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Asymptotic Spectra of Large (Grid) Graphs
with a Uniform Local Structure (Part I):
Theory

Andrea Adriani, Davide Bianchi and Stefano Serra-Capizzano

Abstract. We are mainly concerned with sequences of graphs having a grid geom-
etry, with a uniform local structure in a bounded domain Q C R%, d > 1. When
) = [0, 1], such graphs include the standard Toeplitz graphs and, for 2 = [0, 1],
the considered class includes d-level Toeplitz graphs. In the general case, the un-
derlying sequence of adjacency matrices has a canonical eigenvalue distribution, in
the Weyl sense, and we show that we can associate to it a symbol f. The knowledge
of the symbol and of its basic analytical features provides many information on
the eigenvalue structure, of localization, spectral gap, clustering, and distribution
type.

Few generalizations are also considered in connection with the notion of gen-
eralized locally Toeplitz sequences and applications are discussed, stemming e.g.
from the approximation of differential operators via numerical schemes. Never-
theless, more applications can be taken into account, since the results presented
here can be applied as well to study the spectral properties of adjacency matrices
and Laplacian operators of general large graphs and networks.
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Keywords. Large graphs and networks; eigenvalues distribution; graph-Laplacian.

1. Introduction

Spectral properties of the adjacency matrix and the Laplacian operator of graphs
provide valuable insights regarding a large number of key features such as the Shan-
non capacity, Chromatic number, diameter, maximum cut, just to cite few of them,
see [6, 35], which often play a central role in many applied real-world problems e.g.
in physics and chemistry problems, see as references [15, 21, 34] and [12, Chapter 8].
In particular, graphs typically describe approximations of physical domains related
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to self-adjoint second order linear differential operators: for example, the discretiza-
tion of the Laplace differential operator with Dirichlet boundary conditions over a
membrane Q € R? produces the Laplacian matrix of a (possibly infinite) graph with
its eigenvalues corresponding to the characteristic frequencies of the membrane, [12,
p.256]. In the last few years there has been a rising interest over this topic, espe-
cially concerning spectral convergence of the graph-Laplacian towards the spectrum
of its continuous counterpart, see the seminal work of D. Burago and coauthors [§]
and applications in inverse problems regularization and machine learning, refer to
[43, 44, 45]. Therefore, having a way to analytically measure the eigenvalue distribu-
tion of the adjacency matrix and the graph-Laplacian can be as precious as crucial
in many applications.

In this work we are interested in defining and studying a large class of graphs
enjoying few structural properties:

a. when we look at them from “far away”, they should reconstruct approximately
a given domain Q C [0,1]%, d > 1, i.e., the larger is the number of the nodes
the more accurate is the reconstruction of €2;

b. when we look at them “locally”, that is from a generic internal node, we want
that the structure is uniform, i.e., we should be unable to understand where we
are in the graphs, except possibly when the considered node is close enough to
the boundaries of 2.

Technically, we are not concerned with a single graph, but with a whole sequence
of graphs, where {2 and the internal structure are fixed, independently of the index
(or multi-index) of the graph uniquely related to the cardinality of nodes: thus the
resulting sequence of graphs has a grid geometry, with a uniform local structure,
in a bounded domain Q C Rd, d > 1. We assume the domain 2 to be Lebesgue
measurable with regular boundary, which is for us a boundary 02 of zero Lebesgue
measure, and contained for convenience in the cube [0,1]%. We call regular such a
domain. When Q = [0, 1], it is worth observing that such graphs include the standard
Toeplitz graphs (see [28] and Definition 4.1) and for Q = [0, 1]¢ the considered class
includes d-level Toeplitz graphs (see Definition 4.2).

The main result is the following: given a sequence of graphs having a grid
geometry with a uniform local structure in a domain €2, the underlying sequence of
adjacency matrices has a canonical eigenvalue distribution, in the Weyl sense (see
[5, 29] and references therein), and we show that we can associate to it a symbol
function §. More precisely, when § is smooth enough, if N denotes the size of the
adjacency matrix (i.e. the number of nodes of the graph), then the eigenvalues of
the adjacency matrix are approximately values of a uniform sampling of § in its
definition domain, which depends on €2 (see Definition 2.3 for the formal definition
of eigenvalue distribution in the Weyl sense and the results on Section 5 for the
precise characterization of § and of its definition domain).

The knowledge of the symbol and of some of its basic analytical features pro-
vides a lot of information on the eigenvalue structure, of localization, spectral gap,
clustering, and distribution type.
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The mathematical tools are mainly taken from the field of Toeplitz (see the
rich book by Bottcher and Silbermann [5] and [29, 42, 46]) and Generalized Locally
Toeplitz (GLT) matrix-sequences (see [37, 38, 41]): for a recent account on the GLT
theory, which is indeed quite related to the present topic, we refer to the following
books and reviews [22, 23, 24, 26].

Interestingly enough, as discussed at the end of this paper, many numerical
schemes (see e.g. [10, 11, 39]) for approximating partial differential equations (PDEs)
and operators lead to sequences of structured matrices which can be written as linear
combination of adjacency matrices, associated with the graph sequences described
here. More specifically, if the physical domain of the differential operator is [0, 1]¢ (or
any d-dimensional rectangle) and the coefficients are constant, then we encounter d-
level (weighted) Toeplitz graphs, when approximating the underlying PDE by using
e.g. equispaced Finite Differences or uniform Isogeometric Analysis (IgA). On the
other hand, under the same assumptions on the underlying operator, quadrangular
and triangular Finite Elements lead to block d-level Toeplitz structures, where the
size of the blocks is related to the degree of the polynomial space of approxima-
tion and to the dimensionality d (see [25]). Finally, in more generality, the GLT
case is encountered by using any of the above numerical techniques, also with non-
equispaced nodes/triangulations, when dealing either with a general domain  or
when the coefficients of the differential operator are not constant. The given clas-
sification of approximated PDE matrix-sequences is relevant also from a practical
viewpoint since the obtained spectral information can be used for guiding the design
of proper iterative solvers (in terms either of preconditioners or of ad hoc multigrid
methods) for the underlying linear systems with large matrix size: see [1] for the use
of the theoretical results of the current work for the design of preconditioners and
of multigrid procedures.

The paper is organized as follows. In Section 2 and Section 3 we collect all
the machinery we need for our derivations: we will first review basic definitions and
notation from graph theory, from the field of Toeplitz and d-level Toeplitz matrices,
and then we provide the definitions of canonical spectral distribution, spectral clus-
tering etc. In particular, we introduce Theorem 3.2 which plays a central role for
the spectral analysis in applications. In Section 4 we present the structure of d-level
diamond Toeplitz graphs. In Section 5 we give formal definitions of sequences of
graphs having a grid geometry, with a uniform local structure, in regular domains
Q c [0, 1]d, d > 1, and we prove the main results, by identifying the related symbols.
Section 6 and 7 contain specific applications, including the analysis of spectral gaps
and the study of connections with the numerical approximation of differential op-
erators by local methods, such as Finite Differences, Finite Elements, Isogeometric
Analysis etc. Finally, Section 8 is devoted to draw conclusions and to present open
problems.
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2. Background notation and definitions

In this section we present some definitions, notation, and (spectral) properties asso-
ciated with graphs (see [12] and references therein) and, in particular, with Toeplitz
graphs [28].

Before proceeding further, let us introduce a multi-index notation that we use
hereafter. Given an integer d > 1, a d-index k is an element of Z¢, that is, k =
(k1,...,kq) with k. € Z for every r = 1,...,d. We intend Z equipped with the
lexicographic ordering, that is, given two d-indices © = (i1,...,%q), 3 = (J1,---,7d),
we write © < j if i, < j, for the first r = 1,2,...,d such that i, # j,. The relations
<, >, > are defined accordingly.

Given two d-indices %, j, we write ¢ < 3 if 4, < j, for every r = 1,...,d. The
relations <, >, > are defined accordingly.

We use bold letters for vectors and vector/matrix-valued functions. We indi-
cate with 0,1,2,..., the d-dimensional constant vectors (0,0,...,0), (1,1,...,1),

(2,2,...,2),..., respectively. With the notation > we mean the element-wise divi-
sion of vectors, ie., £ = <7i—11,...,%>. We write |i| for the vector (|i1],...,]|id]|)-

Finally, given a d-index n, we write m — oo meaning that min,—; _4{n,} — oo.

2.1. Graphs

We call a (finite) graph the quadruple G = (V, E, w, k), defined by

a set of nodes V' = {v1,va,...,0n};

a weight function w: V x V — R;

a set of edges £ = {(v;,vj)|vi,v; € V, w(vs,v;) # 0} between the nodes;
a potential term k: V — R.

The non-zero values w(v;, vj) of the weight function w are called weights associ-
ated with the edge (v;,v;). Given an edge e = (v;,v;) € E, the nodes v;, v; are called
end-nodes for the edge e. An edge e € F is said to be incident to a node v; € V
if there exists a node v; # v; such that either e = (v;,v;) or e = (v;,v;). A walk
of length k in G is a set of nodes v;,, vi,, ..., i, v;,,, such that, for all 1 <r <k,
(Vi,,vi,,1) € E. A closed walk is a walk for which v;, = v;, . A path is a walk with
no repeated nodes. A graph is connected if there is a walk connecting every pair of
nodes.

A graph is said to be unweighted if w(v;,v;) € {0,1} for every v;,v; € V. In
that case the weight function w is uniquely determined by edges belonging to E.

A graph is said to be undirected if the weight function w is symmetric, i.e.,
for every couple of nodes v;, v; we have w(v;,vj) = w(vj,v;). In this case the edges
(vi,v5) and (vj,v;) are considered equivalent and the edges are formed by unordered
pairs of vertices. Two nodes v;,v; of an undirected graph are said to be neighbors if
(vi,vj) € E and we write v; ~ v;. On the contrary, if (v;,v;) ¢ E, we write v; » vj.

An undirected graph with unweighted edges and no self-loops (edges from a
node to itself) is said to be simple. When dealing with simple graphs we use the
simplified notation G = (V, E).
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Every graph G = (V, E,w, k) with k = 0 can be represented as a matrix
W = (wij); ;- € R™™,
called the adjacency matriz of the graph. In particular, there is a bijection between
the set of weight functions w : V x V' — R and the set of a adjacency matrices
W e R,
The entries of the adjacency matrix W are

(W), ; = w(vi,v5), VYvi,v; €V.

In short, the adjacency matrix tells which nodes are connected and the ‘weight’ of
the connection. If the graph does not admit self-loops, then the diagonal elements
of the adjacency matrix are all equal to zero. In the particular case of an undirected
graph, the associated adjacency matrix is symmetric, and thus its eigenvalues are
real [4]. Moreover, the degree of a node v; of an undirected graph, denoted by deg(v;),
is defined as the sum of weights associated with edges incident to v;, that is,

deg(v;) := Z w(v;, vj).

v~
Given two graphs G = (V, E,w,k),G = (V', E',w', k") with
V={vi,...,on}, V' ={v},...,0.}
we say that G is isomorphic to G’, and we write G ~ G, if

e n=m, ie., |V| =|V’| where | -| is the cardinality of a set;
e there exists a permutation P over the standard set [n] := {1,...,n} such that

w(vi,v;) =w (’Ufp(i),l};;(j» . k(v) =w (v}(i)) .

In short, two graphs are isomorphic if they contain the same number of vertices con-
nected in the same way. Notice that an isomorphism between graphs is characterized
by the permutation matrix P.

As an immediate consequence of the previous definition, it holds that G ~ G’ if
and only if there exists a permutation matrix P such that W = PW’'P~! = PW'PT,
where W, W' are the adjacency matrices of G and G’, respectively.

Definition 2.1 (Linking-graph operator). Given v € N, we call linking-graph operator
for the reference node set [v] := {1, ..., v} any non-zero R”*¥ matrix, and we indicate
it with L. Namely, a linking-graph operator is the adjacency matrix for a (possibly
not undirected) graph G = ([v], E, 1), with [ a weight function. When the entries of
L are just in {0,1} we call it a simple linking-graph operator.

In Section 5, we use the linking-graph operator to connect a (infinite) sequence
of graphs
Gi2Go~...2Gp~...,

and to define the graph G := |J,2; G, which has a uniform local structure.
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Sometimes it is useful to deal with proper sub-graphs. Given a graph G =
(V,E,w,k) and a subset V C V, then

‘O/ZZ {UiGV‘UZ‘OO’I_)jVQ_)jGV\V}

is called interior of V' and its elements are called interior nodes. Whereas, the set
of nodes

OV = {v; € V |v; ~ v; for some v; € V\V}

is called (internal) boundary of V and its elements are called boundary nodes. We
say that a graph G = (V, E,w, k) is a (proper) sub-graph of G, and we write G C G,
if

eV CV;

e E={(v;,vj) € E|v;,v; €V} C E;
® W= Wg;

L H:HW.

We call G the host graph. Observe that we do not request that k = & on 9V.

Finally, the set of real functions on V is denoted as C(V'). Trivially, C(V) is
isomorphic to R™. Of great importance for Section 7 is the operator Ag : C(V) —
C (V) defined below.

Definition 2.2 (Graph-Laplacian). Given an undirected graph with no loops G =
(V,E,w, k), the graph-Laplacian is the symmetric matrix Ag : C(V) — C(V) de-
fined as

AG =D+ K — W,
where D is the degree matriz and K is the potential term matriz, that is,
D= dlag {deg(vl)v cee 7deg(vn)} ) K := dlag {K’(Ul)a ) ’/‘-(vn)} ’

and W is the adjacency matrix of the graph G, that is,

0 w(vy, v2) e w(v1,vn)
Wo— w(v,v2) 0
: w(vn—h Un)
w(vy, vy) e w(vp—1,Un) 0
Namely,
deg(vl) + H(vl) _w(vh v?) t _w(vlv Un)
Ag = —w(lfh vz)  deg(va) + K (v2) .

: . —w(Vp—1,vn)
7w(1}17 Up) s 7w(1)n717 Un) ng(vn) + H(vn)
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2.2. Toeplitz matrices, d-level Toeplitz matrices, and symbols

Toeplitz matrices T,, are characterized by the fact that all their diagonals parallel

to the main diagonal have constant values: (Tn)ij =t;—j, where 4,j = 1,...,n, for
given coefficients ty, k=1—mn,...,n — 1:
to t-1 t1—n
t t
T, — 1 0
S
th—1 it

When every term t; is a matrix of fixed size v, i.e., tp € C"*¥, the matrix T, is
of block Toeplitz type. Owing to its intrinsic recursive nature, the definition of d-
level (block) Toeplitz matrices is definitely more involved. More precisely, a d-level
Toeplitz matrix is a Toeplitz matrix where each coefficient t; denotes a (d — 1)-level
Toeplitz matrix and so on in a recursive manner. In a more formal detailed way,
using a standard multi-index notation introduced at the beginning of Section 2, a
d-level Toeplitz matrix is of the form

Tn = (ti*j)(Zj:1 € Clmmna)x(nimna)

with the multi-index m such that 0 <n = (n1,...,ng) and tx € C, —(n —1) <k <
n — 1. If the basic elements t; denote blocks of a fixed size v > 2, i.e. t, € CV*7,
then T}, , is a d-level block Toeplitz matrix,

Tn,l/ = (t'i_j);fj:l c (C(nl...ndu)><(m-..ndy)7 ty € CVXV.

For the sake of simplicity, we write down an explicit example with d = 2 and v = 3:

To T4 - Tipy thio  th1 o thilons
o T, - tha  tho :
Tn,S = . . . ) Tkl = _17 .1' . )
: T4 : . . thy -1
Thyw -+ Th To thina-1 0 Tl tkyo

T ko E(C?’Xg, k1 € {l—nl,...,nl—l}, ]CQE{I—TLQ,...,TLQ—I}.

Observe that each block T}, has a (block) Toeplitz structure. When v = 1, then we
just write Ty, , = Th,.

Here we are interested in asymptotic results and thus it is important to a have a
meaningful way for defining sequences of Toeplitz matrices, enjoying global common
properties. A classical and successful possibility is given by the use of a fixed function,
called the generating function, and by taking its Fourier coefficients as entries of all
the matrices in the sequence.

More specifically, given a function f : [—m, 7]? — C**¥ belonging to L ([—m, 7]%),
we denote its Fourier coeflicients by

- 1

d
Fom i [ SO e e ken k0=Sho. ()
-7, r=1
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(the integrals are done component-wise), and we associate to f the family of d-level
block Toeplitz matrices

~ n
Tulf) = (Fiy), » meN. (2)
1,7=1

We call {Tp, ,(f)}n the family of multilevel block Toeplitz matrices associated with
the function f, which is called the generating function of {Ty, ,(f)}n. If f is Her-
mitian matrix-valued, i.e. f(0) is Hermitian for almost every 6, then it is plain
to see that all the matrices Ty, (f) are Hermitian, simply because the Hermitian
character of the generating function and relations (1) imply that f k= f,: for all
k € Z%, where the *-symbol indicates the complex conjugate transpose. If, in addi-
tion, f(6) = f(|@|) for every 0, then all the matrices T, (f) are real symmetric with
real symmetric blocks } e k€79

2.3. Spectral symbol

We say that a matrix-valued function § : D — C**¥, v > 1, defined on a measurable
set D C R™, m € N, is measurable (resp. continuous, in LP(D)) if its components
fij: D —C, i,j=1,...,v, are measurable (resp. continuous, in L?(D)). Let pu,, be
the Lebesgue measure on R™ and let C.(R) be the set of continuous functions with
bounded support defined over R. Setting d,, the dimension of a square matrix X, ,,

for F' € C.(R) we define

d d
1 & 1 &
2o (F, Xny) i= = 3 P(or(Xna)): Za(F. Xny) = > FOu(Xn)),
™ k=1 "™ =1

where 0 (Xn,) and \;(Xy,) are the singular values and the (real) eigenvalues of
Xn,v, respectively, sorted in non-decreasing order.

Hereafter, symbols { Xy }n, {Yn}n, {Zny}n, with v a fixed parameter inde-
pendent of n, indicate sequences of square matrices of increasing dimensions, i.e.,
such that d,, — o0 as n — oo.

We say that a sequence {Xy, , }n is zero distributed if

lim 5,(F, Xp,) = F(0) VF € Cy(R),

n—oo

and we indicate it by {Xp 1 }n ~o 0.

Definition 2.3 (Spectral symbol). Let {X, ,}, be a sequence of matrices and let
f : D — C"*” be a measurable Hermitian matrix-valued function defined on the
measurable set D C R™, with 0 < p (D) < 0.

We say that { Xy, , }n is distributed like f in the sense of eigenvalues, in symbols
{Xn,u}n ~A f) if

lim S0P Xn0) = — s [ S PO dinly). VP € CR). ()

n—o0
k=1
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where A1 (f(y)), ..., A\ (f(y)) are the eigenvalues of f(y). Let us notice that, in the
case v = 1, the identity (3) reduces to

Jim 93P X) = — | P (i) din(w). VF € Cm).

We call § the (spectral) symbol of {Xn . }n.

The following result on Toeplitz matrix-sequences linking the definition of sym-
bol function and generating function is due to P. Tilli.

Theorem 2.1 ([42]). Given a function f : [—m,x]* — C¥*¥ belonging to L' ([—m, x]?),
then
{Tn,l/<.f)}n ~f=f,

that is the generating function of {Ty ., (f)}
Definition 2.3.

n Coincides with its symbol according to

Since in this paper we work only with undirected graphs (i.e., graphs whose
associated adjacency matrix is symmetric), we deal with Hermitian-valued symbol
functions § such that A\g (f(y)) are real-valued for every y € D C R™, and for every
k=1,...,v. See for example Propositions 4.2, 4.4, and Theorem 5.2.

The knowledge of the symbol function § can give valuable insights on the dis-
tribution of eigenvalues of a sequence of matrices. We refer to Section 3 where a
collection of theoretical results is presented, and to Section 7 and [1] where numeri-
cal experiments are provided.

Unfortunately, a generic matrix-sequence { Xp , },, does not always own a Toeplitz-
like structure and therefore we cannot predict beforehand whether it is distributed
like a spectral symbol § or not. The Generalized Locally Toeplitz (GLT) theory pro-
vides practical tools to extend the class of matrix-sequences satisfying equation (3)
for a given symbol f.

In light of the purposes of the present work we give the main properties of
block GLT sequences instead of the original formal definition, which can be found in
[26], along with the properties listed below, for two main reasons. First, the original
definition reported in [26] is rather involved and it requires introducing several other
definitions such as ”block LT operators” and ”block LT sequences”. Moreover, from
a practical point of view, the following properties define the same set of matrix-
sequences as the formal definition, with the advantage of being much easier to use
for practical purposes. In other words, the axioms (GLT 1) — (GLT 5) listed below
represent an equivalent characterization of the whole class of block GLT matrix-
sequences.

Before doing so, let us introduce the definition of approximating class of sequences.

Let {anl,}n be a sequence of matrices of increasing dimension d, and let
{{Ynvm}n},, be a sequence of matrix-sequences of the same dimension dy,. We say
that {{Yn . m}n},, is an approzimating class of sequences (a.c.s.) for { Xy, }n, and
we write

YVovmtn = {Xnpln acs.,
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if the following condition is met: for every m there exists n,, such that, for n > n,,,
Xn,z/ =Ynuym+ Rn,u,m + Nn,u,my rank (Rn,y,m) < Cl(m)dn7
[Nnyml < ca(m),
where n,,, c1(m), c2(m) depend only on m, and

g, A1) = it ex{m) = 0

In what follows we write {Xy, , }n ~crr f to indicate that {X,, , }n is a block
GLT sequence with symbol f, where § : Q x [-7,7]? € R?? — C is a measurable
function, with 0 < pg(2) < oo.

Properties of block GLT sequences
(GLT 1) If {Xy,}n ~crr f, then {X,, , }n, ~o f. Moreover, if each X, , is Hermit-
ian, then {Xp, 1 }n ~ f.
(GLT 2) If {Xp v }n ~crr § and Xy = Yo, + Zp, where
e cvery Yy, is Hermitian,
o |Ynull, || Zny| < cfor some constant ¢ independent of dp,,
o 4, | Znll, — 0,
then {Xp ,}n ~a f.
(GLT 3) We have:
o (T (F)}n ~crr f = Fif £:[0,1]2 — C¥*¥ is an integrable matrix-
valued function;
e {diag,,(a)}n ~crr f = a if @ : [0,1]? — C"*” is Riemann-integrable,

where L
a(y)
diagn(a) = . c (Can"'ndXVn1~~nd;

a(l)
o {Znu}tn ~cur 0 if and only if {X,, ,}n ~6 0.
(GLT 4) If {Xnﬂj}n ~qrr f and {Yn,u}n ~agLT 8, then:
o {X7 tn ~arr 5
o {aXy, + BYnutn ~cur of + Bg for all o, 5 € C;
L {Xn,uyn,u}n ~GLT fg§
° {X,J[W}n ~GLT ffl provided that § is invertible a.e., where XTTW de-
notes the Moore-Penrose pseudoinverse of X, ,;
(GLT 5) {Xpn}n ~cur § if and only if there exist a block GLT sequence
{{Ynvmtntm ~acrr f, such that {{Yn vmintm — {Xn,}n a.cs. and
fm — f in measure.

3. Weyl eigenvalue distribution

Fix a square matrix-sequence {Xp, , }rn of dimension dy, with symbol function f :
D C R™ — C”*¥ as in Definition 2.3. Observe that § is not unique and in general
not univariate. To avoid this, we introduce the notion of monotone rearrangement
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of the symbol, see Definition 3.1. In order to simplify the notation and since all the
cases we investigate in this paper can be led back to this situation, we make the
following assumptions:

Assumptions

(AS1) D is compact and of the form Q x [—7,7]¢ with Q C [0,1]%, and therefore
m = 2d;

(AS2) f(y) = f(x,0) = p(x)f(9), with (,0) € Q x (—7,7)¢ and p : Q — R,
f:(—m,md— v,

(AS3) p: Q — R is piecewise continuous;

(AS4) every component f; ; : [~m, 7] — C of f is continuous;

(AS5) f is a Hermitian matrix-valued function.

Because of (AS5) we are assuming that all the eigenvalues are real, then for no-
tational convenience we order the eigenvalue functions Ay (p(x) f(0)) by magnitude,
namely A (p(x)f(0)) < ... < X, (p(x)f(0)). This kind of ordering could affect the
global regularity of the eigenvalue functions, but it does not affect the global reg-
ularity of the monotone rearrangement of the symbol, as we see in Theorem 3.2.
Nevertheless, by well-known results (see [31]), items (AS3) and (AS4) imply that
A (p(x) f(0)) is at least piecewise continuous for every k = 1,...,v. We have the
following result.

Lemma 3.1. Suppose that {Xp}n ~x f(x,0) = p(x)f(0) as in Definition 2.3,
where § : D — CY*¥ is a Hermitian matriz-valued function satisfying assumptions
(AS1)—(AS5). Then

{an/}nNAfwa ZAk .fk ) (waG)Ebv (4)
where § D — R is a real-valued function and

b:QX (LVJ Ik),
k=1
I, = [(2(1{;_1)_’/)7" (2]{_”)71'] %% |:(2(]€—1)—V)7T 2k —v)m

) Y )

v v v v
d—times
fw—2k—1—-v)m) if0 €Iy,
I, — CV*, 0) =
Tl 7i(6) {0 otherwise.

Proof. By the monotone convergence theorem, since every F' € C.(R) is limit of a
monotone sequence of step functions, then to prove (4) it is sufficient to prove the
validity of Definition 2.3 for F' = 1, with E a measurable subset of supp(F’). We
have that

1 i v 1
m //D ;]IE (Ar(p(2) £(6))) d, = ; m //D 1g, (z, 0)dpm,
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where

By ={(x,0) € D : \(p(x)f(0)) € E}
={(z,0) € D : p(®)\(f(0)) € E}.

For every k =1,...,v, let us make the change of variables
(x,0) — (z,v 1[0+ (2k — 1 — v)7]),

By = {(@,0) € Dy : p@)i(£(0) € B},
Dk =0 x Ik,

from which it follows that

1
]lEk x,0)du, = - // 1 (x,0)dpm
k=1 Vdum< k) Dy,

Trivially, the maps I 3 0 — v0 — (2k — 1 — v)7 are diffeomorphism between

I, and [—m, w]%. Therefore, the image set of > 1_; A (£1.(8)) over I is exactly the
image set of g (f(0)) over [—m,7]e.

The next definition of monotone rearrangement is crucial for the understanding
of the asymptotic distribution of eigenvalues of { Xy, , }n.

Definition 3.1. Let v > 1 and using the same notation as in Lemma 3.1, define

{ Z)\k (fu(0)) : (x,0) € Qx [— W,W]d}.

Let §' : [0,1] — [min Ry, max R;] be such that
§'(z) = inf {t € [min R, max Ry : ¢5(t) > x} (5a)
where ¢ : R — [0, 1],

1 . v
Pj(t) = mﬂm ({(%9) eD: p(m);)\k (fr(9)) < t}) : (5b)

fT(z) is the monotone rearrangement of f(x,0) = p(z) > r_; M (£1(0)). Because of
Lemma 3.1, with abuse of notation we call f(x) the monotone rearrangement of

f(x,0) = p(x)f(0) as well. In the special case that f(x,0) = £(0), then i = fT.
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Clearly, f' is well-defined, univariate, monotone strictly increasing and right-
continuous. The common “analyst”’notation for the monotone rearrangement of a
function uses the star *-symbol. In this manuscript we prefer to use the dagger f-
symbol to avoid confusion with the conjugate transpose notation. Nevertheless, it is
anyway appropriate since from a probabilistic point of view, ! is the pseudo-inverse
of the cumulative distribution function ¢j.

Within our assumptions on f, it is easy to extend [14, Theorem 3.4] for this
multi-variate matrix-valued case, and it holds that

(i) 7(0) = min R, f1(1) = mafo,
( ) limy, 00 E)\ F Xnu fo ( )d,ul( )

We have the following results, see [2, Section 3]|. The statements and the tech-
niques used in the proofs are almost the same, we mostly adjusted them to fit in the
notation we are adopting here. In order to make the paper self-contained, we report
here the sketches of the proofs.

Theorem 3.2. Let { Xy, }n be a matriz-sequence such that

{Xn,u}n ~X f(ma 0) = p(:c)f(e)
Suppose that

b ({(aa,e) e x [-malt < pla) S M (£4(0)) =t}> —0 VieR
k=1
(or, equivalently, that ¢; is continuous). Then
{Xnu}p ~afi(2), € (0,1); (6a)

lim ’{k = 1;---=dn : /\k (X’n,,u) < t}’

n—o0 dn

Let k = k(n) be such that k(n)/dy — x, € (0,1) as n — co. Then

— ¢5(t), VteR. (6b)

lim Apin) (Xn,w) = to € (min Ry, max Ry), sup {t <to} = lim f'(z).

n—oo

Cﬂ—)ZEO
In particular, if 1 is continuous in xq, then
k(n)
lim Ay (Xny) = lim ff ( i ) = f! (o). (7)

Finally, if My(n) (Xn,y) > min (R;) (< max (R;)) definitely, then equation (7) holds
for xg =0 (xg = 1) as well.

Proof. Because of Lemma 3.1, it holds that

{Xn,u}'n ~X f(m7 0) = p(w) Z )‘k (fk(e)) :
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By hypothesis, ¢ is continuous and then by standard results in Probability Theory
it holds that ¢; o f := X is uniformly distributed on (0, 1), i.e. X ~ U(0,1), which
implies that f7(X) and f have the same distribution. Therefore,

Mml@) [ F @0 dun(a.0) =B P = B (G 6) = 7 () don(e)

for every F' € C.(R). The above identity, combined with (4) and Definition 2.3, gives
(6a). Define now

N(Xnp,t) Hk=1,...,dn : A\ (Xnu) <t}

1 &
fin () == d Z]I{Ak(x(m)}( )
" =1

It holds that p,, is a sub-probability measure and that ¢, is the distribution function
of pin, that is pn((—00,t]) = ¢n(t) for every t € R. Combining now (4) and [9,
Theorem 4.4.1], it is not difficult to prove that pu, converges vaguely (see [9, p. 85
and Theorem 4.3.1]) to pj, the probability measure on R associated with ¢, i.e.,
such that y;(—o00,t] = ¢;(t) for every ¢ € R. Then,

M = lim ¢pn(t) = lim pp(—oo,t] = Mf(*ooat] = ¢f(t)v

n n—00 n—o0

lim
n—oo
for every t € R, which is exactly (6b).

Define Ay(n) := Ag(n) (Xn,). By equation (6b) and since ¢y is continuous, by a
well known theorem of Pélya it holds that ¢, — ¢; uniformly. On the other hand,
it holds that

k(n) N (Xn,ua )\k(n)))

= T T g A e D)

Therefore, for every € > 0 there exist N1 = Nj(€), No = Na(e) € N such that

sup [¢n (t) — ¢5 ()] <€ Vn = (ng,...,ng) such that nllindnr > Ny,
teR =

r=

1111

|¢n (Ak(n)) — x0| <e Vn=(ny,...,ng) such that min n, > No.

r=1,...,

It follows easily that
Jim 6 (emy) = 01 Jim M) = 20
Since xg € (0,1), then by (5b) it holds that

lim Ay = to € (min Ry, max Ry).

n—o0

Finally, by the above relation and by (5a), we can conclude that

lim § (z) = lim f' (/@éﬂ)) = sup {t < to}.

Tz n—00 n tER;
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Let us observe now that zg is a jump discontinuity point for f' if and only if there
exist t; < tp € Ry such that R; C [min Ry, ?1] U [t2, max R;] and ¢;(t) = o if and
only if t € [t1,t2]. Therefore, if ft is continuous in xg, then to = t; = t5 € R; and we
have (7). O

Corollary 3.3. With the same hypothesis as in Theorem 3.2, it holds that
=1,...,dpn : Xno

n—00 dn

0,

that is, the number of possible outliers is o(dy,).

Proof. 1t is immediate from (6b). Let us observe that

{k : Ak (X)) < min Ry} -

N(X, i
0< lim i N (Xny, min Fy)
n—00 dn n—00 dn

= ¢f (min Rf) = 0.
Moreover, since

{F 2 A (Xno) € Bi}|  [{k 2 Ak (Xng) €RY - [{F 2 Ak (Xny) € By}

dn, dn, dn,
—1_ [{k © Ak (Xnw) € By}
dn,
N(Xpy,maxR;)  |{k : A (Xpn,) < min Rj}|
=1- d + d s
n n

then, passing to the limit, we get

lim [k Ak (Xn,u) ¢ Rf}‘ _

n—o0 dn

1 —¢j(maxRs) =1—1=0. O

Corollary 3.4. With the same hypothesis as in Theorem 3.2, assume moreover that
i is absolutely continuous. Let T : [min R, max R;] — R be a differentiable real
function and let {k(n)}n be a sequence of integers such that

(i) M2 g € [0,1);

(i) Mem)+1 (Xnw) > Ay (Xn,w) € [min Ry, max Ry] definitely for n — oc.
Then

Jimdo [T (w1 (X)) = 7 gy (X)) = lim (- (r (:c)))' a.c.

Proof. Since f' is absolutely continuous then it is differentiable almost everywhere.
Let 2o € [0, 1] such that (f)/ exists and such that ff(xq) # 0. Then from (7),

|lx=x0

Aein) (Xnw
lim k()( nv)
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and we get:
i T Qe X)) =7 Qi) Knp)) 7 i (kfgn) * di)) - (fT (%)))
s % s %

= T
= Jim (') .
Since p; ({x €[0,1] : P (fT)/ (z) or fi(z) = O}) = 0, we conclude. O

Remark 3.1. It may often happen that ff does not have an analytical expression or
it is not feasible to calculate, therefore it is needed an approximation. The simplest
and easiest way to obtain it is by mean of sorting in non-decreasing order a uniform
sampling of the original symbol function p(x) f(@), in the case of real-valued symbol,
or of sorting in non-decreasing order uniform samplings of p(x)A; (f(0)) for k =
1,...,v, in the case of a matrix-valued symbol. See [27, Section 3] and [22, Remark
2]. These approximations converge to fT as the mesh-refinement goes to zero, see
[40].

4. Diamond Toeplitz graphs

In this section we are going to present the main (local) graph-structure which is
used to build more general graphs as union of sequences of sub-graphs, i.e., diamond
Toeplitz graphs. The resulting graphs are then immersed in bounded regular domains
of R? in Section 5. We proceed step by step, gradually increasing the complexity of
the graph structure.

As a matter of reference, we have the following scheme of inclusions, with the
related variable coefficient versions:

adjacency matrix of Toeplitz graph (Def. 4.1) C Toeplitz matrix
N N
adjacency matrix of d-level Toeplitz graph (Def. 4.2) C d-level Toeplitz matrix
N N

adjacency matrix of d-level diamond Toeplitz graph (Def. 4.3) (  d-level block Toeplitz matrix

4.1. Toeplitz graphs and d-level Toeplitz graphs

We first focus on a particular type of graphs, namely Toeplitz graphs. These are
graphs whose adjacency matrices are Toeplitz matrices.

Definition 4.1 (Toeplitz graph). Let n,m,t1,...,t, be positive integers such that
0 <t <ty <...<ty <n,and fix m nonzero real numbers wy,, ..., wy,,. A Toeplitz
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graph, denoted by T, ((t1,wy, ), ..., (tm,wy,,)), is an undirected graph defined by a

node set V,, = {v1,...,v,} and a weight function w such that
w if |2 —j| =t
w(vi,vj) =4 " | ].| "
0 otherwise.
In the case of simple graphs, i.e., wy, = 1 for every k, we indicate the Toeplitz

graph just as T, (t1,...,tn). The number of edges in a Toeplitz graph is equal to
> i1 (n—t). By construction, the adjacency matrix W, = (w);_;);—; of a Toeplitz
graph has a symmetric Toeplitz structure.

If we assume that m, ¢y, ..., t,,, are fixed (independent of n) and we let the size
n grow, then the sequence of adjacency matrices W,, can be related to a unique real
integrable function f (the symbol) defined on [—m, 7] and expanded periodically on
R. In this case, according to (1), the entries (W), ; = fi,j of the matrix W, are
defined via the Fourier coefficients of f, where the k-th Fourier coefficient of f is
given by

~ 1 i .
fo==— [ f®e*do, kez.
2 J_,
We know that the Fourier coefficients fj, are all in {0,w¢,,...,wy, } and that

the matrix is symmetric. Note that obviously any such graph is uniquely defined
by the first row of its adjacency matrix. On the other hand, we know that w;_1 =
(W), ; = w(vi,vj) for j =1,...,n, namely, w;_1 # 0 iff j —1 € {t1,...,tn}. From
this condition we can infer that the symbol has a special polynomial structure and
in fact it is equal to

n—1 m
FO)= > wye?? =" 2wy, cos(trh). (8)

j:l—n k=1

In such a way, according to (8), our adjacency matrix W, is the matrix T),(f)
(real and symmetric) having the following structure

we=n(f=| 0 | =t T
" " : Ly ! 0 otherwise,
wn—l DY w]_ O

and, as expected, the symbol f is real-valued and such that f(0) = f(|0|) for every
0. See Figure 1 for an example.

Along the same lines, we can define d-level Toeplitz graphs as a generalization of
the Toeplitz graphs, but beforehand we need to define the set of directions associated
with a d-index. Namely, given a d-index tx = ((tx)1,- - -, (tx)q) such that 0 < ¢; and
t # 0, define

I, = {7. € 2% = (£(tp)1, . .- 7i(tk)d)} ,

t] =Tk /_, where i ~ j iff i = 4.
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0 w1 0 w3 0
w1 0 w1 0 w3
Wn = 0 w1 0 w1 0
w3 0 w1 0 w1
0 w3 0 w1q 0

FicureE 1. Example of a 1-level Toeplitz graph T, ((1,w1), (3, ws3)),
with n = 5. The figure above is a visual representation of the graph
while below it is explicated the associated adjacency matrix W,, which
presents the typical Toeplitz structure. In particular, W,, has symbol
function f(6) = 2w cos(6) + 2ws cos(36).

We call [t;] the set of directions associated with ¢j.
Trivially, it holds that

I = 25r=1 Lo (0D where 1,00 (x) = {1 if > € (0, 00)

0 otherwise,

and |[tg]| = [Ix]/2. For a = 1,...,|[tx]|, the elements [tx], € [t] are called directions
and clearly |[tg]o| = 2. We indicate with [tx]} the element in [t;], such that its first
nonzero component is positive and with [tx];, the other one. Clearly, —[ty]} = [tx], -

Definition 4.2 (d-level Toeplitz graphs). Let n,t;,..., ¢, be d-indices such that
0 <n,let
O0<ti<ta<...aty, dn — 1,

and fix m nonzero real vectors wi, ..., w,,, such that wy € R% with ¢, = |[tx]] for
every k =1,...,m, where [t;] = {[t]1,. .., [tk]c,} is the set of directions associated
with t;. We indicate the components of the vectors wy using the following index
notation,

wp = (w[tk]l’w[tk]27 . ’w[tk]ck) .

A d-level Toeplitz graph, denoted by

Tn<{[t1]7w1}7 SRR {[tm]7wm}>7

is an undirected graph defined by a node set V,, = {vg |1 <k <In} and a weight
function w such that

wity], 18— Jl=te and (i — J) € [te]o = {[tela, [trla }
w(v;,vj) = for some a =1, ..., ¢, (9)

0 otherwise.
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Let us observe that w(v;,vj) = w(vj,v;), since wy, is defined over the classes of
equivalence of [tx]. If there exist m nonzero real numbers such that wy = w1 for
every k= 1,...,m, then the above relation translates into

( ) Wy if "I;—j‘:tk,
w(vs, v5) = ]
o 0  otherwise,

and we indicate the d-level Toeplitz graph as T, ({t1, w1}, ..., {tm, wn}). In the case
of simple graph, i.e., w; = 1 for every k, we indicate the d-level Toeplitz graph just
as Tp,(t1,...,ty). The number of nodes in a d-level Toeplitz graph is equal to D(n)
with D(n) = Hle ny, while the number of edges is equal to )" | D(n —t,).

Lemma 4.1. A Toeplitz graph is a 1-level Toeplitz graph as in Definition 4.2.

Proof. We simply note that, for d = 1, the quantities n, %1, ..., ¢, and the associated
w1, ..., W, are scalars, so that the resulting graph has n points and weight function
given by

w(v;, v;) =
(i J) {0 otherwise.

as in Definition 4.1, completing the proof. O

If we assume that m, {[ti],w1},...,{[tm], wmn}, are fixed (independent of m)
and we let the sizes n; grow, j = 1,...,d, then the sequence of adjacency matrices
can be related to a unique real integrable function f : [—, 7]¢ — R (the symbol) and
expanded periodically on R%. In this case, the entries Wi = fi_j of the adjacency
matrix are defined via the Fourier coefficients of f, where the k-th Fourier coefficient
of f is defined according to the equations in (1). Following the same considerations
which led to equation (8), we can summarize everything we said so far in the following
proposition.

Proposition 4.2. Fix a d-level Toeplitz graph
Tn<{[t1}7w1}’ ceey {[tm]vwm}>7

and assume that m, {[t1], w1}, ..., {[tm], wm} are fired and independent of n. Then
the adjacency matriz Wy, of the graph is a symmetric matriz with a d-level Toeplitz
structure (see Section 2.2),

Wn = (wi—j)?jzl ,  where wi_j = w(vs,v5), as defined in (9). (10)

In particular Wy, = Ty (f) with symbol function f : [—m,7]? — R given by

m  Ck

F0) =" 2wy, cos([tx]l - 0),  with cx = |[ts]] and 6 = (61,...,64), (11)

k=1a=1
that is,
Wal, ~af= 1
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vl Uy V3 V4 Us Vg U7 Ug Uy Vg V11 V12

vp 00 0 |0 wl 0 [wfO 0|0 0 0
vp 0 0 0 |[whO wi0 wg 0 |0 0 0
v3 0 0 0 [0 whO0 |0 0 wgio 0 O
v [0 wh 0 (0 0 0 |0 w 0 [wg 0 0
vy lwl 0 whlo 0 0 |wh 0 wi|l0 w0
v |0 wl 0 |0 0 0|0 who [0 0 w}
vy fwg 0 0 |0 wh 0 (0 0 0 |0 w0
vs [0 wg 0 |wi 0 whjo 0 0 |wh0 w
v [0 0 wg|0 wf 0 (0 0 0 [0 who
vip 0 0 0 |wg 0 0 [0 wh0 [0 0 0
vir 0 0 0 |0 wg 0 [wf 0 whio 0 0
v 0 0 0 [0 0 wg|0 w0 |0 0 O

FIGURE 2. Example of a 2-level Toeplitz graph T, {[t1],w1},{[t2],w2})
where n = (4,3), [tl] = [(171)] = {[(171)]17[(171)]2}7 w; =
(Wi, wane): [t = [(2,0)] = {[(2,0)}1} and w2 = wz0)),-
In particular, [(1,1)1 = {£(1,-1)}, [(1,1D)]2 = {£(1,1)} and

we write w1, = wi-1 = W11, W), = Wil = W11,
Wi(2,0), = W20 = W-20. On the left there is a visual representa-
tion of the graph while on the right there is the associated adja-
cency matrix W, where we used the standard lexicographic order-
ing to sort the nodes {v|(1,1) < (ki,k2) < (4,3)}. Specifically,
we write v(y 1) = v1,9(12) = V2,...,0(43) = viz and, for a better
layout, we write wy-1 = w}l,wl,l = w%,wg,o = w% for the adja-
cency matrix entries. Wy, is a matrix which possesses a block Toeplitz
with Toeplitz blocks (BTTB) structure and it has symbol function
f(91,92) = 2w2,0 COS(291) + 2w171 COS(91 -+ 02) + 2w17,1 COS(01 — 92)2
notice that the coefficient of the variable 6, refers to the diagonal
blocks while the coefficient of 6 refers to the diagonals inside the
block. Finally, observe that W, is not connected, since the graph
can be decomposed into two disjoint subgraphs G; and G> having
{v1, v3,v5,v7,v9,v11} and {ve,v4,vg, Vg, V10, V12} as vertex sets, re-
spectively.

Proof. The fact that
Whn = (wi—j);

t,7=1

is clear by Definition 4.2, while, by direct computation of the Fourier coefficients of
f and owing to the fact that cos([tx]/ -0) = cos([tx], - @), we see that f;_; = w;_; =
Wj—3 = fj_,,;, so that Wn = Tn(f) O

See Figure 2 for an explicit example of a 2-level Toeplitz graph.
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4.2. Graphs with uniform local structure: introducing the “diamond”

The idea here is that each node in Definition 4.2 is replaced by a subgraph of fixed
dimension v. For instance, fix a reference simple graph

G = (v, E)

with adjacency matrix W and where [v] := {1,...,v} is the standard set of cardi-
nality v € N. Consider 0 < n € N copies of such a graph, i.e., G(k) = (V(k), E(k))
such that G(k) ~ G for every k = 1,...,n. Indicating the distinct elements of each
V(k), k = 1,...,n, with the notation v ), for r = 1,...,v, we can define a new
node set V,, as the disjoint union of the sets V'(k), i.e.,

V= |_| V(k) = {ogn : (1,1) < (k,r) < (n,v)}.
k=1

Fix now m integers 0 < t; < ... < t,, with 1 < m < n — 1, and moreover
fix Ly,..., L, simple linking-graph operators for the reference node set [v] :=
{1,...,v}, as in Definition 2.1, along with their uniquely determined edge sets

Ey, ..., By, C[V] x [v]. Let us define the edge set E,, C V,, X Vi, (v, V(5)) € En
if and only if

1= and (r,s) € E, or
i—j=tpforsome k=1,...,m and (r,s) € E, or
i—j=—tp forsome k=1,...,m and (s,r) € Ey,.

Namely, E,, is the disjoint union of all the edge sets F(k) plus all the edges which
possibly connect nodes in a graph G(i) with nodes in a graph G(j): two graphs
G(i),G(j) are connected if and only if |: — j| € {t1,...,tn} and in that case the
connection between the nodes of the two graphs is determined by the linking-graph
operator Ly, (and by its transpose Lj ). We can define then a kind of symmetric
‘weight-graph function’

w:{V(k)|k=1,....,n} x{V(k)|k=1,...,n} = R"

such that
W if i =g,
] ) Ly, ifi—je{ty,...,tm},
WV VG =4
b fi—ge{~ty,...,~tm},
0 otherwise.

It is not difficult then to prove that the adjacency matrix Wgy of the graph (V,,, E,,)
is of the form

wo wl e w _1
, " WeRY™ ifj=0,
G w1 wo i : e
Wn,y = . . . . ) w,; = Ltk: S R¥*v if ] = tk,
: ' wy 0 otherwise.

Wp_1 -0 WP W
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Trivially, Wgu is a symmetric matrix with a block-Toeplitz structure and symbol

function f given by

FO =W+ (L, + L) cos(td) + Y (Le, — Li,) isin(t0).
k=1 k=1

Let us observe that f(6) is a Hermitian matrix in C**¥ for every 6 € [—m, 7], and
therefore \; (f(0)) are real for every j = 1,...,v, as we requested at the end of
Subsection 2.3. We call

T,? ((t1, Lty) s - ooy (s L, ) = (Vi, En)

a (simple) diamond Toeplitz graph associated with the graph G. A copy G(k) of the
graph G is called k-th diamond.
See Figure 3 for an example. We can now generalize everything we said so far.

Definition 4.3 (d-level diamond Toeplitz graph). Let d, m, v be fixed integers and let
G ~ ([v], E,w) be a fixed undirected graph which we call mold graph.

Let n,tq,...,t,, be d-indices such that 0 < n, and 0 < t; <ty <...<t,, <n — 1.
For k =1,...,m, let Li be a collection of linking-graph operators of the standard
set [v] := {1,...,v} such that |Ly| = ¢k, with ¢ = |[tg]| for every k = 1,...,m,
where [ty] = {[tr]1,..., [tk]e, } is the set of directions associated with t;. We then
indicate the elements of the set L; by the following index notation,

Ly = {L[tk]l’L[tk]Q’ T ’L[tk]ck} ’

RV*¥ > L[tk}a = (l[tk]a(’l”, 8)):75: for a = 1, ey Ck

1

Finally, consider n copies G(k) ~ G of the mold graph, which we call diamonds.
A d-level diamond Toeplitz graph, denoted by

TS, ({t1. L1}, ... {tm, L)),

is an undirected graph with

Vo = {vkr | (1,1) D (k,1) < (n,0)}
and characterized by the weight function w, : Vi, X V3, = R such that
w(r, s) if i = j,
l[tk]a(r, s) if |[¢ — j| = tx and (¢ — j) = [tx]],
l[tk]a(s,r) if |¢ —j| =tx and (¢ — J) = [tx],,
0 otherwise.

W (Vi) V) =

The number of nodes in a d-level diamond Toeplitz graph is equal to vD(n) with
D(n) =[], n,, while the number of edges is equal to vy ., D(n—t,).

r=1

Corollary 4.3. A d-level Toeplitz graph is a special case of a d-level diamond Toeplitz
graph.

Proof. We simply need to notice that, for v = 1, i.e., in the case of a diamond with
only one element, the two Definitions 4.2 and 4.3 coincide with Lj = wy. O
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Proposition 4.4. Fiz a d-level diamond Toeplitz graph

TS, ({t1. L1}, ... {tm, L })

with G ~ ([v], E,w) and W the adjacency matriz of G.

Letd, m,v,{ty, L}, G be fized and independent of n. Then the adjacency matriz
WSV of T,?:V ({t1,L1},...,{tm, Ln}) is a symmetric matriz with a d-level block
Toeplitz structure (see Section 2.2 and equation (2)),

WS, = [wi_j]7

1,J=1"
where
w ifi=17,
RV 5w — LLtk]a l:f |@: —J:\ =ty and (@: —J:) = [tk]%_,
Lig. W |t — gl =t and (i — J) = [ti],,
0 otherwise.
In particular WG = Tn(f) with symbol function f : [—m, 7|4 — C*¥ given by
=W + Z Z [( tela T Ltk] ) cos(ty - 0)
k=1a=1
+ (Lo — Ly, ) isin(te-0)] 6= (01, 0a), (12)
that is,

(WS, ~f=f

The symbol function f is Hermitian matriz-valued for every 6 € [—m, m]?.

Proof. We note that WS = [w;_;]? j—1 is immediate by Definition 4.3 and that the
symbol f is a Hermitian matrix for every 6, so that it has real eigenvalues. Moreover
we see that, as in Proposition 4.2, f;_; = w;_j. Now Theorem 2.1 concludes the
proof. O

5. Grid graphs with uniform local structure and main spectral
results

This section is divided into two parts. In the first we give the definition of grid
graphs with uniform local structure. In the second part we show the links of the
above notions with Toeplitz and GLT sequences and we use the latter for proving
the main spectral results.
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FiGure 3. Example of a 1-level diamond Toeplitz graph
TG ((1,Ly), (2, L)), with n=3 and mold graph G =Ty {(1,w), (3, w)).
The adjacency matrix of G is W. The node sets of the diamond graphs
G(1),G(2),G(3) are V(1) = {12013 vanh V() =
{v,1):v2,2), V(2,3): Vet and V(3) = {v31),v3.2), v(3,3), V3.4) }> Te-
spectively. Clearly, all the diamond graphs are characterized by
the same adjacency matrix W. The adjacency matrix W, of the
whole graph is a 1-level block Toeplitz and has symbol function
f(0) =W 4 2Ly cos(0) + (La + L3) cos(26) + (Lo — L) isin(26).

5.1. Sequence of grid graphs with uniform local structure

The main idea in this section is to immerse the graphs presented in Section 2.2 inside
a bounded regular domain § C R?. We start with a series of definitions in order to
give a mathematical rigor to our derivations.
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Definition 5.1 (d-level Toeplitz grid graphs in the cube). Given a continuous almost
everywhere (a.e.) function p : [0,1]% — R, choose a d-level Toeplitz graph

Tn(ﬂtl}v w1}7 R {[tm]vwm}>7

and consider the d-dimensional vector

h::(hl,...,hd):( LI >

np+1 ng+1
We introduce a bijective correspondence between the nodes v; of
Tnl{[t1], w1}, ..., {[tm],w,}) and the interior points = of the cube [0,1]¢ by the
immersion map ¢ : Vp, — (0,1)? such that
v(vj) =g oh = (jihi,..., jaha)
with o being the Hadamard (component-wise) product. The d-level Toeplitz graph
induces a grid graph in [0,1]%, G = (V,., E,,wP) with

Vo =Ame =1(op) [1 Dk In}, B = {(@i,x;) |w’(2;, @) # 0},

where
T;+ j

wlaies) = (T ) wlos, )

and w is the weight function defined in (9). With abuse of notation we identify
Vi =V, and we write

TTL({[tl]v,wIl)}? SR {[tm]vwfn}>v
for a d-level grid graph in [0, 1]%.

Observe that now 'wk, for k = 1,...,m, are not constant vectors as wy, but
vector-valued functions w?, : [0,1]¢ x [0,1]¢ — R, with ¢; = |[tx]|, such that

itxTi . . .
(25 ways 11— il =

(wh)o(@s, 25) = and (i — §) € [trlo = {[t), [t}
0 otherwise,
for « = 1,...,c;. It is then not difficult to see that we can express the weight

function wP as

P(x;, x;) E E 'wk (x4, z5).

k=1a=1

In other words, taking in mind the role of the reference domain [0, 1]¢, a; can be
connected to x; only if |(xz;), — (x;),| = O(h;), for all r = 1,...,d. From this
property we derive the name of ‘grid graphs with local structure’. Naturally, the
above notion can be generalized to any domain Q C [0,1]%: as we see in the next
subsection, the only restriction in order to have meaningful spectral properties of
the related sequences, is that €2 is regular.
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Definition 5.2 (d-level Toeplitz grid graphs in ). Given a regular domain Q C [0, 1]¢
and a continuous a.e. function p : [0,1]¢ — R, choose a d-level Toeplitz graph

Tn<{[t1]vw1}7 R {[tm]vwm}>’

and consider its associated d-level Toeplitz grid graph T, ({[t1],w}}, ...,
{[tm], wh.}). We define the d-level Toeplitz grid graph immersed in €2 as the graph
G = (VS ESL, wP) such that

VEi=V,nQ, w .= wfvngg.
Clearly, |V =n' < Hle n, = |Vn|. Nevertheless, n' = n/(n) — oo as n — oc.
Therefore, with abuse of notation, we keep writing n instead of n’. We indicate such
a graph with the notation

T'r?({[tl}vw?L T {[tm]awgm}>

In the application, as we see in Section 7, once it is chosen the domain 2 and the
kind of discretization technique to solve a differential equation, the weight function
w is fixed accordingly, and consequently the coefficients w1, ..., w,,. In particular,
it is important to remark that the weight function of To, ({[t1], w1}, ..., {[tm], wm})
depends on the differential equation and on the discretization technique.

Finally, we immerse the diamond graphs in the cube [0,1]? (and then in a
generic regular domain 2 C [0, 1]%).

Definition 5.3 (d-level diamond Toeplitz grid graphs in the cube). The same defi-
nition as in Definition 5.1 where the d-level Toeplitz graph is replaced by a d-level
diamond Toeplitz graph. The only difference now is that

h::(hl,...,hd):< ! S )

vni+1 na+1""" ""ng+1

and

W) == (F,r)oh = ((j1 +r—1)h1,jahs, ..., jaha), T=1,...,v.

With abuse of notation we write

Tgu<{[t1]v sz}a R {[tm]v L}gﬂ}))
for a d-level diamond Toeplitz grid graph in [0, 1]%.

While in the case of a d-level Toeplitz graph the immersion map ¢ was introduced
naturally as the Hadamard product between the indices of the graph nodes and the
natural Cartesian representation of points in R?, diamond Toeplitz graphs grant
another degree of freedom for the immersion map. In Definition 5.3 we decided for
the simplest choice, namely lining-up all the nodes of the diamonds along the first
axis. Clearly, other choices of the immersion map ¢ would be able to describe more
complex grid geometries.



Vol.88 (2020) Asymptotic Spectra of Large (Grid) Graphs 435

Definition 5.4 (d-level diamond Toeplitz grid graphs in 2). The same definition as in
Definition 5.2 where the d-level Toeplitz grid graph is replaced by a d-level diamond
Toeplitz grid graph. We indicate such a graph with the notation

5.2. Asymptotic spectral results

We start this section, containing the spectral results, by giving the distribution
theorem in the Weyl sense in its maximal generality, i.e. for a sequence of weighted
(diamond) local grid graphs in ), according to the case depicted in Definition 5.4.

Theorem 5.1. Given a regular domain Q C [0,1]% and a continuous a.e. function
p:Q =R, fir a d-level Toeplitz grid graph

T7S1,2<{[t1]ﬂ ,wlf}’ R {[tm], wgz}>

as in Definition 5.2, and assume that m, {[t1],w1},...,{[tm], wn} are fived and
independent of n. Then, indicating with {W,?’p}n the sequence of adjacency matrix
of the d-level Toeplitz grid graph as n — oo, it holds that
(WPt ~af, f:Qx[-ma*cR* SR
and
f(z,6) = p(x)f(0),
where f(0) is the symbol function defined in (11).

Proof. We note that, in the case where v = 1, a d-level diamond Toeplitz grid graph
reduces to a d-level Toeplitz grid graph according to Definition 5.2. The conclusion
of the theorem is then obvious once we prove our next result, Theorem 5.2. O

Theorem 5.2. Given a reqular domain Q C [0,1]% and a continuous a.e. function
p:Q =R, fir a d-level diamond Toeplitz grid graph

T ({i], LR, - ([l L)
as in Definition 5.4, and assume that m, {[t1],L1},...,{[tm], Lm} are fized and
independent of n. Then, indicating with {Ws’yﬂ’p}n the sequence of adjacency matriz
of the d-level diamond Toeplitz grid graph as n — oo, it holds that
(WGRP) ~yf, F:Qx [-ma]d CRM - CvY

with ¥ a matriz-valued function and

f(z,0) = p(x)f(0),
where f(0) is the symbol function defined in (12).

Proof. First of all we observe that our assumption of ) regular is equivalent to
require 2 to be measurable according to Peano-Jordan, which is the fundamental
assumption to apply the GLT theory (see [23]).

Assume Q = [0,1]? and p(z) = 1 over Q. Then our sequence of graphs reduces to
a sequence of d-level diamond Toeplitz graphs and the proof is over using Proposition
4.4.
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Assuming now that Q = [0,1]? and p is just a Riemann-integrable function
over €2, we decompose the adjacency matrix Wg D as W,? P = diag,,(p)Tn(f) + En.
The only observation needed here is that {diag,,(p)} is a multilevel block GLT with
symbol function p, while {T,,(f)} is a multilevel block GLT with symbol function f
(see item (GLT 3)). Moreover, by direct calculation, we see that E,, for n large, can
be written as a term of small spectral norm, plus a term of relatively small rank.
Therefore, E,, is a zero-distributed sequence of matrices and hence a multilevel block
GLT with symbol function 0. Summing up we have

{Tn(f)},, ~cur f over [—W,ﬂ']d, {diagn(p)},, ~crr p over Q,{Ey},, ~crr 0.

Now, by the structure of algebra of multilevel block GLT sequences and using
the symmetry of the sequence (see item (GLT 1) and (GLT 4)), we conclude that

{Wiiz} ~p(@)£(6) over [0,1)% x [, ).

n

For the general case where () is a generic regular subset of [0,1]¢, we simply
notice that, using Definition 5.4, we can see Wg ' as a principal sub-matrix of

WT? 5P where {Wg P } is