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Abstract. We are mainly concerned with sequences of graphs having a grid geom-

etry, with a uniform local structure in a bounded domain Ω ⊂ Rd, d ≥ 1. When

Ω = [0, 1], such graphs include the standard Toeplitz graphs and, for Ω = [0, 1]d,

the considered class includes d-level Toeplitz graphs. In the general case, the un-

derlying sequence of adjacency matrices has a canonical eigenvalue distribution, in

the Weyl sense, and we show that we can associate to it a symbol f. The knowledge

of the symbol and of its basic analytical features provides many information on

the eigenvalue structure, of localization, spectral gap, clustering, and distribution

type.

Few generalizations are also considered in connection with the notion of gen-

eralized locally Toeplitz sequences and applications are discussed, stemming e.g.

from the approximation of differential operators via numerical schemes. Never-

theless, more applications can be taken into account, since the results presented

here can be applied as well to study the spectral properties of adjacency matrices

and Laplacian operators of general large graphs and networks.
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1. Introduction

Spectral properties of the adjacency matrix and the Laplacian operator of graphs
provide valuable insights regarding a large number of key features such as the Shan-
non capacity, Chromatic number, diameter, maximum cut, just to cite few of them,
see [6, 35], which often play a central role in many applied real-world problems e.g.
in physics and chemistry problems, see as references [15, 21, 34] and [12, Chapter 8].
In particular, graphs typically describe approximations of physical domains related
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to self-adjoint second order linear differential operators: for example, the discretiza-
tion of the Laplace differential operator with Dirichlet boundary conditions over a
membrane Ω ∈ Rd produces the Laplacian matrix of a (possibly infinite) graph with
its eigenvalues corresponding to the characteristic frequencies of the membrane, [12,
p.256]. In the last few years there has been a rising interest over this topic, espe-
cially concerning spectral convergence of the graph-Laplacian towards the spectrum
of its continuous counterpart, see the seminal work of D. Burago and coauthors [8]
and applications in inverse problems regularization and machine learning, refer to
[43, 44, 45]. Therefore, having a way to analytically measure the eigenvalue distribu-
tion of the adjacency matrix and the graph-Laplacian can be as precious as crucial
in many applications.

In this work we are interested in defining and studying a large class of graphs
enjoying few structural properties:

a. when we look at them from “far away”, they should reconstruct approximately
a given domain Ω ⊂ [0, 1]d, d ≥ 1, i.e., the larger is the number of the nodes
the more accurate is the reconstruction of Ω;

b. when we look at them “locally”, that is from a generic internal node, we want
that the structure is uniform, i.e., we should be unable to understand where we
are in the graphs, except possibly when the considered node is close enough to
the boundaries of Ω.

Technically, we are not concerned with a single graph, but with a whole sequence
of graphs, where Ω and the internal structure are fixed, independently of the index
(or multi-index) of the graph uniquely related to the cardinality of nodes: thus the
resulting sequence of graphs has a grid geometry, with a uniform local structure,
in a bounded domain Ω ⊂ Rd, d ≥ 1. We assume the domain Ω to be Lebesgue
measurable with regular boundary, which is for us a boundary ∂Ω of zero Lebesgue
measure, and contained for convenience in the cube [0, 1]d. We call regular such a
domain. When Ω = [0, 1], it is worth observing that such graphs include the standard
Toeplitz graphs (see [28] and Definition 4.1) and for Ω = [0, 1]d the considered class
includes d-level Toeplitz graphs (see Definition 4.2).

The main result is the following: given a sequence of graphs having a grid
geometry with a uniform local structure in a domain Ω, the underlying sequence of
adjacency matrices has a canonical eigenvalue distribution, in the Weyl sense (see
[5, 29] and references therein), and we show that we can associate to it a symbol
function f. More precisely, when f is smooth enough, if N denotes the size of the
adjacency matrix (i.e. the number of nodes of the graph), then the eigenvalues of
the adjacency matrix are approximately values of a uniform sampling of f in its
definition domain, which depends on Ω (see Definition 2.3 for the formal definition
of eigenvalue distribution in the Weyl sense and the results on Section 5 for the
precise characterization of f and of its definition domain).

The knowledge of the symbol and of some of its basic analytical features pro-
vides a lot of information on the eigenvalue structure, of localization, spectral gap,
clustering, and distribution type.
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The mathematical tools are mainly taken from the field of Toeplitz (see the
rich book by Böttcher and Silbermann [5] and [29, 42, 46]) and Generalized Locally
Toeplitz (GLT) matrix-sequences (see [37, 38, 41]): for a recent account on the GLT
theory, which is indeed quite related to the present topic, we refer to the following
books and reviews [22, 23, 24, 26].

Interestingly enough, as discussed at the end of this paper, many numerical
schemes (see e.g. [10, 11, 39]) for approximating partial differential equations (PDEs)
and operators lead to sequences of structured matrices which can be written as linear
combination of adjacency matrices, associated with the graph sequences described
here. More specifically, if the physical domain of the differential operator is [0, 1]d (or
any d-dimensional rectangle) and the coefficients are constant, then we encounter d-
level (weighted) Toeplitz graphs, when approximating the underlying PDE by using
e.g. equispaced Finite Differences or uniform Isogeometric Analysis (IgA). On the
other hand, under the same assumptions on the underlying operator, quadrangular
and triangular Finite Elements lead to block d-level Toeplitz structures, where the
size of the blocks is related to the degree of the polynomial space of approxima-
tion and to the dimensionality d (see [25]). Finally, in more generality, the GLT
case is encountered by using any of the above numerical techniques, also with non-
equispaced nodes/triangulations, when dealing either with a general domain Ω or
when the coefficients of the differential operator are not constant. The given clas-
sification of approximated PDE matrix-sequences is relevant also from a practical
viewpoint since the obtained spectral information can be used for guiding the design
of proper iterative solvers (in terms either of preconditioners or of ad hoc multigrid
methods) for the underlying linear systems with large matrix size: see [1] for the use
of the theoretical results of the current work for the design of preconditioners and
of multigrid procedures.

The paper is organized as follows. In Section 2 and Section 3 we collect all
the machinery we need for our derivations: we will first review basic definitions and
notation from graph theory, from the field of Toeplitz and d-level Toeplitz matrices,
and then we provide the definitions of canonical spectral distribution, spectral clus-
tering etc. In particular, we introduce Theorem 3.2 which plays a central role for
the spectral analysis in applications. In Section 4 we present the structure of d-level
diamond Toeplitz graphs. In Section 5 we give formal definitions of sequences of
graphs having a grid geometry, with a uniform local structure, in regular domains
Ω ⊂ [0, 1]d, d ≥ 1, and we prove the main results, by identifying the related symbols.
Section 6 and 7 contain specific applications, including the analysis of spectral gaps
and the study of connections with the numerical approximation of differential op-
erators by local methods, such as Finite Differences, Finite Elements, Isogeometric
Analysis etc. Finally, Section 8 is devoted to draw conclusions and to present open
problems.
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2. Background notation and definitions

In this section we present some definitions, notation, and (spectral) properties asso-
ciated with graphs (see [12] and references therein) and, in particular, with Toeplitz
graphs [28].

Before proceeding further, let us introduce a multi-index notation that we use
hereafter. Given an integer d ≥ 1, a d-index k is an element of Zd, that is, k =
(k1, . . . , kd) with kr ∈ Z for every r = 1, . . . , d. We intend Z equipped with the
lexicographic ordering, that is, given two d-indices i = (i1, . . . , id), j = (j1, . . . , jd),
we write i � j if ir < jr for the first r = 1, 2, . . . , d such that ir �= jr. The relations
�,�,� are defined accordingly.

Given two d-indices i, j, we write i < j if ir < jr for every r = 1, . . . , d. The
relations ≤, >,≥ are defined accordingly.

We use bold letters for vectors and vector/matrix-valued functions. We indi-
cate with 0,1,2, . . ., the d-dimensional constant vectors (0, 0, . . . , 0), (1, 1, . . . , 1),
(2, 2, . . . , 2) , . . ., respectively. With the notation i

n we mean the element-wise divi-

sion of vectors, i.e., i
n =

(
i1
n1
, . . . , id

nd

)
. We write |i| for the vector (|i1|, . . . , |id|).

Finally, given a d-index n, we write n → ∞ meaning that minr=1,...,d{nr} → ∞.

2.1. Graphs

We call a (finite) graph the quadruple G = (V,E,w, κ), defined by

• a set of nodes V = {v1, v2, . . . , vn};
• a weight function w : V × V → R;
• a set of edges E = {(vi, vj)| vi, vj ∈ V, w(vi, vj) �= 0} between the nodes;
• a potential term κ : V → R.
The non-zero values w(vi, vj) of the weight function w are called weights associ-

ated with the edge (vi, vj). Given an edge e = (vi, vj) ∈ E, the nodes vi, vj are called
end-nodes for the edge e. An edge e ∈ E is said to be incident to a node vi ∈ V
if there exists a node vj �= vi such that either e = (vi, vj) or e = (vj , vi). A walk
of length k in G is a set of nodes vi1 , vi2 , . . . , vik , vik+1

such that, for all 1 ≤ r ≤ k,
(vir , vir+1) ∈ E. A closed walk is a walk for which vi1 = vik+1

. A path is a walk with
no repeated nodes. A graph is connected if there is a walk connecting every pair of
nodes.

A graph is said to be unweighted if w(vi, vj) ∈ {0, 1} for every vi, vj ∈ V . In
that case the weight function w is uniquely determined by edges belonging to E.

A graph is said to be undirected if the weight function w is symmetric, i.e.,
for every couple of nodes vi, vj we have w(vi, vj) = w(vj , vi). In this case the edges
(vi, vj) and (vj , vi) are considered equivalent and the edges are formed by unordered
pairs of vertices. Two nodes vi, vj of an undirected graph are said to be neighbors if
(vi, vj) ∈ E and we write vi ∼ vj . On the contrary, if (vi, vj) /∈ E, we write vi � vj .

An undirected graph with unweighted edges and no self-loops (edges from a
node to itself) is said to be simple. When dealing with simple graphs we use the
simplified notation G = (V,E).



Vol.88	(2020)	 Asymptotic	Spectra	of	Large	(Grid)	Graphs	 413Asymptotic Spectra of Large (Grid) Graphs 5

Every graph G = (V,E,w, κ) with κ ≡ 0 can be represented as a matrix

W = (wi,j)
n
i,j=1 ∈ Rn×n,

called the adjacency matrix of the graph. In particular, there is a bijection between
the set of weight functions w : V × V → R and the set of a adjacency matrices
W ∈ Rn×n.

The entries of the adjacency matrix W are

(W )i,j = w(vi, vj), ∀ vi, vj ∈ V.

In short, the adjacency matrix tells which nodes are connected and the ‘weight’ of
the connection. If the graph does not admit self-loops, then the diagonal elements
of the adjacency matrix are all equal to zero. In the particular case of an undirected
graph, the associated adjacency matrix is symmetric, and thus its eigenvalues are
real [4]. Moreover, the degree of a node vi of an undirected graph, denoted by deg(vi),
is defined as the sum of weights associated with edges incident to vi, that is,

deg(vi) :=
∑
vj∼vi

w(vi, vj).

Given two graphs G = (V,E,w, κ), G′ = (V ′, E′, w′, κ′) with

V = {v1, . . . , vn}, V ′ = {v′1, . . . , v′m},

we say that G is isomorphic to G′, and we write G � G′, if

• n = m, i.e., |V | = |V ′| where | · | is the cardinality of a set;
• there exists a permutation P over the standard set [n] := {1, . . . , n} such that

w(vi, vj) = w′
(
v′P (i), v

′
P (j)

)
, κ(vi) = κ′

(
v′P (i)

)
.

In short, two graphs are isomorphic if they contain the same number of vertices con-
nected in the same way. Notice that an isomorphism between graphs is characterized
by the permutation matrix P .

As an immediate consequence of the previous definition, it holds that G � G′ if
and only if there exists a permutation matrix P such that W = PW ′P−1 = PW ′P T ,
where W,W ′ are the adjacency matrices of G and G′, respectively.

Definition 2.1 (Linking-graph operator). Given ν ∈ N, we call linking-graph operator
for the reference node set [ν] := {1, . . . , ν} any non-zero Rν×ν matrix, and we indicate
it with L. Namely, a linking-graph operator is the adjacency matrix for a (possibly
not undirected) graph G = ([ν], E, l), with l a weight function. When the entries of
L are just in {0, 1} we call it a simple linking-graph operator.

In Section 5, we use the linking-graph operator to connect a (infinite) sequence
of graphs

G1 � G2 � . . . � Gn � . . . ,

and to define the graph G :=
⋃∞

n=1Gn which has a uniform local structure.
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Sometimes it is useful to deal with proper sub-graphs. Given a graph Ḡ =
(V̄ , Ē, w̄, κ̄) and a subset V ⊂ V̄ , then

V̊ :=
{
vi ∈ V | vi � v̄j ∀ v̄j ∈ V̄ \ V

}

is called interior of V and its elements are called interior nodes. Whereas, the set
of nodes

∂V :=
{
vi ∈ V | vi ∼ v̄j for some v̄j ∈ V̄ \ V

}

is called (internal) boundary of V and its elements are called boundary nodes. We
say that a graph G = (V,E,w, κ) is a (proper) sub-graph of Ḡ, and we write G ⊂ Ḡ,
if

• V ⊂ V̄ ;
• E = {(vi, vj) ∈ Ē | vi, vj ∈ V } ⊂ Ē;
• w = w̄|E ;
• κ = κ̄|V̊ .

We call Ḡ the host graph. Observe that we do not request that κ = κ̄ on ∂V .

Finally, the set of real functions on V is denoted as C(V ). Trivially, C(V ) is
isomorphic to Rn. Of great importance for Section 7 is the operator ∆G : C(V ) →
C(V ) defined below.

Definition 2.2 (Graph-Laplacian). Given an undirected graph with no loops G =
(V,E,w, κ), the graph-Laplacian is the symmetric matrix ∆G : C(V ) → C(V ) de-
fined as

∆G := D +K −W,

where D is the degree matrix and K is the potential term matrix, that is,

D := diag {deg(v1), . . . ,deg(vn)} , K := diag {κ(v1), . . . , κ(vn)} ,

and W is the adjacency matrix of the graph G, that is,

W =




0 w(v1, v2) · · · w(v1, vn)

w(v1, v2) 0
. . .

...
...

. . .
. . . w(vn−1, vn)

w(v1, vn) · · · w(vn−1, vn) 0




.

Namely,

∆G =




deg(v1) + κ(v1) −w(v1, v2) · · · −w(v1, vn)

−w(v1, v2) deg(v2) + κ(v2)
. . .

...
...

. . .
. . . −w(vn−1, vn)

−w(v1, vn) · · · −w(vn−1, vn) deg(vn) + κ(vn)


 .
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2.2. Toeplitz matrices, d-level Toeplitz matrices, and symbols

Toeplitz matrices Tn are characterized by the fact that all their diagonals parallel
to the main diagonal have constant values: (Tn)i,j = ti−j , where i, j = 1, . . . , n, for
given coefficients tk, k = 1− n, . . . , n− 1:

Tn =




t0 t−1 · · · t1−n

t1 t0
. . .

...
...

. . .
. . . t−1

tn−1 · · · t1 t0




.

When every term tk is a matrix of fixed size ν, i.e., tk ∈ Cν×ν , the matrix Tn is
of block Toeplitz type. Owing to its intrinsic recursive nature, the definition of d-
level (block) Toeplitz matrices is definitely more involved. More precisely, a d-level
Toeplitz matrix is a Toeplitz matrix where each coefficient tk denotes a (d− 1)-level
Toeplitz matrix and so on in a recursive manner. In a more formal detailed way,
using a standard multi-index notation introduced at the beginning of Section 2, a
d-level Toeplitz matrix is of the form

Tn = (ti−j)
n
i,j=1 ∈ C(n1···nd)×(n1···nd),

with the multi-index n such that 0 < n = (n1, . . . , nd) and tk ∈ C, −(n− 1) � k �
n − 1. If the basic elements tk denote blocks of a fixed size ν ≥ 2, i.e. tk ∈ Cν×ν ,
then Tn,ν is a d-level block Toeplitz matrix,

Tn,ν = (ti−j)
n
i,j=1 ∈ C(n1···ndν)×(n1···ndν), tk ∈ Cν×ν .

For the sake of simplicity, we write down an explicit example with d = 2 and ν = 3:

Tn,3 =




T0 T�1 · · · T1�n1

T1 T0
. . .

...
...

. . .
. . . T�1

Tn1�1 · · · T1 T0


 , Tk1 =




tk1,0 tk1,�1 · · · tk1,1�n2

tk1,1 tk1,0
. . .

...
...

. . .
. . . tk1,�1

tk1,n2�1 · · · tk1,1 tk1,0


 ,

tk1,k2 ∈ C3×3, k1 ∈ {1− n1, . . . , n1 − 1}, k2 ∈ {1− n2, . . . , n2 − 1}.
Observe that each block Tk1 has a (block) Toeplitz structure. When ν = 1, then we
just write Tn,ν = Tn.

Here we are interested in asymptotic results and thus it is important to a have a
meaningful way for defining sequences of Toeplitz matrices, enjoying global common
properties. A classical and successful possibility is given by the use of a fixed function,
called the generating function, and by taking its Fourier coefficients as entries of all
the matrices in the sequence.

More specifically, given a function f : [−π, π]d → Cν×ν belonging to L1([−π, π]d),
we denote its Fourier coefficients by

f̂k =
1

(2π)d

∫

[−π,π]d
f(θ)e−ik·θdθ ∈ Cν×ν , k ∈ Zd, k · θ =

d∑
r=1

krθr, (1)
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(the integrals are done component-wise), and we associate to f the family of d-level
block Toeplitz matrices

Tn,ν(f) :=
(
f̂ i−j

)n

i,j=1
, n ∈ Nd. (2)

We call {Tn,ν(f)}n the family of multilevel block Toeplitz matrices associated with
the function f , which is called the generating function of {Tn,ν(f)}n. If f is Her-
mitian matrix-valued, i.e. f(θ) is Hermitian for almost every θ, then it is plain
to see that all the matrices Tn,ν(f) are Hermitian, simply because the Hermitian

character of the generating function and relations (1) imply that f̂−k = f̂
∗
k for all

k ∈ Zd, where the ∗-symbol indicates the complex conjugate transpose. If, in addi-
tion, f(θ) = f(|θ|) for every θ, then all the matrices Tn(f) are real symmetric with

real symmetric blocks f̂k, k ∈ Zd.

2.3. Spectral symbol

We say that a matrix-valued function f : D → Cν×ν , ν ≥ 1, defined on a measurable
set D ⊆ Rm, m ∈ N, is measurable (resp. continuous, in Lp(D)) if its components
fi,j : D → C, i, j = 1, . . . , ν, are measurable (resp. continuous, in Lp(D)). Let µm be
the Lebesgue measure on Rm and let Cc(R) be the set of continuous functions with
bounded support defined over R. Setting dn the dimension of a square matrix Xn,ν ,
for F ∈ Cc(R) we define

Σσ(F,Xn,ν) :=
1

dn

dn∑
k=1

F (σk(Xn,ν)), Σλ(F,Xn,ν) :=
1

dn

dn∑
k=1

F (λk(Xn,ν)),

where σk(Xn,ν) and λk(Xn,ν) are the singular values and the (real) eigenvalues of
Xn,ν , respectively, sorted in non-decreasing order.

Hereafter, symbols {Xn,ν}n, {Yn,ν}n, {Zn,ν}n, with ν a fixed parameter inde-
pendent of n, indicate sequences of square matrices of increasing dimensions, i.e.,
such that dn → ∞ as n → ∞.

We say that a sequence {Xn,ν}n is zero distributed if

lim
n→∞

Σσ(F,Xn,ν) = F (0) ∀F ∈ Cc(R),

and we indicate it by {Xn,ν}n ∼σ 0.

Definition 2.3 (Spectral symbol). Let {Xn,ν}n be a sequence of matrices and let
f : D → Cν×ν be a measurable Hermitian matrix-valued function defined on the
measurable set D ⊂ Rm, with 0 < µm(D) < ∞.

We say that {Xn,ν}n is distributed like f in the sense of eigenvalues, in symbols
{Xn,ν}n ∼λ f, if

lim
n→∞

Σλ(F,Xn,ν) =
1

µm(D)

∫

D

ν∑
k=1

F (λk(f(y))) dµm(y), ∀F ∈ Cc(R), (3)
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where λ1(f(y)), . . . , λν(f(y)) are the eigenvalues of f(y). Let us notice that, in the
case ν = 1, the identity (3) reduces to

lim
n→∞

Σλ(F,Xn) =
1

µm(D)

∫

D
F (f(y)) dµm(y), ∀F ∈ Cc(R).

We call f the (spectral) symbol of {Xn,ν}n.

The following result on Toeplitz matrix-sequences linking the definition of sym-
bol function and generating function is due to P. Tilli.

Theorem 2.1 ([42]). Given a function f : [−π, π]d → Cν×ν belonging to L1([−π, π]d),
then

{Tn,ν(f)}n ∼λ f ≡ f ,

that is the generating function of {Tn,ν(f)}n coincides with its symbol according to
Definition 2.3.

Since in this paper we work only with undirected graphs (i.e., graphs whose
associated adjacency matrix is symmetric), we deal with Hermitian-valued symbol
functions f such that λk (f(y)) are real-valued for every y ∈ D ⊂ Rm, and for every
k = 1, . . . , ν. See for example Propositions 4.2, 4.4, and Theorem 5.2.

The knowledge of the symbol function f can give valuable insights on the dis-
tribution of eigenvalues of a sequence of matrices. We refer to Section 3 where a
collection of theoretical results is presented, and to Section 7 and [1] where numeri-
cal experiments are provided.

Unfortunately, a generic matrix-sequence {Xn,ν}n does not always own a Toeplitz-
like structure and therefore we cannot predict beforehand whether it is distributed
like a spectral symbol f or not. The Generalized Locally Toeplitz (GLT) theory pro-
vides practical tools to extend the class of matrix-sequences satisfying equation (3)
for a given symbol f.

In light of the purposes of the present work we give the main properties of
block GLT sequences instead of the original formal definition, which can be found in
[26], along with the properties listed below, for two main reasons. First, the original
definition reported in [26] is rather involved and it requires introducing several other
definitions such as ”block LT operators” and ”block LT sequences”. Moreover, from
a practical point of view, the following properties define the same set of matrix-
sequences as the formal definition, with the advantage of being much easier to use
for practical purposes. In other words, the axioms (GLT 1) – (GLT 5) listed below
represent an equivalent characterization of the whole class of block GLT matrix-
sequences.
Before doing so, let us introduce the definition of approximating class of sequences.

Let {Xn,ν}n be a sequence of matrices of increasing dimension dn and let
{{Yn,ν,m}n}m be a sequence of matrix-sequences of the same dimension dn. We say
that {{Yn,ν,m}n}m is an approximating class of sequences (a.c.s.) for {Xn,ν}n, and
we write

{Yn,ν,m}n → {Xn,ν}n a.c.s.,
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if the following condition is met: for every m there exists nm such that, for n > nm,

Xn,ν = Yn,ν,m +Rn,ν,m +Nn,ν,m, rank (Rn,ν,m) ≤ c1(m)dn,

‖Nn,ν,m‖ ≤ c2(m),

where nm, c1(m), c2(m) depend only on m, and

lim
m→∞

c1(m) = lim
m→∞

c2(m) = 0.

In what follows we write {Xn,ν}n ∼GLT f to indicate that {Xn,ν}n is a block

GLT sequence with symbol f, where f : Ω × [−π, π]d ⊂ R2d → C is a measurable
function, with 0 < µd(Ω) < ∞.

Properties of block GLT sequences

(GLT 1) If {Xn,ν}n ∼GLT f, then {Xn,ν}n ∼σ f. Moreover, if each Xn,ν is Hermit-
ian, then {Xn,ν}n ∼λ f.

(GLT 2) If {Xn,ν}n ∼GLT f and Xn,ν = Yn,ν + Zn,ν , where
• every Yn,ν is Hermitian,
• ‖Yn,ν‖ , ‖Zn,ν‖ ≤ c for some constant c independent of dn,
• d−1

n ‖Zn,ν‖1 → 0,
then {Xn,ν}n ∼λ f.

(GLT 3) We have:
• {Tn,ν(f)}n ∼GLT f ≡ f if f : [0, 1]d → Cν×ν is an integrable matrix-
valued function;

• {diagn(a)}n ∼GLT f ≡ a if a : [0, 1]d → Cν×ν is Riemann-integrable,
where

diagn(a) =




a
(
1
n

)
a
(
2
n

)
. . .

a (1)


 ∈ Cνn1···nd×νn1···nd ;

• {Zn,ν}n ∼GLT 0 if and only if {Xn,ν}n ∼σ 0.
(GLT 4) If {Xn,ν}n ∼GLT f and {Yn,ν}n ∼GLT g, then:

• {X∗
n,ν}n ∼GLT f∗;

• {αXn,ν + βYn,ν}n ∼GLT αf+ βg for all α, β ∈ C;
• {Xn,νYn,ν}n ∼GLT fg;

• {X†
n,ν}n ∼GLT f−1 provided that f is invertible a.e., where X†

n,ν de-
notes the Moore-Penrose pseudoinverse of Xn,ν ;

(GLT 5) {Xn,ν}n ∼GLT f if and only if there exist a block GLT sequence
{{Yn,ν,m}n}m ∼GLT fm such that {{Yn,ν,m}n}m → {Xn,ν}n a.c.s. and
fm → f in measure.

3. Weyl eigenvalue distribution

Fix a square matrix-sequence {Xn,ν}n of dimension dn, with symbol function f :
D ⊂ Rm → Cν×ν as in Definition 2.3. Observe that f is not unique and in general
not univariate. To avoid this, we introduce the notion of monotone rearrangement
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of the symbol, see Definition 3.1. In order to simplify the notation and since all the
cases we investigate in this paper can be led back to this situation, we make the
following assumptions:

Assumptions

(AS1) D is compact and of the form Ω × [−π, π]d with Ω ⊆ [0, 1]d, and therefore
m = 2d;

(AS2) f(y) = f(x,θ) = p(x)f(θ), with (x,θ) ∈ Ω × (−π, π)d and p : Ω → R,
f : (−π, π)d → Cν×ν ;

(AS3) p : Ω → R is piecewise continuous;
(AS4) every component fi,j : [−π, π]d → C of f is continuous;
(AS5) f is a Hermitian matrix-valued function.

Because of (AS5) we are assuming that all the eigenvalues are real, then for no-
tational convenience we order the eigenvalue functions λk (p(x)f(θ)) by magnitude,
namely λ1 (p(x)f(θ)) ≤ . . . ≤ λν (p(x)f(θ)). This kind of ordering could affect the
global regularity of the eigenvalue functions, but it does not affect the global reg-
ularity of the monotone rearrangement of the symbol, as we see in Theorem 3.2.
Nevertheless, by well-known results (see [31]), items (AS3) and (AS4) imply that
λk (p(x)f(θ)) is at least piecewise continuous for every k = 1, . . . , ν. We have the
following result.

Lemma 3.1. Suppose that {Xn,ν}n ∼λ f(x,θ) = p(x)f(θ) as in Definition 2.3,
where f : D → Cν×ν is a Hermitian matrix-valued function satisfying assumptions
(AS1)–(AS5). Then

{Xn,ν}n ∼λ f(x,θ) = p(x)
ν∑

k=1

λk (fk(θ)) , (x,θ) ∈ D̂, (4)

where f : D̂ → R is a real-valued function and

D̂ = Ω×

(
ν⋃

k=1

Ik

)
,

Ik =

[
(2(k − 1)− ν)π

ν
,
(2k − ν)π

ν

]
× · · · ×

[
(2(k − 1)− ν)π

ν
,
(2k − ν)π

ν

]

︸ ︷︷ ︸
d−times

,

fk : Ik → Cν×ν , fk(θ) =

{
f(νθ − (2k − 1− ν)π) if θ ∈ Ik,

0 otherwise.

Proof. By the monotone convergence theorem, since every F ∈ Cc(R) is limit of a
monotone sequence of step functions, then to prove (4) it is sufficient to prove the
validity of Definition 2.3 for F = 1E , with E a measurable subset of supp(F ). We
have that

1

µm(D)

∫∫

D

ν∑
k=1

1E (λk(p(x)f(θ))) dµm =

ν∑
k=1

1

µm(D)

∫∫

D
1Ek

(x,θ)dµm,
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where

Ek = {(x,θ) ∈ D : λk(p(x)f(θ)) ∈ E}
= {(x,θ) ∈ D : p(x)λk(f(θ)) ∈ E} .

For every k = 1, . . . , ν, let us make the change of variables

(x,θ) �→ (x, ν−1 [θ + (2k − 1− ν)π]),
{
Êk =

{
(x,θ) ∈ D̂k : p(x)λk(fk(θ)) ∈ E

}
,

D̂k = Ω× Ik,

from which it follows that
ν∑

k=1

1

µm(D)

∫∫

D
1Ek

(x,θ)dµm =

ν∑
k=1

1

νdµm

(
D̂k

)
∫∫

D̂k

1Êk
(x,θ)dµm

=
1

µm

(
D̂
)

ν∑
k=1

∫∫

D̂k

1Êk
(x,θ)dµm

=
1

µm

(
D̂
)
∫∫

D̂

ν∑
k=1

1Ik (θ)1Êk
(x,θ)dµm

=
1

µm

(
D̂
)
∫∫

D̂
1E

(
ν∑

k=1

p(x)λk(fk(θ))

)
dµm. �

Trivially, the maps Ik � θ �→ νθ − (2k − 1 − ν)π are diffeomorphism between
Ik and [−π, π]d. Therefore, the image set of

∑ν
k=1 λk (fk(θ)) over Ik is exactly the

image set of λk (f(θ)) over [−π, π]d.

The next definition of monotone rearrangement is crucial for the understanding
of the asymptotic distribution of eigenvalues of {Xn,ν}n.

Definition 3.1. Let ν ≥ 1 and using the same notation as in Lemma 3.1, define

Rf =

{
p(x)

ν∑
k=1

λk (fk(θ)) : (x,θ) ∈ Ω× [−π, π]d

}
.

Let f† : [0, 1] → [minRf,maxRf] be such that

f†(x) = inf {t ∈ [minRf,maxRf] : φf(t) ≥ x} (5a)

where φf : R → [0, 1],

φf(t) :=
1

µm(D̂)
µm

({
(x,θ) ∈ D̂ : p(x)

ν∑
k=1

λk (fk(θ)) ≤ t

})
. (5b)

f†(x) is the monotone rearrangement of f(x,θ) = p(x)
∑ν

k=1 λk (fk(θ)). Because of

Lemma 3.1, with abuse of notation we call f†(x) the monotone rearrangement of
f(x,θ) = p(x)f(θ) as well. In the special case that f(x,θ) = f(θ), then f† ≡ f †.
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Clearly, f† is well-defined, univariate, monotone strictly increasing and right-
continuous. The common “analyst”notation for the monotone rearrangement of a
function uses the star ∗-symbol. In this manuscript we prefer to use the dagger †-
symbol to avoid confusion with the conjugate transpose notation. Nevertheless, it is
anyway appropriate since from a probabilistic point of view, f† is the pseudo-inverse
of the cumulative distribution function φf.

Within our assumptions on f, it is easy to extend [14, Theorem 3.4] for this
multi-variate matrix-valued case, and it holds that

(i) f†(0) = minRf, f
†(1) = maxRf;

(ii) limn→∞Σλ(F,Xn,ν) =
∫ 1
0 F

(
f†(x)

)
dµ1 (x) .

We have the following results, see [2, Section 3]. The statements and the tech-
niques used in the proofs are almost the same, we mostly adjusted them to fit in the
notation we are adopting here. In order to make the paper self-contained, we report
here the sketches of the proofs.

Theorem 3.2. Let {Xn,ν}n be a matrix-sequence such that

{Xn,ν}n ∼λ f(x,θ) = p(x)f(θ).

Suppose that

µm

({
(x,θ) ∈ Ω× [−π, π]d : p(x)

ν∑
k=1

λk (fk(θ)) = t

})
= 0 ∀ t ∈ Rf

(or, equivalently, that φf is continuous). Then

{Xn,ν}n ∼λ f†(x), x ∈ (0, 1); (6a)

lim
n→∞

|{k = 1, . . . , dn : λk (Xn,ν) ≤ t}|
dn

= φf(t), ∀ t ∈ R. (6b)

Let k = k(n) be such that k(n)/dn → x−0 ∈ (0, 1) as n → ∞. Then

lim
n→∞

λk(n) (Xn,ν) = t0 ∈ (minRf,maxRf) , sup
t∈Rf

{t ≤ t0} = lim
x→x−

0

f† (x) .

In particular, if f† is continuous in x0, then

lim
n→∞

λk(n) (Xn,ν) = lim
n→∞

f†
(
k(n)

dn

)
= f† (x0) . (7)

Finally, if λk(n) (Xn,ν) ≥ min (Rf) (≤ max (Rf)) definitely, then equation (7) holds
for x0 = 0 (x0 = 1) as well.

Proof. Because of Lemma 3.1, it holds that

{Xn,ν}n ∼λ f(x,θ) = p(x)
ν∑

k=1

λk (fk(θ)) .
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By hypothesis, φf is continuous and then by standard results in Probability Theory
it holds that φf ◦ f := X is uniformly distributed on (0, 1), i.e. X ∼ U(0, 1), which

implies that f†(X) and f have the same distribution. Therefore,

1

µm

(
D̂
)
∫∫

D̂
F (f(x,θ)) dµm(x,θ) = E (F (f)) = E

(
F (f†(X))

)
=

∫ 1

0
F
(
f†(x)

)
dµ1(x)

for every F ∈ Cc(R). The above identity, combined with (4) and Definition 2.3, gives
(6a). Define now

φn(t) :=
N(Xn,ν , t)

dn
=

|{k = 1, . . . , dn : λk (Xn,ν) ≤ t}|
dn

,

µn(·) :=
1

dn

dn∑
k=1

1{λk(X(n))}(·).

It holds that µn is a sub-probability measure and that φn is the distribution function
of µn, that is µn((−∞, t]) = φn(t) for every t ∈ R. Combining now (4) and [9,
Theorem 4.4.1], it is not difficult to prove that µn converges vaguely (see [9, p. 85
and Theorem 4.3.1]) to µf, the probability measure on R associated with φf, i.e.,
such that µf(−∞, t] = φf(t) for every t ∈ R. Then,

lim
n→∞

N(Xn,ν , t)

dn
= lim

n→∞
φn(t) = lim

n→∞
µn(−∞, t] = µf(−∞, t] = φf(t),

for every t ∈ R, which is exactly (6b).

Define λk(n) := λk(n) (Xn,ν). By equation (6b) and since φf is continuous, by a
well known theorem of Pólya it holds that φn → φf uniformly. On the other hand,
it holds that

x0 = lim
n→∞

k(n)

dn
= lim

n→∞

N
(
Xn,ν , λk(n)

)
)

dn
= lim

n→∞
φn

(
λk(n)

)
.

Therefore, for every ε > 0 there exist N1 = N1(ε), N2 = N2(ε) ∈ N such that

sup
t∈R

|φn (t)− φf (t)| < ε ∀n = (n1, . . . , nd) such that min
r=1,...,d

nr > N1,

∣∣φn

(
λk(n)

)
− x0

∣∣ < ε ∀n = (n1, . . . , nd) such that min
r=1,...,d

nr > N2.

It follows easily that

lim
n→∞

φf

(
λk(n)

)
= φf

(
lim
n→∞

λk(n)

)
= x0.

Since x0 ∈ (0, 1), then by (5b) it holds that

lim
n→∞

λk(n) = t0 ∈ (minRf,maxRf).

Finally, by the above relation and by (5a), we can conclude that

lim
x→x−

0

f† (x) = lim
n→∞

f†
(
k(n)

dn

)
= sup

t∈Rf

{t ≤ t0} .
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Let us observe now that x0 is a jump discontinuity point for f† if and only if there
exist t1 < t2 ∈ Rf such that Rf ⊆ [minRf, t1] ∪ [t2,maxRf] and φf(t) = x0 if and

only if t ∈ [t1, t2]. Therefore, if f
† is continuous in x0, then t0 = t1 = t2 ∈ Rf and we

have (7). �

Corollary 3.3. With the same hypothesis as in Theorem 3.2, it holds that

lim
n→∞

|{k = 1, . . . , dn : λk (Xn,ν) /∈ Rf}|
dn

= 0,

that is, the number of possible outliers is o(dn).

Proof. It is immediate from (6b). Let us observe that

0 ≤ lim
n→∞

|{k : λk (Xn,ν) < minRf}|
dn

≤ lim
n→∞

N(Xn,ν ,minRf)

dn
= φf (minRf) = 0.

Moreover, since

|{k : λk (Xn,ν) /∈ Rf}|
dn

=
|{k : λk (Xn,ν) ∈ R}|

dn
−

|{k : λk (Xn,ν) ∈ Rf}|
dn

= 1−
|{k : λk (Xn,ν) ∈ Rf}|

dn

= 1−
N(Xn,ν ,maxRf)

dn
+

|{k : λk (Xn,ν) < minRf}|
dn

,

then, passing to the limit, we get

lim
n→∞

|{k : λk (Xn,ν) /∈ Rf}|
dn

= 1− φf (maxRf) = 1− 1 = 0. �

Corollary 3.4. With the same hypothesis as in Theorem 3.2, assume moreover that
f† is absolutely continuous. Let τ : [minRf,maxRf] → R be a differentiable real
function and let {k(n)}n be a sequence of integers such that

(i) k(n)
dn

→ x0 ∈ [0, 1];

(ii) λk(n)+1 (Xn,ν) > λk(n) (Xn,ν) ∈ [minRf,maxRf] definitely for n → ∞.

Then

lim
n→∞

dn
[
τ
(
λk(n)+1 (Xn,ν)

)
− τ

(
λk(n) (Xn,ν)

)]
= lim

x→x0

(
τ
(
f†(x)

))′
a.e.

Proof. Since f† is absolutely continuous then it is differentiable almost everywhere.
Let x0 ∈ [0, 1] such that (f†)′|x=x0

exists and such that f†(x0) �= 0. Then from (7),

lim
n→∞

λk(n) (Xn,ν)

f†
(
k(n)
dn

) = 1,
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and we get:

lim
n→∞

τ
(
λk(n)+1 (Xn,ν)

)
− τ

(
λk(n) (Xn,ν)

)
1
dn

= lim
n→∞

τ
(
f†
(

k(n)
dn

+ 1
dn

))
− τ

(
f†
(

k(n)
dn

))

1
dn

= lim
n→∞

τ
(
f†
(
x0 +

1
dn

))
− τ

(
f† (x0)

)
1
dn

= lim
x→x0

(
τ(f†(x))

)′
.

Since µ1

({
x ∈ [0, 1] : �

(
f†
)′
(x) or f†(x) = 0

})
= 0, we conclude. �

Remark 3.1. It may often happen that f† does not have an analytical expression or
it is not feasible to calculate, therefore it is needed an approximation. The simplest
and easiest way to obtain it is by mean of sorting in non-decreasing order a uniform
sampling of the original symbol function p(x)f(θ), in the case of real-valued symbol,
or of sorting in non-decreasing order uniform samplings of p(x)λk (f(θ)) for k =
1, . . . , ν, in the case of a matrix-valued symbol. See [27, Section 3] and [22, Remark
2]. These approximations converge to f† as the mesh-refinement goes to zero, see
[40].

4. Diamond Toeplitz graphs

In this section we are going to present the main (local) graph-structure which is
used to build more general graphs as union of sequences of sub-graphs, i.e., diamond
Toeplitz graphs. The resulting graphs are then immersed in bounded regular domains
of Rd in Section 5. We proceed step by step, gradually increasing the complexity of
the graph structure.

As a matter of reference, we have the following scheme of inclusions, with the
related variable coefficient versions:

adjacency matrix of Toeplitz graph (Def. 4.1) ⊂ Toeplitz matrix

⊂ ⊂

adjacency matrix of d-level Toeplitz graph (Def. 4.2) ⊂ d-level Toeplitz matrix

⊂ ⊂

adjacency matrix of d-level diamond Toeplitz graph (Def. 4.3) ⊂ d-level block Toeplitz matrix

4.1. Toeplitz graphs and d-level Toeplitz graphs

We first focus on a particular type of graphs, namely Toeplitz graphs. These are
graphs whose adjacency matrices are Toeplitz matrices.

Definition 4.1 (Toeplitz graph). Let n,m, t1, . . . , tm be positive integers such that
0 < t1 < t2 < . . . < tm < n, and fix m nonzero real numbers wt1 , . . . , wtm . A Toeplitz
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graph, denoted by Tn〈(t1, wt1), . . . , (tm, wtm)〉, is an undirected graph defined by a
node set Vn = {v1, . . . , vn} and a weight function w such that

w(vi, vj) =

{
wtk if |i− j| = tk,

0 otherwise.

In the case of simple graphs, i.e., wtk = 1 for every k, we indicate the Toeplitz
graph just as Tn〈t1, . . . , tm〉. The number of edges in a Toeplitz graph is equal to∑m

k=1(n−tk). By construction, the adjacency matrixWn = (w|i−j|)
n
i,j=1 of a Toeplitz

graph has a symmetric Toeplitz structure.

If we assume that m, t1, . . . , tm, are fixed (independent of n) and we let the size
n grow, then the sequence of adjacency matrices Wn can be related to a unique real
integrable function f (the symbol) defined on [−π, π] and expanded periodically on

R. In this case, according to (1), the entries (Wn)i,j = f̂i−j of the matrix Wn are
defined via the Fourier coefficients of f , where the k-th Fourier coefficient of f is
given by

f̂k =
1

2π

∫ π

−π
f(θ)e−ikθdθ, k ∈ Z.

We know that the Fourier coefficients f̂k are all in {0, wt1 , . . . , wtm} and that
the matrix is symmetric. Note that obviously any such graph is uniquely defined
by the first row of its adjacency matrix. On the other hand, we know that wj−1 =
(W )1,j = w(v1, vj) for j = 1, . . . , n, namely, wj−1 �= 0 iff j − 1 ∈ {t1, . . . , tm}. From
this condition we can infer that the symbol has a special polynomial structure and
in fact it is equal to

f(θ) =

n−1∑
j=1−n

w|j|e
ijθ =

m∑
k=1

2wtk cos(tkθ). (8)

In such a way, according to (8), our adjacency matrix Wn is the matrix Tn(f)
(real and symmetric) having the following structure

Wn = Tn(f) =




0 w1 · · · wn−1

w1 0
. . .

...
...

. . .
. . . w1

wn−1 · · · w1 0




wj =

{
wtk if j = tk,

0 otherwise,

and, as expected, the symbol f is real-valued and such that f(θ) = f(|θ|) for every
θ. See Figure 1 for an example.

Along the same lines, we can define d-level Toeplitz graphs as a generalization of
the Toeplitz graphs, but beforehand we need to define the set of directions associated
with a d-index. Namely, given a d-index tk = ((tk)1, . . . , (tk)d) such that 0 � tk and
t �= 0, define

Ik :=
{
i ∈ Zd | i = (±(tk)1, . . . ,±(tk)d)

}
,

[tk] :=
Ik
/
∼, where i ∼ j iff i = ±j.
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v1v2 v3

v4v5
w3

w1

w3

w1

w1

w1

Wn =




0 w1 0 w3 0
w1 0 w1 0 w3

0 w1 0 w1 0
w3 0 w1 0 w1

0 w3 0 w1 0




Figure 1. Example of a 1-level Toeplitz graph Tn〈(1, w1), (3, w3)〉,
with n = 5. The figure above is a visual representation of the graph
while below it is explicated the associated adjacency matrixWn which
presents the typical Toeplitz structure. In particular, Wn has symbol
function f(θ) = 2w1 cos(θ) + 2w3 cos(3θ).

We call [tk] the set of directions associated with tk.
Trivially, it holds that

|Ik| = 2
∑d

r=1 1(0,∞)(|(tk)r|), where 1(0,∞)(x) =

{
1 if x ∈ (0,∞)

0 otherwise,

and |[tk]| = |Ik|/2. For α = 1, . . . , |[tk]|, the elements [tk]α ∈ [tk] are called directions
and clearly |[tk]α| = 2. We indicate with [tk]

+
α the element in [tk]α such that its first

nonzero component is positive and with [tk]
−
α the other one. Clearly, −[tk]

+
α = [tk]

−
α .

Definition 4.2 (d-level Toeplitz graphs). Let n, t1, . . . , tm be d-indices such that
0 < n, let

0 � t1 � t2 � . . . � tm � n− 1,

and fix m nonzero real vectors w1, . . . ,wm, such that wk ∈ Rck with ck = |[tk]| for
every k = 1, . . . ,m, where [tk] = {[tk]1, . . . , [tk]ck} is the set of directions associated
with tk. We indicate the components of the vectors wk using the following index
notation,

wk =
(
w[tk]1 , w[tk]2 , . . . , w[tk]ck

)
.

A d-level Toeplitz graph, denoted by

Tn〈{[t1],w1}, . . . , {[tm],wm}〉,
is an undirected graph defined by a node set Vn = {vk |1 � k � n} and a weight
function ω such that

w(vi, vj) =




w[tk]α if |i− j| = tk and (i− j) ∈ [tk]α = {[tk]+α , [tk]−α }
for some α = 1, . . . , ck,

0 otherwise.

(9)
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Let us observe that w(vi, vj) = w(vj , vi), since wk is defined over the classes of
equivalence of [tk]. If there exist m nonzero real numbers such that wk = wk1 for
every k = 1, . . . ,m, then the above relation translates into

w(vi, vj) =

{
wk if |i− j| = tk,

0 otherwise,

and we indicate the d-level Toeplitz graph as Tn〈{t1, w1}, . . . , {tm, wm}〉. In the case
of simple graph, i.e., wk = 1 for every k, we indicate the d-level Toeplitz graph just
as Tn〈t1, . . . , tm〉. The number of nodes in a d-level Toeplitz graph is equal to D(n)

with D(n) =
∏d

r=1 nr, while the number of edges is equal to
∑m

r=1D(n− tr).

Lemma 4.1. A Toeplitz graph is a 1-level Toeplitz graph as in Definition 4.2.

Proof. We simply note that, for d = 1, the quantities n, t1, . . . , tm and the associated
w1, . . . ,wm are scalars, so that the resulting graph has n points and weight function
given by

w(vi, vj) =

{
wtk if |i− j| = tk,

0 otherwise.

as in Definition 4.1, completing the proof. �

If we assume that m, {[t1],w1}, . . . , {[tm],wm}, are fixed (independent of n)
and we let the sizes nj grow, j = 1, . . . , d, then the sequence of adjacency matrices

can be related to a unique real integrable function f : [−π, π]d → R (the symbol) and

expanded periodically on Rd. In this case, the entries wi,j = f̂i−j of the adjacency
matrix are defined via the Fourier coefficients of f , where the k-th Fourier coefficient
of f is defined according to the equations in (1). Following the same considerations
which led to equation (8), we can summarize everything we said so far in the following
proposition.

Proposition 4.2. Fix a d-level Toeplitz graph

Tn〈{[t1],w1}, . . . , {[tm],wm}〉,

and assume that m, {[t1],w1}, . . . , {[tm],wm} are fixed and independent of n. Then
the adjacency matrix Wn of the graph is a symmetric matrix with a d-level Toeplitz
structure (see Section 2.2),

Wn = (wi−j)
n
i,j=1 , where wi−j = w(vi, vj), as defined in (9). (10)

In particular Wn = Tn(f) with symbol function f : [−π, π]d → R given by

f(θ) =
m∑
k=1

ck∑
α=1

2w[tk]α cos([tk]
+
α · θ), with ck = |[tk]| and θ = (θ1, . . . , θd), (11)

that is,

{Wn}n ∼λ f ≡ f.
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Figure 2. Example of a 2-level Toeplitz graph Tn〈{[t1],w1},{[t2],w2}〉
where n = (4, 3), [t1] = [(1, 1)] = {[(1, 1)]1, [(1, 1)]2}, w1 =
(w[(1,1)]1 , w[(1,1)]2), [t2] = [(2, 0)] = {[(2, 0)]1} and w2 = w[(2,0)]1 .
In particular, [(1, 1)]1 = {±(1,−1)}, [(1, 1)]2 = {±(1, 1)} and
[(2, 0)] = {±(2, 0)}. Combining the notation of (10) and (9), then
we write w[(1,1)]1 = w1,�1 = w�1,1, w[(1,1)]2 = w1,1 = w�1,�1,
w[(2,0)]1 = w2,0 = w�2,0. On the left there is a visual representa-
tion of the graph while on the right there is the associated adja-
cency matrix Wn, where we used the standard lexicographic order-
ing to sort the nodes {vk | (1, 1) � (k1, k2) � (4, 3)}. Specifically,
we write v(1,1) = v1, v(1,2) = v2, . . . , v(4,3) = v12 and, for a better

layout, we write w1,�1 = w1
�1, w1,1 = w1

1, w2,0 = w2
0 for the adja-

cency matrix entries. Wn is a matrix which possesses a block Toeplitz
with Toeplitz blocks (BTTB) structure and it has symbol function
f(θ1, θ2) = 2w2,0 cos(2θ1) + 2w1,1 cos(θ1 + θ2) + 2w1,�1 cos(θ1 − θ2):
notice that the coefficient of the variable θ1 refers to the diagonal
blocks while the coefficient of θ2 refers to the diagonals inside the
block. Finally, observe that Wn is not connected, since the graph
can be decomposed into two disjoint subgraphs G1 and G2 having
{v1, v3, v5, v7, v9, v11} and {v2, v4, v6, v8, v10, v12} as vertex sets, re-
spectively.

Proof. The fact that

Wn = (wi−j)
n
i,j=1

is clear by Definition 4.2, while, by direct computation of the Fourier coefficients of
f and owing to the fact that cos([tk]

+
α ·θ) = cos([tk]

−
α ·θ), we see that f̂i−j = wi−j =

wj−i = f̂j−i, so that Wn = Tn(f). �

See Figure 2 for an explicit example of a 2-level Toeplitz graph.
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4.2. Graphs with uniform local structure: introducing the “diamond”

The idea here is that each node in Definition 4.2 is replaced by a subgraph of fixed
dimension ν. For instance, fix a reference simple graph

G = ([ν], E)

with adjacency matrix W and where [ν] := {1, . . . , ν} is the standard set of cardi-
nality ν ∈ N. Consider 0 < n ∈ N copies of such a graph, i.e., G(k) = (V (k), E(k))
such that G(k) � G for every k = 1, . . . , n. Indicating the distinct elements of each
V (k), k = 1, . . . , n, with the notation v(k,r), for r = 1, . . . , ν, we can define a new
node set Vn as the disjoint union of the sets V (k), i.e.,

Vn :=

n⊔
k=1

V (k) =
{
v(k,r) : (1, 1) � (k, r) � (n, ν)

}
.

Fix now m integers 0 < t1 < . . . < tm with 1 ≤ m ≤ n − 1, and moreover
fix Lt1 , . . . , Ltm simple linking-graph operators for the reference node set [ν] :=
{1, . . . , ν}, as in Definition 2.1, along with their uniquely determined edge sets
Et1 , . . . , Etm ⊆ [ν]× [ν]. Let us define the edge set En ⊆ Vn × Vn, (v(i,r), v(j,s)) ∈ En

if and only if



i = j and (r, s) ∈ E, or

i− j = tk for some k = 1, . . . ,m and (r, s) ∈ Etk , or

i− j = −tk for some k = 1, . . . ,m and (s, r) ∈ Etk .

Namely, En is the disjoint union of all the edge sets E(k) plus all the edges which
possibly connect nodes in a graph G(i) with nodes in a graph G(j): two graphs
G(i), G(j) are connected if and only if |i − j| ∈ {t1, . . . , tm} and in that case the
connection between the nodes of the two graphs is determined by the linking-graph
operator Ltk (and by its transpose L∗

tk
). We can define then a kind of symmetric

‘weight-graph function’

w : {V (k) | k = 1, . . . , n} × {V (k) | k = 1, . . . , n} → Rν×ν

such that

w [V (i), V (j)] :=




W if i = j,

Ltk if i− j ∈ {t1, . . . , tm},
L∗
tk

if i− j ∈ {−t1, . . . ,−tm},
0 otherwise.

It is not difficult then to prove that the adjacency matrix WG
n,ν of the graph (Vn, En)

is of the form

WG
n,ν =




w0 w∗
1 · · · w∗

n−1

w1 w0
. . .

...
...

. . .
. . . w∗

1

wn−1 · · · w1 w0




, wj =




W ∈ Rν×ν if j = 0,

Ltk ∈ Rν×ν if j = tk,

0 otherwise.
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Trivially, WG
n,ν is a symmetric matrix with a block-Toeplitz structure and symbol

function f given by

f(θ) = W +

m∑
k=1

(
Ltk + L∗

tk

)
cos(tkθ) +

m∑
k=1

(
Ltk − L∗

tk

)
i sin(tkθ).

Let us observe that f(θ) is a Hermitian matrix in Cν×ν for every θ ∈ [−π, π], and
therefore λj (f(θ)) are real for every j = 1, . . . , ν, as we requested at the end of
Subsection 2.3. We call

TG
n 〈(t1, Lt1) , . . . , (tm, Ltm)〉 := (Vn, En)

a (simple) diamond Toeplitz graph associated with the graph G. A copy G(k) of the
graph G is called k-th diamond.

See Figure 3 for an example. We can now generalize everything we said so far.

Definition 4.3 (d-level diamond Toeplitz graph). Let d,m, ν be fixed integers and let
G � ([ν], E, w) be a fixed undirected graph which we call mold graph.

Let n, t1, . . . , tm be d-indices such that 0 < n, and 0 � t1 � t2 � . . . � tm �n−1.
For k = 1, . . . ,m, let Lk be a collection of linking-graph operators of the standard
set [ν] := {1, . . . , ν} such that |Lk| = ck, with ck = |[tk]| for every k = 1, . . . ,m,
where [tk] = {[tk]1, . . . , [tk]ck} is the set of directions associated with tk. We then
indicate the elements of the set Lk by the following index notation,

Lk =
{
L[tk]1 , L[tk]2 , . . . , L[tk]ck

}
,

Rν×ν � L[tk]α =
(
l[tk]α(r, s)

)ν
r,s=1

for α = 1, . . . , ck.

Finally, consider n copies G(k) � G of the mold graph, which we call diamonds.

A d-level diamond Toeplitz graph, denoted by

TG
n,ν 〈{t1,L1} , . . . , {tm,Lm}〉 ,

is an undirected graph with

Vn =
{
v(k,r) | (1,1) � (k, r) � (n, ν)

}

and characterized by the weight function wn : Vn × Vn → R such that

wn

(
v(i,r), v(j,s)

)
:=





w(r, s) if i = j,

l[tk]α(r, s) if |i− j| = tk and (i− j) = [tk]
+
α ,

l[tk]α(s, r) if |i− j| = tk and (i− j) = [tk]
−
α ,

0 otherwise.

The number of nodes in a d-level diamond Toeplitz graph is equal to νD(n) with

D(n) =
∏d

r=1 nr, while the number of edges is equal to ν
∑m

r=1D(n− tr).

Corollary 4.3. A d-level Toeplitz graph is a special case of a d-level diamond Toeplitz
graph.

Proof. We simply need to notice that, for ν = 1, i.e., in the case of a diamond with
only one element, the two Definitions 4.2 and 4.3 coincide with Lk = wk. �
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Proposition 4.4. Fix a d-level diamond Toeplitz graph

TG
n,ν 〈{t1,L1} , . . . , {tm,Lm}〉

with G � ([ν], E, w) and W the adjacency matrix of G.

Let d,m, ν, {tk,Lk}, G be fixed and independent of n. Then the adjacency matrix
WG

n,ν of TG
n,ν 〈{t1,L1} , . . . , {tm,Lm}〉 is a symmetric matrix with a d-level block

Toeplitz structure (see Section 2.2 and equation (2)),

WG
n,ν = [wi−j ]

n
i,j=1 ,

where

Rν×ν � wi−j =




W if i = j,

L[tk]α if |i− j| = tk and (i− j) = [tk]
+
α ,

L∗
[tk]α

if |i− j| = tk and (i− j) = [tk]
−
α ,

0 otherwise.

In particular WG
n,ν = Tn,ν(f) with symbol function f : [−π, π]d → Cν×ν given by

f(θ) = W +
m∑
k=1

ck∑
α=1

[(
L[tk]α + L∗

[tk]α

)
cos(tk · θ)

+
(
L[tk]α − L∗

[tk]α

)
i sin(tk · θ)

]
, θ = (θ1, . . . , θd), (12)

that is,
{
WG

n,ν

}
n
∼λ f ≡ f .

The symbol function f is Hermitian matrix-valued for every θ ∈ [−π, π]d.

Proof. We note that WG
n = [wi−j ]

n
i,j=1 is immediate by Definition 4.3 and that the

symbol f is a Hermitian matrix for every θ, so that it has real eigenvalues. Moreover
we see that, as in Proposition 4.2, f̂ i−j = wi−j . Now Theorem 2.1 concludes the
proof. �

5. Grid graphs with uniform local structure and main spectral
results

This section is divided into two parts. In the first we give the definition of grid
graphs with uniform local structure. In the second part we show the links of the
above notions with Toeplitz and GLT sequences and we use the latter for proving
the main spectral results.
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Figure 3. Example of a 1-level diamond Toeplitz graph
TG
n 〈(1, L1) , (2, L2)〉, with n=3 and mold graphG=T4〈(1, w), (3, w)〉.

The adjacency matrix ofG isW . The node sets of the diamond graphs
G(1), G(2), G(3) are V (1) = {v(1,1), v(1,2), v(1,3), v(1,4)}, V (2) =
{v(2,1), v(2,2), v(2,3), v(2,4)} and V (3) = {v(3,1), v(3,2), v(3,3), v(3,4)}, re-
spectively. Clearly, all the diamond graphs are characterized by
the same adjacency matrix W . The adjacency matrix Wn of the
whole graph is a 1-level block Toeplitz and has symbol function
f(θ) = W + 2L1 cos(θ) + (L2 + L∗

2) cos(2θ) + (L2 − L∗
2) i sin(2θ).

5.1. Sequence of grid graphs with uniform local structure

The main idea in this section is to immerse the graphs presented in Section 2.2 inside
a bounded regular domain Ω ⊂ Rd. We start with a series of definitions in order to
give a mathematical rigor to our derivations.
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Definition 5.1 (d-level Toeplitz grid graphs in the cube). Given a continuous almost
everywhere (a.e.) function p : [0, 1]d → R, choose a d-level Toeplitz graph

Tn〈{[t1],w1}, . . . , {[tm],wm}〉,

and consider the d-dimensional vector

h := (h1, . . . , hd) =

(
1

n1 + 1
, . . . ,

1

nd + 1

)
.

We introduce a bijective correspondence between the nodes vj of

Tn〈{[t1],w1}, . . . , {[tm],wm}〉 and the interior points x of the cube [0, 1]d by the
immersion map ι : Vn → (0, 1)d such that

ι(vj) := j ◦ h = (j1h1, . . . , jdhd)

with ◦ being the Hadamard (component-wise) product. The d-level Toeplitz graph
induces a grid graph in [0, 1]d, G = (V ′

n, E
′
n, w

p) with

V ′
n := {xk = ι(vk) |1 � k � n} , E′

n := {(xi,xj) |wp(xi,xj) �= 0} ,

where

wp(xi,xj) := p

(
xi + xj

2

)
w(vi, vj),

and w is the weight function defined in (9). With abuse of notation we identify
Vn = V ′

n and we write

Tn〈{[t1],wp
1}, . . . , {[tm],wp

m}〉,

for a d-level grid graph in [0, 1]d.

Observe that now wp
k, for k = 1, . . . ,m, are not constant vectors as wk, but

vector-valued functions wp
k : [0, 1]d × [0, 1]d → Rck , with ck = |[tk]|, such that

(wp
k)α(xi,xj) =




p
(
xi+xj

2

)
w[tk]

+
α

if |i− j| = tk

and (i− j) ∈ [tk]α = {[tk]+α , [tk]−α } ,
0 otherwise,

for α = 1, . . . , ck. It is then not difficult to see that we can express the weight
function wp as

wp(xi,xj) =

m∑
k=1

ck∑
α=1

(wp
k)α(xi,xj).

In other words, taking in mind the role of the reference domain [0, 1]d, xi can be
connected to xj only if |(xj)r − (xi)r| = O(hr), for all r = 1, . . . , d. From this
property we derive the name of ‘grid graphs with local structure’. Naturally, the
above notion can be generalized to any domain Ω ⊂ [0, 1]d: as we see in the next
subsection, the only restriction in order to have meaningful spectral properties of
the related sequences, is that Ω is regular.
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Definition 5.2 (d-level Toeplitz grid graphs in Ω). Given a regular domain Ω ⊆ [0, 1]d

and a continuous a.e. function p : [0, 1]d → R, choose a d-level Toeplitz graph

Tn〈{[t1],w1}, . . . , {[tm],wm}〉,

and consider its associated d-level Toeplitz grid graph Tn〈{[t1],wp
1}, . . . ,

{[tm],wp
m}〉. We define the d-level Toeplitz grid graph immersed in Ω as the graph

G = (V Ω
n′ , EΩ

n′ , wΩ,p) such that

V Ω
n′ := Vn ∩ Ω, wΩ,p := wp

|V Ω
n ×V Ω

n
.

Clearly,
∣∣V Ω

n′

∣∣ = n′ ≤
∏d

r=1 nr = |Vn|. Nevertheless, n′ = n′(n) → ∞ as n → ∞.
Therefore, with abuse of notation, we keep writing n instead of n′. We indicate such
a graph with the notation

TΩ
n 〈{[t1],wp

1}, . . . , {[tm],wp
m}〉.

In the application, as we see in Section 7, once it is chosen the domain Ω and the
kind of discretization technique to solve a differential equation, the weight function
w is fixed accordingly, and consequently the coefficients w1, . . . ,wm. In particular,
it is important to remark that the weight function of Tn〈{[t1],w1}, . . . , {[tm],wm}〉
depends on the differential equation and on the discretization technique.

Finally, we immerse the diamond graphs in the cube [0, 1]d (and then in a
generic regular domain Ω ⊂ [0, 1]d).

Definition 5.3 (d-level diamond Toeplitz grid graphs in the cube). The same defi-
nition as in Definition 5.1 where the d-level Toeplitz graph is replaced by a d-level
diamond Toeplitz graph. The only difference now is that

h := (h1, . . . , hd) =

(
1

νn1 + 1
,

1

n2 + 1
, . . . ,

1

nd + 1

)
,

and

ι(v(j,r)) := (j, r) ◦ h = ((j1 + r − 1)h1, j2h2, . . . , jdhd) , r = 1, . . . , ν.

With abuse of notation we write

TG
n,ν〈{[t1],L

p
1}, . . . , {[tm],Lp

m}〉,

for a d-level diamond Toeplitz grid graph in [0, 1]d.

While in the case of a d-level Toeplitz graph the immersion map ι was introduced
naturally as the Hadamard product between the indices of the graph nodes and the
natural Cartesian representation of points in Rd, diamond Toeplitz graphs grant
another degree of freedom for the immersion map. In Definition 5.3 we decided for
the simplest choice, namely lining-up all the nodes of the diamonds along the first
axis. Clearly, other choices of the immersion map ι would be able to describe more
complex grid geometries.
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Definition 5.4 (d-level diamond Toeplitz grid graphs in Ω). The same definition as in
Definition 5.2 where the d-level Toeplitz grid graph is replaced by a d-level diamond
Toeplitz grid graph. We indicate such a graph with the notation

TG,Ω
n,ν 〈{[t1],Lp

1}, . . . , {[tm],Lp
m}〉.

5.2. Asymptotic spectral results

We start this section, containing the spectral results, by giving the distribution
theorem in the Weyl sense in its maximal generality, i.e. for a sequence of weighted
(diamond) local grid graphs in Ω, according to the case depicted in Definition 5.4.

Theorem 5.1. Given a regular domain Ω ⊆ [0, 1]d and a continuous a.e. function
p : Ω → R, fix a d-level Toeplitz grid graph

TΩ
n 〈{[t1],wp

1}, . . . , {[tm],wp
m}〉

as in Definition 5.2, and assume that m, {[t1],w1}, . . . , {[tm],wm} are fixed and

independent of n. Then, indicating with {WΩ,p
n }n the sequence of adjacency matrix

of the d-level Toeplitz grid graph as n → ∞, it holds that{
WΩ,p

n

}
n
∼λ f, f : Ω× [−π, π]d ⊂ R2d → R

and

f(x,θ) = p(x)f(θ),

where f(θ) is the symbol function defined in (11).

Proof. We note that, in the case where ν = 1, a d-level diamond Toeplitz grid graph
reduces to a d-level Toeplitz grid graph according to Definition 5.2. The conclusion
of the theorem is then obvious once we prove our next result, Theorem 5.2. �

Theorem 5.2. Given a regular domain Ω ⊆ [0, 1]d and a continuous a.e. function
p : Ω → R, fix a d-level diamond Toeplitz grid graph

TG,Ω
n,ν 〈{[t1],Lp

1}, . . . , {[tm],Lp
m}〉

as in Definition 5.4, and assume that m, {[t1],L1}, . . . , {[tm],Lm} are fixed and

independent of n. Then, indicating with {WG,Ω,p
n,ν }n the sequence of adjacency matrix

of the d-level diamond Toeplitz grid graph as n → ∞, it holds that{
WG,Ω,p

n,ν

}
n
∼λ f, f : Ω× [−π, π]d ⊂ R2d → Cν×ν

with f a matrix-valued function and

f(x,θ) = p(x)f(θ),

where f(θ) is the symbol function defined in (12).

Proof. First of all we observe that our assumption of Ω regular is equivalent to
require Ω to be measurable according to Peano-Jordan, which is the fundamental
assumption to apply the GLT theory (see [23]).

Assume Ω = [0, 1]d and p(x) ≡ 1 over Ω. Then our sequence of graphs reduces to
a sequence of d-level diamond Toeplitz graphs and the proof is over using Proposition
4.4.
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Assuming now that Ω = [0, 1]d and p is just a Riemann-integrable function

over Ω, we decompose the adjacency matrix WG,p
n,ν as WG,p

n,ν = diagn(p)Tn(f) + En.
The only observation needed here is that {diagn(p)} is a multilevel block GLT with
symbol function p, while {Tn(f)} is a multilevel block GLT with symbol function f
(see item (GLT 3)). Moreover, by direct calculation, we see that En, for n large, can
be written as a term of small spectral norm, plus a term of relatively small rank.
Therefore, En is a zero-distributed sequence of matrices and hence a multilevel block
GLT with symbol function 0. Summing up we have

{Tn(f)}n ∼GLT f over [−π, π]d, {diagn(p)}n ∼GLT p over Ω, {En}n ∼GLT 0.

Now, by the structure of algebra of multilevel block GLT sequences and using
the symmetry of the sequence (see item (GLT 1) and (GLT 4)), we conclude that{
WG,p

n,ν

}
n
∼λ p(x)f(θ) over [0, 1]d × [−π, π]d.

For the general case where Ω is a generic regular subset of [0, 1]d, we simply

notice that, using Definition 5.4, we can see WG,p
n,ν as a principal sub-matrix of

WG,Ω,p
n,ν , where

{
WG,Ω,p

n,ν

}
is constructed according to Definition 5.3 and the function

p is substituted by p|Ω := p(i(x)), where i : Ω ↪→ [0, 1]d is the inclusion map. Since
Ω is regular we conclude that p|Ω is Riemann-integrable, p|Ω ≡ p over Ω, and that

{
WG,Ω,p

n,ν

}
n
∼GLT p(x)f(θ),

with p(x)f(θ) defined over Ω× [−π, π]d, which implies the desired conclusion. �

Corollary 5.3. Let Gn,ν =
(
TG,Ω
n,ν 〈([t1],Lp

1) , . . . , ([tm],Lp
m)〉 , κn

)
be a d-level dia-

mond Toeplitz grid graph as in Definition 5.4, plus a potential term κn : Vn → [0,∞).
Let D,K be as in Definition 2.2. If

D +K = cI · diag
(1,1)�(i,r)�(n,ν)

{p(x(i,r))}+ o(1),

where c ∈ R is a fixed constant, I is the identity matrix and p : Ω ⊂ [0, 1]d → R is a
continuous a.e. function as in Definition 5.4, then it holds that

{
∆Gn,ν

}
∼λ f(x,θ) = p(x) (cI − f(θ)) , (x,θ) ∈ Ω× [−π, π]d,

where ∆Gn,ν is the graph-Laplacian as in Definition 2.2 and f(θ) is defined in (12).

Proof. From Definition 2.2, ∆Gn,ν = D + K − WG,Ω,p
n,ν . By assumption, note that

D + K is a GLT sequence with symbol function cp, so that the conclusion follows
once again by the algebra structure of the GLT sequences. �

6. Spectral gaps

In this section we report general results on the gaps between the extreme eigenval-
ues of adjacency and graph-Laplacian matrices of the type considered so far. We
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recall that the study of the spectral gaps has applications in several directions in-
cluding the algebraic connectivity, the theory of the consensus among multi-agents,
the superdiffusivity etc. (see e.g. [7, 16, 17, 18, 19, 20]).

The spectral properties of a Toeplitz matrix Tn(f) are well understood by con-
sidering f ; in fact, it is known (see e.g. [29, 30]) that the spectrum of Tn(f) is
contained in (mf ,Mf ), where mf = min f and Mf = max f , and moreover

lim
n→∞

λ
(n)
1 = mf

and

lim
n→∞

λ(n)
n = Mf .

Recall the following result due to Kac, Murdoch, Szegő, Parter, Widom in
the early fifties and, later, to Serra-Capizzano, Böttcher, Grudsky (see also [5] and
references therein for more details and for the history of such results).

Theorem 6.1. Let f ∈ C2π[−π, π] be a continuous function on [−π, π] extended
periodically on R, let mf = min f and Mf = max f . Let Tn(f) be the associated
Toeplitz matrix and let

λ
(n)
1 ≤ λ

(n)
2 ≤ . . . ≤ λ

(n)
n−1 ≤ λ(n)

n

be the eigenvalues of Tn(f) ordered in non-decreasing order.

Then, for all fixed j we have that

lim
n→∞

λ
(n)
j = mf lim

n→∞
λ
(n)
n+1−j = Mf

and, moreover,

lim
n→∞

Mf − λ
(n)
n+1−j

c(j−1n)α
= 1, c ∈ R

where α ∈ R is such that, if f(x0) = Mf , |f(x0)− f(x)| ∼ c|x− x0|α as x → x0.

Thanks to the results reported in Section 3, we can make the following state-
ments concerning spectral properties of d-level diamond Toeplitz (grid) graphs.

Corollary 6.2. Let {WG,Ω,p
n,ν }n be a sequence of adjacency matrices of d-level diamond

Toeplitz grid graphs as in Theorem 5.2, with
{
λ
(n)
k

}dn

k=1
the collection of their eigen-

values sorted in non-decreasing order and where dn = ν
∏d

j=1 nj is the dimension of

the matrices. Let p(x) be piecewise continuous and let f† : [0, 1] → [minRf,maxRf] be

the monotone rearrangement of the symbol function f(x,θ) = p(x)f(θ) of {WG,Ω,p
n,ν },

as in Definition 3.1. Finally, let τ : [minRf,maxRf] → R be a function that is dif-

ferentiable in maxRf and define xn := 1− 1
dn

. If

(i) λ
(n)
dn�1 < λ

(n)
dn

≤ maxRf definitely for n → ∞,

(ii) f† is differentiable at x = 1 with f†(1) �= 0,

then it holds that

lim
n→∞

dn

[
τ
(
λ
(n)
dn

)
− τ

(
λ
(n)
dn−1

)]
= lim

n→∞
τ ′ (f(xn)) f

′(xn).
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Proof. From Lemma 3.1 we have that

{WG,Ω,p
n,ν }n ∼λ f(x,θ) = p(x)

ν∑
k=1

λk (fk(θ)) ,

where f is defined in (12) and consequently fk in Lemma 3.1. Therefore it is easy
to check that

µm

({
(x,θ) ∈ Ω× [−π, π]d : p(x)

ν∑
k=1

λk (fk(θ)) = t

})
= 0 ∀t ∈ Rf,

and then all the hypothesis of Theorem 3.2 are satisfied. Because of (i)-(ii), it holds
(7) at x0 = 1 and we can then apply the same proof of Corollary 3.4. �

Corollary 6.3. In the case p(x) ≡ c and d = 1, then f† is differentiable almost
everywhere in [0, 1] and (

f†
)′

(1) = 0,

for any choice of {(t1, Lt1), . . . , (tm, Ltm)} (or {(t1, wt1), . . . , (tm, wtm)} in the case
ν = 1). In particular, if τ ≡ id and f†(1) �= 0, then

νn
[
λ(n)
νn − λ

(n)
νn−1

]
→ 0 as n → ∞. (13)

Proof. Let us fix c = 1. Since all the components fi,j(θ) of f(θ) from (12) are analytic
with f(θ) Hermitian for every θ ∈ [−π, π], then there exists an ordering (not neces-

sarily the usual ordering by increasing magnitude) such that λ̂k(f(θ)) are analytic
real-valued functions for every k = 1, . . . , ν (see e.g. [31, Chapter 2]). Clearly, this
kind of ordering does not affect the validity of Lemma 3.1. In particular, the function
f(θ) :=

∑ν
k=1 λ̂k (fk(θ)), as in Definition 3.1 is piecewise analytical: it can have a fi-

nite number of jumps at θk = (2k−ν)π
ν for k = 1, . . . , ν−1, and so its image set Rf can

be a finite union of disjoint closed intervals. Then, by an appropriate modification of
[32, Lemma 2.3], the monotone rearrangement f† is piecewise Lipschitz continuous.
Clearly, f† is differentiable almost everywhere on [0, 1] and it is differentiable in x = 1

iff limx→1

(
f†
)′
(x) < ∞. Let us prove then that limx→1

(
f†
)′
(x) = 0. Suppose for

the moment that there exists only one interior point θM ∈ (−π, π), θM �= θk, where
f achieves its maximum M , i.e., such that f(θM ) = M = maxθ∈[−π,π] f(θ) = f†(1). By
regularity of f, there exists then δ > 0 such that f is invertible on Il = (θM − δ, θM ]
and Ir = [θM , θM + δ). By equations (5a)-(5b), there exists ε = ε(δ) such that

φ(t) = φ(M − ε) + f−1
|Il (t) + f−1

|Ir (t)

= φ(M − ε) + (λ̂k ◦ fk)
−1
|Il (t) + (λ̂k ◦ fk)

−1
|Ir (t)

for every t ∈ [M − ε,M ], for a k = 1, . . . , ν, and then,

(
f†
)′

(x) =
1

[(f−1)′|Il(t) + (f−1)′|Ir(t)]|t=f†(x)
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for every x ∈ (1 − η, 1] with η = η(ε) small enough. Since t → M as x → 1 and

f′|Il(θM ) = f′|Ir(θM ) = f′(θM ) = 0, it follows that
(
f†
)′
(1) = 0. In the case that

θM = θk or θM = ±π, then

f−1
|Il (t) = (λ̂k ◦ fk)

−1
|Il (t), f−1

|Ir (t) = (λ̂k+1 ◦ fk+1)
−1
|Ir (t),

and we can conclude again that
(
f†
)′
(1) = 0 if we show that

[λ̂k(fk(θk))]
′ = [λ̂k(f(π))]

′ = 0 = [λ̂k+1(f(−π))]′ = [λ̂k+1(fk+1(θk))]
′.

Due to the peculiar structure of the matrix function f from (12), for d = 1,
by direct computation it can be shown that the coefficients of its characteristic
polynomial χ(λ) are functions of (cos(t1θ), . . . , cos(tmθ)). Therefore, λ̂k(f(θ)) =
hk ((cos(t1θ), . . . , cos(tmθ))) with hk an analytic function, and then it follows easily

that [λ̂k(f(±π))]′ = 0. The generalization to the case of existence of countable many
points θM,j such that g(θM,j) = M is straightforward.

Finally, to prove (13) we suppose λ
(n)
νn > λ

(n)
νn−1, otherwise the thesis would be

trivial. By [36, Theorem 2.2] we have that λ
(n)
νn ≤ maxθ∈[−π,π] f(θ). Therefore all the

hypotheses of Corollary 6.2 are satisfied and the thesis follows at once. �

In general, f† is absolute continuous which means that it is a.e. differentiable.

Therefore, it is differentiable in x = 1 iff supx∈[0,1]
(
f†
)′
(x) < ∞. If it happens that

limx→1

(
f†
)′
(x) = ∞, then dn(λ

(n)
dn

−λ
(n)
dn−1) → ∞ but it could diverge at a different

rate with respect to
(
f†
)′
(xn).

6.1. Examples

Example 1. As a first example we consider the Toeplitz graph

Tn 〈(1, 1), (2,−6), (3, 1), (4, 1)〉

with corresponding symbol function

f(x,θ) = f(θ) = 2 cos(θ)− 12 cos(2θ) + 2 cos(3θ) + 2 cos(4θ),

according to Proposition 4.2. In this case, by symmetry of the symbol f over [−π, π]
we can restrict it to θ ∈ [0, π] without affecting the validity of the identity (3). It
is easy to verify that the graph is connected and that max[0,π] f(θ) = f †(1) > 0. In
Figure 4 and Table 1 it is possible to check the numerical validity of Corollary 6.2,
Corollary 6.3 and Theorem 3.2.

Example 2. For this example we consider a 2-level Toeplitz graph on [0, 1]2 given by

Tn〈{[t1],w1}, {[t2],wp
2}, {[t3],w3}, {[t4],w4}〉,

like in Definition 5.1. We set n = (n, n) and

[t1] = [(1, 0)] = {[(1, 0)]1}, [t2] = [(0, 1)] = {[(0, 1)]1},
[t3] = [(1, 1)] = {[(1, 1)]1, [(1, 1)]2}, [t4] = [(2, 2)] = {[(2, 2)]1, [(2, 2)]2},
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(a) Comparison be-

tween the distributions

of f and λ
(n)
k

(b) Comparison be-

tween the distributions

of f† and λ
(n)
k

Figure 4. In Figure 4a we compare the distributions of f(θ), for θ ∈
[0, π] uniformly sampled over 103 sampling points, and of the eigen-

values λ
(n)
k of the adjacency matrix of Tn 〈(1, 1), (2,−6), (3, 1), (4, 1)〉,

for k = 1, . . . , 103. With the notation of Definition 3.1, notice that

λ
(n)
k ∈ [minRf ,maxRf ] = [min[0,π] f(θ),max[0,π] f(θ)]. In Figure 4b,

instead, it is possible to observe the validity of Theorem 3.2, compar-
ing the distribution of an approximation of the monotone rearrange-

ment f †, for x ∈ [0, 1], and the distribution of λ
(n)
k , for k(n)/n ∈ [0, 1]

and n = 103.

relative errors
n = 102 n = 5 · 102 n = 103 n = 2 · 103

k(n)
n

0.1 0.0039 8.1567e-04 4.0990e-04 2.0547e-04
0.5 0.0013 6.7743e-04 0.0025 1.0263e-04
0.8 0.0502 0.0097 0.0035 0.0019
1 0.0028 1.1539e-04 3.0532e-05 6.1804e-06

n[λ
(n)
n − λ

(n)
n−1] 0.1662 0.0045 0.0019 2.0245e-04

Table 1. The first four rows present the relative errors between the

eigenvalue λ
(n)
k(n) and the sampling of the monotone rearrangement

f †
(
k(n)
n

)
, i.e.:

∣∣∣∣
λ
(n)
k(n)

f†(k(n)/n)
− 1

∣∣∣∣. The index k(n) of the eigenvalue λ
(n)
k(n)

is chosen such that k(n)/n is constant for every fixed n = 102, 5 ·
102, 103, 2 · 103. As it can be seen, the relative errors decrease as
n increases, in accordance with Theorem 3.2. The convergence to
zero is not uniform: one of the reasons is that we are using a linear
approximation of f † instead of f † itself. In the last row we show the
computation of the gap between the biggest and the second-biggest
eigenvalues, confirming the prediction of Corollary 6.3.

where

[(1, 0)]1 = {±(1, 0)} , [(0, 1)]1 = {±(0, 1)} ,
[(1, 1)]1 = {±(1,−1)}, [(1, 1)]2 = {±(1, 1)},
[(2, 2)]1 = {±(2,−2)}, [(2, 2)]2 = {±(2, 2)}.
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Finally,

w1 = w1,0 = 1, w2 = w0,1 = 2,

w3 = (w1,�1, w1,1) = (−3,−3), w4 = (w2,�2, w2,2) = (1, 1).

By Theorem 5.1, the sequence of adjacency matrices {Wn}n has symbol

f(x,θ) = f(θ1, θ2)

= 2 cos(θ1) + 4 cos(θ2)− 6 cos(θ1 − θ2)− 6 cos(θ1 + θ2)

+ 2 cos(2θ1 − 2θ2) + 2 cos(2θ1 + 2θ2),

with (θ1, θ2) ∈ [−π, π]2 and max[−π,π]2 f(θ1, θ2) = f †(1) > 0. Due to the symmetry of

the symbol f over [−π, π]2 we can restrict it to (θ1, θ2) ∈ [0, π]2 without affecting the
validity of the identity (3). In Table 2 and Figure 5 it is possible to check numerically
the validity of Theorem 3.2 and Corollary 6.2.

Example 3. We consider a sequence of adjacency matrices {WG
n }n from the 1-level

diamond Toeplitz graph given in Figure 3, namely TG
n 〈(1, L1), (2, L2)〉 with mold

graph G = T4〈(1, 1), (3, 1)〉 and

W =

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0







L1 =

�2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0







L2 =

0 0 0 0

0 0 0 0

0 0 1
2 0

0 0 6 0






,

where W is the adjacency matrix of the mold graph G. From Proposition 4.4,
{WG

n }n ∼λ f(x,θ) = f(θ), where

f(θ) = W + 2L1 cos(θ) + (L2 + L∗
2) cos(2θ) + (L2 − L∗

2) i sin(2θ), θ ∈ [−π, π]. (14)

In this case, by symmetry of the symbol f over [−π, π] we can restrict it to θ ∈ [0, π]
without affecting the validity of the identity (3). Moreover, due to Lemma 3.1 and
taking into account that we restricted θ to [0, π], we write

f(θ) =

4∑
k=1

1Ik(θ)λk (fk(θ)) , (15)

where

fk(θ) = f(4θ − (k − 1)π) Ik =

[
(k − 1)π

4
,
kπ

4

]
.
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relative errors
n = 10 n = 50 n = 100

k(n)
dn

0.2 0.0422 0.0053 0.0029
0.5 0.2553 0.1211 0.0705
0.7 0.0396 0.0096 0.0089
1 0.0071 7.8515e-05 1.0184e-05

| λ
(n)
dn

−λ
(n)
dn�1

f†(1)−f†(1−1/dn)−1
| 0.0487 0.0145 0.0075

Table 2. The first four rows present the relative errors between the

eigenvalue λ
(n)
k(n) and the sampling of the monotone rearrangement

f †
(
k(n)
dn

)
. The index k(n) is chosen such that k(n)/dn is constant

for every fixed n = (n, n) with n = 10, 50, 100. The relative errors
decrease as n increases, in accordance with Theorem 3.2. The con-
vergence speed is not uniform: one of the reasons is that we are using
a simple linear approximation of f †. In the last row we show relative
errors between the gap of the biggest and the second-biggest eigenval-
ues and the gap between the maximum and second-maximum values
of a uniform sampling of f †, confirming the prediction of Corollary

6.2. In particular, dn

(
λ
(n)
dn

− λ
(n)
dn�1

)
→

(
f †)′ (1) ∈ (0,∞).

Figure 5. It is possible to observe the validity of Theorem 3.2,
comparing the distribution of an approximation of the monotone

rearrangement f †, for x ∈ [0, 1], and the distribution of λ
(n)
k , for

k(n)/dn ∈ [0, 1] and n = (60, 60), i.e., dn = 36 · 102.

The map θ �→ 4θ−(k−1)π is a diffeomorphism between Ik and [0, π], and the eigen-
values functions are ordered by magnitude, namely, λk (fk(θ)) is the k-th eigenvalue
function of the matrix (14) over θ ∈ [0, π]. In particular, in this case it holds that

max
θ∈Ik

λk(fk(θ)) = max
θ∈[0,π]

λk(f(θ)) < min
θ∈[0,π]

λk+1(f(θ))

= min
θ∈Ik

λk+1(fk+1(θ)), for k = 1, 2, 3, (16)

and maxθ∈I4 λ4(f4(θ)) = f †(1) > 0. In Figure 6 and Table 3 it is possible to check
numerically the validity of Theorem 3.2 and Corollary 6.3.
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(a) Comparison be-

tween the distributions

of f and λ
(n)
k

(b) Comparison be-

tween the distributions

of f† and λ
(n)
k

(c) Maginification of

distribution graphs of

f† and λ
(n)
k in a neigh-

borhood of x2.

Figure 6. In Figure 6a we compare the distributions of f(θ) from

equation (15), for θ ∈ [0, π], and of the eigenvalues λ
(n)
k of the ad

jacency matrix WG
n , for k = 1, . . . , 103. We have that θ1 = π/4,

θ2 = π/2, θ3 = 3π/4 are points of discontinuity since the inequalities
in (16) are strict. With the notations of Definition 3.1, notice that
in this example Rf is the union of four disjoint intervals and that

λ
(n)
k ∈ [minRf ,maxRf ] = [min[0,π] λ1(f(θ)),max[0,π] λ4(f(θ))]. In

Figure 4b, instead, it is possible to observe the validity of Theorem
3.2, comparing the distribution of an approximation of the mono

tone rearrangement f †, for x ∈ [0, 1], and the distribution of λ
(n)
k ,

for k(n)/(4n) ∈ [0, 1] and 4n = 103. The points of discontinuity are
now located at x1 = 1/4, x2 = 1/2, x3 = 3/4. Finally, in figure 6c we
zoom in a neighborhood of the discontinuity point x2: it is possible
to observe the presence of two outliers which do not belong to Rf .
This is not in contradiction with Theorem 3.2 since by Corollary 3.3
it admits at most a number of o(4n) of outliers.

7. Applications to PDEs approximation

The section is divided into three parts where we show that the approximation of
a model differential problem by three celebrated approximation techniques leads to
sequences of matrices that fall in the theory developed in the previous sections.
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relative errors
4n = 102 4n = 103 4n = 5 · 103

k(n)
4n

0.1 5.2984e-04 3.8322e-05 1.0184e-05
0.4 0.0285 0.0029 5.7782e-04
0.8 0.0074 6.2919e-04 1.2811e-04
1 4.5189e-06 4.6087e-09 3.6928e-11

4n[λ
(n)
4n − λ

(n)
4n−1] 3.2287 0.3253 0.0651

Table 3. The first four rows present the relative errors between

the eigenvalue λ
(n)
k(n) and the sampling of the monotone rearrange-

ment f †
(
k(n)
4n

)
, i.e.:

∣∣∣∣
λ
(n)
k(n)

f†(k(n)/4n)
− 1

∣∣∣∣. The index k(n) of the eigen-

value λ
(n)
k(n) is chosen such that k(n)/(4n) is constant for every fixed

4n = 102, 103, 5 ·103. As it can be seen, the relative errors decrease as
n increases, in accordance with Theorem 3.2. The convergence speed
is not uniform: one of the reasons is that we are using a linear ap-
proximation of f † instead of f † itself. In the last row we show the
computation of the gap between the biggest and the second-biggest
eigenvalues, confirming the prediction of Corollary 6.3.

7.1. Approximations of PDEs vs sequences of weighted d-level grid graphs: FD

As a first example we consider the discretization of a self-adjoint operator L with
(homogeneous) Dirichlet boundary conditions (BCs) on the disk B1/2 ⊂ [0, 1]2 by
an equispaced Finite Difference (FD) approximation with (4m+ 1)-points. That is,
our model operator with Dirichlet BCs is given by

L : W 1,2
0

(
B 1

2

)
→ L2

(
B 1

2

)
, (17)

L[u](x, y) := −div [p(x, y)∇u(x, y)] + q(x, y)u(x, y) (x, y) ∈ B 1
2
, (18)

where

B 1
2
=

{
(x, y) ∈ R2 : 4

(
x− 1

2

)2

+ 4

(
y − 1

2

)2

< 1

}
.

Fixing the diffusion term p(x, y) = 1+(x−1/2)2+(y−1/2)2 and the potential
term q(x, y) = exy, then the operator L is self-adjoint and has purely point spectrum,
see [13].

Now, if we fix m = 1, n ∈ N and i, j ∈ Z, then the uniform second-order 5-point
FD approximation of the (negative) Laplacian operator (i.e., ∆[·] = −(∂2

x2 + ∂2
y2)[·])

is given by

∆[u](xi, yj) ≈ h−2 (−u(xi, yj−1)− u(xi−1, yj) + 4u(xi, yj)− u(xi+1, yj)

−u(xi, yj+1))
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for every u ∈ C∞ (
R2

)
, where h = (n+ 1)−1, xi =

i
n+1 , yj =

j
n+1 . The same approxi-

mation applies for every u ∈ C∞ (
B1/2

)
and i, j, n such that {(xi, yj), (xi±1, yj±1)} ⊂

B1/2. Notice that the weight of the central point u(xi, yj) is the sum of all the other
weights, changed of sign.

Let us consider the 2-level Toeplitz graph Tn 〈{[1, 0], 1} , {[0, 1], 1}〉 with n =
(n, n) as in Definition 4.2 and immerse it in B1/2 as in Definition 5.2, i.e.,

T
B1/2
n 〈{[1, 0], wp} , {[0, 1], wp}〉 such that

Vn =
{
(xi, yj) ∈ [0, 1]2 : (xi, yj) ∈ B 1

2

}
,

wp((xi, yj), (xr, ys)) := 1 +

(
xi + xr

2
− 1

2

)2

+

(
yj + ys

2
− 1

2

)2

if (|i−r|, |j−s|) ∈ {(1, 0), (0, 1)}. Extend now continuously the diffusion term p(x, y)
outside B1/2, that is,

p(x, y) =

{
5
4 if (x, y) ∈ R2 \B 1

2
,

p(x, y) if (x, y) ∈ B 1
2
,

(19)

and define the graph

Gn =
(
T
B1/2
n 〈{[1, 0], wp} , {[0, 1], wp}〉 , κ

)
, (20)

as a sub-graph of

Ḡn =
(
Tn

〈{
[1, 0], wp̄

}
,
{
[0, 1], wp̄

}〉
, κ̄

)
where V̄n =

{
(xi, yj) ∈ [0, 1]2

}
,

p̄ as in (19),

κ̄(xi, yj) = h2q(xi, yj).

Namely, the host graph Ḡn is the 2-level grid graph on [0, 1]2 obtained by extending
continuously the diffusivity function p to [0, 1]2 and adding a nontrivial potential
term κ̄ which naturally depends on q. On the other hand, the potential term k of
the sub-graph Gn describes the edge deficiency of nodes in Gn compared to the
same nodes in Ḡn,

κ(xi, yj) = h2q(xi, yj) +
∑

(xr,ys)∼(xi,yj)

(xr,ys)∈V̄n\Vn

wp̄((xr, ys), (xi, xj)),

|κ(xi, yj)− κ̄(xi, yj)| =
∑

(xr,ys)∼(xi,yj)

(xr,ys)∈V̄n\Vn

wp̄((xr, ys), (xi, xj)),

see [33, p. 197]. It is easy to check that the boundary points (xi, xj) ∈ ∂Vn are
connected at most with two points of V̄n \Vn, therefore the potential term κ can be
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κ0 κ2

κ2

wp

wp̄

wp̄

wp̄

wp wp̄

wp̄

κ1

κ1

κ1

wp

wp

wp̄

wp̄

wp̄

wp̄

wp̄

Figure 7. Immersion of a 2-level grid graph inside the disk B1/2 ⊂
[0, 1]2. The white nodes are the nodes of Vn while the gray nodes
belong to V̄n \ Vn. The potential term κ̄ of the host graph Ḡn is
determined only by the potential term q from (17) while the potential
term κ of the sub-graph Gn is influenced by the nodes in V̄n \ Vn

on the boundary set ∂Vn. This influence is due to the presence of
Dirichlet BCs in (18). The green connections represent the weighted
edges whose end-nodes are both interior nodes of Vn, while the red
connections represent the weighted edges which have at least one
end-node that belongs to V̄n \ Vn. The potential term κ sums the
weight of a red edge to every of its end-nodes which belong to Vn.

split into three terms

κ(xi, yj) =




κ0(xi, yj) = h2q(xi, yj) if (xi, yj) ∈ V̊n,

κ1(xi, yj) = h2q(xi, yj) + deg((xi, yj)), if ∃! one neighbor

in V̄n \ Vn,

κ2(xi, yj) = h2q(xi, yj) + deg((xi, yj)), if ∃! two neighbors

in V̄n \ Vn.

See Figure 7.

The given graph-Laplacian ∆Gn approximates the weighted operator h2L. More-
over, by Corollary 5.3 it holds that

{∆Gn} ∼λ f(x, y, θ1, θ2), (x, y, θ1, θ2) ∈ B 1
2
× [−π, π]2

where

f(x, y, θ1, θ2) = p(x, y) (4− f(θ1, θ2))

=
[
1 + (x− 1/2)2 + (y − 1/2)2

]
(4− 2 cos(θ1)− 2 cos(θ2)) .

By the symmetry of f over [−π, π]2 we can restrict it to B1/2×[0, π]2 without affecting
the validity of the identity (3). If we consider now the monotone rearrangement
f† : [0, 1] → [0, 10] of the symbol f as in Definition 3.1, then we can see from Table 4
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relative errors
n = 10 n = 50 n = 80

k(n)
dn

0.1 0.0788 0.0094 0.0020
0.5 0.0055 3.3995e-04 1.2565e-04
0.8 0.0100 7.2173e-04 3.9353e-05

Table 4. Relative errors between the eigenvalue λ
(n)
k(n) and the sam-

pling of the monotone rearrangement f†
(
k(n)
dn

)
, i.e.:

∣∣∣∣
λ
(n)
k(n)

f†(k(n)/dn)
− 1

∣∣∣∣.
The index k(n) of the eigenvalue λ

(n)
k(n) is chosen such that k(n)/dn is

constant for every fixed n = 10, 50, 80. As it can be seen, the relative
errors decrease as n increases, in accordance with Theorem 3.2. The
convergence to zero is not uniform and slower in some subintervals.

0 0.1 0.5 0.8 1

0

10

Figure 8. Plots of the monotone rearrangement f† (blue-continuous

line) and the eigenvalues {λ(n)
k } (orange-dotted line), for n = 80, of

the graph-Laplacian ∆Gn associated with the graph Gn defined in
(20). In this case we have that dn = 5140 < 802.

and Figure 8 that

lim
n→∞

λ
(n)
k(n) → f†

(
k(n)

dn

)

for any index sequence {k(n)}, 1 ≤ k(n) ≤ dn, such that k(n)
dn

→ x ∈ [0, 1] as
n → ∞, where dn is the dimension of the graph-Laplacian ∆Gn . We want to stress
out that dn < n2 since Vn � V̄n, but clearly it holds that dn → ∞ as n → ∞, and
the Hausdorff distance between the node set Vn and the disk B1/2 is going to zero.

Since f† does not posses an easy analytical expression to calculate, it has been
approximated by an equispaced sampling of f over B1/2 × [0, π]2 by dn-points and

then rearranging it in non-decreasing order. The approximation converges to f† as
n → ∞, see for example [40]. Finally, see Remark 3.1.

For other applications of the GLT techniques for approximation of partial dif-
ferential operators see [3].
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7.2. Approximations of PDEs vs sequences of weighted diamond graphs: FEM

Consider the model boundary value problem
{

−∆u = g in Ω,
u = 0 on ∂Ω,

(21)

where Ω = (0, 1) and g ∈ L2(Ω). We approximate (21) by using the quadratic FEM
over the uniform mesh with stepsize 1

n+1 , defined on the knot sequence

{ 1
n+1 ,

1
n+1 ,

2
n+1 ,

2
n+1 , . . . ,

n
n+1 ,

n
n+1}.

The Finite Element basis is chosen as the quadratic C0 B-spline basis over the knot
sequence.

Proceeding as in [25], we trace the problem back to solving a linear system
whose stiffness matrix reads as follows:

An =
n

3




4 −2
−2 8 −2 −2

−2 4 −2
−2 −2 8 −2 −2

. . .
. . .

. . .
. . .

. . .
. . .

−2 4 −2
−2 −2 8 −2 −2

−2 4 −2
−2 −2 8




2n×2n

.

We note that 1
nAn can be seen as the graph-Laplacian of a 1-level diamond

Toeplitz graph with nonzero potential term. Namely, according to Definition 2.2, we
have that

1

n
An = Kn −WG

n,2

where Kn is the diagonal matrix given by

(Kn)ii =

{
4
3 if i is even,
8
3 otherwise,

and WG
n,2 is the adjacency matrix of the 1-level diamond Toeplitz graph TG

3 〈(1, L1)〉,
with

G =

(
0 2
2 0

)

and

L1 =

(
0 0
2 2

)
.
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Combining now Proposition 4.4 and Corollary 5.3 we get that 1
nAn has asymptotic

spectral distribution with symbol function f : [−π, π] → C2×2 given by

f(θ) =
1

3

{(
4 −2
−2 8

)
+

(
0 −2
0 −2

)
eiθ +

(
0 0
−2 −2

)
e−iθ

}

=
1

3

{(
4 −2
−2 8

)
+

(
0 −2
−2 −4

)
cos(θ) +

(
0 −2
2 0

)
i sin(θ)

}
.

It is possible to study the multi-dimensional case of the problem in the example
above using the fact that for everym, s ∈ Nd there exists a permutation matrix Γm,s

of dimension
∏d

j=1mjsj such that

Tm1(p1)⊗ Tm2(p2) · · · ⊗ Tmd
(pd) = Γm,s [Tm(p1(θ1)⊗ · · · ⊗ p(θd))] Γ

∗
m,s

for any choice of trigonometric polynomials p : [−π, π] → Csj×sj , j = 1, . . . , d, as
stated in Lemma 4 of [25], where ⊗ denotes the usual tensor product. In the d-
dimensional case (see, again, [25] and references therein), the discretizing matrix is
given by

An =
d∑

k=1

(
k−1⊗
r=1

1

nr
Mnr

)
⊗Ank

⊗

(
d⊗

r=k+1

1

nr
Mnr

)
,

where An is defined as above andMn is a 2n×2nmatrix with the same block Toeplitz
structure as An and, hence, an analogous symbol function, which we denote by h.
Assuming now that the multi-index n = νn = (ν1n, ν2n, . . . , νdn) for a fixed

ν ∈ Qd
>0 := {(ν1, . . . , νd) ∈ Q : ν1, . . . , νd > 0} ,

it is immediate to see by the considerations above that nd−2An is the linear combi-
nation of graph-Laplacians of d-level diamond Toeplitz graphs with spectral distri-

bution given by the following symbol function f : [−π, π]d → C2d×2d ,

f(θ) =
d∑

k=1

ck(ν)

(
k−1⊗
r=1

h(θr)

)
⊗ f(θk)⊗

(
d⊗

r=k+1

h(θr)

)
,

with

ck(ν) =
νk

ν1 · · · νk−1νk+1 · · · νd
, k = 1, . . . , d.

7.3. Approximations of PDEs vs sequences of weighted d-level
graphs: IgA approach

In this subsection we consider the approximation of the same differential equation
(21) by using the Galerkin B-splines approximation of degree ν in every direction:
while the approximation of standard Qν Lagrangian FEM considered in Subsection
7.2 leads to a symbol which is a linear trigonometric polynomial in every variable, but

Cνd×νd Hermitian matrix-valued, here the symbol is scalar-valued, but the degree
of the trigonometric polynomial is much higher. For example, by means of cubic C2

B-spline discretization the (normalized) stiffness matrix is given by
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Rn×n � An =
1

240

360 9 �60 �3 0 · · · 0

9 162 �8 �47 �2 0 · · · 0

�60 �8 160 �30 �48 �2 0 · · · 0

�3 �47 �30 160 �30 �48 �2 0 · · · 0

0 �2 �48 �30 160 �30 �48 �2 0 · · · 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

�2 �48 �30 160 �30 �48 �2 0

0 · · · 0 �2 �48 �30 160 �30 �47 �3

0 · · · 0 �2 �48 �30 160 �8 �60

0 · · · 0 �2 �47 �8 162 9

0 · · · 0 �3 �60 9 360







.

Observe that the principal R(n−4)×(n−4)-submatrix (highlighted in blue) is an exact
symmetric Toeplitz matrix while globally An is not Toeplitz due to the presence
of perturbations near the boundary points (highlighted in yellow). This behavior
is influenced by the presence of BCs and the specific choice for the test-functions
(B-spline with C3 local regularity and C2 global regularity). For those reasons, An

can not be representative of the graph-Laplacian of a graph in the form Gn =
(Tn〈(t1, w1), . . . , (tm, wm)〉, κ), even if it is clearly the graph-Laplacian for another
kind of graph Gn which does not own globally the symmetries of the graphs studied
in Sections 4 and 5. Nevertheless, since the perturbations are local, it happens that
{An}n ∼λ f(θ) where f is the same symbol function of the graph-Laplacian of

Gn =

(
Tn

〈(
1,

30

240

)
,

(
1,

48

240

)
,

(
1,

2

240

)〉
, κ

)
, κ ≡ 0,

namely, f(θ) = 160
240 −

60
240 cos(θ)−

96
240 cos(2θ)−

4
240 cos(3θ). For a complete treatment

of the study of the eigenvalue distribution for Galerkin B-splines approximations we
refer to [27], where many examples are provided along the exposure.

There is another quite important difference between this case and the case of
Subsection 7.1. In the FD case, the nodes of the graph were representative of the
physical domain while in this case, even if the node set can be immersed in [0, 1],
the nodes represent the base functions of the test-functions set. That said, given An,
it is of interest to calculate the corresponding weight function w on the node set of
the physical domain: this approach could lead some insight about the problem of
the presence of a fixed number of outliers in the spectrum of An, see [11, Chapter
5.1.2 p. 153].

8. Conclusions and future work

We have defined general classes of graph sequences having a grid geometry with
a uniform local structure in a domain Ω ⊂ [0, 1]d, d ≥ 1. With the only weak
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requirement that Ω is Lebesgue measurable with boundary of zero Lebesgue measure,
we have shown that the underlying sequences of adjacency matrices have a canonical
eigenvalue distribution, in the Weyl sense, with a symbol f being a trigonometric
polynomial in the d Fourier variables: as specific cases, we mention standard Toeplitz
graphs, when Ω = [0, 1], and d-level Toeplitz graphs when Ω = [0, 1]d, but also
matrices coming from the approximation of differential operators by local techniques,
including Finite Differences, Finite Elements, Isogeometric Analysis etc. In such a
case we considered block structures and weighted graphs, from the perspective of
GLT sequences, where the tools taken from the latter field have resulted crucial
for deducing all the asymptotic spectral results. In particular, the knowledge of the
symbol and of basic analytical features have been employed for deducing a lot of
information on the eigenvalue structure, including precise asymptotics on the gaps
between the largest eigenvalues, specific preconditioners and projectors for the fast
solution of the underlying (large) linear systems (see [1]).

Many open problems remain, ranging from a deeper analysis of the matrix-
sequences arising from different families of Finite Element approximations of mul-
tidimensional differential problems to the study of the convergence features of the
ordered asymptotic spectra, to more computational techniques for the related large
linear systems, to the rearrangement of the corresponding symbol (see also the study
and discussions in [2, 27]).

Acknowledgements. We thank the Editors and the anonymous referees for their
careful reading and for their pertinent suggestions that helped us to improve the
quality of the paper. We also thank INdAM - GNCS for the support in conducting
our researches.

Funding. Open access funding provided by Università degli Studi dell’Insubria within
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