Skip to main content
Log in

Quasistatic Limit of a Dynamic Viscoelastic Model with Memory

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study the behaviour of the solutions to a dynamic evolution problem for a viscoelastic model with long memory, when the rate of change of the data tends to zero. We prove that a suitably rescaled version of the solutions converges to the solution of the corresponding stationary problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agostiniani, V.: Second order approximations of quasistatic evolution problems in finite dimension. Discrete Contin. Dyn. Syst. 32, 1125–1167 (2010)

    Article  MathSciNet  Google Scholar 

  2. Arendt, W., Batty, C., Hieber, M., Neubrander, F.: Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, vol. 96. Birkhäuser, Basel (2001)

    Book  Google Scholar 

  3. Dafermos, C.: An abstract Volterra equation with applications to linear viscoelasticity. J. Differ. Equ. 7, 554–569 (1970)

    Article  MathSciNet  Google Scholar 

  4. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 1. Original French edition published by Masson, S.A., Paris, Physical Origins and Classical Methods (1984)

  5. Fabrizio, M., Giorgi, C., Pata, V.: A new approach to equations with memory. Arch. Rational. Mech. Anal. 198, 189–232 (2010)

    Article  MathSciNet  Google Scholar 

  6. Fabrizio, M., Morro, A.: Mathematical Problems in Linear Viscoelasticity. SIAM Stud. Appl. Math. 12 (1992)

  7. Gidoni, P., Riva, F.: A vanishing inertia analysis for finite dimensional rate-independent systems with nonautonomous dissipation and an application to soft crawlers. Calc. Var. Partial Differ. Equ. 60, 191 (2021)

    Article  MathSciNet  Google Scholar 

  8. Lazzaroni, G., Nardini, L.: On the quasistatic limit of dynamic evolutions for a peeling test in dimension one. J. Nonlinear Sci. 28, 269–304 (2018)

    Article  MathSciNet  Google Scholar 

  9. Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. 181. Springer, Berlin (1972)

    Book  Google Scholar 

  10. Nardini, L.: A note on the convergence of singularly perturbed second order potential-type equations. J. Dyn. Differ. Equ. 29, 783–797 (2017)

    Article  MathSciNet  Google Scholar 

  11. Oleinik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical Problems in Elasticity and Homogenization. Studies in Mathematics and its Applications, vol. 26. North-Holland Publishing Co., Amsterdam (1992)

    MATH  Google Scholar 

  12. Riva, F.: On the approximation of quasistatic evolutions for the debonding of a thin film via vanishing inertia and viscosity. J. Nonlinear Sci. 30, 903–951 (2020)

    Article  MathSciNet  Google Scholar 

  13. Sapio, F.: A dynamic model for viscoelasticity in domains with time–dependent cracks. NoDEA Nonlinear Differ. Equ. Appl. 28, 67 (2021)

  14. Scilla, G., Solombrino, F.: A variational approach to the quasistatic limit of viscous dynamic evolutions in finite dimension. J. Differ. Equ. 267, 6216–6264 (2019)

    Article  MathSciNet  Google Scholar 

  15. Slepyan, L.I.: Models and Phenomena in Fracture Mechanics. Foundations of Engineering Mechanics. Springer, Berlin (2002)

    Book  Google Scholar 

Download references

Acknowledgements

This paper is based on work supported by the National Research Project (PRIN 2017) “Variational Methods for Stationary and Evolution Problems with Singularities and Interfaces”, funded by the Italian Ministry of University and Research. The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Dal Maso.

Ethics declarations

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A.

Appendix A.

Throughout this section we fix \(a_0>0\), \(b_0>0\), and \(c_1\ge c_0>1\). For every ab with

$$\begin{aligned} c_0a\le b\le c_1 a,\qquad b\ge b_0,\qquad a\ge a_0, \end{aligned}$$
(A.1)

we consider the polynomial \(p(z):=\beta z^3+z^2+\beta b z+a\) depending on the complex variable z. The following result about the roots of this polynomial is used in the proof of Lemma 5.2 and Proposition 5.4.

Lemma A.1

There exists a positive constant \(\alpha =\alpha (\beta ,a_0,b_0,c_0,c_1)\) such that, for every \(a,b\in {\mathbb {R}}\) satisfying (A.1), the roots of the polynomial p have real parts in the interval \((-\frac{1}{\beta },-\alpha )\).

Proof

Let us set \(z:=x+iy\) with \(x,y\in {\mathbb {R}}\). Then \(p(z)=0\) if and only if

$$\begin{aligned} {\left\{ \begin{array}{ll} \beta x^3+x^2+\beta b x-(3\beta x+1)y^2+a=0,\\ y(-\beta y^2+3\beta x^2+2x+\beta b)=0, \end{array}\right. } \end{aligned}$$

from which we derive

$$\begin{aligned}&{\left\{ \begin{array}{ll} q(x):=\beta x^3+x^2+\beta b x+a=0,\\ y=0, \end{array}\right. } \end{aligned}$$
(A.2)
$$\begin{aligned}&{\left\{ \begin{array}{ll} r(x):=8\beta x^3+8x^2+2\left( \frac{1}{\beta }+\beta b\right) x+b-a=0,\\ y^2=3x^2+\frac{2}{\beta }x+b. \end{array}\right. } \end{aligned}$$
(A.3)

By recalling \(a>0\) and \(b-a\ge (c_0-1)a>0\), for every \(x\ge 0\) we have \(q(x)>0\) and \(r(x)>0\), and so the real part of the roots cannot be positive or zero. Moreover, since for every \(x\le -\frac{1}{\beta }\) we have \(\beta x^3+x^2\le 0\), we obtain

$$\begin{aligned}&q(x)\le -b+a\le (1-c_0)a<0\\&r(x)\le b-a-2\left( \tfrac{1}{\beta ^2}+b\right) =-b-a-\tfrac{2}{\beta ^2}<0, \end{aligned}$$

which imply that the real part of the roots does not belong to \((-\infty ,-\frac{1}{\beta }]\). Therefore, by calling \(z_1,z_2,z_3\in {\mathbb {C}}\) the three roots of the polynomial p, we can say

$$\begin{aligned} \mathfrak {R}(z_i)\in (-\tfrac{1}{\beta },0)\quad \text {for }i=1,2,3. \end{aligned}$$
(A.4)

Case 1: there is only one real root. In this case by (A.3) there exists a unique \(x_1\in (-\frac{1}{\beta },0)\) which satisfies \(r(x_1)=0\) and \(3x^2_1+\frac{2}{\beta }x_1+b>0\). Indeed by setting \(y_1:=\sqrt{3x^2_1+\frac{2}{\beta }x_1+b}\) we obtain that \(x_1+iy_1\) and \(x_1-iy_1\) are two distinct non-real roots of p. Since

$$\begin{aligned} r(-\tfrac{1}{2\beta })&=-\tfrac{1}{\beta ^2}+\tfrac{2}{\beta ^2}-\tfrac{1}{\beta ^2}-b+b-a=-a<0,\\ r(-\tfrac{\beta (b-a)}{2\left( b\beta ^2+1 \right) })&=\tfrac{\beta ^2(b-a)^2((a+b)\beta ^2+2)}{(b\beta ^2+1)^3}>0, \end{aligned}$$

then \(x_1\in (-\frac{1 }{2\beta },-\frac{\beta (b-a)}{2\left( b\beta ^2+1\right) })\). Moreover

$$\begin{aligned} q(-\tfrac{1}{\beta })&=-\tfrac{1}{\beta ^2}+\tfrac{1}{\beta ^2}-b+a=-b+a<0,\\ q(-\tfrac{a}{\beta b})&=-\tfrac{a^3}{b^3\beta ^2}+\tfrac{a^2}{b^2\beta ^2}-a+a=\tfrac{a^2(b-a)}{b^3\beta ^2}>0, \end{aligned}$$

hence there exists \(x_0\in (-\frac{1}{\beta },-\frac{a}{\beta b})\) such that \(q(x_0)=0\). As a consequence of this, \((x_0,0)\) satisfies the system in (A.2), which implies that \(x_0\) is the real root of p, hence we have \(\mathfrak {R}(z_i)\in (-\frac{1}{\beta },\max \{-\frac{a}{\beta b},-\frac{\beta (b-a)}{2\left( b \beta ^2+1\right) }\})\). Thanks to (A.1) we can say \(-\tfrac{a}{\beta b}\le -\tfrac{1}{c_1\beta }\) and \(-\tfrac{\beta (b-a)}{2\left( b\beta ^2+1\right) }\le \tfrac{\beta (1-c_0)a}{2(c_1a\beta ^2+1)}\le \tfrac{\beta (1-c_0)a_0}{2\left( c_1a_0\beta ^2+1\right) }\), where in the last inequality we use the decreasing property of the function \(a\mapsto \tfrac{\beta (1-c_0)a}{2(c_1a\beta ^2+1)}\). This implies

$$\begin{aligned} \mathfrak {R}(z_i)\in (-\tfrac{1}{\beta },\max \{-\tfrac{1}{c_1\beta },\tfrac{\beta (1-c_0)a_0}{2\left( c_1a_0\beta ^2+1\right) }\})\quad \text {for }i=1,2,3. \end{aligned}$$
(A.5)

Case 2: there are only real roots. In this case we have \(b\le \frac{1}{3\beta ^2}\), otherwise \(q'(x)>0\) for every \(x\in {\mathbb {R}}\), which forces p to have also non-real roots. Thanks to (A.1) we have also \(a<b\le \frac{1}{3\beta ^2}\). By setting \({\tilde{b}}_0:=1-\sqrt{1-3b_0\beta ^2}\), we can write

$$\begin{aligned} -{\tilde{b}}_0a_0\beta \ge -{\tilde{b}}_0a\beta \ge -(1-\sqrt{1-3b\beta ^2})a\beta>\tfrac{-1+\sqrt{1-3 b\beta ^2}}{3\beta }>-\tfrac{1}{\beta }, \end{aligned}$$

which implies

$$\begin{aligned} q'(x)>0\quad \text { for every } x\in [-{\tilde{b}}_0a_0\beta ,+\infty ). \end{aligned}$$
(A.6)

Since

$$\begin{aligned} q(-{\tilde{b}}_0a_0\beta )&\ge \beta ^2{\tilde{b}}_0^2a_0^2(1-\beta ^2{\tilde{b}}_0a_0)+a_0(1-\beta ^2{\tilde{b}}_0b)\\&>a_0(1+\beta ^2{\tilde{b}}_0^2 a_0)(1-\beta ^2{\tilde{b}}_0b)>0, \end{aligned}$$

thanks to (A.1), (A.4), and (A.6) we get

$$\begin{aligned} \mathfrak {R}(z_i)\in (-\tfrac{1}{\beta },-{\tilde{b}}_0a_0\beta ),\quad \text {for }i=1,2,3. \end{aligned}$$
(A.7)

By combining (A.5) and (A.7), we obtain the conclusion with

$$\begin{aligned} \alpha :=\min \{{\tilde{b}}_0a_0\beta ,\frac{1}{c_1\beta },\frac{\beta (c_0-1)a_0}{2\left( c_1a_0\beta ^2+1\right) }\}. \end{aligned}$$

\(\square \)

The following easy estimate is used in the proof of Lemma 5.2.

Lemma A.2

For every \(z,w\in {\mathbb {C}}\) with \(\mathfrak {R}(z)>0\) and \(\mathfrak {R}(w)<0\) the following inequality holds:

$$\begin{aligned} |(z-w)(z-{{\bar{w}}})|\ge |\mathfrak {R}(w)||\mathfrak {I}(w)|. \end{aligned}$$

Proof

Without loss of generality we can suppose \(\mathfrak {I}(w)>0\), otherwise we exchange the role of w with \({{\bar{w}}}\). If \(\mathfrak {I}(z)>0\), then

$$\begin{aligned}&|z-w|\ge |\mathfrak {R}(z-w)|=|\mathfrak {R}(z)+\mathfrak {R}(-w)|=\mathfrak {R}(z)+\mathfrak {R}(-w)\ge |\mathfrak {R}(w)|, \\&|z-{{\bar{w}}}|\ge |\mathfrak {I}(z-{{\bar{w}}})|=|\mathfrak {I}(z)+\mathfrak {I}(w)|=\mathfrak {I}(z)+\mathfrak {I}(w)\ge |\mathfrak {I}(w)|, \end{aligned}$$

which give the conclusion in this case. If \(\mathfrak {I}(z)<0\), then

$$\begin{aligned}&|z-w|\ge |\mathfrak {I}(z-w)|=|-\mathfrak {I}(-z)-\mathfrak {I}(w)|=\mathfrak {I}(-z)+\mathfrak {I}(w)\ge |\mathfrak {I}(w)|, \\&|z-{{\bar{w}}}|\ge |\mathfrak {R}(z-{{\bar{w}}})|=|\mathfrak {R}(z)+\mathfrak {R}(-w)|=\mathfrak {R}(z)+\mathfrak {R}(-w)\ge |\mathfrak {R}(w)|, \end{aligned}$$

which conclude the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dal Maso, G., Sapio, F. Quasistatic Limit of a Dynamic Viscoelastic Model with Memory. Milan J. Math. 89, 485–522 (2021). https://doi.org/10.1007/s00032-021-00343-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-021-00343-w

Keywords

Mathematics Subject Classification

Navigation