϕ1 < u1, the sub- supersolution method provides a solution
ε1ϕ1 ≤ v1 ≤ u1. We reason by induction.

Let un := min{vn−1, un+1}. Choosing εn small enough so that εnϕ1 < un, the
sub- supersolution method provides a solution εnϕ1 ≤ vn ≤ un ≤ vn−1. With this
induction procedure, we build a monotone sequence of solutions vn, such that

0 < vn ≤ un ≤ vn−1 ≤ un−1 ≤ · · · ≤ v1. (5.3)

Since monotonicity and Lemma 2.1, ‖vn‖C(Ω) ≤ ‖v1‖C(Ω), by elliptic regularity,
‖vn‖C1,μ(Ω) ≤ C for any μ < 1, and by compact embedding vn → v in C1,β(Ω)
for any β < α. Using the weak formulation of equation (1.1)λ, passing to the limit,
and taking into account that λ is fixed, we obtain that v is a weak solution to the
equation (1.1)λ. Hence v(x) ≥ uλ > 0. Moreover, since (5.3), vn(x) ↓ v(x) pointwise
for x ∈ Ω, so inf vn(x) = v(x). Also, and due to (5.3), un(x) ↓ v(x) pointwise for
x ∈ Ω, and inf un(x) = v(x).

On the other hand, by construction un ≤ un+1, so, for each x ∈ Ω, v(x) =
inf un(x) ≤ inf un(x) = uλ(x). Therefore, and by definition of uλ, necessarily v = uλ,
proving that uλ solves (1.1)λ, and achieving the proof of step 2.
(ii) The monotonicity of the minimal solutions is concluded from a sub- superso-
lution method. Reasoning as in step 1, uμ is a strict supersolution to (1.1)λ, so
w := uμ(x) − uλ(x) ≥ 0, w �≡ 0. Moreover, w = 0 on ∂Ω, and we can always choose
c0 := C0‖a‖∞ > 0 where C0 is defined by (1.6), so that a−(x)f ′(s) + c0 ≥ 0 and
a+(x)f ′(s) + c0 ≥ 0 for all s ≥ 0, then

(
− Δ + a−(x)f ′(θuμ + (1 − θ)uλ

)
+ c0

)
w = (μ − λ)uμ + λw

+
[
a+(x)f ′(θuμ + (1 − θ)uλ

)
+ c0

]
w > 0 in Ω,

finally, the Maximum Principle implies that w > 0 in Ω, and ∂w
∂ν < 0 on ∂Ω, ending

the proof of step 3.
(iii) Since [4, Theorem 2] if there exists an ordered pair of L∞ bounded sub and
supersolution u ≤ u to (1.1)λ, and neither u nor u is a solution to (1.1)λ, then there
exist a solution u < u < u to (1.1)λ such that u is a local minimum of Jλ at H1

0 (Ω).
Reasoning as in (i), u := uμ with μ > λ is a strict supersolution to (1.1)λ, and

u := δϕ1 is a strict sub-solution for δ > 0 small enough, such that u(x) < u(x) for
each x ∈ Ω. This achieves the proof. �
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Proof of Theorem 1.1. Theorem 3.3 provides the existence of positive solutions for
λ < λ1, and Proposition 5.1 provide the existence of minimal positive solutions for
λ ∈ (λ1, Λ).

(a) Step 1. Existence of a second positive solution for λ ∈ (λ1, Λ).
Fix an arbitrary λ ∈ (λ1, Λ), and let uλ be the minimal solution to (1.1)λ given by
Proposition 5.1, minimizing Jλ. A second solution follows seeking a solution through
variational arguments [12, Theorem 5.10] and the Mountain Pass procedure shown
below.

First, reasoning as in Proposition 5.1(iii), we get a local minimum ũλ > 0 of
Jλ. If ũλ �= uλ, then ũλ is the second positive solution, ending the proof. Assume
that ũλ = uλ.

Now we reason as in [12, Theorem 5.10] on the nature of local minima. Thus,
either

(i) there exists ε0 > 0, such that inf
{
Jλ(u) : ‖u − ũλ‖ = ε0

}
> Jλ(ũλ), in other

words, ũλ is a strict local minimum, or
(ii) for each ε > 0, there exists uε ∈ H1

0 (Ω) such that Jλ has a local minimum at
a point uε with ‖uε − ũλ‖ = ε and Jλ(uε) = Jλ(ũλ).

Let us assume that (i) holds, since otherwise case (ii) implies the existence of
a second solution.

Consider now the functional Iλ : H1
0 (Ω) → R given by Iλ[v] = Jλ[uλ + v] −

Jλ[uλ], more specifically

Iλ[v] :=
1
2

∫

Ω

|∇v|2 dx − λ

2

∫

Ω

(v+)2 dx −
∫

Ω

G̃λ(x, v+) dx.

where

G̃λ(x, s) := a(x)
[
F (uλ(x) + s) − F (uλ(x)) − f(uλ(x))s

]

= a(x)
[
1
2
f ′(uλ(x))s2 + o(s2)

]

.

Obviously Iλ[v+] ≤ Iλ[v], and observe that I ′
λ[v] = 0 ⇐⇒ J ′

λ[uλ + v] = 0.
Fix now some element 0 ≤ v0 ∈ H1

0 (Ω) ∩ L∞(Ω), v0 > 0 in Ω+, v0 ≡ 0 in Ω−.
Let v = tv0 for a certain t = t0 > 0 to be selected a posteriori, and evaluate

Iλ[tv0] =
1
2
t2

(
‖∇v0‖2

L2(Ω) − λ ‖v0‖2
L2(Ω)

)
−

∫

Ω

G̃λ(x, tv0) dx.

Reasoning as in the proof of Theorem 3.3 for large positive t, since F (t)/t2 → ∞
as t → ∞, and using also (3.1) we obtain that

Iλ[tv0] ≤ C(1 + t + t2) −
∫

Ω+
a+(x)

[
F (uλ + tv0) +

1
2
C0(uλ + tv0)2

]

≤ C(1 + t + t2) − δ

∫

Ω̃+
δ

[
F (uλ + tv0) +

1
2
C0(uλ + tv0)2

]
dx,

so

Iλ[tv0] < 0
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for t = t0 big enough, and where Ω̃+
δ is defined by (3.18). Thus, the Mountain Pass

Theorem implies that if

Γ := {g ∈ C
(
[0, 1];H1

0 (Ω)
)

: g(0) = 0, Iλ[g(1)] < 0},

then, there exists c > 0 such that

c := inf
g∈Γ

max
0≤t≤1

Iλ[g(t)]

is a critical value of Iλ, and thereby Kc := {v ∈ H1
0 (Ω) : Iλ[v] = c, I ′

λ[v] = 0} is
non empty.

Since for any g ∈ Γ we have Iλ[g+(t)] ≤ Iλ[g(t)] for all t ∈ [0, 1], it follows that
g+ ∈ Γ, and we derive the existence of a sequence vn such that

Iλ[vn] → c, ‖I ′
λ[vn]‖ → 0, vn ≥ 0.

On the other hand, wn := uλ + vn is a (PS) sequence for the original functional
Jλ. Since Theorem 3.2, if λ < λ1(int Ω0), vn → vλ en H1

0 (Ω), so I ′
λ[v] = 0 and

Iλ[v] = c > 0, hence vλ ≥ 0 is a nontrivial critical point of Iλ. Consequently,
wλ := uλ + vλ is a positive critical point of Jλ, such that, for each ψ ∈ H1

0 (Ω), we
have

∫

Ω

∇wλ · ∇ψ dx =
∫

Ω

(
λwλ + a(x)f(wλ)

)
ψ dx,

and thereby wλ := uλ + vλ ≥ uλ, wλ �= uλ is a second positive solution to (1.1)λ.

(b) Step 2. Existence of a classical positive solution for λ = Λ.
We prove the existence of a solution for λ = Λ. For each λ ∈ (λ1, Λ), problem
(1.1) admits a minimal positive weak solution uλ and λ → uλ is increasing, see
Proposition 5.1. Taking the monotone pointwise limit, let us define

uΛ(x) := lim
λ↑Λ

uλ(x).

We next see that ‖uΛ‖ < +∞, reasoning on the contrary. Assume that there exists
a sequence of solutions un := uλn

such that ‖uλn
‖ → +∞ as λn → Λ. Set vn :=

un/‖un‖, then there exists a subsequence, again denoted by vn such that vn ⇀ v
in H1

0 (Ω), and vn → v in Lp(Ω) for any p < 2∗ and a.e. Arguing as in the claim of
Proposition 3.1, v ≡ 0. Moreover

lim
n→∞

∫

Ω

a(x)
f(un)
‖un‖ vn dx = 1. (5.4)

On the other hand, from the weak formulation, for all ψ ∈ C∞
c (Ω),

∫

Ω

∇vn · ∇ψ dx = λn

∫

Ω

vnψ dx +
∫

Ω

a(x)
f(un)
‖un‖ ψ dx. (5.5)

Taking the limit, and since C∞
c (Ω) is dense in L2(Ω)

lim
n→∞

∫

Ω

a(x)
f(un)
‖un‖ ψ dx = 0, for all ψ ∈ L2(Ω). (5.6)
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Since Lemma 2.1, u ∈ C2(Ω) ∩ C1,μ(Ω) and so a(x)f(un)
‖un‖ ∈ L2(Ω). Moreover vn →

v = 0 in L2(Ω). Hence [2, Proposition 3.13 (iv)], and (5.6) imply

lim
n→∞

∫

Ω

a(x)
f(un)
‖un‖ vn dx = 0,

which contradicts (5.4) and yields ‖uΛ‖ < +∞.
By Sobolev embedding and the Lebesgue dominated convergence theorem,

un → uΛ in L2∗
(Ω).

Now, by substituting ψ = un in (5.5), using Hölder inequality and Sobolev
embeddings we obtain

[
‖un‖ ≤ Λ‖vn‖L2(Ω)‖un‖ + C, with ‖vn‖L2(Ω) → 0

]
⇒ ‖un‖ ≤ C.

By compactness, for a subsequence again denoted by un, un ⇀ u∗ in H1
0 (Ω), un →

u∗ in Lp(Ω) for any p < 2∗ and a.e. By uniqueness of the limit, uΛ = u∗. Finally,
by taking limits in the weak formulation of un as λn → Λ, we get

∫

Ω

∇uΛ · ∇ψ = Λ
∫

Ω

uΛψ +
∫

Ω

a(x)f(uΛ)ψ .

Hence uΛ is a positive weak solution to (1.1)Λ. Lemma 2.1 yields that uΛ ∈ C2(Ω)∩
C1,μ(Ω) is a classical solution.

(c) Step 3. Existence of a classical positive solution for λ ≤ λ1.
The existence of a classical positive solution for λ < λ1 is done in Theorem 3.3.
Let’s look for a solution when λ = λ1.

Since step 1, for any λ ∈ (λ1, Λ) there exists a second positive solution to (1.1)λ.
Let’s denote it by ũλ �= uλ. Now, define the pointwise limit

ũλ1(x) := lim sup
λ→λ1

ũλ(x). (5.7)

Reasoning as in step 2, ‖ũλ1‖ < +∞ and ũλ1 ∈ C2(Ω) ∩ C1,μ(Ω) is a classical
solution to (1.1)λ1 .

Moreover, ũλ1 > 0. Assume on the contrary that ũλ1 = 0. By the Crandall-
Rabinowitz’s Theorem [10], the only nontrivial solutions to (1.1) in a neighbourhood
of the bifurcation point (λ1, 0) are given by (4.1)). Since Proposition 5.1, those are
the minimal solutions uλ, and due to ũλ �= uλ, ũλ are not in a neighbourhood of
(λ1, 0), contradicting the definition of ũλ1(x), (5.7)

Hence, ũλ1 ≥ 0, and reasoning as in (1.8), the Maximum Principle implies that
ũλ1 > 0. �
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A. Some Estimates

First, we prove an useful estimate of ln(e+s)
ln(e+as) .

Lemma A.1. Let 0 < a ≤ 1 be fixed. Then for all s ≥ 0,

ln(e + s)
ln(e + as)

≤ ln
( e

a

)
≤ 1

a
. (A.1)

Proof. Denote �(s) = ln(e+s)
ln(e+as) for all s ≥ 0. Then 1 ≤ �(s) ≤ �(s0) where s0 > 0 is

the unique value where �′(s) = 0. When computing s0 we find

�′(s0) = 0 ⇐⇒ (e + as0) ln(e + as0) − a(e + s0) ln(e + s0) = 0

and therefore

max � = �(s0) =
ln(e + s0)
ln(e + as0)

=
e + as0

a(e + s0)
.

Notice that we have �(s0) ≤ 1
a . In order to find a better upper bound of ln(e+as0

e+s0
)

let us denote for all s ≥ 0

θ(s) = (e + as) ln(e + as) − a(e + s) ln(e + s).

Then, there exists χ ∈ (0, s0) such that

0 − e(1 − a) = θ(s0) − θ(0) = θ′(χ)s0 =⇒ e(1 − a)
s0

= −θ′(χ).

Then

−θ′(s) = a ln
(

e + s

e + as

)

≤ a ln
(

1
a

)

,

and
e(1 − a)

s0
≤ a ln

(
1
a

)

=⇒ s0 ≥ e(1 − a)
a ln

(
1
a

) .

http://creativecommons.org/licenses/by/4.0/
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Since e+as
a(e+s) is decreasing,

max
s≥0

�(s) = �(s0) =
e + as0

a(e + s0)
≤

e + e(1−a)

ln( 1
a )

ae + e(1−a)

ln( 1
a )

=
ln(1/a) + 1 − a

a ln(1/a) + 1 − a
≤ ln(1/a) + 1,

and the first inequality of (A.1) is achieved. The second one is obvious. �

Next lemma is about the variations of h(s) = s2∗−1

[ln(e+s)]α for s ≥ 0.

Lemma A.2. There exists α∗ > 2(2∗ − 1) such that h is an increasing function on
]0, +∞[ if and only if α ≤ α∗. Moreover, if α > α∗ there exists s1 < s2 such that h
is increasing in [0, +∞[ \ ]s1, s2[.

Proof. We have

h′(s) =
s2∗−2

[ln(e + s)]α+1

(

(2∗ − 1) ln(e + s) − αs

s + e

)

.

Let us define for s ≥ 0,

θ(s) := ln(e + s) − α

2∗ − 1
s

s + e
,

so

h′(s) ≥ 0 ⇐⇒ θ(s) ≥ 0.

We have:
⎧
⎪⎨

⎪⎩

θ(0) = 1,
θ(s) → +∞ as s → +∞,

θ′(s) =
s+e(1− α

2∗−1)
(e+s)2 .

Hence:

(1) If α
2∗−1 ≤ 1 then θ′(s) ≥ 0 for all s ≥ 0 and in particular θ(s) ≥ 0 and therefore

h′(s) ≥ 0 for all s ≥ 0;
(2) if α

2∗−1 > 1 then

θ′(s0) = 0 for s0 = e

(
α

2∗ − 1
− 1

)

.

Let us compute θ(s0):

θ(s0) = ln
(

α

2∗ − 1

)

− α

2∗ − 1
+ 2,

and hence:
(i) if θ(s0) ≥ 0 then θ(s) ≥ 0 for all s ≥ 0 and therefore h′(s) ≥ 0 for all

s ≥ 0;
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(ii) if θ(s0) < 0 then there exists s1 < s2 such that

θ(s) > 0 ∀s ∈ [0, +∞[ \ ]s1, s2[ =⇒ h′(s) > 0 ∀s ∈ [0, +∞[ \ ]s1, s2[.

Notice that t → ln t is greater that t → t − 2 somewhere between some
t1 < 1 and the value t∗ =the unique solution > 2 of the equation

ln t∗ = t∗ − 2.

Finally the statement of the lemma holds for α∗ = t∗(2∗ − 1). �

B. A Compact Embedding Using Orlicz Spaces

For references on Orlicz spaces see [15,21]. Throughout Ω ⊂ R
N is an bounded open

set. We will denote

L(Ω) = {ϕ : Ω → R : ϕ is Lebesgue measurable}.

Definition B.1. We will say that a function M : [0, +∞[→ [0, +∞[ is a N -function
if and only if

(N1) M is convex, increasing and continuous,

(N2) lim
s→0+

M(s)
s

= 0,

(N3) lim
s→+∞

M(s)
s

= +∞.

The proof of the following property is trivial, we just quoted it for the sake of
completeness.

Proposition B.2. Any N -function M admits a representation of the form

M(s) =
∫ s

0

m(t)dt

where m : [0, +∞[→ [0, +∞[ is a non-decreasing right-continuous function satisfying
m(0) = 0 and

lim
s→+∞ m(s) = +∞.

Thus, m is the right-derivative of M .

Our first aim is to prove the following result:

Theorem B.3. Let M : [0, +∞[→ R be a N -function such that

lim
s→+∞

s2∗

M(s)
= +∞.

Assume also that M satisfies the Δ2-condition, that is,

∃K > 0, ∀s ∈ [0, +∞[, M(2s) ≤ KM(s). (B.1)

Let {un}n∈N in H1
0 (Ω) be a sequence satisfying

1. supn∈N ‖un‖2∗ < ∞,
2. there exists u ∈ H1

0 (Ω) such that limn→+∞ un(x) = u(x) a.e.
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Then there exists a subsequence {unk
}k∈N such that

lim
k→∞

∫

Ω

M
(
|unk

(x) − u(x)|
)
dx = 0. (B.2)

In order to proof this theorem we need some definitions.

Definition B.4. Let K ⊂ L(Ω). We say that K has equi-absolutely continuous inte-
grals if and only if ∀ε > 0 there exists h > 0 such that

∀ϕ ∈ K,∀A ⊂ Ω mesurable , |A| < h =⇒
∫

A

|ϕ(x)| dx < ε.

Lemma B.5. Let M : [0, +∞[→ R be a N -function satisfying the Δ2 condition (B.1).
Let {un}n∈N be a sequence of measurable functions converging a.e. to some function
u and such that the set

{
M

(|un|) : n ∈ N

}

has equi-absolutely continuous integrals. Then (B.2) holds.

Proof. Let fix ε > 0 and let δ > 0 be such that

∀n ∈ N, ∀A ⊂ Ω mesurable , |A| < δ =⇒
∫

A

M(|un|)dx ≤ ε.

Using Fatou’s lemma we infer that also

∀A ⊂ Ω mesurable , |A| < δ =⇒
∫

A

M(|u|)dx ≤ ε.

Let Ωn = {x ∈ Ω : |un(x) − u(x)| > M−1(ε)}. As a consequence of Egoroff’s
theorem, the sequence (un)n∈N converge in measure to u so there exists n0 ∈ N such
that

|Ωn| < δ.

Then, using the convexity of M and (B.1) it comes
∫

Ω

M
(|un − u|) dx =

∫

Ωn

M
(|un − u|) dx +

∫

Ω\Ωn

M
(|un − u|) dx

≤ 1
2

(∫

Ωn

(M
(
2|un|) + M

(
2|u|)dx

)

+ |Ω|M(
M−1(ε)

)

≤ K

2

(∫

Ωn

(
M(|un|) + M(|u|)

)
dx

)

+ |Ω|ε ≤ (K + |Ω|)ε.

�

In order to prove that, for the sequence of our theorem, the set
{

M
(|un|) : n ∈ N

}

has equi-absolutely continuous integrals we are going to use the following lemma :
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Lemma B.6. Let K ⊂ L(Ω) and let Φ : [0, +∞[→ [0, +∞[ be an increasing function
satisfying

lim
s→+∞

Φ(s)
s

= +∞. (B.3)

Suppose that there exists D > 0 such that

sup
u∈K

∫

Ω

Φ
(|u|)dx ≤ D. (B.4)

Then all the functions u ∈ K are integrable and K has equi-absolutely continuous
integrals (Valle Poussin’s theorem).
Moreover, if M : [0, +∞[→ [0, +∞[ is a continuous increasing function satisfying

lim
s→+∞

M(s)
s

= +∞ and lim
s→+∞

Φ(s)
M(s)

= +∞,

then the family K1 = {M
(|u|) : u ∈ K} has equi-absolutely continuous integrals.

Proof. For the Valle Poussin’s theorem see [18] page 159. To prove the second state-
ment remark that the function Φ̃ = Φ ◦ M−1 satisfies (B.3). Here M−1 stand for
the right-hand inverse. �

Proof of theorem B.3. Let us take Φ(s) = |s|2∗
. From hypothesis (1) of the theorem,

the set K = {un : n ∈ N} satisfies (B.4) for some D > 0. Then the conclusion follows
from lemma B.5 and Lemma B.6 . �

Remark B.7. Whenever (B.2) is satisfied we say that the sequence {unk
}k∈N con-

verges in M -mean to u.

One can formulate Theorem B.3 as a compact embedding of H1
0 (Ω) in some

vector space endowed of the Luxembourg norm associate to M (see [15,21]). Instead,
we are going to use the Orlicz-norm which is more suitable to our purposes. We will
see later in Theorem B.12 that the convergence in M -mean implies the convergence
with respect to the Orlicz-norm, provided that the Δ2-condition is satisfied.

Definition B.8. Let M be a N -function. The complementary of M defined for all
s ≥ 0 is the function

M∗(s) := max
{
st − M(t) : t ≥ 0

}
.

As before, we give the following trivial result for the sake of completeness:

Proposition B.9. If m is the right derivative of M then

m∗(s) = sup{t : m(t) ≤ s}
is the right derivative of M∗ and M∗ is a N -function. Furthermore, for all s ≥ 0
we have

sm(s) = M(s) + M∗(m(s)), sm∗(s) = M(m∗(s)) + M∗(s).

Next, let us introduce the Orlicz norm associated to M :
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Definition B.10. Let M be a N -function and let M∗ be its complementary. Let us
denote for any v ∈ L(Ω)

ρ(v,M∗) =
∫

Ω

M∗(|v|) dx

and define the Orlicz norm of any u ∈ L(Ω) by

‖u‖M := sup
{∫

Ω

uv dx : v ∈ L(Ω), ρ(v, M∗) ≤ 1
}

.

‖ · ‖M is a norm in the real vector space

LM (Ω) =
{
u ∈ L(Ω) : ‖u‖M < +∞}

.

(see [15] for the details). Let us prove the following less trivial properties:

Proposition B.11. (i) For all u ∈ L(Ω),

‖u‖M ≤
∫

Ω

M(|u|) dx + 1. (B.5)

(ii) For any u and v in L(Ω) it holds
∣
∣
∣
∣

∫

Ω

uv dx

∣
∣
∣
∣ ≤ ‖u‖M ‖v‖M∗ (Holder’s inequality). (B.6)

(iii) For any u and v in L(Ω) we have ‖u‖M ≤ ‖v‖M if |u| ≤ |v| a.e.
Proof. (i) This follows from the definition of ‖ · ‖M and the inequality |uv| ≤

M(|u|) + M∗(|v|).
(ii) The divide the proof in 3 steps.

Step 1: For all v ∈ L(Ω),
∣
∣
∣
∣

∫

Ω

uv dx

∣
∣
∣
∣ ≤

{‖u‖M if ρ(v, M∗) ≤ 1
ρ(v,M∗)‖u‖M if ρ(v, M∗) > 1

Indeed, the first case follows directly from the definition. If ρ(v, M∗) > 1 then
by convexity

M∗
( |v|

ρ(v,M∗)

)

≤ M∗(|v|)

ρ(v, M∗)
and therefore

ρ

( |v|
ρ(v,M∗)

,M∗
)

≤ 1
ρ(v, M∗)

∫

Ω

M∗(|v|)dx = 1

and
∣
∣
∣
∣

∫

Ω

u
v

ρ(v,M∗)
dx

∣
∣
∣
∣ ≤ ‖u‖M .

Step 2: If ‖u‖M ≤ 1 then ρ
(
m(|u|),M∗) ≤ 1.

Set un = uχ{|u|≤n} for all n ∈ N. Since un is bounded then ρ(m(|un|),M∗) <

+∞. Assume by contradiction that
∫

Ω
M∗(m(|u|)) dx > 1 and let n0 ∈ N be

such that
∫

Ω
M∗(m(|un0 |)

)
dx > 1. We have

M∗(m(|un0 |)
)

< M
(|un0 |

)
+ M∗(m(|un0 |)

)
= |un0 |m(|un0 |)
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and therefore, by (i),

ρ
(
m(|un0 |),M∗) <

∫

Ω

|un0 |m(|un0 |) dx ≤ ‖un0‖M ρ
(
m(|un0 |),M∗)

which contradicts ‖un0‖M ≤ ‖u‖M ≤ 1.
This is trivial from the definition of ‖u‖M , step 1 and the fact that |u|m(|u|) =
M(|u|) + M∗(m(|u|)).
Step 3: If ‖u‖M ≤ 1 then ρ(u,M) ≤ ‖u‖M .
Let us remark that for all s ≥ 0

M∗(m(s)) + M(s) = sm(s).

Set v0 = m(|u|). From step 2, ρ(v0,M
∗) ≤ 1 and then

ρ(u,M) ≤ ρ(u,M) + ρ(v0, M
∗) =

∫

Ω

uv0 dx ≤ ‖u‖M .

Now we prove Holder’s inequality. From step 2 applied to M∗ and v
‖v‖M∗ we

have ρ
(

v
‖v‖M∗ ,M∗

)
≤ 1, so then

∣
∣
∣
∣

∫

Ω

u
v

‖v‖M∗
dx

∣
∣
∣
∣ ≤ ‖u‖M

and Holder’s inequality follows.
The proof of (iii) is trivial. �
Finally, we give the following compact embedding result:

Theorem B.12. Let M be a N -function satisfying the Δ2-condition (B.1) and let
{un}n∈N be a sequence in L(Ω) such that

lim
n→∞ ρ(un, M) = 0.

Then

lim
n→∞ ‖un‖M = 0.

Thus, the convergence in M -mean implies the converge with respect to the ‖ · ‖M

norm.

Proof. Let ε > 0 and take m ∈ N such that 1
2m−1 < ε. Using condition (B.1) we also

have

lim
n→∞

∫

Ω

M(2m|un|)dx = 0.

Let n0 ∈ N be such that for all n ≥ n0 we have
∫

Ω

M(2m|un|)dx < 1.

From step 1 of the proof in the previous proposition we have that for all n ≥ n0

‖2mun‖M ≤ ρ
(
2m|un|,M)

+ 1 < 2,

which implies that

‖un‖M <
1

2m−1
< ε. �
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