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Asymptotic Properties of Solutions to the
Cauchy Problem for Degenerate Parabolic
Equations with Inhomogeneous Density on
Manifolds

Daniele Andreucci and Anatoli F. Tedeev

Abstract. We consider the Cauchy problem for doubly nonlinear degenerate par-
abolic equations with inhomogeneous density on noncompact Riemannian mani-
folds. We give a qualitative classification of the behavior of the solutions of the
problem depending on the behavior of the density function at infinity and the
geometry of the manifold, which is described in terms of its isoperimetric func-
tion. We establish for the solutions properties as: stabilization of the solution to
zero for large times, finite speed of propagation, universal bounds of the solution,
blow up of the interface. Each one of these behaviors of course takes place in a
suitable range of parameters, whose definition involves a universal geometrical
characteristic function, depending both on the geometry of the manifold and on
the asymptotics of the density at infinity.
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1. Introduction

We consider the Cauchy problem

ρ(x)ut − Δp,m(u) = 0, x ∈ M, t > 0, (1.1)

u(x, 0) = u0(x), x ∈ M. (1.2)

We consider in fact only non-negative solutions to (1.1) and (1.2). Here M is a
complete Riemannian manifold of topological dimension N , with infinite volume. In
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local coordinates xi, we denote

Δp,m(u) =
1

√
det(gij)

N∑

i,j=1

∂

∂xi

(√
det(gij)gijum−1|∇u|p−2 ∂u

∂xj

)
,

where (gij) denotes the Riemannian metric, (gij) = (gij)−1, ∇u is the gradient with
respect to (gij), and

|∇u|2 =
N∑

i,j=1

gij ∂u

∂xj

∂u

∂xi
.

We always assume that 1 < p < N , and that either

p + m − 3 > 0, (1.3)

or

p + m − 3 < 0, m > 0. (1.4)

In this paper we follow an approach ultimately based on the classical DeGiorgi
estimates [13,26]; a new technical tool is the weighted Faber–Krahn type inequality
of Lemmas 2.10 and 2.11. This inequality takes into account the asymptotic behav-
iors both of the density function ρ and of the volume growth of the manifold at
infinity. We use the isoperimetrical properties of the manifold, which also allow us
to prove new embedding results which we think are of independent interest.

We establish in the slow diffusion case (1.3), and also in the fast diffusion case
(1.4) under additional assumptions, the decay rate for large times of nonnegative
solutions, for initial data of finite mass. In the degenerate case we also estimate the
finite speed of propagation for the support of solutions with a bounded support.
These results apply in a subcritical case where, roughly speaking, the density func-
tion decays not too fast at infinity. Where we have explicit solutions, that is in the
Euclidean case, our estimates reduce to the known optimal ones.

Still in the slow diffusion case, but when the density function decays fast
enough, we investigate the behavior of the solutions for large t; we obtain under
different assumptions a universal bound for solutions and a result of interface blow
up. The universal bound is the same as in the Euclidean case, as expected; see also
Remark 1.1.

The various cases recalled above are discriminated in terms of the behavior of
a universal function involving the density and the volume growth of the manifold
(see Remark 1.4).

The interest of this problem appeared first in the case M = R3 with the
Euclidean metric, where [25,38] obtained the first surprising results, in symmet-
ric cases, on the qualitative properties of solutions to the porous media equation
with inhomogeneous density. The interface blow up in the Euclidean setting was
first shown in [23]; [42] extended it to a wide class of doubly degenerate parabolic
equations.

Remark 1.1. (The Euclidean case M = RN ) Let us here explicitly recall the be-
havior of solutions in the Euclidean case, when ρ(x) = (1 + |x|)−α in (1.1), for
x ∈ M = RN , for a given 0 < α < N , in the degenerate case (1.3). Such a behavior
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strongly depends on the interplay between the nonlinearities appearing in the equa-
tion, at least from a two-fold point of view, that is both as far as the sup bounds
for solutions are concerned, and then also if we consider the property of finite speed
of propagation, see [42] for the following results; see also [15].
Concerning the first issue, the limiting threshold is α = p: in the range α < p the
sup estimates for solutions depend on the initial data in the spirit of what is known
for the homogeneous doubly nonlinear equation. More explicitly,

‖u(t)‖∞ ≤ γt−
N−α

(N−α)(m+p−3)+p−α ‖ρu0‖
p−α

(N−α)(m+p−3)+p−α

1 , t > 0. (1.5)

Instead in the range α > p one can prove a universal bound: the initial mass
disappears from the estimate; more exactly for a γ independent of the solution
we have

‖u(t)‖∞ ≤ γt−
1

m+p−3 , t > 0. (1.6)

Concerning the second issue of finite speed of propagation, which is connected to
conservation of mass, a second explicit threshold appears, given by

α∗ =
N(m + p − 3) + p

m + p − 2
∈ (p, N). (1.7)

Clearly, we assume that the initial data has compact support in, say, BR0(0). Then in
the subcritical range α < α∗ the property of finite speed of propagation is preserved
for all times, i.e., the support of the solution at time t is contained in the ball
centered at the origin with radius R(t) where

R(t) = 4R0 + γ‖ρu0‖
m+p−3

(N−α)(m+p−3)+p−α

1 t
1

(N−α)(m+p−3)+p−α , t > 0; (1.8)

the exponent of t in (1.8) is positive if and only if α < α∗. As a result, also the
property of conservation of mass is valid for all times.
In the supercritical range α > α∗ the evolution of the support is quite different:
finite speed of propagation (that is boundedness of support) and conservation of
mass can not hold true for all t > 0.

In Sects. 1.1.1 and 1.1.2 below we present examples which can be compared
with the Euclidean case. Before describing the results of this paper, we recall that
parabolic problems in a Euclidean metric with inhomogeneous density were studied
in [27,28] (blow up phenomena); [24,36] (asymptotic expansion of the solution of the
porous media equation); [22,31] (critical case). We quote for results related to ours
[19,21,32] for the porous media equation and [14] for anisotropic operators. Still on
the subject of porous media like equations on Riemannian manifolds, besides the
seminal papers [33,35] on the properties of the support of solutions, we also quote
[20,44].

The main goal of the present paper is to investigate the behavior of solutions
around the threshold discriminating between the cases described above for the sup
estimates, in terms of the density function ρ, the nonlinearities in the equation, and
of course the Riemannian geometry of M .
Our results on the subcritical L∞ bound in fact apply when we, clearly, are in the
subcritical case, but not too far from the threshold. In the Euclidean example just
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discussed, i.e., α should be not too small, which is not restrictive in the light of the
purpose of this paper. On the other hand, we provide a unified approach to both
the degenerate (1.3) and the singular (1.4) cases. The case where we are far below
the threshold calls for a different approach; this will be the subject of a forthcoming
paper.
Such a requirement of closeness to the threshold is not needed by the other results.
See also [1] for the Euclidean case; we borrow the energetic setting of [4,6–8]; see
also [41].

1.1. Assumptions

In what follows d(x) denotes the geodesic distance of x from a fixed point x0 ∈ M ,
|U | is the Riemannian volume of U ⊂ M , and |∂U |N−1 the corresponding area of
its boundary.

An important role is played by the function

V (R) = |BR|, BR = {x ∈ M | d(x) ≤ R}.

On the geometry of the manifold M we need the following requirements, of isoperi-
metrical character. We assume that for all bounded and Lipschitz domains U ⊂ M

|∂U |N−1 ≥ h(|U |), s �→ ω(s) =
s

N−1
N

h(s)
is nondecreasing in (0, +∞). (1.9)

Here h : [0, +∞) → [0, +∞) is a continuous nondecreasing function, with h(0) = 0.

Remark 1.2. The connection between isoperimetrical inequalities and embedding
theorems in RN is well known, see [29]; for a discussion of the connection of embed-
dings in Riemannian manifolds with Sobolev and Gagliardo–Nirenberg inequalities
in the Euclidean space we refer to [9, Chapter 2]. See the classical [43] for the
connection between the heat semigroup and isoperimetric inequalities.
Also inequalities of Faber–Krahn type have long been known to be useful in inves-
tigating the behavior of solutions to parabolic equations in manifolds, see e.g., [18]
for connections to the heat kernel bounds, and [7] for the nonlinear case.
Roughly speaking, if the isoperimetric profile satisfies h(v) � c1v

a for large v > 0
and a fixed c1 > 0, then we must require a > (p−1)/p, which amounts essentially to
the nonparabolicity of the manifold (see (1.22)) and leads to p < N in the Euclidean
case where a = (N − 1)/N . In particular, in the linear case p = 2 we must have
N ≥ 3.

1.1.1. Example: Symmetric Manifolds. As a first interesting example let us consider
the case of a model Riemannian manifold (see e.g., [17]) with metric dr2+f(r)2 dξ2,
r ≥ 0, ξ ∈ SN−1. We have

V (R) = ωN

∫ R

0

f(s)N−1 ds, ωN = |SN−1|N−1.

We define the continuous functions f , ρ for τ ≥ 0 as in

f(τ) =
{

C(A)τ, τ ≤ A,
τβ(ln τ)ν , τ > A; ρ(τ) =

{
B−α(ln B)μ, τ ≤ B,
τ−α(ln τ)μ, τ > B,
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where B ≥ A ≥ e are suitably chosen. Here (p − 1)/(N − 1) < β < 1 and μ, ν ∈ R,
α > 0. In this case one can take

h(s) = c0f(V (−1)(s))N−1, (1.10)

where c0 > 0 is a suitable constant. Thus for suitable c1, c2 > 0

h(s) � c1s
N−1

N , s → 0; h(s) � c2s
β(N−1)

β(N−1)+1 (ln s)
ν(N−1)

β(N−1)+1 , s → +∞.

By means of lengthy but straightforward calculations one can check that the assump-
tions appearing in the statements of Sect. 1.2 below are satisfied, thereby implying
the following results.

We prove the analog of the subcritical sup estimate (1.5) (see Theorem 1.7) in
the two cases:
(i) p + m − 3 < 0, m > 0: we have to assume

N(p + m − 3) + p > 0, (1.11)

α <

(
β(N − 1) + 1

)
(p + m − 3) + p

p + m − 2
=: α∗

s, (1.12)

p > α >
N − 1

N
(1 − β)p∗, p∗ =

Np

N − p
. (1.13)

(ii) p + m − 3 > 0: in this case (1.11) is automatically satisfied. We assume (1.12),
(1.13).

In these cases we have for large t > 0

‖u(t)‖∞ ≤ γ(‖ρu0‖1)t−δ1(ln t)δ2 , (1.14)

where

λ = p − α +
(
1 + β(N − 1) − α

)
(p + m − 3),

σ = ν(N − 1)(p + m − 3) + μ(p + m − 2),

δ1 =
β(N − 1) + 1 − α

λ
, δ2 = σδ1 − μ − ν(N − 1).

Here λ > 0 owing to our assumptions.
We can prove for large times (see Theorem 1.8) the following estimate of finite speed
of propagation (compare with (1.8)), provided p+m−3 > 0 and (1.12) is satisfied:

R(t) ≤ 4R0 + γ(‖ρu0‖1)t 1
λ (ln t)− σ

λ . (1.15)

Concerning the universal bound result in (1.6), if in this example we assume α > p,
p + m − 3 > 0 the same estimate (1.6) holds true (with a different constant γ > 0);
see Theorem 1.9.
Finally, the interface blow up phenomenon takes place if p + m − 3 > 0 and

α > α∗
s, (1.16)

note that α∗
s > p; see Theorem 1.10 and observe that (1.18) guarantees (1.40).

For the reader’s convenience and with reference to the notation employed below, we
mention that in this example the function ψ (see Remark 1.4) takes the form

ψ(s) = sλ(ln s)σ(1 + o(1)), s → +∞,
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so that

ψ(−1)(v) = λ
σ
λ v

1
λ (ln v)− σ

λ (1 + o(1)), v → +∞.

We also note that if we take formally above β = 1, μ = ν = 0, we recover the results
known in the setting of the Euclidean space [42]. Furthermore, the example is still
admissible, under the same assumptions, if f and ρ are modified by multiplying them
by a factor 1 + H(τ) where H is a sufficiently regular and fast decaying function as
τ → +∞.

1.1.2. Example: Manifolds with Bounded Geometry. A complete Riemannian man-
ifold M is said to have bounded geometry if its Ricci curvature is bounded from
below by a negative constant, and its injectivity radius is bounded from below by a
positive constant; see [11, Theorem V.2.6] for the following result (which we state
in our notation): Let M have bounded geometry and ρ > 0, r > 1; if (and only if)
there exists c > 0 such that

|∂U |N−1 ≥ c|U |1− 1
r ,

for all smooth open submanifolds U with compact closure containing a closed disk
of radius ρ, then we may take

h(s) = θ min(s1− 1
N , s1− 1

r ), (1.17)

for a suitable θ > 0. In our case we have to assume that p < r ≤ N .
We single out from the previous class of examples the subcase of manifolds Md ×
Rk, where Md is a compact Riemannian manifold of dimension d ≥ 1 (see [11,
Examples V.2.3, V.3.6]). In this case we have in (1.17) that N = d + k, r = k.
Such product manifolds have been the subject of much interest in the literature
(see [37,39]). In this case the results outlined in the previous example still hold
when in them we formally let β = (k − 1)/(N − 1), ν = 0; the density ρ is taken
as in the previous example. More explicitly, the assumptions we need in the case
p + m − 3 < 0, m > 0 are (1.11) (with N = d + k) and

α <
k(p + m − 3) + p

p + m − 2
=: α∗

b , (1.18)

p > α >
d

d + k
p∗; (1.19)

in the case p+m−3 > 0 we have only to assume (1.18) and (1.19). We also compute
here

λ = p − α + (k − α)(p + m − 3), σ = μ(p + m − 2),

δ1 =
k − α

λ
, δ2 = σδ1 − μ.

Then (1.14) holds true with δ1, δ2 as above.
Let us assume next p + m − 3 > 0: then the finite speed of propagation estimate
(1.15) still holds, under assumption (1.18); if instead α > p, the universal bound
(1.6) is in force, while in the case α > α∗

b we have interface blow up.
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We list here all the assumptions required in the following; all of them are needed
for the subcritical sup estimate, while the other results employ only a subset of such
hypotheses.

1.1.3. Volume Growth Assumptions. We require the growth conditions

ch(V (R)) ≤ dV

dR
(R), R > 0, (1.20)

and its counterpart

dV

dR
(R) ≤ c−1h(V (R)), R > 0, (1.21)

for a given 0 < c < 1.
The following condition of non-parabolicity of the manifold is needed to prove

global embedding results:
∫ k

0

dt

V (−1)(t)p
≤ c−1 k

V (−1)(k)p
, k > 0. (1.22)

In some cases we need that RN/V (R) is nondecreasing, which is implied by
the assumption

dV

dR
(R) ≤ N

V (R)
R

. (1.23)

In addition we require

V (R)
R

≤ c−1h(V (R)), R > 0. (1.24)

1.1.4. Density Decay Assumptions. In order to get the subcritical sup estimate, the
density function ρ is required to satisfy:

s �→ ρ(s)sα1 is nonincreasing for s ∈ (1, +∞); (1.25)

s �→ ρ(s)sα2 is nondecreasing for s ∈ (1, +∞), (1.26)

where 0 < α1 < α2 < p are given constants.
Note that (1.22) and (1.26) imply that the function Vρ(R) = ρ(R)V (R) is

bounded from above and below by constant multiples of the same increasing function
(see Lemma 2.4 below); however we need state the more precise assumption

Vρ(R) = ρ(R)V (R) is increasing for R ∈ (0, +∞). (1.27)

We denote the inverse function of Vρ by Rρ. This hypothesis will be assumed im-
plicitly throughout.

Finally, as we remarked above, we need to be not too far from the threshold,
in Theorem 1.7; exactly, this means that, on setting p∗ = Np/(N − p),

s �→ ρ(s)ω(V (s))p∗
, is nonincreasing in s > s0, (1.28)

for a suitably chosen s0 > 0.
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Remark 1.3. One can see easily that assumption (1.22) is a consequence of the
following alternative assumption: R �→ V (R)/Rq is nondecreasing for R > 0 for
some q > p.
Assumption (1.22) is not merely a technical device; if it fails we do not expect decay
of solutions for large times, see [25].

Remark 1.4. Consider the functions

ψ(R) = Vρ(R)p+m−3ρ(R)Rp, R > 0; (1.29)

b1(s) = ψ(Rρ(s)) = sp+m−3ρ(Rρ(s))Rρ(s)p, s > 0. (1.30)

Owing to our assumptions, b1 is increasing if and only if ψ is. In turn, this is
automatically satisfied in the degenerate case (1.3), at least if (1.26) is assumed,
but it is not necessarily valid in the singular case (1.4). However, when ψ is increasing
we denote its inverse by Z̃; the latter function provides in some cases an estimate
of the finite speed of propagation of the support of a solution.

The definition of weak solution to (1.1) and (1.2) is in fact standard; the prob-
lem is given the integral formulation

∫ +∞

0

∫

M

{−uρζt + um−1|∇u|p−2∇u∇ζ} dμ dt =
∫

M

u0ρζ(x, 0) dμ, (1.31)

for all ζ ∈ C1(M × [0, +∞)), with bounded support. In general, the existence can
be proved following the methods of [9,10] in the setting of energy solutions, i.e.,
assuming

√
ρu0 ∈ L2(M). The solution obtained satisfies u ∈ L∞

loc(M × (0, +∞)),
u ∈ C((0, T );L2(M)), um−1|∇u|p ∈ L1(M × (0, T )) for all T < +∞. In the sub-
critical cases where the assumptions of Theorem 1.7 are in force, in fact we can
prove existence even for initial data which are Radon measures, such that ρu0 has
finite mass in M . This follows from the estimate in Theorem 1.7 and from a stan-
dard approximation procedure via a sequence of solutions to initial-value boundary
problems, with vanishing Dirichlet data, in a sequence of invading compact do-
mains. In the latter case however the solution satisfies u ∈ L∞

loc(M × (0, +∞)),
u ∈ C((0, T );L2

loc(M)), um−1|∇u|p ∈ L1
loc(M × (0, T )) for all T < +∞. In addition,

the proof requires an estimate of the L1 norm of um−1|∇u|p−1 up to time t = 0
(sometimes called an entropy estimate); this bound can be achieved following [3,5],
and again using Theorem 1.7.
The uniqueness of solutions for problems of the kind we consider is well known to
be a difficult problem in general; see e.g., the seminal paper [16], and more recently
[34].

Thus in the following theorems, we refer to a solution u constructed by approx-
imation as shown above. Also, in the proofs for simplicity we work sometimes with
a strong almost everywhere formulation of the differential equation, to avoid the by
now standard regularization arguments. We denote by γ, γ0, . . ., constants (varying
from line to line) depending only on the parameters of the problem.

Remark 1.5. Since we can limit the L1(M) norm of each such approximation only
in terms of the initial mass, passing to the limit we infer for the solution referred to
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just above

‖u(t)ρ‖L1(M) ≤ γ‖u0ρ‖L1(M), 0 < t < +∞. (1.32)

Here γ depends on M and ρ, but not on u. Notice that this bound follows without
assuming finite speed of propagation. However, it is easy to prove that if the support
of the solution is bounded over [0, T ], mass is conserved exactly, that is

‖u(t)ρ‖L1(M) = ‖u0ρ‖L1(M), 0 < t < T. (1.33)

Remark 1.6. It follows without difficulty from our arguments that the radial char-
acter and the assumptions on ρ can be replaced by analogous statements on a radial
function ρ̃ such that

cρ̃(x) ≤ ρ(x) ≤ c−1ρ̃(x), x ∈ M,

for a given 0 < c < 1.

1.2. Main Results

We begin with the subcritical sup estimate.

Theorem 1.7. Assume (1.9)–(1.28). We also assume one of the following: (i) p +
m − 3 < 0, m > 0, ψ as in (1.29) is increasing with ψ(0+) = 0, ψ(R) → +∞ as
R → +∞, and

(N − α1)(p + m − 3) + p − α2 > 0; (1.34)

(ii) p+m−3 > 0 (in this case the other conditions in (i) are automatically satisfied).
Let ρu0 ∈ L1(M). Then for Z̃ = ψ(−1),

‖u(t)‖∞ ≤ ‖ρu0‖1
Vρ

(
Z̃(γ0t‖ρu0‖p+m−3

1 )
) , t > 0, (1.35)

for a constant γ0 > 0 independent of u.

Next we deal with the finite speed of propagation.

Theorem 1.8. Assume that supp u0 ⊂ BR0 and that we are in the degenerate case
(1.3), with ψ increasing, ψ(0+) = 0. Assume further (1.9) and that for a suitable
C > 0

ρ(r) ≤ Cρ(2r), r ≥ 0. (1.36)

Let ρu0 ∈ L1(M). Then for all t > 0, supp u(t) ⊂ BR if R satisfies

R = 4R0 + Z̃
(
γt‖ρu0‖p+m−3

1

)
, (1.37)

for a constant γ > 0 independent of u.

The reason why we can avoid in Theorem 1.8 several of the global assumptions
of Theorem 1.7 is that in the proof we work in bounded sets, shaped like annuli.
Thus we don’t need to apply a weighted Sobolev inequality, which dispenses us from
assuming non-parabolicity as in (1.22). By the same token, we need only a standard
doubling property for ρ.

In the supercritical case (1.38) we can prove the following universal, or absolute,
sup bound for the solution, which is in fact in its functional form independent of
the initial data and of the geometry of M .
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Theorem 1.9. Assume that (1.3), (1.9)–(1.24) hold true, and that for a suitable c >
0

ρ(τ) ≤ c−1τ−α, τ > 1, (1.38)

for some α > p.
Let ρu0 ∈ L1(M),

√
ρu0 ∈ L2(M). Then

‖u(t)‖∞ ≤ γt−
1

p+m−3 , t > 0, (1.39)

where γ does not depend on u.

Finally, if the second threshold is exceeded, which we essentially assume in
(1.40), the finite speed of propagation property fails.

Theorem 1.10. Assume (1.3), (1.9), (1.22), (1.23), (1.24). Let ρu0 ∈ L1(M),
√

ρu0 ∈
L2(M) and u0 with bounded support. Assume that

∫ +∞

1

(
τpρ(τ)

)r
ψ(τ)

1
p+m−3

dτ

τ
< +∞, (1.40)

for r ∈ (−r0, r0) for some r0 > 0.
Then the boundedness of the support of u(t) fails over (0, t̄) for a sufficiently large
t̄ > 0.

1.3. Plan of the Paper

We prove in Sect. 2 several auxiliary inequalities. In Sect. 3 we prove Theorem 1.7
in the degenerate case, while the proof in the singular case, being a minor variant of
the previous one, is dealt with in the short Sect. 4. The finite speed of propagation
property is proved in Sect. 5. The supercritical universal sup bound is proved in
Sect. 6, while finally the interface blow up is treated in Sect. 7.

2. Auxiliary Results

We begin by stating the following trivial result.

Lemma 2.1. Let f ∈ C([0, +∞)) be a nonnegative function such that for given r0,
c0, c1, β > 0, f is nondecreasing in (r0, +∞) and satisfies

c0s
β ≤ f(s) ≤ c1s

β, 0 ≤ s ≤ r0. (2.1)

Then for all s > r > 0

f(r) ≤ c1c
−1
0 f(s). (2.2)

A first consequence of Lemma 2.1 applied to f(s) = ρ(s)sα2 , and of (1.26), is
the following one: for all s > r > 0

ρ(r)rα2 ≤ Cρ(s)sα2 , (2.3)

where C = ρ(0)/ρ(1) ≥ 1.
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Lemma 2.2. Assume (1.22); then for the same constant c as in (1.22)

V (s) ≥ c
(s

r

)p

V (r), s > r > 0. (2.4)

Assume further (1.26); then a constant c̃ > 0 exists such that

Vρ(s) ≥ c̃
(s

r

)p−α2

Vρ(r), s > r > 0. (2.5)

As a consequence

Rρ(a) ≤ c̃− 1
p−α2

(a

b

) 1
p−α2

Rρ(b), a > b > 0. (2.6)

Proof. The inequality (2.4) follows from (1.22), since on taking there k = V (s) we
get

c−1V (s)
sp

≥
∫ V (s)

0

dt

V (−1)(t)p
≥

∫ V (r)

0

dt

V (−1)(t)p
≥ V (r)

rp
, (2.7)

when we also exploit the fact that the integrand is decreasing.
Next we compute appealing to (2.3) and to (2.4)

Vρ(s) = V (s)ρ(s)sα2s−α2 ≥ c
(s

r

)p

V (r)C−1ρ(r)rα2s−α2 , (2.8)

whence (2.5). Finally (2.6) is a simple consequence of (2.5). �

Lemma 2.3. Under the assumptions (1.9), (1.20), (1.21) we have

γ−1λV (R) ≤ V (λR) ≤ γλNV (R), λ ≥ 1, (2.9)

γ−1λNV (R) ≤ V (λR) ≤ γλV (R), 0 < λ ≤ 1. (2.10)

Proof. Define F (v) = v/h(v), for v > 0. Owing to our assumption (1.9) we have for
k ≥ 1

F (kv) =
kv

h(kv)
=

kv

(kv)
N−1

N

(kv)
N−1

N

h(kv)
≥ k

1
N F (v). (2.11)

Similarly for 0 < k ≤ 1 and v > 0

F (kv) ≤ k
1
N F (v). (2.12)

It follows that F is increasing and

F (v) → 0, v → 0+, F (v) → +∞, v → +∞.

In addition, from the monotonicity of h we get

F (λv) ≤ λF (v) λ ≥ 1; F (λv) ≥ λF (v), 0 < λ ≤ 1. (2.13)

Then for given λ, R > 0 we let v = F (−1)(R), k = λN and infer from (2.11)–(2.13),

λF (−1)(R) ≤ F (−1)(λR) ≤ λNF (−1)(R), λ ≥ 1; (2.14)

λNF (−1)(R) ≤ F (−1)(λR) ≤ λF (−1)(R), 0 < λ ≤ 1. (2.15)
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Next we invoke assumptions (1.20), (1.21) to infer

c−1R = c−1

∫ V (R)

0

( dV

dR
(s)

)−1

ds ≥
∫ V (R)

0

ds

h(s)

≥ c

∫ V (R)

0

( dV

dR
(s)

)−1

ds = cR. (2.16)

However, again from (1.9),

∫ V (R)

0

ds

h(s)
=

∫ V (R)

0

s− N−1
N

s
N−1

N

h(s)
ds ≤ N

V (R)
h(V (R))

= NF (V (R)), (2.17)

while invoking again the monotonicity of h

∫ V (R)

0

ds

h(s)
≥

∫ V (R)

V (R)
2

ds

h(s)
=

∫ V (R)

V (R)
2

s− N−1
N

s
N−1

N

h(s)
ds

≥ N

2
(2

1
N − 1)

V (R)
h(V (R)/2)

≥ N

2
(2

1
N − 1)F (V (R)). (2.18)

On combining (2.16)–(2.18), we get

γ−1
N,cR ≤ F (V (R)) ≤ γN,cR, R > 0, (2.19)

for a suitable γN,c > 1. Thus owing to (2.14) and (2.15) we have

γ−1F (−1)(R) ≤ V (R) ≤ γF (−1)(R), (2.20)

for a suitable γ > 1.
Our claims (2.9) and (2.10) finally follow from (2.20) and again from (2.14)–

(2.15). �

Lemma 2.4. Under assumptions (1.26), (1.22) we have for R > 0

γ−1

∫

BR

ρ(d(x)) dμ ≤ ρ(R)V (R) ≤
∫

BR

ρ(d(x)) dμ. (2.21)

Proof. In fact simply by monotonicity of ρ we have that
∫

BR

ρ(d(x)) dμ ≥ ρ(R)V (R). (2.22)

Then we calculate, exploiting (2.3),

∫

BR

ρ(d(x)) dμ =
∫ R

0

ρ(τ)
dV

dτ
(τ) dτ ≤ C

∫ R

0

(
ρ(R)Rα2

)
τ−α2

dV

dτ
(τ) dτ

= Cρ(R)Rα2

∫ R

0

τ−α2
dV

dτ
(τ) dτ. (2.23)
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The integral in (2.23) is handled by means of the change of variable s = V (τ),
yielding

∫ R

0

τ−α2
dV

dτ
(τ) dτ =

∫ V (R)

0

ds

V (−1)(s)α2
=

∫ V (R)

0

V (−1)(s)p−α2

V (−1)(s)p
ds

≤ V (−1)(V (R))p−α2

∫ V (R)

0

ds

V (−1)(s)p

≤ c−1Rp−α2
V (R)

V (−1)(V (R))p
= c−1R−α2V (R). (2.24)

Note that we used also (1.22).
Collecting (2.23) and (2.24) we obtain the claim. �

Lemma 2.5. Under assumptions (1.22), (1.23), (1.25), (1.26), we have for all s >
r > 0

W (r) := ρ(Rρ(r))Rρ(r)pr− p−α2
N−α1 ≤ γW (s), (2.25)

for a suitable γ > 1. In addition for λ ≥ 1, r > 0

W (λr) ≤ γ1λ
dW (r), (2.26)

where actually γ1 = c̃−(p−α1)/(p−α2) for c̃ as in (2.5), and

d =
p − α1

p − α2
− p − α2

N − α1
> 0.

Proof. We appeal to Lemma 2.1 with f = W , r0 = Vρ(1) > 0.
Let us begin by checking that W is nondecreasing in (Vρ(1), +∞); in this case

Rρ(s) > 1. Write

W (s) = [ρ(Rρ(s))Rρ(s)α2 ] [Rρ(s)s
− 1

N−α1 ]p−α2 .

The first factor is nondecreasing by assumption (1.26). As to the second factor, set
R = Rρ(s). Then the quantity in square brackets in such a factor equals

R[ρ(R)V (R)]−
1

N−α1 = [ρ(R)Rα1 ]−
1

N−α1

[ RN

V (R)

] 1
N−α1

.

Here, the first factor is nondecreasing by assumption (1.25); the second one is non-
decreasing by assumption (1.23).

Next, we note that clearly two constants C1 > C0 > 0 exist such that

C0s
1
N ≤ Rρ(s) ≤ C1s

1
N , for Rρ(s) ≤ 1. (2.27)

Thus

ρ(1)C0s
p
N − p−α2

N−α1 ≤ W (s) ≤ ρ(0)C1s
p
N − p−α2

N−α1 . (2.28)

It is easy to check that

β =
p

N
− p − α2

N − α1
=

Nα2 − pα1

N(N − α1)
> 0,

owing to our assumptions N > p > α2 > α1. Thus for such a β and c0, c1 given in
(2.28) we have proved (2.1). Our claim (2.25) follows.

Our second claim (2.26) is a direct consequence of (1.25) and of (2.6). �
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Lemma 2.6. [2,30] Assume that 1 < p < N, and that (1.9), (1.20), (1.21), (1.22)
hold true. Then for all u ∈ W 1,p(M) we have

( ∫

M

|u|p∗
ω
(
V (d(x))

)−p∗
dμ

)N−p
N ≤ C

∫

M

|∇u|p dμ,

where p∗ = pN/(N − p) and C > 0 is a suitable constant.

Proof. Our assumptions match the ones made in [2], when we show that the in-
equality

∫ k

0

s−ph(s)p ds ≤ γk−p+1h(k), k > 0, (2.29)

follows from our assumptions. Indeed, setting R = V (−1)(s), we have, with the
notation of the proof of Lemma 2.3,

sh(s)−1 = V (R)h(V (R))−1 = F (V (R)), (2.30)

and therefore by (2.20)

γ−1
N,cV

(−1)(s) ≤ sh(s)−1 ≤ γN,cV
(−1)(s), s > 0. (2.31)

Then (2.29) follows from (2.31) and (1.22). �
The weighted Sobolev inequality in [30] was proved under the assumption that

the Ricci curvature is nonnegative and the volume growth is such to guarantee
the hyperbolicity of the manifold. Instead in [2] we applied, to the same end, a
symmetrization technique relying on an isoperimetrical inequality, as well as an
assumption of p-hyperbolicity of M .

Next we prove the following Hardy inequality, needed below; see also the survey
[12] on this subject.

Theorem 2.7. (Hardy inequality) Assume (1.9), (1.22), (1.24). For any u ∈ W 1,p(M)
we have ∫

M

|u|p
d(x)p

dμ ≤ γ(N, p)
∫

M

|∇u|p dμ. (2.32)

Proof. We may assume u ≥ 0. Introduce for λ ≥ 0 the standard rearrangement
function

u∗(s) = inf{λ | μλ < s}, μλ = |{x ∈ M | |u(x)| > λ}|. (2.33)

We have
∫

M

up

d(x)p
dμ ≤

∫ +∞

0

u∗(s)p[d(·)−p]∗(s) ds. (2.34)

On the other hand

|{d(x)−p > λ}| = |B
λ

− 1
p
| = V (λ− 1

p ).

Therefore (2.34) gives on integrating by parts
∫

M

up

d(x)p
dμ ≤

∫ +∞

0

u∗(s)p

V (−1)(s)p
ds = p

∫ +∞

0

u∗(s)p−1[−u∗
s(s)]

∫ s

0

dτ

V (−1)(τ)p
ds.

(2.35)
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Next we apply our assumption (1.22) in (2.35) and after applying Hölder inequality
we arrive at
∫ +∞

0

u∗(s)p

V (−1)(s)p
ds ≤ γ

( ∫ +∞

0

u∗(s)p

V (−1)(s)p
ds

)p−1
p

( ∫ +∞

0

[−u∗
s(s)]

p sp

V (−1)(s)p
ds

) 1
p

.

(2.36)

This immediately yields when we invoke (1.24)
∫ +∞

0

u∗(s)p

V (−1)(s)p
ds ≤ γ

∫ +∞

0

[−u∗
s(s)]

p sp

V (−1)(s)p
ds

≤ γ

∫ +∞

0

[−u∗
s(s)]

ph(s)p ds ≤ γ

∫

M

|∇u|p dμ, (2.37)

that is (2.32), by Polya–Szego principle (see [2]). �

We state first an estimate where the density function ρ does not appear.

Lemma 2.8. Let u ∈ W 1,p(M), 0 < r < q ≤ Np/(N − p). Then
∫

M

|u|q dμ ≤ γω(Sq)qS
1+ q

N − q
p

q ‖∇u‖q
Lp(M), (2.38)

where

Sq =
( ∫

M

|u|r dμ
) q

q−r
( ∫

M

|u|q dμ
)− r

q−r

. (2.39)

Proof. We confine ourselves to the case q ≤ p, which is the one of our interest here.
The case q > p can be proved reasoning as in [5].
Introduce the standard rearrangement function as in (2.33). Then write for conve-
nience of notation

Ps =
∫

M

|u(x)|s dμ, s > 0.

We have for a k > 0 to be selected presently

Pq =
∫ μ0

0

u∗(s)q ds ≤ γ(q)
∫ μk

0

(u∗(s) − k)q ds + γ(q)kqμk +
∫ μ0

μk

u∗(s)q ds

=: I1 + I2 + I3. (2.40)

Next we invoke Chebyshev inequality

krμk ≤ Pr,

to bound

I2 + I3 ≤ γμ
1− q

r

k P
q
r

r + kq−r

∫ μ0

μk

u∗(s)r ds ≤ γμ
1− q

r

k P
q
r

r =
1
2
Pq. (2.41)

The last equality in (2.41) is our choice of k, which amounts to μk = γSq. Note that
we may assume μ0 as large as necessary, by approximating u while keeping all the
involved integral quantities stable. Thus we can safely assume that such a value of
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k exists. Hence we absorb I2 + I3 into the left hand side of (2.40). We then reason
as in [40] to obtain

Pq ≤ γ

∫ μk

0

(u∗(s) − k)q ds ≤ γμ
1− q

p

k

( ∫ μk

0

(u∗(s) − k)p ds
) q

p

≤ γμ
1− q

p

k

( ∫ μk

0

[−u∗
s(s)]

ph(s)p[sh(s)−1]p ds
) q

p

≤ γμ
1− q

p

k [μkh(μk)−1]q
( ∫

M

|∇u|p dμ
) q

p

. (2.42)

We have exploited here the fact that t �→ th(t)−1 is increasing as a consequence of
our assumption that ω is nondecreasing.

Finally (2.38) follows from (2.42) and from our choice μk = γSq. �

Corollary 2.9. Let u ∈ W 1,p(M) and 0 < r < p. Then

∫

M

|u|p dμ ≤ γω(μ(suppu))
pN(p−r)

N(p−r)+rp

( ∫

M

|u|r dμ
) p2

N(p−r)+rp

×
( ∫

M

|∇u|p dμ
) N(p−r)

N(p−r)+rp

. (2.43)

Proof. We select q = p in Lemma 2.8. The statement follows from an elementary
computation, when we also bound by means of Hölder’s inequality

Sq ≤
[
μ(supp u)1− r

p

( ∫

M

|u|p dμ
) r

p
] p

p−r
( ∫

M

|u|p dμ
)− r

p−r

= μ(supp u). (2.44)

�

Next we state some weighted estimates where the estimated norms involve the
weight ρ. We denote in the following for k > 0

μρ(A) =
∫

A

ρ(d(x)) dμ, νρ(k) = μρ({u > k}). (2.45)

Lemma 2.10. (Faber–Krahn type estimate) Assume that 1 < p < N, and that the
assumptions of Lemma 2.6 and of Theorem 2.7 hold true. We further assume (1.26),
(1.28).
Then for all u ∈ W 1,p(M), k > 0 we have

∫

{u>k}
ρ(d(x))(u − k)p dμ ≤ γρ(Rρ(νρ(k)))Rρ(νρ(k))p

∫

{u>k}
|∇u|p dμ. (2.46)
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Proof. We split the integral between B(R) and its complement; let Ak = {u > k}.
We first have from Lemma 2.6,
∫

Ak\BR

ρ(d(x))(u − k)p dμ ≤
( ∫

Ak

(u − k)p∗
ω
(
V (d(x))

)−p∗
dμ

)N−p
N

×
( ∫

Ak\BR

ρ(d(x))
N
p ω

(
V (d(x))

)N dμ
) p

N

≤ γρ(R)
N−p

N ω(V (R))pνρ(k)
p
N

( ∫

Ak

|∇u|p dμ
)

≤ γρ(R)
N−p

N RpV (R)− p
N νρ(k)

p
N

( ∫

Ak

|∇u|p dμ
)

=: I1.

(2.47)

We used assumption (1.28) and the estimate (2.19), at least for R > s0 as in (1.28).
For R ≤ s0 we simply note that

c ≤ ρ(s)ω(V (s))p∗ ≤ c−1, 0 < s ≤ s0,

for a suitable 0 < c < 1, as ω(0+) > 0 due to the locally Euclidean behavior of the
Riemannian metric.

Next we have by means of Hardy inequality (2.32), and also by taking into
account (2.3), that

∫

Ak∩B(R)

ρ(d(x))(u − k)p dμ =
∫

Ak∩B(R)

ρ(d(x))d(x)pd(x)−p(u − k)p dμ

≤ γρ(R)Rp

∫

Ak

|∇u|p dμ =: I2. (2.48)

Finally we select R so that, essentially, I1 and I2 contribute the same quantity, i.e.,

ρ(R)
N−p

N RpV (R)− p
N νρ(k)

p
N = ρ(R)Rp, (2.49)

or as one can immediately see

Vρ(R) = νρ(k). (2.50)

The claim follows. �

Lemma 2.11. Assume that 1 < p < N, and that the assumptions of Lemma 2.6,
Theorem 2.7 and (1.28) hold true. Then for all u ∈ W 1,p(M) and k > 0 we have

∫

{u>k}
ρ(d(x))(u − k)s dμ

≤ γ[ρ(Rρ(νρ(k)))Rρ(νρ(k))p]
s
p νρ(k)1− s

p

( ∫

{u>k}
|∇u|p dμ

) s
p

, (2.51)

provided p < s < p∗ and that, in addition, for a given C > 0

ρ(R)RN− s(N−p)
p ≤ Cρ(R1)R

N− s(N−p)
p

1 , R1 > R > 0. (2.52)
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Proof. As in the proof of Lemma 2.10, we split the integral between B(R) and its
complement; let Ak = {u > k} and νρ(k) be defined as in (2.45).
We first have from Hölder inequality, Lemma 2.6, and from assumption (1.28),
∫

Ak\BR

ρ(d(x))(u − k)s dμ ≤
( ∫

Ak\BR

ω(V (d(x)))−p∗
(u − k)p∗

dμ
) s

p∗

×
( ∫

Ak\BR

ρ(d(x))
p∗

p∗−s ω(V (d(x)))
p∗s

p∗−s dμ
)1− s

p∗

≤ γρ(R)
s

p∗ ω(V (R))sνρ(k)1− s
p∗

( ∫

Ak

|∇u|p dμ
) s

p

≤ γρ(R)
s

p∗ RsV (R)− s
N νρ(k)1− s

p∗
( ∫

Ak

|∇u|p dμ
) s

p

=: I1.

(2.53)

We have used in last inequality our assumption (1.24).
Next we apply again Hölder inequality to get

∫

Ak∩BR

ρ(d(x))(u − k)s dμ ≤
( ∫

Ak∩BR

d(x)−p(u − k)p dμ
) p∗−s

p∗−p

×
( ∫

Ak∩BR

[ρ(d(x))d(x)N−(N−p) s
p ]

p∗−p
s−p (u − k)p∗

dμ
) s−p

p∗−p

. (2.54)

The second factor in (2.54) is majorized, owing to our assumption (2.52), by

γω(V (R))
N(s−p)

p ρ(R)RN−(N−p) s
p

( ∫

Ak∩BR

(u − k)p∗
ω(V (d(x)))−p∗

dμ
) s−p

p∗−p

≤ γω(V (R))
N(s−p)

p ρ(R)RN−(N−p) s
p

( ∫

Ak

|∇u|p dμ
)N(s−p)

p2
, (2.55)

when we apply also Lemma 2.6. The first integral in (2.54) is bounded with the help
of Hardy inequality (2.32), to obtain finally

∫

Ak∩BR

ρ(d(x))(u − k)s dμ

≤ γω(V (R))
N(s−p)

p ρ(R)RN−(N−p) s
p

( ∫

Ak

|∇u|p dμ
) s

p

≤ γR
N(s−p)

p V (R)− s−p
p ρ(R)RN−(N−p) s

p

( ∫

Ak

|∇u|p dμ
) s

p

=: I2. (2.56)

In last inequality we used again (1.24).
We require that I1 and I2 contribute essentially the same quantity, that is we

define R by means of

ρ(R)
s

p∗ RsV (R)− s
N νρ(k)1− s

p∗ = R
N(s−p)

p V (R)− s−p
p ρ(R)RN−(N−p) s

p . (2.57)

It is easily seen that this is equivalent to Vρ(R) = νρ(k), i.e., R = Rρ(νρ(k)). With
this choice of R it is trivial to check that, e.g., the right hand side of (2.57) equals
ρ(R)s/pRsνρ(k)1−s/p, proving the claim. �
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Remark 2.12. Concerning assumption (2.52) we note that the exponent of R in it,
that is N −s(N −p)/p, tends to p− as s → p+. Hence for suitable s in such a range,
(2.52) is a consequence of (1.26) and of Lemma 2.1.

Let us also note for later use the following consequence of (2.52): rewrite the
right hand side of (2.57), that is ρ(R)RsV (R)(p−s)/p as

ρ(R)RN− s(N−p)
p

( RN

V (R)

) s−p
p

.

The last factor above is nondecreasing owing to our assumption (1.23); thus, owing
to (2.52) we have

ρ(R)RsV (R)
p−s

p ≤ Cρ(R1)Rs
1V (R1)

p−s
p , 0 < R < R1, (2.58)

for C > 0 as in (2.52).

In the following we let for the sake of notational simplicity for p > r > 0

Er =
∫

M

ρ(d(x))|u|r dμ, S =
E

p
p−r
r

E
r

p−r
p

. (2.59)

Lemma 2.13. (Sobolev–Gagliardo–Nirenberg) Assume that 1 < p < N, and that the
assumptions of Lemma 2.10 hold true. Assume further that 0 < r < p. Then we
have for all u ∈ W 1,p(M)

Ep ≤ γρ(Rρ(S))Rρ(S)p

∫

M

|∇u|p dμ. (2.60)

Proof. We begin by splitting, for a k > 0 to be chosen,

Ep =
∫

{|u|>k}
ρ(d(x))|u|p dμ +

∫

{|u|≤k}
ρ(d(x))|u|p dμ =: J1 + J2. (2.61)

We first bound, on using (2.46) and Chebyshev inequality,

J1 ≤ 2p−1

∫

{|u|>k}
ρ(d(x))(|u| − k)p dμ + 2p−1kpνρ(k)

≤ γρ(Rρ(νρ(k)))Rρ(νρ(k))p

∫

M

|∇u|p dμ + 2p−1kp−rEr. (2.62)

Then we get obviously

J2 ≤ kp−rEr. (2.63)

Collecting (2.61)–(2.63) we obtain, after a further use of Chebyshev inequality,

Ep ≤ γρ(Rρ(k−rEr))Rρ(k−rEr)p

∫

M

|∇u|p dμ + (2p−1 + 1)kp−rEr. (2.64)

We select next k so that

ρ(Rρ(k−rEr))Rρ(k−rEr)p

∫

M

|∇u|p dμ = kp−rEr. (2.65)

Then we have first

Ep ≤ γkp−rEr, (2.66)
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yielding at once

Erk
−r ≤ γS. (2.67)

On appealing again to (2.64) and (2.65), together with (2.67) we obtain, recalling
(2.6),

Ep ≤ γρ(Rρ(γS))Rρ(γS)p

∫

M

|∇u|p dμ

≤ γρ(Rρ(S))Rρ(S)p

∫

M

|∇u|p dμ. (2.68)

�

Lemma 2.14. Assume that 1 < p < s < N, and that the assumptions of Lemma 2.11
hold true. Assume further that 0 < r < p. Then we have for all u ∈ W 1,p(M)

Es ≤ γ[ρ(Rρ(Σ))Rρ(Σ)p]
s
p Σ1− s

p

( ∫

M

|∇u|p dμ
) s

p

, (2.69)

where Σ = E
s/(s−r)
r E

−r/(s−r)
s .

Proof. As in the proof of Lemma 2.13, we begin by splitting for a k > 0 to be
chosen,

Es =
∫

{|u|>k}
ρ(d(x))|u|s dμ +

∫

{|u|≤k}
ρ(d(x))|u|s dμ =: J1 + J2. (2.70)

Then we bound J1 essentially as we did in (2.62), but applying (2.51) rather than
(2.46), and J2 following the direct approach of (2.63). We get, collecting such esti-
mates, after a further use of Chebyshev inequality,

Es ≤ γ[ρ(Rρ(k−rEr))Rρ(k−rEr)p]
s
p (k−rEr)1− s

p

( ∫

M

|∇u|p dμ
) s

p

+ (2s−1 + 1)ks−rEr. (2.71)

We have made use of (2.58) here.
Next we choose k so that

[ρ(Rρ(k−rEr))Rρ(k−rEr)p]
s
p (k−rEr)1− s

p

( ∫

M

|∇u|p dμ
) s

p

= ks−rEr, (2.72)

implying first that

Es ≤ γks−rEr, (2.73)

so that

Erk
−r ≤ γΣ. (2.74)

The proof then is concluded by substituting (2.74) in (2.71), on recalling (2.72), and
(2.58), too. �

Corollary 2.15. Under the assumptions and with the notation of Lemma 2.13 we
have for the function W defined in (2.25)

Ep ≤ γE
p(p−α2)

H(r)
r W (S)

(p−r)(N−α1)
H(r)

( ∫

M

|∇u|p dμ
) (p−r)(N−α1)

H(r)
, (2.75)
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where H(r) = (p − r)(N − α1) + r(p − α2) for r > 0.

Proof. We only need to multiply and divide the right hand side of (2.60) by
S(p−α2)/(N−α1); then (2.75) follows after some elementary algebra, when we recall
the definitions of S and of W . �

Again by simple algebra we infer also the following result.

Corollary 2.16. Under the assumptions and with the notation of Lemma 2.14 we
have for the function W defined in (2.25)

Es ≤ γE
H(s)
H(r)
r W (Σ)

(s−r)(N−α1)
H(r)

( ∫

M

|∇u|p dμ
) (s−r)(N−α1)

H(r)
, (2.76)

where H is as in Corollary 2.15.

We’ll use the following inequalities. The set C1
0 (M) denotes the C1(M) func-

tions with compact support.

Lemma 2.17. Let u be a solution of (1.1) and (1.2), and let θ > 0, with θ > 2 − m
if m < 1, k > h > 0, 0 < τ2 < τ1 be given. Then

sup
τ1<τ<t

∫

M

(u − k)1+θ
+ ρ dμ +

∫ t

τ1

∫

M

|∇(u − k)
p+m+θ−2

p

+ |p dμ dτ

≤ γ
H(h, k)
τ1 − τ2

∫ t

τ2

∫

M

(u − h)1+θ
+ ρ dμ dτ, (2.77)

provided the right hand side in (2.77) is finite. Here H(h, k) = (k/(k − h))(m−1) .

Lemma 2.18. Let u be a solution of (1.1) and (1.2), and let θ ≥ p − 1. Let ζ ∈
C1

0 (M), 0 ≤ ζ ≤ 1. Then

sup
0<τ<t

∫

M

(uζ)1+θρ dμ +
∫ t

0

∫

M

|∇(uζ)
p+m+θ−2

p |p dμ dτ

≤ γ
{ ∫ t

0

∫

M

|∇ζ|pup+m+θ−2 dμ dτ +
∫

M

(u0ζ)1+θ dμ
}
, (2.78)

provided the right hand side in (2.78) is finite.

The proofs of Lemmas 2.17 and 2.18 are standard and we omit them.

3. Proof of the Sup Estimate in the Case p + m − 3 > 0

For k > 0 to be selected later, and for θ > 0 as in Lemma 2.17, we define for n ≥ 0

kn = k(1 − 2σ + 2−nσ), r =
p

p + m + θ − 2
,

s = r(1 + θ) < p, vn = (u − kn)
1
r
+, τn =

t

2
(1 − 2σ + 2−nσ).

Here σ ∈ (1, 1/4) is fixed. From Lemma 2.17 we infer

sup
τn<τ<t

∫

M

ρvs
n dμ +

∫ t

τn

∫

M

|∇vn|p dμ dτ ≤ γ
2n�

σ�t

∫ t

τn+1

∫

M

ρvs
n+1 dμ dτ, (3.1)
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for � = 1 + (m − 1) . From Hölder inequality it follows
∫

M

ρvs
n+1 dμ ≤

( ∫

M

ρvp
n+1 dμ

) s−r
p−r

( ∫

M

ρvr
n+1 dμ

) p−s
p−r

, (3.2)

whence, on applying Corollary 2.15 to bound the first integral on the right hand
side of (3.2), we get

∫

M

ρvs
n+1 dμ ≤ γW (S)

(s−r)(N−α1)
H(r)

( ∫

M

ρvr
n+1 dμ

) p−s
p−r+

(s−r)p(p−α2)
(p−r)H(r)

×
( ∫

M

|∇vn+1|p dμ
) (s−r)(N−α1)

H(r)
. (3.3)

here S is defined as in (2.59). Note that by appealing again to Hölder inequality we
obtain, with the notation introduced in (2.45)

S ≤
∫

{vn+1>0}
ρ dμ ≤ νρ(k∞) = μρ({u(τ) > k∞}), k∞ = k(1 − 2σ). (3.4)

Next we integrate in time the estimate (3.3), and after a further application of
Hölder inequality we bound the right hand side of (3.1) by

γ
2n�

σ�t

∫ t

τn+1

( ∫

M

ρvr
n+1 dμ

) p−s
p−r+

(s−r)p(p−α2)
(p−r)H(r)

( ∫

M

|∇vn+1|p dμ
) (s−r)(N−α1)

H(r)
dτ

× sup
τn+1<τ<t

W ({u(τ) > k∞})
(s−r)(N−α1)

H(r)

≤ 2n�

σ�
t−

(s−r)(N−α1)
H(r)

( ∫ t

τn+1

∫

M

|∇vn+1|p dμ dτ
) (s−r)(N−α1)

H(r)

× sup
τn+1<τ<t

( ∫

M

ρvr
n+1 dμ

)H(s)
H(r)

sup
τn+1<τ<t

W ({u(τ) > k∞})
(s−r)(N−α1)

H(r) . (3.5)

Let us define for the sake of notational simplicity ξ = H(r)/[(s − r)(N − α1)]. Next
we invoke Young inequality to bound the right hand side of (3.5) by

ε

∫ t

τn+1

∫

M

|∇vn+1|p dμ dτ + γ
bn

σ
�ξ

ξ−1

ε− 1
ξ−1 t

− (s−r)(N−α1)
(p−s)(N−α1)+r(p−α2)

× sup
τn+1<τ<t

W ({u(τ) > k∞})
(s−r)(N−α1)

(p−s)(N−α1)+r(p−α2)

× sup
τn+1<τ<t

( ∫

M

ρvr
n+1 dμ

) H(s)
(p−s)(N−α1)+r(p−α2)

, (3.6)

where b = 2�ξ/(ξ−1). On combining (3.1)–(3.6), and denoting

In = sup
τn<τ<t

∫

M

ρvn(τ)s dμ +
∫ t

τn

∫

M

|∇vn|p dμ dτ, (3.7)
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we get the recursive inequality

In ≤ εIn+1 + γ
bn

σ
�ξ

ξ−1

ε− 1
ξ−1 t

− (s−r)(N−α1)
(p−s)(N−α1)+r(p−α2)

× sup
τ∞<τ<t

W ({u(τ) > k∞})
(s−r)(N−α1)

(p−s)(N−α1)+r(p−α2)

× sup
τ∞<τ<t

( ∫

M

ρvr
∞ dμ

) H(s)
(p−s)(N−α1)+r(p−α2)

, (3.8)

where τ∞ = t(1 − 2σ)/2, v∞ = (u − k∞)1/r
+ .

A standard iteration process then implies that, when we select e.g., ε = 1/(2b),

sup
τ0<τ<t

∫

M

ρ(u(τ) − k0)
1+θ
+ dμ ≤ γσ− �ξ

ξ−1 t−
θ(N−α1)

η

× sup
τ∞<τ<t

W ({u(τ) > k∞})
θ(N−α1)

η

× sup
τ∞<τ<t

( ∫

M

ρ(u(τ) − k∞)+ dμ
)1+

θ(p−α2)
η

, (3.9)

where we have computed

(s − r)(N − α1)
(p − s)(N − α1) + r(p − α2)

=
θ(N − α1)

η
,

H(s)
(p − s)(N − α1) + r(p − α2)

= 1 +
θ(p − α2)

η
,

η = (N − α1)(p + m − 3) + p − α2.

Next we set in (3.9)

τ∞ = tj =
t

2
(1 − 2−j−2), τ0 = tj+1, σ = 2−j−3,

k∞ = hj = k(1 − 2−j−2), k0 = hj+1,

yj = sup
tj<τ<t

∫

M

ρ(u(τ) − hj)+ dμ, j ≥ 0.

Note that by Chebyshev inequality we obtain there

W (μρ({u(τ) > hj})) ≤ W
(
2h−1

j

∫

M

ρu(τ) dμ
)

≤ γW (k−1U), (3.10)

when we employ also Lemma 2.5 and

U := sup
t
2<τ<t

∫

M

ρu(τ) dμ ≥ yj , j ≥ 0.

By the same token, the left hand side of (3.9) is bounded from below by

kθ2−(j+4)θyj+2. (3.11)

Thus we infer for Yi = y2i, i ≥ 0,

Yi+1 ≤ γ4(
�ξ

ξ−1+θ)ik−θt−
θ(N−α1)

η W (k−1U)
θ(N−α1)

η Y
1+

θ(p−α2)
η

i . (3.12)
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According to the classical result [26, Lemma 5.6, Chapt. II], we get that Yi → 0 as
i → +∞ provided

k−1t−
N−α1

η W (k−1U)
N−α1

η U
p−α2

η ≤ γ0, (3.13)

for a suitably small constant γ0 > 0 depending on the parameters in (3.12).
When we recall the definition of the function W we see, when we use the bound

for mass in (1.32), that (3.13) reduces to

k−(p+m−3)t−1ρ
(
Rρ(k−1‖ρu0‖1)

)
Rρ(k−1‖ρu0‖1)p = γ0. (3.14)

We conclude the proof by invoking Remark 1.4.

4. Proof of the Sup Estimate in the Case p + m − 3 < 0

We borrow the notation from Sect. 3, assuming also θ > 3 − p − m is so large that
r < p, and that s > p satisfies (2.52): see Remark 2.12. Let us also note explicitly
that assumption (1.34), with some elementary algebra, yields

(N − α1)(p − s) + r(p − α2) > 0. (4.1)

which in turn implies immediately H(s) > 0 (H has been defined in Corollary 2.15).
We start again from (3.1); on the right hand side there by means of (2.76), we

get
∫

M

ρvs
n+1 dμ ≤ γ

( ∫

M

ρvr
n+1 dμ

)H(s)
H(r)

× W (Σ)
(s−r)(N−α1)

H(r)

( ∫

M

|∇vn+1|p dμ
) (s−r)(N−α1)

H(r)
, (4.2)

where Σ is then bounded as in (3.4). From now on, the proof proceeds formally
unchanged as in Sect. 3, with the remarks below.

We use Hölder inequality to bound the right hand side of (3.1) exactly with the
right hand side of (3.5) (with the current values of s, r). Note that the condition

(s − r)(N − α1)
H(r)

< 1, (4.3)

required in order to apply Hölder (and, next, Young) inequality, is not automatically
satisfied as in the case of Sect. 3; anyway, it is easily seen by a direct elementary
calculation that (4.3) is equivalent to (4.1).

Then we apply Young inequality to arrive at (3.8). Here we specifically note
that all exponents have the expected sign owing to (4.1), and that in (3.9) η is
positive by assumption (1.34).

At the end of the proof, in order to define k by means of (3.14), we exploit our
assumption that ψ is increasing.
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5. Proof of the Finite Speed of Propagation

Here we introduce the notation

An = {x ∈ M | R′
n < d(x) < R′′

n}, 0 < η, σ ≤ 1
4
, R ≥ 4R0,

R′
n =

R

2
(1 − η − σ + σ2−n), R′′

n =
R

2
(1 + η + σ − σ2−n).

We also introduce a standard cutoff function ζn ∈ C1
0 (An+1) such that

0 ≤ ζn ≤ 1; ζn(x) = 1, x ∈ An; |∇ζn(x)| ≤ γ2n(σR)−1.

Then for θ > 0 as in Sect. 3 we define

r =
p

p + m + θ − 2
, s = (1 + θ)r < p, vn = (uζn)

p+m+θ−2
p .

Note that no An intersects supp u0. Then from Lemma 2.18 we get

Jn := sup
0<τ<t

∫

M

vs
nρ dμ +

∫ t

0

∫

M

|∇vn|p dμ dτ

≤ γ
2np

σpRp

∫ t

0

∫

M

vp
n+1 dμ dτ. (5.1)

Next we apply Corollary 2.9 to vn+1 and get with the present choice of r < p
(remember that the support of vn+1 is contained in an annulus), and for all times,

∫

M

vp
n+1 dμ ≤ γω(V (R))

pN(p−r)
N(p−r)+rp

( ∫

M

vr
n+1 dμ

) p2
N(p−r)+rp

×
( ∫

M

|∇vn+1|p dμ
) N(p−r)

N(p−r)+rp

. (5.2)

We integrate in time this estimate, and apply Young inequality, to bound above the
right hand side of (5.1) with

ε

∫ t

0

|∇vn+1|p dμ + γε− N(p−r)
rp t

( 2n

σR

)N(p−r)+rp
r

ω(V (R))
N(p−r)

r sup
0<τ<t

( ∫

M

vr
n+1 dμ

)p
r

.

(5.3)

From (5.1) and (5.3) we infer, on substituting the definition of r, the recursive
inequality

Jn ≤ εJn+1 + γε− N
p (p+m+θ−3)

(2n

σ

)N(p+m+θ−3)+p

× tV (R)−(p+m+θ−3)R−p sup
0<τ<t

( ∫

A∞
u dμ

)p+m+θ−2

, (5.4)

where

A∞ =
{
x ∈ M | R

2
(1 − η − σ) < d(x) <

R

2
(1 + η + σ)

}
.
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A standard iterative argument, relying on a suitable choice of ε, then yields the
estimate

sup
0<τ<t

∫

A0

ρu1+θ dμ ≤ γσ−N(p+m+θ−3)−p

× tV (R)−(p+m+θ−3)R−p sup
0<τ<t

( ∫

A∞
u dμ

)p+m+θ−2

. (5.5)

Define next a sequence of shrinking annuli

Dn = {x ∈ M | R̄′
n < d(x) < R̄′′

n},

R̄′
n =

R

2
(1 − 2−n−1), R̄′′

n =
R

2
(1 + 2−n−1).

We apply inequality (5.5) with A0 = Dn+1, A∞ = Dn, σ = η = 2−n−2, n ≥ 0, and
obtain, using the fact that ρ(d(x)) ≥ ρ(R) in Dn,

sup
0<τ<t

∫

Dn+1

ρu1+θ dμ ≤ γ(2n)N(p+m+θ−3)−p

× tV (R)−(p+m+θ−3)R−pρ(R)−(p+m+θ−2) sup
0<τ<t

( ∫

Dn

ρu dμ
)p+m+θ−2

. (5.6)

We get from Hölder inequality that

Yn := sup
0<τ<t

∫

Dn

ρu dμ ≤
( ∫

Dn

ρ dμ
) θ

1+θ

×
(

sup
0<τ<t

∫

Dn

ρu1+θ dμ
) 1

1+θ

≤ γ
(
V (R)ρ(R)

) θ
1+θ

(
sup

0<τ<t

∫

Dn

ρu1+θ dμ
) 1

1+θ

, (5.7)

where we also took into account (1.36).
From (5.6) and (5.7) we infer at once

Yn+1 ≤ γbn
( t

V (R)p+m−3Rpρ(R)p+m−2

) 1
1+θ

Y
1+p+m−3

1+θ
n , (5.8)

where b is a suitable power of 2. It follows from [26, Lemma 5.6, Chapt. II] that
Yn → 0 as n → ∞ if R is chosen so that

t

V (R)p+m−3Rpρ(R)p+m−2

( ∫

M

ρu0 dμ
)p+m−3

≤ γ0, (5.9)

for a suitable constant γ0 > 0 depending on the parameters of the problem. We also
use here the bound in (1.32).

Finally, note that according to the definition of Yn we proved that u(x, t) = 0
for x ∈ M \BR if R satisfies (5.9) and of course the condition suppu0 ⊂ BR/4 stated
at the beginning of the proof. We have thus proved the sought after result.
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6. Proof of the Universal Bound

We need the following

Lemma 6.1. Assume that the assumptions of Lemma 2.6, (1.23), (1.24) hold true,
and that for α > 0, β ∈ (0, N) we have for a suitable c > 0

ρ(τ) ≤ c−1τ−α, τ > 1, (6.1)

and

V (τ) ≥ cτβ, τ > 1. (6.2)

In addition we require that one of the following holds:

p < β, α ≥ β, 0 < r < p∗,

p < β, p
N − β

N − p
< α < β, p

β − α

β − p
< r < p∗,

p = β, α > β, 0 < r < p∗,

p > β, 0 < r < min
(
p∗, p

α − β

p − β

)
.

Then ∫

M

ρ|u|r dμ ≤ γ
( ∫

M

|∇u|p dμ
) r

p

. (6.3)

Proof. From Hölder inequality and Lemma 2.6 we infer
∫

M

ρ|u|r dμ ≤
( ∫

M

|u|p∗
ω(V (d(x)))−p∗

dμ
) r

p∗
J1− r

p∗

≤ γ
( ∫

M

|∇u|p dμ
) r

p

J1− r
p∗ , (6.4)

where

J :=
∫

M

ρ(d(x))
p∗

p∗−r ω(V (d(x)))
rp∗

p∗−r dμ

≤ γ +
∫

M\B1

ρ(d(x))
p∗

p∗−r ω(V (d(x)))
rp∗

p∗−r dμ. (6.5)

We majorize the last integral as
∫ +∞

1

ρ(τ)
p∗

p∗−r ω(V (τ))
rp∗

p∗−r
dV

dτ
(τ) dτ

≤ γ

∫ +∞

1

ρ(τ)
p∗

p∗−r τ
rp∗

p∗−r −1V (τ)1− rp∗
N(p∗−r) dτ, (6.6)

where we have used the definition of ω and (1.23) and (1.24). Finally, the right hand
side of (6.6) is bounded by

∫ +∞

1

τ
p∗(r−α)

p∗−r −1+β− βrp∗
N(p∗−r) dτ, (6.7)

according to our assumptions on V and ρ. The last integral converges in the cases
given in the statement, as a direct inspection shows. �
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Proof of Theorem. We use the notation introduced in Sect. 3, with the exception
that while we still denote s = p(1 + θ)/(p + m + θ − 2) < p, θ > 0, we choose
p < r < p∗. We may apply Lemma 6.1, since (6.2) with β = p follows under our
assumptions from (2.4), so that p < r < p∗ is in the admissible range for Lemma 6.1.
Then we have at every time level, since s < p < r,

∫

M

ρvs
n+1 dμ ≤

( ∫

M

ρvr
n+1 dμ

) s
r

μρ({u > kn+1})1− s
r

≤ γ
( ∫

M

|∇vn+1|p dμ
) s

p

μρ({u > k∞})1− s
r . (6.8)

Then we apply to (3.1) the estimate (6.8) and Young inequality; with the notation
(3.7), we arrive at

In ≤ ε

∫ t

τn+1

∫

M

|∇vn+1|p dμ dτ

+ γε− s
p−s

2
n�p
p−s

σ
�p

p−s

t−
s

p−s sup
τ∞<τ<t

μρ({u(τ) > k∞})
p(r−s)
r(p−s) . (6.9)

Then an iterative argument essentially identical to the one employed in (3.6)–(3.8)
leads us, for a suitable choice of ε > 0, to

sup
τ0<τ<t

∫

M

ρ(u(τ) − k0)
1+θ
+ dμ

≤ γσ− �(p+m+θ−2)
p+m−3 t−

1+θ
p+m−3 sup

τ∞<τ<t
μρ({u(τ) > k∞})1+

(r−p)(1+θ)
r(p+m−3) . (6.10)

Note that the last exponent is greater than 1 owing to our choice r > p.
We proceed as in Sect. 3, introducing hj , yj and Yi = y2i as there. When we

take into account that

μρ({u(τ) > hj}) ≤ 2j+2k−1yj−1,

we get (remember that we set k∞ = hj , k0 = hj+1)

Yi+1 ≤ γ4
(

�(p+m+θ−2)
p+m−3 +θ+1

)
ik−(θ+1)

(
1+ r−p

r(p+m−3)

)
t−

1+θ
p+m−3 Y

1+ (r−p)(1+θ)
r(p+m−3)

i , (6.11)

for i ≥ 0. It follows from [26, Lemma 5.6, Chapt. II] that Yi → 0 as i → +∞, i.e.,
u(t) ≤ k, if

k−1− r−p
r(p+m−3) t−

1
p+m−3 Y

r−p
r(p+m−3)
0 ≤ γ0, (6.12)

for a suitable constant γ0 > 0 depending on the parameters. We bound the integral
appearing in Y0 (at each time level) as

∫

M

ρ
(
u − 3

4
k
)

+
dμ ≤

( ∫

M

ρ
(
u − 3

4
k
)q+1

+
dμ

) 1
q+1

μρ

({
u >

3
4
k
}) q

q+1

≤
( ∫

M

ρ
(
u − 3

4
k
)q+1

+
dμ

) 1
q+1

(
(4k−1)q+1

∫

M

ρ
(
u − k

2

)q+1

+
dμ

) q
q+1

≤ (4k−1)q

∫

M

ρuq+1 dμ,
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for q > 0. It follows then from (6.12) (with an equality) that

‖u(t)‖∞ ≤ γt−
r
K sup

t/4<τ<t

Eq+1(τ)
r−p

K , t > 0, (6.13)

for Eq+1 defined as in (2.59), and

K = r(p + m − 3) + (r − p)(q + 1).

We are left with the task of estimating Eq+1(τ); this will be accomplished by ap-
pealing again to Lemma 6.1, where we select

0 < r′ :=
p(1 + q)

p + m + q − 2
< p < p∗. (6.14)

We obtain from the differential equation (1.1), for w = u(p+m+q−2)/p the equality
in

1
q + 1

dEq+1

dt
= −

( p

p + m + θ − 2

)p
∫

M

|∇w|p dμ ≤ −γEq+1(t)
p+m+q−2

1+q , (6.15)

where the inequality follows from an application of (6.3) with r replaced with the
r′ given in (6.14). On integrating (6.15) we get

Eq+1(t) ≤ γt−
1+q

p+m−3 , t > 0; (6.16)

actually we integrate over (t0, t) and then let t0 → 0+ in order to circumvent possible
problems with the local summability of the initial data. Finally we substitute (6.16)
in (6.13) to prove the claim of the Theorem. �

7. Interface Blow Up

Let us reason by contradiction, and assume that the support of u(t) stays bounded
for all times.

Then we get for all times and for a fixed θ > 0, by means of Hölder and Hardy
inequality

∫

M

ρu dμ ≤
( ∫

M

d(x)−pup+m+θ−2 dμ
) 1

p+m+θ−2
I(θ)

p+m+θ−3
p+m+θ−2

≤ γ
( ∫

M

|∇u
p+m+θ−2

p |p dμ
) 1

p+m+θ−2
I(θ)

p+m+θ−3
p+m+θ−2 , (7.1)

where, when we recall (1.23)

I(θ) =
∫

M

(
d(x)pρ(x)p+m+θ−2

) 1
p+m+θ−3 dμ

≤ N

∫ +∞

0

(
τpρ(τ)p+m+θ−2

) 1
p+m+θ−3

V (τ)
τ

dτ

= N

∫ +∞

0

(
τpρ(τ)

)− θ
(p+m−3)(p+m+θ−3) ψ(τ)

1
p+m−3

dτ

τ
< +∞,

by assumption (1.40), if θ is chosen suitably small.
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By means of calculation in all similar we get
∫

M

ρu1+θ dμ ≤
( ∫

M

d(x)−pup+m+θ−2 dμ
) 1+θ

p+m+θ−2
J(θ)

p+m−3
p+m+θ−2

≤ γ
( ∫

M

|∇u
p+m+θ−2

p |p dμ
) 1+θ

p+m+θ−2
J(θ)

p+m−3
p+m+θ−2 , (7.2)

where when we recall (1.23)

J(θ) =
∫

M

(
d(x)p(1+θ)ρ(x)p+m+θ−2

) 1
p+m−3 dμ

≤ N

∫ +∞

0

(
τp(1+θ)ρ(τ)p+m+θ−2

) 1
p+m−3

V (τ)
τ

dτ

= N

∫ +∞

0

(
τpρ(τ)

) θ
p+m−3 ψ(τ)

1
p+m−3

dτ

τ
< +∞,

again by assumption (1.40), for a suitable choice of θ.
On using (7.2) and the differential equation (1.1), we obtain

1
1 + θ

d
dt

∫

M

ρu(t)1+θ dμ = −
( p

p + m + θ − 2

)p
∫

M

|∇u
p+m+θ−2

p |p dμ

≤ −γ
( ∫

M

ρu(t)1+θ dμ
)p+m+θ−2

1+θ

, (7.3)

whence
∫

M

ρu(t)1+θ dμ ≤ γt−
1+θ

p+m−3 , t > 0. (7.4)

However, (7.1) and Hölder inequality yield
∫ t+1

t

∫

M

ρu dμ dτ ≤
( ∫ t+1

t

∫

M

|∇u
p+m+θ−2

p |p dμ dτ
) 1

p+m+θ−2
. (7.5)

Again integrating the equality in (7.3), we get
∫ t+1

t

∫

M

|∇u
p+m+θ−2

p |p dμ dτ ≤ γ

∫

M

ρu(t)1+θ dμ, (7.6)

and finally on combining (7.4) with (7.6) we obtain
∫

M

ρu0 dμ =
∫ t+1

t

∫

M

ρu(t) dμ dτ ≤ γt−
1+θ

(p+m+3)(p+m+θ−2) , (7.7)

at least for all the times t such that the compactness of the support of u(τ) holds
true over (0, t + 1). Indeed it is known, as we recalled in Remark 1.5, that such a
property implies conservation of mass. But, (7.7) clearly is inconsistent as t → +∞,
completing our argument.
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