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Abstract. In this paper we deal with the existence of solutions for the following
class of magnetic semilinear Schrödinger equation

(P )

{
(−i∇ + A(x))2u + u = |u|p−2u, in Ω,

u = 0 on ∂Ω,

where N ≥ 3, Ω ⊂ R
N is an exterior domain, p ∈ (2, 2∗) with 2∗ = 2N

N−2 , and
A : RN → R

N is a continuous vector potential verifying A(x) → 0 as |x| → ∞.
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1. Introduction

In this paper we investigate the existence of solutions for the following magnetic
semilinear Schrödinger equation

(P )

{
(−i∇ + A(x))2u + u = |u|p−2u in Ω,

u = 0 on ∂ Ω,

where N ≥ 3, p ∈ (2, 2∗), 2∗ := 2N
N−2 is the critical Sobolev exponent, Ω ⊂ R

N is
an exterior domain, i.e. Ω is an unbounded domain with smooth boundary ∂Ω �= ∅
such that R

N\Ω is bounded, and A ∈ C(RN ,RN ) satisfies

A(x) → 0 as |x| → ∞. (A)
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During the past years there has been a considerable interest in the existence of
solutions for elliptic equations in exterior domains, more precisely, for problems of
the type {

−Δu + u = f(u), in Ω,
u ∈ H1

0 (Ω), (1.1)

where f is a continuous function satisfying some technical conditions. The main
difficulty in dealing with (1.1) is the lack of compactness of the Sobolev embedding
due to the unboundedness of the domain. In order to overcome this difficulty, in
some papers, authors assumed certain type of symmetry on Ω; see for instance [9],
[23] and [25].

In [12], Benci and Cerami studied the existence of nontrivial solutions for the
problem {

−Δu + λu = |u|p−2u, in Ω,
u ∈ H1

0 (Ω), (1.2)

in an exterior domain Ω without assuming symmetry, with 2 ≤ p < 2∗ and λ > 0.
In that article, they proved that (1.2) does not have a ground state solution and
this fact yields a series of difficulties. The key idea exploited by the authors was
to analyze the behavior of Palais-Smale sequences, obtaining a precise estimate of
the energy levels where the Palais-Smale condition fails. The authors proved that if
p = 1 + 8

N for N = 5, 6, 7 or p < 2(N−1)
N−2 for N = 3, 4,

• there exists λ∗ > 0 such that, for every λ ∈ (0, λ∗), (1.2) has at least one
positive solution,

• for every λ there exists a ρ = ρ(λ) such that if RN\Ω ⊂ B(x0, ρ), with x0 ∈
R

N\Ω, (1.2) has at least one positive solution.
Later, existence results were obtained for more general problems{

−Δu + λu = f(x, u) in Ω,
u ∈ H1

0 (Ω), (1.3)

where f is a continuous function satisfying

lim
|x|→+∞

f(x, t) = f∞(t), for all t ∈ R.

In [9], Bahri and Lions studied (1.3) with f(x, t) = b(x)|t|p−2t where b(x) → b > 0
as |x| → +∞. Using topological arguments, they showed that (1.3) has a solution
when Ω is an arbitrary exterior domain, for all λ > 0. In the autonomous case, using
the technique introduced in [9], Li and Zheng [28] proved that (1.3) possesses at least
one positive solution, with f asymptotically linear satisfying some assumptions, in
particular, a property of convexity (see also [21]). Whereas in [29], Maia and Pellacci
established an existence result without the hypothesis of convexity.

In the above-mentioned papers, a key point to prove the results of existence
is the uniqueness, up to a translation, of the positive solution for the “equation at
infinity” associated with (1.3) given by

− Δu + λu = f∞(u) in R
N . (1.4)
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However, when the exterior domain is the exterior of a ball, more precisely Ω =
R

N\B(0, R) for some R > 0, it is possible to explore some groups of rotation in
order to get multiple solutions without using the uniqueness of solutions of the limit
problem when R is large enough, see for example Cao and Noussair [16] and Clapp,
Maia and Pellacci [22]. In [2], Alves and de Freitas studied the existence of a positive
solution for a class of elliptic problems in exterior domains involving critical growth.
Finally, we mention a recent paper due to Alves, Molica Bisci and Torres Ledesma
[5], in which a fractional elliptic equation with Dirichlet-type condition set in an
exterior domain is considered.

In the last years time-independent magnetic Schrödinger equations in bounded
domains or in whole of R

N have received a special attention. A basic motivation
to study these equations stems from the search of standing wave solutions for the
time-dependent nonlinear Schrödinger equation of the type

ih
∂ψ

∂t
=

(
h

i
∇ − A(z)

)2

ψ + U(z)ψ − f(|ψ|2)ψ, z ∈ D, t ∈ R,

where D ⊂ R
N , with N ≥ 2, is a smooth domain, the function ψ takes values in

C, h is the Planck constant, i is the imaginary unit and A : RN → R
N denotes a

magnetic potential. For the interested reader in this subject, we cite the papers by
Alves, Figueiredo and Furtado [3,4], Ambrosio [6,7], Arioli and Szulkin [8], Barile
[10,11], Chabrowski and Szulkin [17], Cingolani [18], Cingolani and Clapp [19], Cin-
golani, Jeanjean and Secchi [20], Ding and Liu [24], Esteban and Lions [26] and the
references therein.

After a careful bibliography review, we did not find any paper concerned with
magnetic semilinear Schrödinger equations in exterior domains. Motivated by this
fact and the above-mentioned papers, the aim of this paper is to give a first existence
result for (P ). We emphasize that the main difficulty in dealing with this type of
problem is related to the uniqueness, up to a translation, of the solution for the
limit problem. Recently, in a very interesting paper due to Bonheure, Nys and Van
Schaftingen [14], we found a partial answer for this question when the magnetic field
A satisfies some technical conditions; see [14, Theorem 1].

The main result of this paper can be stated as follows:

Theorem 1.1. Suppose that (A) holds. Then, there exist ρ0 > 0 and ε > 0 such that
if RN\Ω ⊂ B(0, ρ), ρ < ρ0 and ‖A‖∞ ≤ ε, then problem (P ) has at least one weak
solution.

The proof of Theorem 1.1 will be done done via variational methods inspired by
[2] and [12]. However, with respect to [2,12], a more careful analysis will be needed
and some refined estimates will be given. The diamagnetic inequality in [26] will
play a fundamental role.

We point out that Theorem 1.1 complements the study in magnetic semilinear
Schrödinger equations, in the sense that we obtain an existence result for a magnetic
Schrödinger equation in an exterior domain.

The paper is organized as follows. In Sect. 2, we introduce suitable function
spaces and collect some useful results concerning the limit problem that we will
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work with. In Sect. 3, we establish a compactness result in the spirit of [12] for the
energy functional associated with problem (P ). In Sect. 4, we show some technical
estimates that will be used in Sect. 5, where Theorem 1.1 is proved.
Notations: In this paper, we use the following notations:

• For q ∈ (2, 2∗), we define q′ as the conjugate exponent of q, that is, q′ := q
q−1 .

• The usual norm of the Lebesgue spaces Lt(Ω) for t ∈ [1, ∞], will be denoted
by | . |t, and the norm of the Sobolev space H1

0 (Ω), by ‖ . ‖;
• C denotes (possibly different) any positive constant.

2. Preliminary Results and the Limit Problem

In what follows, we denote by H1
A(Ω,C) the Hilbert space obtained by the closure

of C∞
0 (Ω,C) under the scalar product

〈u, v〉 := �
(∫

Ω

(∇Au(x)∇Av(x) + u(x)v(x)) dx

)
,

where �(w) denotes the real part of w ∈ C, w is its complex conjugate, ∇Au :=
(D1u, D2u, ..., DNu) where Dj := −i∂j+Aj(x), for j = 1, 2, ..., N. The norm induced
by this inner product is given by

‖u‖ :=
(∫

Ω

(|∇Au(x)|2 + |u(x)|2) dx

) 1
2

.

We also consider the Hilbert space H1
A(RN ,C) defined as

H1
A(RN ,C) := {u ∈ L2(RN ,C) : ∇Au ∈ L2(RN ,CN )}

endowed with the scalar product

〈u, v〉A := �
(∫

RN

(∇Au(x) · ∇Av(x) + u(x)v(x))dx

)
.

Then we can define the norm

‖u‖A :=
(∫

RN

(
|∇Au(x)|2 + |u(x)|2

)
dx

) 1
2

.

By [26, Proposition 2.1-(i)], we know that C∞
c (RN ,C) is dense in H1

A(RN ,C). A
direct computation shows that H1

A(Ω,C) ⊂ H1
A(RN ,C).

As proved in [26, Sect. 2], for any u ∈ H1
A(RN ,C), there holds the diamagnetic

inequality, namely

|∇|u|| ≤ |� (∇Au sign(u))| ≤ |∇uA|, a.e. inR
N , (2.1)

where

sign(u) =

{
u(x)

|u(x)| if u(x) �= 0,

0 if u(x) = 0.

Hence, if u ∈ H1
A(RN ,C), then |u| ∈ H1(RN ,R). Furthermore, as a consequence of

the diamagnetic inequality, we have that the embedding

H1
A(RN ,C) ↪→ Ls(RN ,C) (2.2)
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is continuous for any s ∈ [2, 2∗].

2.1. Limit Problem

In this subsection, we consider the scalar limit problem associated with (P ), namely

(P0)

{
−Δu + u = |u|p−2u in R

N ,

u ∈ H1
0 (RN ,C),

where p ∈ (2, 2∗). The reader is invited to see that u = u1 + ıu2, with u1 and u2

real valued, is a solution of (P0) if and only if u1 and u2 solve the following elliptic
system

(S0)

⎧⎪⎪⎨
⎪⎪⎩

−Δu1 + u1 =
(√

|u1|2 + |u2|2
)p−2

u1, in R
N ,

−Δu2 + u2 =
(√

|u1|2 + |u2|2
)p−2

u2, in R
N ,

which is a system of the gradient type.
Note that, the solutions of (P0) are critical points of the functional

I0 : H1(RN ,C) → R

u → I0(u) :=
1
2

∫
RN

(|∇u(x)|2 + |u(x)|2)dx − 1
p

∫
RN

|u(x)|pdx.

(2.3)

If c0 denotes the mountain pass level of I0 and N0 is the Nehari manifold defined
as

N0 := {u ∈ H1
0 (RN ,C)\{0} : I ′

0(u)u = 0},

it is well-known (see [30]) that

c0 = c∗
0 := inf

u∈N0
I0(u),

from where it follows that c0 is the least energy of (P0). We recall that u ∈
H1

0 (RN ,C) is a least energy solution of (P0) if I0(u) = c∗
0 and I ′

0(u) = 0, and
c∗
0 is called the least energy of (P0).

Lemma 2.1. The following fact holds: u is a least energy solution of (P0) if, and
only if, v(x) := |u(x)| ∈ H1(RN ) is a least energy solution of

(P∞) −Δv + v = |v|p−2v, in R
N , v > 0.

Moreover, (P0) and (P∞) have the same least energy.

Proof. The proof can be done as in [24, Lemma 2.5]. �

Lemma 2.2. The following facts hold:
(1) c0 > 0 is the least energy of (P∞);
(2) N0 �= ∅;
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(3) c0 is attained, and the set

R0 := {u ∈ N0 : I0(u) = c0, u(0) = ‖u‖∞}
is compact in H1

0 (RN ,C);
(4) There exists C, c > 0 such that

|u(x)| ≤ Ce−c|x| ∀x ∈ R
N , u ∈ R0.

Proof. See [24, Lemma 2.6]. �

Let I∞ : H1(RN ,R) → R be the energy functional given by

I∞(w) :=
1
2

∫
RN

(|∇w(x)|2 + |w(x)|2)dx − 1
p

∫
RN

|w(x)|pdx.

Note that I∞ is defined on H1(RN ,R) while I0 is defined on H1(RN ,C). If c∞
denotes the mountain pass level of I∞ and N∞ is the Nehari manifold given by

N∞ := {w ∈ H1(RN ,R)\{0} : I ′
∞(w)w = 0},

then (see [30])

c∞ = c∗
∞ := inf

w∈N∞
I∞(w).

Let ϕ ∈ H1(RN ,R) be a positive ground state solution of (P∞), that is,

I∞(ϕ) = c∗
∞ = c∞ and I ′

∞(ϕ) = 0. (2.4)

The function ϕ can be chosen radial and decreasing with respect to |x|; see [13].
An immediate consequence of Lemmas 2.1 and 2.2, we have the equality c0 =

c∞, and so, ϕ is also a ground state solution for (P0).
Before concluding this section, we state an important result that is a particular

case of a result due to Bonheure, Nys and Van Schaftingen [14, Theorem 1], which
will be crucial in our approach.

Theorem 2.3. There is κ > 0 such that if w ∈ H1
0 (RN ,C) is a critical point of I0

with I0(w) ≤ c0 +κ, then there are a ∈ R
N and θ ∈ R such that w(x) = eiθϕ(x−a),

for all x ∈ R
N . Hence, I0(w) = c0.

3. A Compactness Result for Energy Functional

In this section, we study some compactness property of the energy functional IA :
H1

A(Ω,C) → R associated with (P ) given by

IA(u) :=
1
2

∫
Ω

(|∇Au(x)|2 + |u(x)|2)dx − 1
p

∫
Ω

|u(x)|pdx.

In the sequel, we denote by cA the mountain pass level of I that satisfies the equality
below

cA = inf
u∈NA

IA(u), (3.1)

where NA is the Nehari manifold of IA given by

NA := {u ∈ H1
A(Ω,C)\{0} : I ′

A(u)u = 0}.
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Theorem 3.1. The equality c0 = cA holds true. Hence, there is no u ∈ H1
A(Ω,C)

such that

IA(u) = cA and I ′
A(u) = 0,

and so, problem (P ) has no ground state solution.

Proof. By using the diamagnetic inequality (2.1),

c0 ≤ cA. (3.2)

Recalling that ϕ satisfies (2.4) and that c0 = c∞, we have that

I0(ϕ) = c0 and I ′
0(ϕ) = 0.

Let (yn) ⊂ Ω be a sequence such that |yn| → +∞, and ρ be the smallest
positive number satisfying

R
N\Ω ⊂ B(0, ρ) = {x ∈ R

N : |x| < ρ}.

Furthermore, let us define ζ ∈ C∞(RN , [0, 1]) by

ζ(x) := ξ

(
|x|
ρ

)
,

where ξ : [0, +∞) → [0, 1] is a smooth non-decreasing function such that

ξ(t) = 0 ∀t ≤ 1 and ξ(t) = 1, ∀t ≥ 2.

Now, we consider the sequence

ψn(x) := ζ(x)ϕ(x − yn),

and fix tn > 0 such that tnψn ∈ NA. By making the change of variable z = x − yn,
we deduce

‖ζϕ(· − yn) − ϕ(· − yn)‖Lp(RN ) =
(∫

RN

|(ζ(x + yn) − 1)ϕ(x)|pdx

)1/p

.

Since |yn| → +∞ as n → +∞, it is easy to check that

|(ζ(x + yn) − 1)ϕ(x)|p → 0 a.e. x ∈ R
N .

As

|(ζ(x + yn) − 1)ϕ(x)|p ≤ |ζ(x + yn) − 1|p|ϕ(x)|p ≤ 2p|ϕ(x)|p ∈ L1(RN ),

the dominated convergence theorem ensures that∫
RN

|ζ(x + yn)ϕ(x) − ϕ(x)|pdx → 0 as n → +∞,

or equivalently,

ζ(· + yn)ϕ → ϕ in Lp(RN ). (3.3)
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Recalling that ζ(x) = 0 for x ∈ R
N\Ω, by the previous discussion,

‖ζϕ(· − yn)‖Lp(Ω) =
(∫

Ω

|ζ(x)ϕ(x − yn)|pdx

)1/p

=
(∫

RN

|ζ(x + yn)ϕ(x)|pdx

)1/p

=
(∫

RN

|ϕ(x)|pdx

)1/p

+ on(1).

On the other hand, for each j ∈ {1, .., N},∫
RN

|Dj(ζ(x)ϕ(x − yn))|2dx =
∫
RN

|(−i∂j + Aj(x))(ζ(x)ϕ(x − yn))|2dx

=
∫
RN

(
|(∂j(ζ(x + yn)ϕ(x))|2 + |Aj(x + yn)ζ(x + yn)ϕ(x)|2

)
dx

=
∫
RN

(
|ζ(x + yn)∂jϕ(x) + ϕ(x)∂jζ(x + yn)|2 + |Aj(x + yn)ζ(x + yn)ϕ(x)|2

)
dx.

Since ζ(x+yn) → 1, A(x+yn) → 0 as n → +∞ and ∂jζ(x+yn) → 0, the dominated
convergence theorem implies that∫

RN

|Dj(ζ(x)ϕ(x − yn))|2dx =
∫
RN

|∂jϕ(x)|2dx + on(1),

and so, ∫
RN

|∇A(ζ(x)ϕ(x − yn))|2dx =
∫
RN

|∇ϕ(x)|2dx + on(1). (3.4)

By the previous analysis together with the fact that ϕ ∈ N0, using translation
invariance it is not difficult to prove that tn → 1. Thus, by definition of cA, (3.3)
and (3.4), we get

cA ≤ IA(tnψn) = c0 + on(1),

that leads to

cA ≤ c0. (3.5)

From (3.2) and (3.5),

c0 = cA. (3.6)

Now, suppose by contradiction that there is v0 ∈ H1
A(Ω,C) such that

IA(v0) = cA and I ′
A(v0) = 0.

By (2.1), (3.6), and recalling that c0 = c∞, we deduce that the function w = |v0| ∈
H1

0 (RN ,R) is a ground state solution of (P∞), that is,

−Δw + w = |w|p−2w, in R
N .

Since w ≥ 0 in R
N and w �= 0, the strong maximum principle ensures that w(x) > 0

for all x ∈ R
N , which is impossible because v0 = 0 in R

N\Ω. �
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3.1. A Compactness Lemma

In this section, we prove a compactness result involving the energy functional IA

associated with (P ). In order to do this, we need to consider the energy functional
I0 : H1

0 (RN ,C) → R associated with (P0) defined as in (2.3). With the above
notations, we are able to prove the following compactness result.

Lemma 3.2. Let (un) ⊂ H1
A(Ω,C) be a sequence such that

IA(un) → c and I ′
A(un) → 0 as n → +∞. (3.7)

Then, up to a subsequence, there exists a weak solution u0 ∈ H1
A(Ω,C) of (P ) such

that

un → u0 in H1(RN )

or there are k functions (uj
n) ⊂ H1

0 (RN ,C), 1 ≤ j ≤ k such that

u0
n = un ⇀ u0 in H1

A(Ω,C),

uj
n ⇀ uj in H1

0 (RN ,C) for 1 ≤ j ≤ k,

where uj are nontrivial weak solutions of (P0), for every 1 ≤ j ≤ k. Furthermore

‖un‖2 → ‖u0‖2 +
k∑

j=1

‖uj‖2
0

and

IA(un) → IA(u0) +
k∑

j=1

I0(uj).

Proof. We proceed by steps.

Step 1. The sequence (un) is bounded in H1
A(Ω,C).

By (3.7),

〈I ′
A(un), ψ〉 = �

∫
Ω

(∇Aun(x) · ∇Aψ(x) + un(x)ψ(x) − |un(x)|p−2un(x)ψ(x))dx

= o(1) (3.8)

for any ψ ∈ H1
A(Ω,C) and

1
2

∫
Ω

(
|∇Aun(x)|2 + |un(x)|2

)
dx − 1

p

∫
Ω

|un(x)|pdx → c. (3.9)

Choosing ψ = un in (3.8), we obtain

‖un‖2 −
∫

Ω

|un(x)|pdx = on(1) (3.10)

which combined with (3.9) and (3.10) gives(
1
2

− 1
p

)
‖un‖2 = c + on(1). (3.11)

Therefore, (un) is bounded in H1
A(Ω,C).
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Consequently, up to a subsequence, there exists u0 ∈ H1
A(Ω,C) such that

un ⇀ u0 in H1
A(Ω,C),

un → u0 in Lp
loc(Ω,C) for p ∈ [2, 2∗),

un(x) → u0(x) a.e. in Ω.

(3.12)

We claim that u0 is a weak solution of (P ). In fact, for an arbitrary function ψ ∈
H1

A(Ω,C), the limit I ′
A(un) → 0 in (H1

A(Ω,C))∗ yields

〈I ′
A(un), ψ〉 → 0 as n → ∞,

that is,

lim
n→∞

�
(∫

Ω

(∇Aun(x)∇Aψ(x) + un(x)ψ(x))dx −
∫

Ω

|un(x)|p−2un(x)ψ(x)dx

)
= 0.

(3.13)

Since un ⇀ u0 in H1
A(Ω,C), it follows that

lim
n→∞

�
∫

Ω

(∇Aun(x)∇Aψ(x) + un(x)ψ(x))dx

= �
∫

Ω

(∇Au0(x)∇Aψ(x) + u0(x)ψ(x))dx. (3.14)

From the boundedness of (un) in H1
A(Ω,C) and Sobolev embedding, we know that

(|un|p−2un) is a bounded sequence in L
p

p−1 (Ω,C). Moreover, by (3.12), we see that

|un|p−2un → |u0|p−2u0 a.e. in Ω.

Consequently, by [27, Lemma 4.8], |u0|p−2u0 is the weak limit of the sequence
(|un|p−2un) in L

p
p−1 (Ω,C). Hence,

lim
n→∞

�
∫

Ω

|un(x)|p−2un(x)ψ(x)dx = �
∫

Ω

|u0(x)|p−2u0(x)ψ(x)dx. (3.15)

From (3.13)–(3.15),

�
(∫

Ω

(∇Au0(x)∇Aψ(x) + u0(x)ψ(x))dx −
∫

Ω

|u0(x)|p−2u0(x)ψ(x)dx

)
= 0,

which means that I ′
A(u0) = 0, and so, u0 is a weak solution of (P ).

Now, let Ψ1
n be the function defined as

Ψ1
n(x) :=

{
(un − u0)(x), x ∈ Ω
0, x ∈ R

N\Ω.

With the above notations, we are able to prove the following steps:

Step 2.

I0(Ψ1
n) = IA(Ψ1

n) + on(1) = IA(un) − IA(u0) + on(1). (3.16)

Note that by the Brezis-Lieb lemma [15],∫
Ω

|un(x)|pdx =
∫

Ω

|u0(x)|pdx +
∫
RN

|Ψ1
n(x)|pdx + on(1). (3.17)
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Moreover,

‖Ψ1
n‖2

0 =
∫
RN

|∇0Ψ1
n(x)|2dx =

∫
RN

| − i∇Ψ1
n(x)|2dx

=
∫
RN

| − i∇Ψ1
n(x) + (A(x) − A(x))Ψ1

n(x)|2dx

=
∫
RN

|∇AΨ1
n(x) − A(x)Ψ1

n(x)|2dx.

Using condition (A), it is easy to prove that

lim
n→∞

∫
RN

|A(x)Ψ1
n(x)|2dx = 0.

Therefore,∫
RN

|∇AΨ1
n(x) − A(x)Ψ1

n(x)|2dx =
∫
RN

|∇AΨ1
n(x)|2dx + on(1) = ‖Ψ1

n‖2
A + on(1).

Consequently,

‖Ψ1
n‖2

0 = ‖Ψ1
n‖2

A + on(1) = ‖un‖2
A − ‖u0‖2

A + on(1).

(3.18)

Now, (3.16) follows from (3.17) and (3.18).

Step 3.

I ′
0(Ψ

1
n) = I ′

A(Ψ1
n) + on(1) = I ′

A(un) − I ′
A(u0) + on(1) = on(1). (3.19)

For each v ∈ H1
A(Ω,C) ⊂ H1

0 (RN ,C) with ‖v‖ ≤ 1, one has

I ′
A(Ψ1

n)v = �
(∫

Ω

(∇AΨ1
n(x) · ∇Av(x) + Ψ1

n(x)v(x))dx −
∫
Ω

|Ψ1
n(x)|p−2Ψ1

n(x)v(x)dx

)

and

I ′
0(Ψ

1
n)v = �

(∫
RN

(∇0Ψ
1
n(x) · ∇0v(x) + Ψ1

n(x)v(x))dx −
∫
RN

|Ψ1
n(x)|p−2Ψ1

n(x)v(x)dx

)
.

Then, as in the previous step,

∣∣〈I ′
A(Ψ1

n) − I ′
0(Ψ

1
n), v〉∣∣ =

∣∣∣∣�
(∫

Ω

(∇AΨ1
n(x) · ∇Av(x) − ∇0Ψ

1
n(x) · ∇0v(x))dx

)∣∣∣∣ = on(1)

for every v ∈ H1
A(Ω,C) with ‖v‖ ≤ 1. Consequently,

I ′
0(Ψ

1
n) = I ′

A(Ψ1
n) + on(1), in H1

A(Ω,C)′. (3.20)

Now, we are going to show that

I ′
A(Ψ1

n) = I ′
A(un) − I ′

A(u0) + on(1) = on(1). (3.21)
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Note that

〈I ′
A(Ψ1

n) − I ′
A(un) + I ′

A(u0), v〉

= �
(∫

Ω

∇AΨ1
n(x)∇Av(x) + Ψ1

n(x)v(x)dx −
∫

Ω

|Ψ1
n(x)|p−2Ψ1

n(x)v(x)dx

)

− �
(∫

Ω

∇Aun(x)∇Av(x) + un(x)v(x)dx −
∫

Ω

|un(x)|p−2un(x)v(x)dx

)

+ �
(∫

Ω

∇Au0(x)∇Av(x) + u0(x)v(x)dx −
∫

Ω

|u0(x)|p−2u0(x)v(x)dx

)
.

As Ψ1
n = un − u0 in Ω, by Hölder inequality,

|〈I ′
A(Ψ1

n) − I ′
A(un) + I ′

A(u0), v〉|

=
∣∣∣∣�

∫
Ω

(
|un(x)|p−2un(x) − |u0(x)|p−2u0(x) − |Ψ1

n(x)|p−2(x)Ψ1
n(x)

)
vdx

∣∣∣∣
≤

∫
Ω

||un(x)|p−2un(x) − |u0(x)|p−2u0(x) − |Ψ1
n(x)|p−2Ψ1

n(x)||v(x)|dx

≤ C

(∫
Ω

||un(x)|p−2un(x) − |u0(x)|p−2u0(x) − |Ψ1
n(x)|p−2Ψ1

n(x)|
p

p−1 dx

)p−1
p

.

Recalling that by [1, Lemma 3] there holds(∫
Ω

||un(x)|p−2un(x) − |u0(x)|p−2u0(x) − |Ψ1
n(x)|p−2Ψ1

n(x)|
p

p−1 dx

)p−1
p

= on(1),

it follows that

I ′
A(Ψ1

n) = I ′
A(un) − I ′

A(u0) + on(1).

As u0 is critical point of IA, we have I ′
A(u0) = 0 and thus (3.19) holds.

If Ψ1
n → 0 in H1

A(Ω,C) the statements of the main result are verified. Thus, we
can suppose that

Ψ1
n �→ 0 in H1

A(Ω,C). (3.22)

By using the fact that

I0(Ψ1
n) =

1
2
‖Ψ1

n‖2
0 − 1

p

∫
RN

|Ψ1
n(x)|pdx,

and I ′
0(Ψ

1
n) = on(1), we have

I ′
0(Ψ

1
n)Ψ1

n = ‖Ψ1
n‖2

0 −
∫
RN

|Ψ1
n(x)|pdx = on(1). (3.23)

Therefore,

I0(ψ1
n) =

(
1
2

− 1
p

)
‖Ψ1

n‖2
0 + on(1).

By (3.22), there is α > 0 such that

I0(Ψ1
n) ≥ α > 0. (3.24)
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Now, let us decompose R
N into N -dimensional unit hypercubes Qi whose vertices

have integer coordinates and put

dn := max
i

‖Ψ1
n‖Lp(Qi). (3.25)

Arguing as in [12, Lemma 3.1], there is γ > 0 such that

dn ≥ γ > 0. (3.26)

Denote by (y1
n) the center of a hypercube Qi in which ‖Ψ1

n‖Lp(Qi) = dn. We claim
that (y1

n) is unbounded sequence in R
N . Arguing by contradiction, let us suppose

that (y1
n) is bounded in R

N . Then, there is R > 0 such that∫
B(0,R)

|Ψ1
n(x)|pdx ≥

∫
Qi(y1

n)

|Ψ1
n(x)|pdx = dp

n > γp > 0. (3.27)

On the other hand, since Ψ1
n ⇀ 0 in H1

0 (RN ,C), the local compactness of the
Sobolev embedding gives∫

B(0,R)

|Ψ1
n(x)|pdx → 0, as n → +∞,

against (3.27). Therefore, the sequence (y1
n) is unbounded. Since

‖Ψ1
n(· + y1

n)‖0 = ‖Ψ1
n‖0 ∀n ∈ N,

we deduce that (Ψ1
n(· + y1

n)) is a bounded sequence in H1
0 (RN ,C). Then, there is

u1 ∈ H1
0 (RN ,C) such that

Ψ1
n(· + y1

n) ⇀ u1 in H1
0 (RN ,C)

and

Ψ1
n(· + y1

n) → u1 in Lp
loc(R

N ,C).

Step 4. u1 is a nontrivial weak solution of (P0).
First, by (3.27), we derive that u1 �= 0, and by a straightforward computation

I ′
0(Ψ

1
n(· + y1

n))ϕ = on(1), ∀ϕ ∈ C∞
0 (RN ,C).

Thus, passing to the limit as n → +∞, we find

�
(∫

RN

(∇0u
1(x) · ∇dϕ(x) + u1(x)ϕ(x))dx

)

= �
(∫

RN

|u1(x)|p−2u1(x)ϕ(x)dx

)
, ∀ϕ ∈ C∞

0 (RN ,C).

Now, the density of C∞
0 (RN ,C) in H1

0 (RN ,C) ensures that

�
(∫

RN

(∇0u
1(x) · ∇dw(x) + u1(x)w(x))dx

)

= �
(∫

RN

|u1(x)|p−2u1(x)w(x)dx

)
, ∀w ∈ H1

0 (RN ,C),

i.e., the function u1 is a nontrivial weak solution of problem (P0).
We can repeat this process obtaining the sequences

Ψj
n(x) = Ψj−1

n (x + yj−1
n ) − uj−1(x), j ≥ 2,



536 C. O. Alves et al. Vol. 89 (2021)

with

|yj
n| → +∞, as n → +∞

and

Ψj−1
n (x + yj−1

n ) ⇀ uj−1 in H1
0 (RN ,C), (3.28)

where each function uj is a nontrivial weak solution of problem (P0).
Now, an inductive argument ensures that

‖Ψj
n‖2

0 = ‖Ψj−1
n ‖2

0 − ‖uj−1‖2
0 + on(1) = ‖un‖2

A − ‖u0‖2
A −

j−1∑
i=1

‖ui‖2
0 + on(1)

(3.29)

and

I0(Ψj
n) = I0(Ψj−1

n ) − I0(uj−1) + on(1) = IA(un) − IA(u0) −
j−1∑
i=1

I0(ui) + on(1).

(3.30)

Since uj is a nontrivial solution of (P0), it follows that

I0(uj) ≥ c0, (3.31)

for every 1 ≤ j ≤ k. Now, the rest of the proof follows as in [12, Lemma 3.1]. �
Corollary 3.3. Let (un) be as in Lemma 3.2 with c < c0. Then (un) admits a strongly
convergent subsequence. Hence, the functional IA verifies the (PS)c condition, for
every c ∈ (0, c0) .

Proof. The argument is standard. However, we give the details for the reader’s
convenience. Thanks to our hypotheses, one has

IA(un) → c and I ′
A(un) → 0 as n → +∞,

with c < c0. Without loss of generality, we can suppose that (un) is bounded in
H1

A(Ω,C). Then, up to some subsequence, there exists u0 ∈ H1
A(Ω,C) such that

un ⇀ u0 in H1
A(Ω,C).

If u �→ u0 in H1
A(Ω,C), by Lemma 3.2 we must have k ≥ 1. Hence,

IA(un) → c ≥ c0,

which contradicts c < c0. Thereby,

un ⇀ u0 and ‖un‖2 → ‖u0‖2,

and this implies that un → u0 in H1
A(Ω,C). �

Corollary 3.4. Assume that there exists (un) for which all the assumptions of Lemma
3.2 hold. If

c0 < c < c0 + κ1, (3.32)

where κ1 < min{κ, c0}, then (un) admits a strongly convergent subsequence. Hence,
the energy functional IA satisfies the (PS)c condition, for every c ∈ (c0, c0 + κ1) ,
where κ is given by Theorem 2.3.
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Proof. Assume by contradiction that un �→ u0 in H1
A(Ω,C). By Lemma 3.2, it follows

that k ≥ 1. As I0(uj) ≥ c0, we must have k = 1, and so,

IA(un) → IA(u0) + I0(u1).

We claim that u0 �= 0, otherwise

I0(u1) = IA(un) + on(1) = c + on(1)

and thus u1 is a critical point of I0 with I0(u1) < c0 + κ1. Hence, by Theorem 2.3,
we must have I0(u1) = c0, which is impossible because c > c0. From this, u0 �= 0
and

IA(u0) ≥ cA = c0.

Hence, the limit equality

IA(un) = IA(u0) + I0(u1) + on(1),

yields that

lim
n→+∞

IA(un) = IA(u0) + I0(u1) ≥ 2c0,

which gives an absurd. Thus, we must have un → u0 in H1
A(Ω,C). This shows the

desired result. �

4. Technical Estimates

The main goal this section is to establish some technical estimates that we will use
in the proof of Theorem 1.1.

We start by introducing the following operator

Φρ : RN → H1
0 (RN ,C)

y → Φρ(y) := φy,ρ,

where

φy,ρ(x) := ζ(x)ϕ(x − y) = ξ

(
|x|
ρ

)
ϕ(x − y),

ϕ is the positive ground state of (P∞) satisfying (2.4) and ζ, ξ are given as in the
proof of Theorem 3.1. A direct computation ensures that the functions φy,ρ belong
to H1

A(Ω,C) and Lp(Ω,C), respectively. From now on, we take ty,ρ > 0 such that
ψρ(y) = ty,ρφy,ρ ∈ NA.

Lemma 4.1. The following relations hold:

(i) lim sup
ρ→0

IA(ψρ(y)) ≤ c0 + MΓ‖ϕ‖2
L2(Ω) uniformly in y;

(ii) IA(ψρ(y)) → c0 as |y| → +∞, for every ρ,

where M :=
∑N

j=1 ‖Aj‖2
∞ and Γ > 0 is a constant independent of y.
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Proof. (i) Note that∫
RN

|φy,ρ(x) − ϕ(x − y)|2dx =
∫
RN

∣∣∣∣
(

ξ

(
|x|
ρ

)
− 1

)
ϕ(x − y)

∣∣∣∣
2

dx

=
∫
RN

∣∣∣∣
(

ξ

(
|x|
ρ

)
− 1

)
ϕ(x − y)

∣∣∣∣
2

dx

=
∫

B(0,2ρ)

∣∣∣∣
(

ξ

(
|x|
ρ

)
− 1

)
ϕ(x − y)

∣∣∣∣
2

dx

≤ C1ϕ
2(0)|B(0, 2ρ)| → 0 as ρ → 0,

from where it follows that

φy,ρ → ϕ(· − y) in L2(RN ) as ρ → 0, uniformly in y ∈ R
N .

Consequently,

‖φy,ρ‖2
L2(Ω) → ‖ϕ(· − y)‖2

L2(RN ) = ‖ϕ‖2
L2(RN ) as ρ → 0, uniformly in y ∈ R

N .

(4.1)

In the same way, we can show that

φy,ρ → ϕ(· − y) in Lp(RN ) as ρ → 0, uniformly in y ∈ R
N

and

‖φy,ρ‖p
Lp(Ω) → ‖ϕ(· − y)‖p

Lp(RN )
= ‖ϕ‖p

Lp(RN )
as ρ → 0, uniformly in y ∈ R

N .

(4.2)

On the other hand, note that for each j ∈ {1, .., N},∫
Ω

|Djφy,ρ(x)|2dx =
∫
RN

| − i∂jφy,ρ(x) + Aj(x)φy,ρ(x)|2dx

=
∫
RN

(
|∂jφy,ρ(x)|2 + |Aj(x)φy,ρ(x)|2

)
dx

≤
∫
RN

|∂jφy,ρ(x)|2 dx + ‖Aj‖2
∞‖ϕ‖2

L2(Ω).

We claim that ∫
RN

|∂jφy,ρ(x)|2 dx →
∫
RN

|∂jϕ(x)|2 dx as ρ → 0. (4.3)

Indeed, note that ∫
RN

∣∣∣∣ϕ(x − y)∂jξ

(
|x|
ρ

)∣∣∣∣
2

dx ≤ ‖ϕ‖2
∞|B(0, ρ)|,

which yields

lim
ρ→0

∫
RN

∣∣∣∣ϕ(x − y)∂jξ

(
|x|
ρ

)∣∣∣∣
2

dx = 0, uniformly in y ∈ R
N .

Since

lim
ρ→0

∫
RN

∣∣∣∣ξ
(

|x|
ρ

)
∂jϕ(x − y)

∣∣∣∣
2

dx =
∫
RN

|∂jϕ(x − y)|2 dx, uniformly in y ∈ R
N ,
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we can deduce that (4.3) holds.
As ψρ(y) = ty,ρφy,ρ ∈ NA, it follows that

ty,ρ‖φy,ρ‖2
A = tp−1

y,ρ

∫
Ω

|φy,ρ(x)|pdx.

This combined with diamagnetic inequality (2.1) leads to

ty,ρ‖φy,ρ‖2
H1(RN ) ≤ tp−1

y,ρ

∫
RN

|φy,ρ(x)|pdx.

Now, recalling that

‖φy,ρ‖2
H1(RN ) → ‖ϕ‖2

H1(RN ) and ‖φy,ρ‖2
Lp(RN ) → ‖ϕ‖2

Lp(RN )

as ρ → 0, uniformly in y, we can infer that

lim inf
ρ→0

ty,ρ ≥ 1 uniformly in y ∈ R
N .

On the other hand, we also know that the limits below

lim supρ→0 ‖φy,ρ‖2
A ≤ ‖ϕ‖2

H1(RN ) + M‖ϕ‖2
L2(Ω) and

lim supρ→0

∫
Ω

|φy,ρ(x)|pdx =
∫
RN |ϕ(x)|pdx,

are uniform in y ∈ R
N . These facts imply that there exists C > 0 that depends on

M , which is independent of y ∈ R
N , such that

lim sup
ρ→0

ty,ρ ≤ C uniformly in y ∈ R
N .

Indeed,

lim sup
ρ→0

ty,ρ = lim sup
ρ→0

(
‖φy,ρ‖2

A

‖φy,ρ‖p
Lp(RN )

) 1
p−2

≤
(

‖ϕ‖2
H1(RN ) + M‖ϕ‖2

L2(Ω)

‖ϕ‖p
Lp(RN )

) 1
p−2

=: C.

Therefore, using the fact that ϕ satisfies (2.4) and that c0 = c∞, we obtain

lim sup
ρ→0

IA(ψρ(y)) = lim sup
ρ→0

IA(ty,ρφy,ρ) ≤ C2I∞(ϕ) + MΓ‖ϕ‖2
L2(Ω) = c0 + MΓ‖ϕ‖2

L2(Ω),

where Γ := C2

2 . We point out that, from the above calculations, Γ is bounded when
M → 0. This information will be useful in the next section.
(ii) For each fixed ρ, let us consider an arbitrary sequence (yn) ⊂ R

N with |yn| → ∞
as n → +∞ and let tyn,ρ > 0 such that tyn,ρφyn,ρ ∈ NA. As in the proof of Theorem
3.1,

‖ψyn,ρ‖2
A → ‖ϕ(· − yn)‖2

0,

∫
Ω

|φyn,ρ(x)|pdx →
∫
RN

|ϕ(x − yn)|pdx and tyn,ρ → 1.

From this,

IA(ψρ(yn)) = IA(tyn,ρφyn,ρ) = I0(ϕ) + on(1) = I∞(ϕ) + on(1) = c∞ + on(1) = c0 + on(1).

�

In light of the previous lemma, we can prove the corollary below.
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Corollary 4.2. There is ρ0 > 0 and ε > 0 such that if ‖A‖∞ < ε, then

sup
y∈RN

IA(ψρ(y)) < c0 + κ1, ∀ρ ≤ ρ0. (4.4)

Proof. By Lemma 4.1—Part (i), one has

lim sup
ρ→0

IA(ψρ(y)) ≤ c0 + MΓ‖ϕ‖2
L2(RN ),

where M =
∑N

j=1 ‖Aj‖2
∞, for every y ∈ R

N . So, there is ρ0 > 0 small enough such
that

sup
y∈RN

IA(ψρ(y)) ≤ c0 + 2MΓ‖ϕ‖2
L2(RN ), ∀ρ < ρ0.

Fixing ε > 0 such that if ‖A‖∞ < ε then 2MΓ‖ϕ‖2
L2(Ω) < κ1, we must have that

sup
y∈RN

IA(ψρ(y)) ≤ c0 + 2MΓ‖ϕ‖2
L2(Ω) < c0 + κ1.

This ends the proof of the corollary. �

Hereafter, let us fix ρ ∈ (0, ρ0), such that

R
N\Ω ⊂ B(0, ρ).

Furthermore, we consider the barycenter function given by

τ : H1
0 (RN ,C) → R

N

u → τ(u) :=
∫
RN

|u(x)|2χ(|x|)xdx,

where χ ∈ C(R+,R) is a non-increasing real function such that

χ(t) =

{
1, t ∈ (0, R]
R
t , t > R,

for some R > 0 such that R
N\Ω ⊂ B(0, R). By definition of χ,

χ(|x|)|x| ≤ R, ∀x ∈ R
N . (4.5)

Set

T0 := {u ∈ NA : τ(u) = 0} ⊂ NA ⊂ H1
A(Ω,C).

Lemma 4.3. If

λ0 := inf
u∈T0

IA(u),

then

c0 < λ0 (4.6)

and there exists R0 > 0, with R0 > ρ such that:
(i) If y ∈ R

N with |y| ≥ R0, then

IA(ψρ(y)) ∈
(
c0,

c0 + λ0

2

)
.



Vol. 89 (2021) Magnetic Problem on Exterior Domains 541

(ii) If y ∈ R
N with |y| = R0, then

〈τ(ψρ(y)), y〉 > 0.

Proof. Since T0 ⊂ NA and

c0 = cA = inf
u∈NA

IA(u),

we have

c0 ≤ λ0.

Now we are going to show that c0 �= λ0. Suppose by contradiction that c0 = λ0.
Then, there exists a minimizing sequence (un) ⊂ T0 ⊂ H1

A(Ω,C) such that

IA(un) → c0 and τ(un) = 0 ∀n ∈ N.

By the Ekeland variational principle [30, Theorem 2.4], we can find a sequence
(wn) ⊂ NA such that

IA(wn) → c0, ∇NA
IA(wn) → 0 and ‖wn − un‖A → 0.

A well-known computation shows that (un) and (wn) are bounded. Moreover, there
exists a sequence (λn) ⊂ R such that

I ′
A(wn) − λnJ ′

A(wn) = on(1), (4.7)

where JA(u) = 〈I ′
A(u), u〉. Using standard arguments, we have that λn → 0, and

then (4.7) yields

I ′
A(wn) → 0.

Assuming that wn ⇀ w0 in H1
A(Ω,C), we have that I ′

A(w0) = 0, and so, w0 is a
solution for (P ). Hence, by Theorem 3.1, we cannot have wn → w0 in H1

A(Ω,C),
because this convergence would imply in IA(w0) = c0 = cA. Thereby, by Lemma
3.2,

c0 = lim
n→+∞

IA(wn) = IA(w0) +
k∑

j=1

I0(uj) ≥ IA(w0) + kc0.

As IA(w0) ≥ 0, then k = 1, w0 = 0 and u1 is a nontrivial solution of (P0) with
I0(u1) = c0. From Theorem 2.3, there are θ > 0 and a ∈ R

N such that

u1(x) = eiθϕ(x − a), ∀x ∈ R
N . (4.8)

Since wn ⇀ w0 = 0, we get

Ψn(x + y1
n) = wn(x + y1

n) ⇀ u1(x)

and

‖Ψn(· + y1
n)‖2

A = ‖wn(· + y1
n)‖2

A → ‖u1‖2
0,

where (y1
n) must be a sequence satisfying |y1

n| → ∞. Therefore,

wn(· + y1
n) → u1 in H1

A(RN ,C).

Setting

u = u1, yn = y1
n and vn(x + y1

n) = wn(x + y1
n) − u1(x),
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we have

vn(x) = wn(x) − u(x − yn) and ‖vn‖2
A = ‖wn(· + yn) − u‖2

A.

Therefore, the strong convergence of (wn(·+yn)) to u1 yields vn → 0 in H1
0 (RN ,C).

Next, we consider the following sets

(RN )+n := {x ∈ R
N : 〈x, yn + a〉 > 0} and (RN )−

n = R
N\(RN )+n ,

where the vector a is given in (4.8). Using the fact that |yn| → +∞ as n → +∞,
we claim that there is a ball

B(yn + a, r∗) = {x ∈ R
N : |x − yn − a| < r∗} ⊂ (RN )+n

such that

ϕ(x − yn − a) ≥ 1
2
ϕ(0) > 0, ∀x ∈ B(yn + a, r∗). (4.9)

It is easy to see that (4.9) holds for r∗ > 0 small enough, because ϕ is positive,
radial, strictly decreasing with respect to |x| and

ϕ(0) = max
z∈RN

ϕ(z).

On the other hand, for each r∗ > 0 fixed, there is n0 such that

〈x, yn + a〉 >
|x|2 + |yn + a|2 − r2∗

2
≥ |yn + a|2 − r2∗

2
> 0, ∀n ≥ n0, ∀x ∈ B(yn + a, r∗),

showing that

B(yn + a, r∗) ⊂ (RN )+n , for n large enough.

Hence, for n large enough,

|ϕ(x − yn − a)|2, χ(|x|), 〈x, yn〉 > 0 ∀x ∈ (RN )+n , B(yn + a, r∗) ⊂ (RN )∗
n,

and |x| > R for every x ∈ B(yn + a, r∗). Using this information, we find∫
(RN )+n

|u(x − yn)|2χ(|x|)〈x, yn + a〉dx =
∫

(RN )+n

|ϕ(x − yn − a)|2χ(|x|)〈x, yn + a〉dx

≥ |ϕ(0)|2
4

∫
B(yn+a,r∗)

χ(|x|)〈x, yn + a〉dx

=
|ϕ(0)|2

8
R|B(yn + a, r∗)||yn + a| > 0.

Recalling that for each x ∈ (RN )−
n ,

|x − yn − a| ≥ |x|,
and using again the fact that ϕ is radial with relation to the origin and decreasing,
it follows that

|u(x − yn)|2χ(|x|)|x| = |ϕ(x − yn − a)|2χ(|x|)|x| ≤ R|ϕ(|x|)|2 ∈ L1(RN ).

This fact, combined with the limit

ϕ(· − yn − a) → 0 as |yn| → +∞
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ensures that ∫
(RN )−

n

|u(x − yn)|2χ(|x|)|x|dx = on(1). (4.10)

Therefore, by the Cauchy-Schwarz inequality and (4.10),

〈τ(u(x − yn)),
yn + a

|yn + a| 〉 =
∫

(RN )+n

|ϕ(x − yn − a)|2χ(|x|)〈x,
yn + a

|yn + a| 〉dx

+
∫

(RN )−
n

|ϕ(x − yn − a)|2χ(|x|)〈x,
yn + a

|yn + a| 〉dx

≥ R|ϕ(0)|2
8

|B(yn + a, r∗)| −
∫

(RN )−
n

|ϕ(x − yn − a)|2χ(|x|)|x|dx

≥ R|ϕ(0)|2
8

|B(yn + a, r∗)| − on(1) > 0.

(4.11)

Now, using the fact that wn → u1 in H1
0 (RN ,C) together with the limit τ(wn) =

on(1), we find that

τ(u(x − yn)) = on(1), (4.12)

which contradicts (4.11), and so,

c0 < λ0.

Now we are ready to prove the assertion (i) of Lemma 4.3. As ψρ(y) = ty,ρφy,ρ ∈ N0,
by Theorem 3.1,

IA(ψρ(y)) > cA = c0, ∀y ∈ R
N .

By Lemma 4.1-part (ii), for each ρ fixed

IA(ψρ(y)) → c0 as |y| → ∞. (4.13)

Thereby, for a given ε1 ∈ (0, λ0−c0
2 ), there is R0 > 0 such that

∣∣∣IA(ψρ(y)) − c0

∣∣∣ < ε1 whenever |y| ≥ R0.

From this

IA(ψρ(y)) ∈
(

c0,
λ0 + c0

2

)
, ∀y ∈ R

N such that |y| ≥ R0.
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Finally, let us show assertion (ii) of Lemma 4.3, by definition of ψρ(y) and
arguing as above with |y| large enough, we derive

〈τ(ψρ(y)),
y

|y| 〉 = t2y,ρ

∫
(RN )+n

|φy,ρ(x)|2χ(|x|)〈x,
y

|y| 〉dx

+ t2y,ρ

∫
(RN )−

n

|φy,ρ(x)|2χ(|x|)〈x,
y

|y| 〉dx

≥ t2y,ρ

∫
B(y,r∗)

|φy,ρ(x)|2χ(|x|)〈x,
y

|y| 〉dx

+ t2y,ρ

∫
(RN )−

n

|φy,ρ(x)|2χ(|x|)〈x,
y

|y| 〉dx

≥ t2y,ρ

|ϕ(0)|2
4

∫
B(y,r∗)

∣∣∣∣ξ
(

|x|
ρ

)∣∣∣∣
2

χ(|x|)〈x,
y

|y| 〉dx − o(1).

As ty,ρ → 1 as |y| → +∞, we have for |y| = R0 large,〈
τ(ψρ(y)),

y

|y|

〉
> 0. (4.14)

�

5. Proof of Theorem 1.1

In the sequel, we consider the sets

Σ := {ψρ(y) : |y| ≤ R0} ⊂ H1
A(Ω,C),

H :=
{

h ∈ C(NA, NA) : h(u) = u, ∀u ∈ NA with IA(u) <
λ0 + c0

2

}

and

Υ := {B ∈ NA : B = h(Σ), h ∈ H}.

Lemma 5.1. If B ∈ Υ, then B ∩ T0 �= ∅.

Proof. We are going to show that, for every B ∈ Υ, there exists u ∈ B such that
τ(u) = 0. Equivalently, we prove that: for every h ∈ H, there exists ỹ ∈ R

N with
|ỹ| ≤ R0 such that

(τ ◦ h ◦ ψρ)(ỹ) = 0. (5.1)

For any h ∈ H, we set the functions

J := τ ◦ h ◦ ψρ : RN → R
N

and F : [0, 1] × B(0, R0) → R
N given by

F(t, z) := tJ (z) + (1 − t)z.
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We claim that 0 �∈ F(t, ∂B(0, R0)). Indeed, for |y| = R0, by Lemma 4.3—Part (i)
we have

IA(ψρ(y)) <
λ0 + c0

2
.

Hence,

F(t, y) = t(τ ◦ ψρ)(y) + (1 − t)y

and

〈F(t, y), y〉 = t〈τ(ψρ(y)), y〉 + (1 − t)〈y, y〉. (5.2)

Now
◦ If t = 0, then 〈F(0, y), y〉 = |y|2 = R2

0 > 0;
◦ If t = 1, then by Lemma 4.3—Part (ii) we have 〈F(1, y), y〉 = 〈τ(ψρ(y)), y〉 > 0;
◦ If t ∈ (0, 1), then 〈F(t, y), y〉 > 0, since the terms t, 1 − t, 〈τ(ψρ(y)), y〉 and |y|2

are positives.
Then, by using the homotopy-invariance of the Brouwer degree, one has

d(F(t, ·), B(0, R0), 0) = constant, ∀t ∈ [0, 1].

Recalling that

d(J , B(0, R0), 0) = 1 �= 0,

there exists ỹ ∈ B(0, R0) such that J (ỹ) = 0, that is,

J (ỹ) = (τ ◦ h ◦ ψρ)(ỹ) = 0.

This completes the proof of Lemma 5.1. �

Now, let us define

c := inf
B∈Υ

sup
u∈B

IA(u), (5.3)

Kc := {u ∈ NA : IA(u) = c and ∇IA

∣∣∣
NA

(u) = 0}

and

Lγ := {u ∈ NA : IA(u) ≤ γ},

for every γ ∈ R.

Proof of Theorem 1.1. We choose ρ = ρ0, where ρ0 is given in Corollary 4.2. We
claim that the constant c defined in (5.3) is a critical value for IA, that is, Kc �= ∅.
We start our analysis by noting that

c0 < c < c0 + κ1. (5.4)

First of all, we recall that by Lemma 5.1, B ∩ T0 �= ∅ for every B ∈ Υ. Then, for
each B ∈ Υ, there is ũ ∈ B ∩ T0 such that

inf
u∈T0

IA(u) ≤ inf
u∈B∩T0

IA(u) ≤ IA(ũ) ≤ sup
u∈B∩T0

IA(u) ≤ sup
u∈B

IA(u). (5.5)
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By Lemma 4.3 and (5.5),

c0 < λ0 = inf
u∈T0

IA(u) ≤ sup
u∈B

IA(u), ∀B ∈ Υ.

Thus

c0 < λ0 ≤ inf
B∈Υ

sup
u∈B

IA(u) = c. (5.6)

Since

c ≤ sup
u∈B

IA(u), ∀B ∈ Υ, (5.7)

it follows that

c ≤ sup
|y|≤R0

IA(h(ψρ(y))), ∀h ∈ H.

Now, taking h ≡ I, we find

c ≤ sup
|y|≤R0

IA(ψρ(z)) ≤ sup
y∈RN

IA(ψρ(y)).

The last inequality, together with Corollary 4.2 and (5.6) leads to

c0 < c < c0 + κ1, (5.8)

which proves (5.4).
Suppose by contradiction that Kc = ∅. Recall that

λ0 + c0

2
≤ c + c0

2
< c < c0 + κ1.

By Corollary 3.4 and the deformation lemma [30], there is a continuous map

η : [0, 1] × NA → NA

and a positive number ε0 such that
(a) Lc+ε0\Lc−ε0 ⊂⊂ Lc0+κ1\Lλ0+c0

2
,

(b) η(t, u) = u, ∀u ∈ Lc−ε0 ∪ {NA\Lc+ε0} and ∀t ∈ [0, 1],
(c) η(1, Lc+

ε0
2

) ⊂ Lc− ε0
2

.

Fix B̃ ∈ Υ such that

c ≤ sup
u∈B̃

IA(u) < c +
ε0

2
.

Since

IA(u) < c +
ε0

2
, ∀u ∈ B̃,

it follows that

B̃ ⊂ Lc+
ε0
2

.

Now, by (c), one has

IA(u) < c − ε0

2
, ∀u ∈ η(1, B̃),
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that is,

sup
u∈η(1,B̃)

IA(u) < c − ε0

2
. (5.9)

On the other hand, we notice that η(1, ·) ∈ C(NA, NA). Moreover, since B̃ ∈ Υ,
there exists h ∈ H such that B̃ = h(Σ). Consequently,

h̃ = η(1, ·) ◦ h ∈ C(NA, NA).

Since h ∈ H, it follows that

h(u) = u, ∀u ∈ NA with IA(u) <
λ0 + c0

2

and

h̃(u) = η(1, u) ∀u ∈ NA with IA(u) <
λ0 + c0

2
.

Taking into account that

λ0 + c0

2
< c − ε0,

by item (b), we easily have

h̃(u) = η(1, u) = u, ∀u ∈ NA with IA(u) <
λ0 + c0

2
< c − ε0.

Then h̃ ∈ H. Moreover

η(1, Ã) ∈ Γ,

owing to η(1, B̃) = h̃(Σ). Therefore, exploiting the definition of c, we have

c ≤ sup
u∈η(1,B̃)

IA(u),

which contradicts (5.9). Thereby, Kc �= ∅ and c is a critical value of IA on NA,
namely there is at least one nontrivial weak solution of (P ). Hence, Theorem 1.1 is
proved.
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