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Abstract

The extended T -systems are a number of relations in the Grothendieck ring of the
category of finite-dimensional modules over the quantum affine algebras of types A ,(11)
and B,(,l), introduced by Mukhin and Young as a generalization of the 7'-systems.
In this paper we establish the extended T'-systems for more general modules, which
are constructed from an arbitrary strong duality datum of type A. Our approach does
not use the theory of g-characters, and so also provides a new proof to the original
Mukhin—Young’s extended 7 -systems.
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1 Introduction

The T -systems are remarkable functional relations appearing in solvable lattice models
(see [32] and references therein). Let 4;; denote the category of integrable finite-
dimensional modules over a quantum affine algebra U 4 (g). It has been proved by
Nakajima [40] and Hernandez [12, 13] that the g-characters (or equivalently, the
classes in the Grothendieck ring) of Kirillov—Reshetikhin (KR) modules in € satisfy
the T-systems. These 7'-system relations of KR modules play an essential role in the
recent developments of the theory of monoidal categorifications of cluster algebras
([14, 16, 28, 30]).

Snake modules are a relatively large family of simple modules in € of types Afll)
and B,gl) introduced in [39], which contain all minimal affinizations ([1]) of these
types. Via the monomial parametrization of simple modules in € (see [10]), each

snake module is expressed as L(l—[r Yir’aqkr) with a sequence ((il, ki), ..., (p, kp)) €
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(Ig, x Z)? satisfying some combinatorial conditions, where /4, denotes the index set
of the simple Lie subalgebra g of g.

Mukhin and Young introduced in [38] a number of relations satisfied by the classes
of snake modules as generalizations of the T-systems. They call them the extended
T -systems. Let L (]_[ Yi 4 gk ) be a prime snake module (recall that a simple module
having no nontrivial tensor factorization is called prime). The corresponding extended
T -system is the relation in the Grothendieck ring of the form

p—1
[L(]"[Yi,,aqkr}[ul_[ i agh } [L(]"[ iy aghe ML(]‘[ i aqhr ]+[M][N1,
r=1

where M and N are other snake modules. In [38], these relations were proved using
the formula for the g-characters of snake modules established in [39].

It is a natural problem to find extended 7-systems (containing, at least, all the
minimal affinizations) in other types (see [38, Appendix A]). Such a family of relations
was found for type G» in [35] and for type C3 in [34], but in general types this is still
open as far as the author knows. One essential obstacle is that the g-characters of
minimal affinizations in other types are more complicated: they are not thin or special
in the terminology of g-characters, while the g-characters of all the snake modules (in
types Af,l) and B,(,l)) have these properties. To overcome this difficulty, one possible
way is to establish an approach to extended 7'-systems not relying on the theory of
g-characters.

For the T-systems, such an approach was developed in [30] using a strong duality
datum and affine cuspidal modules introduced in [29]. Let g be a simple Lie algebra
of type ADE. A strong duality datum associated with g is a family of simple U, (; (9)-
modules D = {L;}i¢ I, S %g, characterized using the invariant 9 introduced in [28].
Given a strong duality datum D and a reduced word i = (i, ..., iy) of the longest
element of the Weyl group of g, one can construct the assomated affine cuspidal
modules {Sk "Yeez € ©y. When the pair (D, i) is associated with a Q-datum ([9]),

the affine cuspidal modules {Sk }keZ consist of fundamental modules. In [30], the
authors showed for any pair (D, i) that affine determinantial modules, each of which is
constructed as the head of the tensor product of some S,?’i ’s, satisfy exact sequences
corresponding to the T-systems. When (D, i) is associated with a Q-datum, affine
determinantial modules coincide with KR modules, and the classical T -systems are
recovered. This result was obtained by applying several properties of strong duality
data and affine cuspidal modules, instead of g-characters.

In this paper, by applying a similar approach, we generalize the extended T -systems
of type A,(ll) and B,(,l) to more general modules constructed from an arbitrary strong
duality datum of type A, which we hope to be a first step toward extended T -systems
of general types.

In the first part of this paper, we give a sufficient condition for the head of the tensor
product of affine cuspidal modules of general type to satisfy a short exact sequence
similar to the 7'-system. More explicitly, for an arbitrary pair (D, i) of a strong duality
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datum and a reduced word and the associated affine cuspidal modules Sy := S,?’i
(k € Z), the following theorem is proved.

Theorem A (Theorem 4.2.1) Let k = (ky < --- < kj) be an increasing sequence of
integers with p > 2. For1 < a < b < p, write Sgla, b] =hd(S, ® Sk - -®Sk,),
and set Sy, = Si[1, pl. Assume that the following two conditions are satisfied:

(a) forany 1 <a < b < p, we have 0(Sy,, Sgla + 1,b]) = 1, and
(b) forany 1 <a < b < p, we have d(Sg[a, b — 1], Sg,) = 1.

Then there exists a short exact sequence

p—1
0— hd [ @)(Sk, A i,y | = Skl p— 11®Sk[2, pl > Sk ®@Sk[2, p— 11— 0,

a=1

where the tensor product in the second term is ordered from left to right, and M A N
denotes the socle of M @ N. Moreover; the first and third terms are both simple.

We also give sufficient conditions for Sy to be prime or real (Propositions 4.1.1 and
4.1.3).

In the latter half of this paper, we focus on cuspidal modules SkD” such that D is
associated with sl and i belongs to either of two special families: reduced words
adapted to a height function and adapted to a twisted height function (see Section 5.1
for the definitions). Let i" (resp. i'™V) be a reduced word adapted to a height (resp.
twisted height) function (these notations are for this introduction only). For an arbitrary
strong duality datum D associated with sl,,1 andi € {i hf W1 we define an associated
snake module by the head of the tensor product of S,?’i ’s satisfying some conditions.
When (D, ihf) (resp. (D, i"V)) is associated with a Q-datum corresponding to U (; (9)

of type A,ﬁl) (resp. B,%) with n = 2ng — 1), these modules coincide with the Mukhin—
Young’s snake modules (recall that in both cases corresponding Q-data are of type A,
see [9]). We show that these snake modules satisfy short exact sequences of the form in
Theorem A, and moreover give more concrete description to the first terms (Theorems
6.2.4 and 7.2.6). When associated with a Q-datum, these recover the Mukhin—Young’s
extended T -systems. We also show that snake modules are real, and give a necessary
and sufficient condition for them to be prime.

We explain our strategy for the proof of the short exact sequences. Given a strong
duality datum D, through the quantum affine Schur—Weyl duality functor Fp ([26]), we
can define a crystal structure on a subset of the isomorphism classes of simple modules
in ¢y, which is isomorphic to the crystal base of U 7 (g). Letting ¢&;, e;‘ (i € Iy) be the
functions on this crystal, the conditions (a) and (b) in Theorem A can be rephrased
in terms of the values of these functions &;, sz‘ (see Proposition 3.3.3 (c)) at certain
elements expressed in Lusztig’s parametrization ([36]) with respect to i. Reineke
introduced in [43] a useful algorithm to calculate the values of &; and &} at an element
expressed in Lusztig’s parametrization with respect to a reduced word of some type.
We can apply this algorithm to the word i™, and show that snake modules associated
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with iPf satisfy the conditions (a) and (b) of Theorem A. Hence the existence of the
short exact sequences in the case i = i" is shown.

The Reineke’s algorithm cannot be applied in the case i = i'V. Instead, we give a
detailed description of the connection between Lusztig’s parametrizations with respect
to i™ and i™. A similar work was previously done in [17, Section 12], but our result
is more involved: we give a transition formula for all elements corresponding to snake
modules (Proposition 7.1.3). Using this formula and the results of the previous case
i = i", we can show the existence of the short exact sequences in the case i = iV as
well.

Note that in [38], the extended 7 -systems are given in terms of the relations in the
Grothendieck ring, and therefore there are two possibilities of short exact sequences.
As another advantage of our approach, we can determine which one is correct.

Theorem A holds for a strong duality datum of a general type, not only of type
A, and we hope that it will help us to study extended T'-systems of other types. One
difficulty is that, not in type A, the Reineke’s algorithm cannot be applied in full
generality for any reduced word. We hope to return this problem in the future.

This paper is organized as follows. In Section 2, we recall basic notions concerning
a simple Lie algebra of type AD E, such as the upper global and dual PBW bases, and
crystals. In Section 3, we recall the basic notions and several properties on quantum
affine algebras, the invariants A and 9, and affine cuspidal modules. In Section 4, we
give sufficient conditions for the head of the tensor product of affine cuspidal modules
to be prime or real, and prove Theorem A. In Section 5 we give the definition of snake
modules associated with D of type A and i"f or i™, and several related notions. In
Section 6, we show that snake modules associated with i" satisfy the extended T'-
systems, and at the same time we discuss their reality and primeness. In Section 7, we
show analogous assertions for snake modules associated with i*V.

2 Preliminaries on Simple Lie Algebras of Type ADE
Conventions.
(i) For a base field k, we write ® for ®k when no confusion is likely.

(ii) For a, b € Z such that a < b, we denote by [a, b] the set {k € Z | a < k < b}.
We set [a, b] =@ ifa > b.

2.1 Basic Notation

Let g be a complex simple Lie algebra of type ADE, with an index set / and a Cartan
matrix A = (a;;)i jer- Let o; (i € I) be the simple roots, R the root system, R™T the
set of positive roots, P the weight lattice, W the Weyl group with simple reflections
{s; | i € I}, and wg € W the longest element. Denote by £(w) for w € W the length
of w, and set N = £(wg). Fori € I, define i* € I by wo(e;) = —a;*. Let

R(wo) = {i = (i1, ,in) € IV | siy -+ 51y = wo)
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denote the set of reduced words of wg. For two words i,i’, we say i and i’ are
commutation equivalent if i’ is obtained from i by applying a sequence of operations
which transform some adjacent components (i, j) such that ¢;; = 0 into (j, 7). An
equivalence class for this relation is called a commutation class.

2.2 Dual PBW Bases and Crystals

Let k be a base field containing Q(g), and U, (g) the quantized enveloping algebra
associated with g over k with generators {¢;, f;, ¢" | i € I}. Let U, (g) be the k-
subalgebra of U, (g) generated by f; (i € I), and denote by B"P the upper global
basis (or dual canonical basis) of U q (8) (see [19]). Let Ao € Q(gq) be the subring of
rational functions that are regular at ¢ = 0, and set . C U, 4 (2) to be the Ap-span of
B'P.

We briefly recall dual PBW bases of U, (). Let T; = Tl” , (i € I) denote the
algebra automorphism of U, (g) given in [37, Chapter 37], and take a reduced word
i =(1,...,in) € R(wp). Foreach 1 <k < N,set B = s, - -~ si,_, (@) € RT,

FlL(Bo

Fli,w(ﬂk):nl"'nk—l(ﬁk)’ and Fi(lgk): (Fi (Bo) Fi (,Bk))’
low > T low

2.2.1)

where (, ) is the bilinear form on U 7 (g) givenin [19, Section 3.4]. F i (Bx) is called a

dual root vector. We have F* () € B forany i and k. For¢ = (c1,...,cn) € Zgo,
set
Fi(e) = g Ze k@D pi gy .. Fi (g,

Then {Fi(c) | ¢ € Zgo} forms a basis of U, (g), and we call this the dual PBW basis
associated with i. For each ¢ € Zgo, there is a unique element B (c) € B"P such that

Fi(¢) = B(¢) mod q-Z,

see [23, Theorem 4.29].
Let * be the k-algebra anti-involution on U p (g) defined by xf; = f; (i € I). This
x preserves BUP ([20], [23, Lemma 3.5]).

Lemma 2.2.1 ([36, Subsection 2.11]) For i = (if,...,iny) € R(wp) and ¢ =
(c1y...,cN) € ZQ’O, set

iv = (i;:,, i;t/—lv ey lik) (S R(wo) and Cv = (CN, CN—1y -+, Cl).
Then we have xFi(¢) = F''(¢¥) and xB'(¢) = B (¢¥).

Proposition 2.2.2 For anyi € R(wg) and ¢ € Z]ZVO, we have

Fi(e) € B'(©) + ) _ qZIq1B'(¢)),

¢ <c
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where < is the bi-lexicographic order on Z]ZVO, namely, (a1, ...,ay) < (b1,...,bn)
if and only if there are 1 < k <1 < N satisfying ax < by, aj < b;, and aj = b; for
all j suchthat j <korl < j.

Proof Except for the triangularity with respect to the bi-lexicographic order, the asser-
tion follows from [23, Theorem 4.29]. The triangularity is proved by applying * and
using Lemma 2.2.1. O

Proposition 2.2.3 ([36, Subsection 2.3]) Let i, i’ € R(wy), and ¢, ¢’ € ZJZVO.
(i) Assume for some 1 < k < N that a;i;, ., =0, ii = irq1, il,/(Jrl =iy, and ij = ij
foralll # k, k + 1. Then B (c) = B (¢') holds if and only if

C;C = Ck+1, C;<+1 =ci, and c; =c foralll #k,k+ 1.

(ii) Let i, j € I be such that a;j = —1, and assume for some 1 < k < N that
(ik—1, ik, k1) = (A, j, 1), (p_ysip i) = (o1, j), and iy = ij for all | ¢
{k, k£ 1}. Then B (¢) = B¥ (¢') holds if and only if ¢} = c; for all | ¢ {k, k£ 1},
and

/ / /
Ck_1 = Ck + Ck1 — €0, Cp = €0, Cpyq = Ck—1 + Ck — €O, (2.2.2)

where we set co = min(ck—1, Ck+1)-

By identifying B"P with its image under the projection . — £/q.Z, we define
the canonical (abstract) crystal structure on B"P (see [20]). Let

wt: B® > P, g, ¢;: B® - Z and &, f;: B® — B L {0} fori € I

be the maps giving this crystal structure.
We also define maps ¢}, ¢}, e, f* (i € I) on B"P by

ef =gio%, @f=gox, & =xo0&ox [f=xofox
Fori = (i1,...,iny) € R(wg) and ¢ = (¢1,...,cN) € Zgo, it follows from [37] and
Lemma 2.2.1 that _ . B
&i, (B’(c)) =c; and 8;}[ (B’(c)) =cnN. (2.2.3)

3 Preliminaries on Quantum Affine Algebras
3.1 Basic Notation
Let g be an affine Kac—Moody Lie algebra with index set /5 and simple roots {oeig |

i € Ig}. Denote by 0 € I the special element prescribed in [18, Section 4], except
Agl)-type in which we set o) to be the longest simple root. Let Ig =I5\ {0}, P9 be
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the weight lattice of g, and chl = P9/(P%NQS§), where § is the indivisible imaginary
positive root.

Now we fix the base field k to be the algebraic closure of C(g) in |, C(g'™y),
and denote by U é (g) the quantized enveloping algebra over k associated with g with

generators {ei, fi.g" | i € Ig,h € PCEI”V = HomZ(PCg{,Z)} (here, by abuse of
notation, we use the same symbols with the generators of U, (g)). We call U (; (g) a
quantum affine algebra in the sequel. Let A: Uj(g) — U, (g) ® Ug(g) denote the
coproduct (we follow the convention in [21, Section 7]).

A U, (g)-module M is said to be integrable if M = @AGPCE{ M, with M, = {v €
M | qhv = q”’*x)v (h € Pff’v)}, and e;, f; (i € Iy) act nilpotently on M. We denote
by ¢ the category of integrable finite-dimensional U, ; (g)-modules. Let 1 € € denote
the trivial module. For M, N € %}, the tensor product M ® N is also an object of
%y via the coproduct A, and this gives a monoidal category structure on % with unit
object 1. Moreover, the monoidal category % is rigid, namely, every object M € €
has its right dual ZM and left dual 2~ M. There are isomorphisms

Homy, (M ® X, Y) = Homg, (X, M ® Y), and
Home, (X ® M, Y) = Home, (X, Y ® 27" M),

which are functorial in X, Y € 4.

For simple modules M and N in 6, we say that M and N commute if M @ N =
N ® M, and strongly commute if M @ N is simple. Note that, if M and N strongly
commute then they commute, since the Grothendieck ring of ‘59 is commutative [10].
We say M is real if M strongly commutes with itself.

Proposition 3.1.1 ([27])

(i) Let Mj (j = 1,2,3) be a module in 6y, and assume that My is simple. If
f:L—> M,®Mzand g: M @ My — L' are nonzero homomorphisms, then
the composition

M M
ML e My @ My 2 L @ My

does not vanish.
(ii) Let M and N be simple modules in €, and assume that one of them is real. Then
both M @ N and N @ M have simple socles and simple heads.

For M € %, we denote by hd(M) (resp. soc(M)) the head (resp. socle) of M. For
M, N € %y, we also use the notation M V N (resp. M A N) to denote hd(M ® N)
(resp. soc(M ® N)).

Proposition 3.1.2 ([27, Corollary 3.14]) Let M, N be simple modules in Cfg, and
assume that M is real. Then we have

DT TMV(NVMY=N and (MVN)VIM=N.
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3.2 R-matrices and Invariants

In this subsection we briefly recall the definitions and properties of some invariants on
pairs of modules in €y, which were introduced in [28]. For more details, see [28-30].

For any simple module M in %y, there is unique A € Pcﬁ’ such that M, # 0 and
M, =Ounless u € A — Zielg\{o} Zzocl(af), where cl: P9 — Pcﬁ’ is the canonical
projection. We call a nonzero vector u € M, an £-highest weight vector, which is
unique up to a scalar multiplication.

For M € % and an indeterminate z, denote by M the U, é (g)-module k[zF @ M
defined by

e; (g(z) ® u) = ZSiog(Z) ® eju, ﬁ(g(z) & M)ZZ_EiOg(Z) ® fiu,
q"(g@) ®u)=g(2) ®q"u

fori € Ig, h € PC%’V, g(z) ek[zt ) andu € M. We write u, = 1 @ u € M,.
For simple modules M, N in 6 with £-highest weight vectors u € M and v € N,
there exists a unique k(z) ® U, é (g)-module isomorphism

RIS+ K(2) ®gppa1) (M ® N;) = K(2) @217 (N; ® M)
satisfying RR}’% (u ®v;) = v, ®u ([21]). R“A,Iml\‘,1 is called the normalized R-matrix
of M and N. Let dy n(z) € k[z] be the monic ‘polynomial of the smallest degree
satisfying
dy.N@RY™ (M ®N) € N. ® M.

The polynomial dy, y (z) is called the denominator of R}y . We denote by rjs y the

specialization at z = 1:
I'M,N=(dM,N(Z)RR/?,%,)‘ 1:M(}Z)N—)N(}Z)M.
|,

We call this nonzero homomorphism ry; y the R-matrix of M and N. If either M or
N is real, then the image of rys y is isomorphic to M V N and N A M ([27]), and in
particular we have

MVNZ=ZNAM. 3.2.1)

Definition 3.2.1 ([28]) Let M, N be simple modules in 6.

(i) We define 0(M, N) € Zx>¢ by the order of the zero of the polynomial dys v
(@dy,m(z)atz = 1.
(i) We define A(M, N) € Z by

A(M, N) = Z (—=D*oM, Z*N) — Z (=¥ oM, Z*N).
keZzo k€Z<0

Remark 3.2.2 These definitions are different from [28, Definitions 3.6 and 3.14], but
equivalent to those by [28, Propositions 3.16 and 3.22]. In [28], the invariant A(M, N)
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are defined for not necessarily simple M and N as well, but we do not need this since
in the present paper we will only treat the cases where M and N are simple.

Let us list several properties of the invariants.

Proposition 3.2.3 ([28, Lemma 3.7 and Corollaries 3.19 and 3.17]) Let M and N be
simple modules in €.

(i) We have
AM,N) = %(A(M, N)+ A(N, M)) =2(ZM, IN).

(i1) Assume further that either M or N is real. Then M and N strongly commute if
and only if o(M, N) = 0.

Proposition 3.2.4 ([28, Proposition 4.2 and Lemma 3.10]) Let X, Y and Z be simple
modules in G.

(1) For any simple subquotient S of X @ Y, we have
0(S,Z2) <0(X, Z)+0o(Y, 2).
(ii) Assume further that X and Y strongly commute. Then we have
WX RY,Z2)=000X,2)+0(, Z).

Lemma3.25 Let X, Y, Z € Cﬁg be simple modules, and assume that Z is real.

() Ifo(X, Z) = 0(X, 27'Z) = 0, then we have 9(X, Y V Z) = 2(X, Y).
(i) Ifo(X, Z) = 0(X, ZZ) = O, then we have (X, ZV Y) = o(X, Y).

Proof (i) We have
WX, YVZ) <X, V)+0(X,Z)=0X,Y)
by Proposition 3.2.4. On the other hand, we have
WX, Y)=0(X,27'ZV(¥VZ) <X, 27'Z) +oX,YVZ)=2X,YV2Z)

by Proposition 3.1.2. Hence the assertion is proved. The proof of (ii) is similar. O

Proposition 3.2.6 ([28, Proposition 4.7]) Let M and N be simple modules in 6y, and
assume that one of them is real and 0(M, N) = 1. Then the composition length of
M ® N is 2, and we have an exact sequence

0O->NVM—->MQ®N—->MVN — 0.

Proposition 3.2.7 ([30, Lemma 2.22]) Let M, N be real simple modules in €y such
that O9(M, N) < 1. Then M V N is real.
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Proposition 3.2.8 ([29, Proposition 2.17]) Let M, N be simple modules in 6y, and
assume that N is real. If 0(M, N) > 0, then we have

o(S,N) <o(M,N)

for any simple subquotient S of M ® N and also for any simple subquotient S of
N®M.

Proposition 3.2.9 ([30, Proposition 2.25]) Let X, Y and Z be simple modules in ¢
such that Y is real. Assume that

) 0ZX,Y)=02Y,Z)=0, and
(i) X ® Y ® Z has a simple head.

Then we have
(Y, hdX®Y ®2))=0Y,XVY)+0d(Y,YV2Z).

Following [28, Definition 4.14] (see also [24, Definition 2.5]), we say a sequence
(M, ..., M) of real simple modules in € is a normal sequence if the composition
of the R-matrices

(s, y,m,) 00Xy M, O+ OFp, M3) © (Bpgy M, © -+ O py M)
M- QM > M, ®---Q M
(3.2.2)

does not vanish.

Proposition 3.2.10 ([28, Lemma 4.15]) If (M1, ..., M,) is a normal sequence of real
simple modules in ¢y, then hd(M; ® - -- ® M,) and soc(M, ® --- @ My) are simple
and isomorphic to the image of the composition (3.2.2). Moreover both (M3, ..., M;)
and (M1, ..., M,_1) are normal sequences, and we have

,
AMy, hd(My ® -+~ ® My)) = Y A(My, My) and
k=2
r—1
Ad(My ® -+~ ® My—1), My) = ) MMy, My).
k=1

Proposition 3.2.11 ([28, Lemma 4.17]) For real simple modules X, Y and Z in 6y,
the triple (X, Y, Z) is a normal sequence if X and Z strongly commute.

Lemma3.2.12 ([29, Lemma 2.24]) For real simple modules X, Y, Z in €3, 0(X, Y V
Z) =0(X,Y)4+0(X, Z) holds ifand only if both (X, Y, Z) and (Y, Z, X) are normal
sequences.
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Following [30, Definition 2.16], we say a sequence (M1, ..., M,) of real simple
modules in 6 is unmixed (resp. strongly unmixed) if for all 1 < j < k < r we have

WIMj, My) =0 (resp.2(Z2'M;, M) = 0 foralll € Z-y).

Proposition 3.2.13 ([29, Lemma 5.3]) Any unmixed sequence of real simple modules
is a normal sequence.

Lemma3.2.14 ([30, Lemma 4.26]) Let X, Y, Z be real simple modules in 6y, and
assume the following two conditions:

(1) (X, Y, Z) is a normal sequence, and
M AY,X)+AY,Z)—AY,XVZ)=20X,7Y).

Then the composition

ry y®Z
XRY®Z — YRXRZ—»YV(XVZ)

is surjective and induces an isomorphismhd(X Q Y ® Z) SYv (XV2Z).

3.3 Strong Duality Data

Let g be a simple Lie algebra of type AD E with a Cartan matrix A = (a;;);, jes asin
Section 2. We freely use the notation in the section. Recall that we mainly use plain
symbols such as I, «;, not for g but g.

A module L € %y is called a root module if L is a real simple module such that

o(L, DL = 8k.—1+ 0k foranyk € Z,

see [29, Section 3].

Definition 3.3.1 ([29, Definition 4.7]) Let D = {L;};<; be a family of simple modules
in 6.

(i) We say D is a duality datum associated with g if the following conditions are
satisfied:

(a) L;isreal foralli € I, and
(b) o(L;,Lj) = —ayj foralli, j € I such thati # j.

(i1) We say D is a strong duality datum associated with g if the following conditions
are satisfied:

(c) L; is a root module for all i € I, and
(d) o(L;, .@ij) = —dk0a;j forallk € Zand i, j € I suchthati # j.

Let Qy = Y ,c;Z=o;, and for B € Q4 let R(B) = RE(B) be a symmetric
quiver Hecke algebra at B associated with g (see [26]). If D = {L;};¢; is a duality
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datum associated with g, then there exists an exact monoidal functor (quantum affine
Schur—Weyl duality functor)

Fp: @D R(B)-gmod — .
BeQ+

satisfying Fp(gM) = Fp(M) for any M € @ﬁ R(B)-gmod and ]—'D(L(i)) =L
for all i € I ([26]). Here P 8 R(B)-gmod is the direct sum of the categories of
finite-dimensional graded R(B)-modules equipped with a monoidal structure via the
convolution product, g the grading shift of degree 1, and L (i) the 1-dimensional simple
module over R(¢;). In the sequel, we write R-gmod = EB/S R(B)-gmod. By [31, 44],
there is a unique Z[q, ¢ ~']-algebra isomorphism U, (9" S K (R-gmod) mapping
fi to [L(i)], where U, (g)"? denotes the Z[gq, q_l]—subalgebra of Uq_ (g) spanned by
B"P, and K (R-gmod) the Grothendieck ring of R-gmod. This isomorphism induces a
bijection between the upper global basis and the set of not necessarily degree preserving
isomorphism classes of simple modules in R-gmod ([45, 47]).

Given a duality datum D = {L;};¢s, define a ring homomorphism Ly from U, (g)'P
to the Grothendieck ring K (%) by the composition

Lp: Uy (@) 5> K(R-gmod) — K (%), (3.3.1)

where the second one is induced from Fp. By the properties of the isomorphism

U, ()" S K (R-gmod) stated above and [29, Corollary 4.14], we obtain the fol-
lowing lemma (hereafter, we occasionally identify the isomorphism class of a simple
module in € with its class in K (%})).

Lemma3.3.2 If D = {L;}ie; is a strong duality datum associated with g, Lp induces
an injection, which we also denote by Lp, from B'P to the set Irr(6y) of isomorphism
classes of simple modules in 6.

The bicrystal structure on B"P is described in terms of U, ; (g)-modules as follows.
Proposition 3.3.3 ([33, Lemma 3.2]) For a strong duality datum D = {L;};c;, b € B'P
andi € I, we have

(@) Lp(&ib) = Lp(b)V IL; if ei(b) # 0, Lp@Erb) = Z7'L; V Lp(b) if e} (b) # 0,
(b) Lo(fib) = L; V Lp(b), Lo(f*b) = Lp(b) VL,
(0) &i(b) = 2(ZL;, Lp(b)) and &} (b) = o(Z7'L;, Lp(b)).

Assume that D = {L;};c; is a strong duality datum associated with g, and fix
a reduced word i = (i1,...,in) € R(wg). Foreach 1 < k < N, setting fx =
Siy -+ i, (@), we denote by Sy = S,?” the simple module Lp(F¥(Bx)) € € (see
(2.2.1)). Note that we have

Sy =L ifandonlyif By =«; forl <k <Nandiel. (3.3.2)
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It follows from the construction that

Lp(Fi(©) =[P ® - ® Sy € K(%y) (3.3.3)
forany ¢ = (c1,...,¢cN) € Zgo Moreover, we also have the following.
Lemma3.3.4 Foranyc = (c1,...,cN) € Zgo, we have

Lp(B'(¢)) =hd(SP" ®--- @ Sp™).
Proof This follows from (3.3.3) and [22, Corollary 4.8]. O

Following [29], we extend the above definition of Sy = S,?’i toall k € Z by
SN =28, forallk € Z. (3.3.4)

These modules Sy (k € Z) are called the affine cuspidal modules corresponding to D
andi.

Remark 3.3.5 Our convention of affine cuspidal modules is different from that of
[29]. Setting iV = (i%.....i}) € R(wo), our S, coincides with “Sy:% | " in [29,
Definition 5.6].

Proposition 3.3.6 ([29, Propositions 5.7]) The modules { Sk }recz, satisfy the following.

(i) Sk is a root module for all k € Z.
(ii) For any a, b € Z with a < b, the pair (S,, Sp) is strongly unmixed.
(iii) For any increasing sequence ki < ko < --- < k,, of integers and (ay, ..., a,) €
Zio, (S,(i)al, e S,iap) is a normal sequence andhd(S,f?a' Q- - ~®S,iap) is simple.

We have (i1,...,iy) € R(wp) if and only if (i, ..., in, iik) € R(wog). The fol-
lowing lemma is proved from [29, Propositions 5.9 and 5.10].

Lemma 3.3.7 Let {Sk}iez be the sequence of affine cuspidal modules corresponding
to a strong duality datum D associated with g and (i1, ...,iy) € R(wq). We extend
ix toallk € Z by

ir-n =i} (k €Z).

Fixa € Z, and set i, = iqy and S; = Sq1 for all k € 7. Set p;, = Sip Sy (aii)
for1 < k < N, and let k(i) € [1, N] (i € I) be the unique integer satisfying
ﬂ]’((i) = «;. Then the family D' = {S;/((,')}iel forms a strong duality datum associated
with g, and {S; }rez is the sequence of affine cuspidal modules corresponding to D
and (i}, ..., iy) € R(wp).

The following lemma is easily proved from the construction and [37, Subsection
39.2.5].
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Lemma 3.3.8 Let {Sk}kez be the sequence of affine cuspidal modules corresponding
to a strong duality datum D and i = (i, ...,in) € R(wo). Assume that a;j;,,, = 0
forsome 1 <1 < N, and leti' € R(wo) be such that ij = ijy, i), | = ij and i = iy
fork #1,1+ 1. Fork € Z, set

Sk+1 ifk=1mod N,
S,/{Z Sk—1 ifk=14+1mod N,

Sk otherwise.
Then {S; }rez is the affine cuspidal modules corresponding to D and i'.

3.4 Simple Modules in ¢

The notations in this subsection will be used later in some examples for illustrating
notions or formulas. For simplicity, we assume that g is of untwisted type only in this
subsection. .

Let Pt = (l + uk[u]) '3 be the abelian monoid (via coordinate-wise multiplication)
of Ig—tuples of polynomials with indeterminate # and constant term 1. By [3, 4], the
isomorphism classes of simple modules in € are parametrized by Pt.Form € PT,
denote by L (m) a simple module belonging to the associated isomorphism class.

Following [8, 10], we denote elements of Pt via monomials. Throughout the rest
of this paper we pick and fix @ € k* once and for all, and fori € / g and k € Z define

Vi = (Y], 0) jp0 € P+ by

1 —agfu j=i,

Yij,k(u)z 1 i£i

All elements of P+ appearing below will be expressed as monomials in {Y; x | i €
Ig, k € Z}.

We call a simple module L(Y;y) a fundamental module. For a sequence
(i1, k1), ..., (ip, kp) of elements of Ig x 7, it follows from [2, 21, 46] that

hd(L(Yia) ® - ® L(Yi, k) = LYi sy -+ Vi) if ki > - > kp. (3.4.1)
We also have
DLy by - Yip k) = L gy -+ Yis oy nv) (3.4.2)

by [5, 8], where " is the dual Coxeter number of the simple Lie subalgebra gy C g
corresponding to / g .
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4 Primeness, Reality, and Short Exact Sequences

Throughout this section, fix a strong duality datum D = {L;}ic; € €y associated
with g, a reduced word i = (i1,...,iy) € R(wq), and an increasing sequence
k= (ki <ky<--- <kp)ofintegers. Let Sy = S,?” (k € Z) be the affine cuspidal
modules corresponding to D and i. For a, b € [1, p] witha < b, we write

Skla, b] =hd(Sk, ® Sk, @ -+ ® Sy),

which is simple by Proposition 3.3.6. Set Sy = Sg[1, p], and Sg[a, b] =1ifa > b.

4.1 Primeness and Reality

A simple module M € €} is said to be prime if any tensor decomposition M = N1 QN
satisfies Ny = 1or N, = 1.

Proposition 4.1.1 Assume that one of the following two conditions is satisfied:

(i) Forall1 < a < p, we have 0(S,,, Sgla + 1, p]) > 0.
(ii) Forall 1 < b < p, we have 0(Sg[1, b — 1], Sk,) > O.

Then Sy, is prime.

Proof We will show the assertion by the induction on p, assuming (ii) (the case (i) is
similarly proved). In this proof, we write k for k. First assume that p = 1 (namely,
Sk = Sk),and M, N € &y satisfies Sy = M ® N. Recall that S is a root module by
Proposition 3.3.6. Since S is real, so are M and N. By Proposition 3.2.4 (ii), we have

1 =0(ZSk, Skx) =0(INQIM, M QN)>o(IM,M)+0o(ZN,N),

which implies that either 0(ZM, M) = 0 or 0(Z N, N) = 0 holds. Hence we have
M =1or N =1, as required.
Let p > 1, and assume that Sy = M ® N. By Lemma 3.2.5 (ii) and Proposition
3.3.6 (ii), we have
W27 Sk, Sk) = 02718y, Si) = 1.

From this, we see that either 0(@’1&(, M) = 0 or D(@”Sk, N) = 0 holds, and

we may assume the former. It follows from Proposition 3.1.2 that 2715, VS, =
Skl1, p — 1]. Since 9(2~'Sy VN, M) = 0, we have

Skll,p—11ZZ2'SVIMON)ZEMQ(Z27'S, VN).
Since Sg[l, p — 1] is prime by the induction hypothesis, we have M = 1 or
2718 VN = 1. If the latter occurs, we have N = S, and M = Sk[1, p — 1] by

Proposition 3.1.2, which contradicts the assumption d(Sg[1, p — 1], Sx) > 0. Hence
M =1 holds, and the proof is complete. O
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Lemma4.1.2 Leta, b, c € [1, plwitha < b < ¢, and assume that
0(Sk,, Skla, b —11) <1 and o(Sy,,Sg[b+1,¢c]) < 1. 4.1.1)

Then Sy, and Sg|a, c] strongly commute.

Proof Set
X =Skla,b—1], Y =S8, Z=Silb+1,cl.

By Proposition 3.3.6 (ii), we have 0(ZX,Y) = 0 and 2(2Y, Z) = 0. This and
Proposition 3.3.6 (iii) imply that (X, Y, Z) satisfies the assumptions of Proposition
3.2.9, and hence we have

(St Skla,c) =o(Y,hd(X ® Y ® Z)) =2(Y, X VY)+0(Y,Y V Z).

By Proposition 3.2.8, our assumption (4.1.1) implies that 9(Y, X VY) = 0o(Y,Y V
Z) = 0. Hence we have d(S,, Sgla, c]) = 0. Now the assertion follows from Propo-
sition 3.2.3 (ii). O

Proposition 4.1.3 Leta, b € [1, p] with a < b, and assume that
0(Sk., Sgla, c —1]) < 1 and (S, Sxlc+1,b]) <1 “4.1.2)

forall c € [a, b].
(i) Sgla, b] is a real simple module.

(ii) For any a’, b’ € [a, b] witha' < b, Sg[a, b] and Si[a’, b'] strongly commute.

Proof The assertion (i) is proved inductively using Proposition 3.2.7, and then (ii)
follows from Lemma 4.1.2 and Propositions 3.2.3 (ii) and 3.2.4 (). O

4.2 A Sufficient Condition to have a Short Exact Sequence

Theorem 4.2.1 Assume that p > 2, and both of the following two conditions are
satisfied:

(a) forany 1 <a <b < p, we have 0(Sy,, Sgla + 1,b]) = 1, and
(b) forany 1 < a < b < p, we have 9(Sgla, b — 11, Sg,) = 1.

Then there exists a short exact sequence

p—1
0— hd | XSk, ASk,.) | = Skll. p— 11@Sk[2, p] - Sk ®Sk[2, p— 1] — 0,
a=1
4.2.1)
where the tensor product in the second term is ordered from left to right. Moreover,
the first and third terms are simple.
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Our proof goes along a similar line as the one of [30, Theorem 4.25]. First we note
the following lemma, which is a special case of [29, Theorem 6.12]. For the reader’s
convenience, we give a proof here.

Lemma4.2.2 Letl,m € Z be such that | < m, and assume that 0(S;, S;,) > 0. Then
we have

SIAS, = hd(SfiC]“rl ® Sficzl” R --® Sfi”ifl) Sfor some ci11, ..., cm—1 € Z>p.

Proof Since 0(S;, S;,) > 0, we have m <[ + N by (3.3.4) and Proposition 3.3.6 (ii).
If the equality holds, we have S; A S, = 1, which implies the assertion with ¢; = 0
for all j. Assume that m < [ 4+ N. Extend i, € [ (fixed at the beginning of this
section) to all k € Z by ix_y = i}, and set i"=(y,...,i1+N—1) € R(wp). By (3.3.3)
and Lemmas 3.3.4 and 3.3.7, there is a strong duality datum D’ such that the algebra
homomorphism Ly : U, (g)"? — K (%) satisfies

Ly(F'@) =152 ®-- @S>, and

Lo (B" @) = [hd(sP" @+~ @ ST
foralld = (d;,...,di+n-1) € Zgo. The assertion is now proved by applying this
L to Fi/(d), where

d=(d,... dey_1) with do =8548, (rell,l+N—1]),

and using Proposition 2.2.2. O

We devote the rest of this section to the proof of Theorem 4.2.1. Until the end of the
proof, we assume that the sequence (Sk,, ..., Skp) satisfies the assumptions (a) and
(b) of the theorem. Note that then the first and third terms of (4.2.1) are both simple
by Lemma 4.2.2, Proposition 3.3.6, and Proposition 4.1.3.

Lemma4.2.3

(i) We have d(Sg[1, p — 11, Sk[2, p]) < 1.
(ii) We have Sg[1, p — 11V Sk[2, p] = Sk ® Skl2, p — 11.

Proof (i) The assertion holds since
O(Skll, p — 11, Sk[2, p) = 0(Sk;, Skl2, pD) +0(Sk[2, p — 11, Skl2, pD) = 1
by Proposition 4.1.3 and the assumption (a). (ii) There are homomorphisms
Skll, p — 11 ® Skl2, pl < Skll, p — 11 ® Sk, ® Sk[2, p — 1] = Sg @ Sk[2, p — 1]

by (3.2.1), and the last term is simple. By Proposition 3.1.1 (i), we obtain a surjection
Sk[1, p — 11 ® Sg[2, p] = Sk ® Sg[2, p — 1], and the proof is complete. O
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p—1
Lemma 4.2.4 We have Sg[2. p] V Sell, p — 1] = hd( R(Se, A S,W)).

a=1

Proof We shall show the assertion by the induction on p. The case p = 2 is obvious.
Assume that p > 2. In this proof, we write k for k;, and k™~ for k.

Claim 1 We have hd(Sg[l, p — 2] ® Sk ® Si-) = Sk VSi[1, p — 1]. We apply
Lemma3.2.14to X = Sg[l, p—2], Y = Sk, and Z = S;-. Since ZX and Z strongly
commute, (X, Y, Z) is a normal sequence by Proposition 3.2.11 and the assumption
(i) of the lemma follows. The assumption (ii) is equivalent to

AX,Y)=AY,.Z)+ AY,XVZ)=0 4.2.2)
by Proposition 3.2.3 (i). It follows from our assumption (b) that

2=20Sk[l,p—11,8) = AXVZ,Y)+A(Y,XVZ), and
2=20(85-,8) =AY, Z) + A(Z,Y),

from which we have (A(XV Z,Y)— A(Z, Y)) —AY,Z)+ AY,XVZ) =0.

Since (X, Z, Y) is a normal sequence, we have A(XV Z,Y) = AX,Y)+ A(Z,Y)

by Proposition 3.2.10. Hence (4.2.2) holds, and Claim 1 follows from Lemma 3.2.14.
Therefore, we have the following homomorphisms:

Sk[2, p — 11® S ® Sk[l, p — 11— Sk[2, p — 11® (S VSkI1, p — 1])
= Sk[2, p — 1@ hd(Sk[1, p — 21 ® Sk ® S-)
= Sk[2, p— 11® (Skll, p — 21V (Si- A Sk)).
(4.2.3)

We see from Lemma 4.2.2 that Z Sg[2, p — 1] and S;- A Sk strongly commute, and
thus (Sg[2, p—11, Sk[1, p—2], Si- A Sg) is anormal sequence by Proposition 3.2.11.
Hence we obtain a surjection

Sk[2, p — 11 @ Sk @ S[l, p — 11 = (Skl2, p — 1TV Sg[1, p — 2) V (S A Sp).

p—2
By the induction hypothesis, we have Sg[2, p — 1]V Sg[l, p — 2] = hd( ®(Skﬂ A
a=1

N )), and hence we obtain a surjection

p—1
Skl2, p — 11® Sk @ Skll, p— 1] — hd(®(Ska A Skaﬂ)). (4.2.4)

a=1
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Since 0(Sg[2, p — 11, Sk) = 1, we have a short exact sequence
0— S VSk[2, p— 1] = Skl2, p — 11 ® Sk — Sk[2, p] — O 4.2.5)
by Proposition 3.2.6.

Claim 2 Sg[1, p — 1] and S; V Sg[2, p — 1] strongly commute. In the proof of this
claim, set X = Sg[1, p — 1], Y = Sy and Z = Sg[2, p — 1]. We have

WX, YVZ) <X, V)+0X,Z2)=14+0=1,
and hence it suffices to show that 9(X, Y V Z) # 0(X, Y) 4+ (X, Z). If the equality
holds, then Lemma 3.2.12 implies that (X, Y, Z) is a normal sequence. Hence by
Proposition 3.2.10, we have
AXVY,Z)=AX,2Z2)+ A, 2).
Moreover, (Z, X, Y) is also a normal sequence since ZZ and Y strongly commute,

and hence we have
ANZ,XVY)=AZ,X)+ A(Z,Y).

On the other hand, since 0(X VY, Z) = 0 and (X, Z) = 0, it follows from Propo-
sition 3.2.3 (i) that

AXVY,Z)=—A(Z,XVY) and A(X,Z) = —A(Z, X).

Now by combining them, we have

0=AXVY,Z)—AX,Z)—A(Y,Z)=—A(Z,XVY)+AZ, X)— AY, Z)
~ANZ,X) = AZ,Y)+ NZ.X)— A(Y, Z)

=—-AZ,Y)—AY,Z)==20(5, Sg[2, p — 1)),

which contradicts the assumption (b). The proof is complete.
p—1
Write H = hd(®(Ska A Skm)). The simple modules (Sx VSk[2, p — 1]) ®

a=1
Sk[1, p — 1] and H are not isomorphic. Indeed, this follows since we have

0(951{]9 (SkVSk[Z’p - 1]) ®Sk[17p - 1]) 2 D(QSklrSk[lvp - 1]) = 1

by Lemma 3.2.5, and, on the other hand, 9(Z Sy, , H) = 0 by Lemma 4.2.2. Hence the
composition

(Sk VSk[2, p = 1D @ Sk[l, p — 11 = Skl2, p = 11 ® Sk ® Sg[1, p — 1] - H

vanishes, where the second homomorphism is (4.2.4). Hence we obtain a surjection
Sk[2, p] ® Sg[1, p — 1] — H by (4.2.5), which completes the proof of the lemma. O
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Proof of Theorem 4.2.1. By Proposition 3.2.6 and Lemmas 4.2.3 and 4.2.4, it suffices
to show that Sy ® Sg[2, p — 1] and H are not isomorphic, which follows from

0 DSk, Sk ®Sk[2. p— 1) =1 and (28, H) = 0.

5 Snake Modules Associated with a Strong Duality Datum of Type A
5.1 Quivers and Reduced Words

In the remainder of this paper, we assume that g = sl 1, namely of type A,, whose
index setis I = [1, n] and the Dynkin diagram A is given by

O O O O O
1 2 3 n—1 n
We have .
N=n(n+ ),
2

andi* =n+1—ifori e I.Fori,jelwithi < j, wewriteo; ; =a; +a;11 +
~o+aj € RTIfi > j, weseto; j = 0. We still assume that g is an arbitrary affine
Lie algebra.

Definition 5.1.1 (i) A height function (or untwisted height function) on I is a function
&: 1 — Z satisfying
1§ —&it1l =1 forl <i <mn,

where we set &§; = £(i) for simplicity. We denote by HF the set of height functions.

(i1) Assume that n = 2no — 1 for some ng € Z>». A twisted height function on [ is a
function&: I — %Z satisfying
§ € Z fori € I\ {no}, & —&it1l=1 fori € I'\{no—1,no,n},
|‘§n0—1 - $n0+1| =1 and |$n0 - min(f;:no—lv éno+l)| =1/2.

We denote by HFY the set of twisted height functions.

Remark 5.1.2 In [9], a notion of a height function on a pair of a Dynkin diagram and
a diagram automorphism was defined. In this terminology, (i) is a height function on
(A, id), and (ii) is that on (A, ()*), up to conventions.

Here are examples of untwisted and twisted height functions when n = 5, where
the numbers are the values of each function:

2 1 2 3 4 -1 0 -1/2 1 2 (5.1.1)

O—O0—O0—0—0 o O O 0——0
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Following [9], we will define several notions associated with an untwisted or a
twisted height function. Let £ € HF with b € {@, tw}, where HFY .= HF. We say
i € 1is asink (resp. source) of £ if & < &; (resp. § —d; > &; —d;)forall j € I
such that |i — j| = 1, where we set

d; =2 foralli e I ifé e HF, and d; = if £ € HFY.

2 fori eI\ {np}
1 fori =no

If i € I is asink (resp. source) of &, we define a new function s;& € HF® by

(5i6)j =& +d;d;; (resp. (s;i§)j =&; —d;6; ;) forall jel.

We say a sequence (i1, ..., ir) of elements of I is adapted (or sink-adapted) to & if
ixisasink of s;,_, ---s;,& forall k € [1, r]. The repetition quiver Qg associated with

& is a quiver whose vertex set @g and arrow set éi are given respectively by

05 =1{(i, k) eI x %Z|k—§,~ € di 7},
05 ={G. k) > (. | (i, k), (.)€ Q5. i — jl =1, | —k = min(d;, d;)/2}.

For example, @5 for & in (5.1.1) are, respectively, as follows:

@i\k) -2 -1 0 1 2 3 4 5 6

; NN N N
3 ./ \./ \./ \./ \. ......

) NN NN

5 NN TN TN
(i\k) -3 -2 —1 0 1 2 3 4 5
1 ° ° ° ° °
NN NN

3o o 7N o TN

4 ./ \./ \./ \./ \.
N N N N

For &, &' € HF withb € {0, tw}, we have 0% = Q% if& — &/ € 27 for some (or any)
i € Isuchthatd; =2. Let Z: Q% — OFf denote the unique quiver automorphism
satisfying

n+1 if& e HF,

De(i, k) = (i*, k—n) forall (i,k) e AE, where we set 1 =
g,k = ( ) (1. k) € Q {n if & € HF™Y.
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We also write & for Z¢ when £ is obvious. Define a partial order < on @g by (i, k) <
(j, ) if and only if there is an oriented path from (i, k) to (j, /) in 0.

For & € HF’ with b € {#, tw}, let I'é denote the full subquiver of @“3 whose vertex
set I‘g is given by

TS ={G(,k)e 05 |& <k<n—1+E&:)

We easily see that the number of the vertices of I'é is N. We say a total ordering
Fg ={(i1, k1), ..., (in, kn)} of vertices of réis a compatible reading of réifr <s
holds whenever there is an arrow (i,, k) — (is, kg) in 6.

Proposition 5.1.3 ([9, Section 3]) Assume that & € HF® with b € {(, tw}.

(i) The set of reduced words of wy adapted to & forms a single commutation class in
R (wy).

(i) If {(i1, k1), ..., (in, kn)} is a compatible reading of T'¢, then (i1, ...,in) is a
reduced word of wo adapted to &. Conversely, any reduced word of wy adapted
10 & is obtained from a compatible reading of T'¢ in this way.

Leté € HF” withb € {0, tw}, and take acompatiblereading {(i1, k1), .. ., (in, kn)}
of T'. Define a bijection ¢ : I’g — Rt by

s (i, k) = B with By =, - -s;_, (o) forl e [1, N].
Here and below we write ¢ (i, k) instead of ¢ ((i, k)) for simplicity. The map ¢;
does not depend on the choice of the compatible reading by Proposition 5.1.3. If we

take £ asin (5.1.1), ¢ and ¢¢ are given, respectively, as follows:

i\k) 1 2 3 4 5 6 7 8

1 a1 o3 oy as
A A N N
2 a3 az g a4s
NS N7 N7
3 a3 a4 a3 s
N7 N7
4 a4 ais
N N
5 a5 aj
i\k) -1 0 1 2 3 4 5
1 a o3 o4 o5
ai3 2.4 a4.5
7 N 7 N 7
o3 1,2 o34 o 3,5
N 7 N 7
4 1.4 2,5
5 15
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If £ is an untwisted height function, I'¢ is isomorphic to the Auslander-Reiten quiver of
the category of finite-dimensional modules over the path algebra of type A, associated
with & (see [11]).

5.2 Snake Modules

Let D = {Li}ier S %y be a strong duality datum associated with sl,,;, and
assume that & € HF® with b € {@, tw}. Choose an arbitrary compatible reading
Fg ={(i1, k1), ..., (in, ky)}, and seti = (i1, ..., iy) € R(wp). Let S,?"i (k € Z)be
the corresponding affine cuspidal modules. These modules are labeled by Z, and we
shall relabel them by Qg as follows; set

STt = SP forr € [1, N1,

and extend this to all (i, k) € Qg by ng(i, o= @Sf,‘f. It follows that
D& _ oDii
S@g(ir,k,-) =Sy forl<r<N,t€Z. (5.2.1)

It is easily seen from Lemma 3.3.8 that these Sf ,’f do not depend on the choice of

the compatible reading (though SkD’i do). We will write S; x or Sf i for Sl.D ,’f when no
confusion is likely.

Remark 5.2.1 Assume that & € HF (resp. § € HF"Y) and g is of type A,(ql) (resp. B,(lz)) .
Foreachi € I, set

Li=L(Y; ) (resp.L; = L(Y; _,) with 7 =min(j, j*))

(see Subsection 3.4 for notation), where we put (j,[) = ¢>gl (o) € Fg. Then D =
{L;}ics forms a strong duality datum associated with sl,, 11, and we have

STE S LY ) (resp. 7 = L(Y; ) forall (i, k) € O,

see [9, 15, 25, 29] (note that source-adapted reduced words are used by convention in
these papers).

Lemma5.2.2 Let D = {L;}ics be a strong duality datum associated with sl, 1, and
assume that £, &' € HF® with b € {#, tw}.
. , . . . Dt ~ oD.E
() If §" —§ is a constant function whose value is p € 7, then we have S; ;> = Si,k—p

. ~g!
forall (i,k) € Qp.

) Birkhauser



K. Naoi

(i) Assume that Q5 = Q% , and set L= ( )fori € 1. Then D" = {L}}ics forms
E/

a strong duality datum associated with sl, 41, and we have
SE = SPE forall .k € OF, (5.22)

Proof (i) This is obvious from the construction. (ii) It is easily seen that there is a
sequence ji, ja, ..., jr of elements of I such that j, isasink orasourceof s;,_, -- -5
forall1 <t <r,ands, ---5;,& = & Hence it suffices to show the assertion for
&' = s;&, with j being a sink or a source of &. We show this for a sink j (the other case
is proved similarly). Take a compatible reading {(i1, k1), ..., (ix, kn)} of T'é such
that (i1, k1) = (7, §;), and set

W} k) = Girg1. ker) forl <7 <N and (i, ky) = 2 (1 k).

We easily check that {(i{, k}), ..., (i}, k;\,)} is a compatible reading of I'¢ . " Seti =
(1, ..., in), 0" = (], .. lN) and §; = Sk forallk € Z.Fori € [ andr € [1, N],

o
s+ -8 (@) = e holds if and only if S% @) S, & =5

Therefore by Lemma 3.3.7, D' = {SD”E forms a strong duality datum, and

¢ (@) bier
{8} Jkez are the affine cuspidal modules corresponding to D' and i’. Now (5.2.2) for
(i, k) e Fg is proved by

S STt Es = osy = oS =87 and

SpLEsplEs =S, =T forr e 2N,
rKr r—1"%r—1

Then (5.2.2) for general (i, k) € Qf) also follows from the construction. ]

Lemma5.2.3 Let D = {L;} be a strong duality datum associated with s\, 1, and & a
height function or a twisted height function.

(a) Each S; k is a root module.

(b) Let (i, k), (i’ k') € Qg be such that (i, k) %/ (i’, k). Then the pair (S; i, Si' x') is
strongly unmixed.

(c) Let (i1, k1), ..., (ip, kp) be a sequence of elements of Qg, and assume that
(ir ky) % (s, k) forall r,s € [1, p] such that r < s. Then for any sequence

ai, ..., ap of positive integers, the head of S® L ®® S p is simple.

@ If G, k), (@', k) e Qo are incomparable, then S,,k and S i/ strongly commute.
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Proof (a) This follows from Proposition 3.3.6 (i). (b) Let r, r’ be the integers satisfying
Sik=SP" and Sy =ST,

where i € R(wyp) is an element coming from a compatible reading of I'*. By replacing
(D, &) and i using Lemma 5.2.2 (ii), if necessary, we may assume r < r’. Then the
assertion follows from Proposition 3.3.6 (ii). (¢) This follows from (b) and Proposition
3.2.13. (d) As above, we may assume that S; y = S "and S; = S for some
andr € Z.1f S; x and S;/ j do not strongly commute, it follows from Lemma 4.2.2 that
Si x A Si = 1, which implies S; x = 28y 1/, or equivalently (i’, k') = 271(i, k).
This obviously contradicts the assumption, and the assertion is proved. O

Let D be a strong duality datum associated with sl,;; and £ an untwisted or a
twisted height function. For a sequence P = ((il, k), ..., >p, kp)) of elements of

@g satisfying (ir, kr) % (is, ks) forall 1 <r < s < p, set
D,
SPE(P) = hd(S], @ - ® S% ).

which is simple by Lemma 5.2.3. We often write S(P) for SP-¢ (P).
. . . . ~E > SED ~£,U
\Yhen & is a twisted height function, we define four subsets Qg <, Qg and Qg
of 0 by

o~

052 =Gk 0511 2 mo). 05 = [no.k) € 0 | (no. k) — (o + 1.k + ; 5) € @i},

05" = {0, 00 € B | 0.0 > (0 — 1.k + )e ot} (5.2.3)

Here “D” (resp. “U”) stands for “downward” (resp. “upward”), the direction of all
the arrows incident to the vertices belonging to the subset. When n = 5, these are

illustrated as follows, where o (resp. O, #, o) belong to @g’< (resp. Qg @E D
SE,>
0y )

i

i\k) —4 -3 -2 -1 0 1 2 3 4
1 o o o o o}
5 \o/ \0/ \o/ \o/
3o QQ/ \Q Qp/ \Q O/ \Q QQ/ \Q ,,,,,,
7 ~N 7 ~N 7 ~N 7 AN

4 . . . . .
. \./\./\./\./
Note that Z: Q% — QFf maps §€’< (resp. QE’D) bijectively onto Qg> (resp.
@g’U), and vice versa.
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Definition 5.2.4 ([39])
. . . . . ~¢
(1) Assume that £ is a height function, and (i, k), (i’, k') € Q.
(1) We say (i’, k') is in snake position with respect to (i, k) if (i, k +2) < (@', k).
(if) We say (i’, k) is in prime snake position with respect to (i, k) if

G, k+2) <G, k)< 270, k).

(2) Assume that & is a twisted height function, and (i, k), (i’, k') € @g
(i) We say (i, k') is in snake position with respect to (i, k) if (i, k +2 — 8; p,) <
(', k),
(' k) e 05< U Q5P when (i, k) e 05 L Q%Y, and
(' k) e 05 u Q%Y when (i, k) € 05~ L QP.
(if) We say (i’, k') is in prime snake position with respect to (i, k) if (i’, k) is in
snake position with respect to (i, k), and (i’, k') < 271(i, k).

When we would like to emphasize that & is untwisted (resp. twisted), we say (i’, k)
is in snake position of untwisted type (resp. of twisted type) with respect to (i, k).

When n = 5 these are illustrated as follows, where e and o are in snake position
with respect to %, and e are in prime snake position with respect to .

@\k) O 1 2 3 4 5 6 7

NN N

NG N NN

LN NN

ERNANENN
/\/\/\/; /\/\/\/

PSRRI

5/\/\/\/1 NN

Remark 5.2.5 The definition of prime snake position for £ € HF can be rephrased in
terms of the denominators of normalized R-matrices between fundamental modules
of type ALY as follows: for @i, k), (" k) € Qg, (i’, k') is in prime snake position
with respect to (i, k) if and only if dL(Y,".,k’),L(Yi,—k)(l) = 0. This follows from the
denominator formula in [7].
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Similar assertion does not hold for & € HF*Y. Assume that g is of type B,(,(l,). For
@i, k), (k) e Qg, if (i’, k") is in prime snake position with respect to (i, k), then
d LYy ) L(Y; _y) (1) = 0 holds (see Remark 5.2.1 for the notation), but the converse
is not true (see [41]).

The following definition (with (D, £) taken as in Remark 5.2.1) was introduced in

[39].

Definition 5.2.6 Let & be a height function or a twisted height function, and P =

((il, ki), ..., (p, k,,)) a sequence of elements of @g

(1) We say P is a snake (resp. prime snake) if (is41, ks+1) is in snake position (resp.

in prime snake position) with respect to (is, k) forall 1 <s < p. We also say P
is a snake of untwisted or twisted type, when we would like to emphasize the type
of &. For a subset 2 of @g, we say P is a snake in Q2 if P is a snake and all the
elements of P belong to €2.

(ii) Let D be a strong duality datum associated with sl,, 1. If P is a snake, we call
S(P) = SP4(P) a snake module (of untwisted or twisted type) associated with
D and &.

Lemma5.2.7 If P = ((il, ki), ..., (p, kp)) is a snake, then so are
7P = (25 (i1, k1), ... 5 (ip, k),

and we have 9'S(P) = S(2*F! P). Moreover, if P is prime then so are 2 P.

Proof The first and last assertions are easily checked from the definition, and the
second follows from Proposition 3.2.10, since

2H1s(p) = S0C(Sg1 (i, k) ® @ Sgt1 iy k)
= hd(Sg1(jy k) ® -+ ® Sgi, k) = S(Z7 P).

O
For a sequence P = ((il, ki), ..., (p, k,,)) of elements of @g and a, b € [1, p] with
a S b, Set P[a,b] = ((i(b ka)v (ia+11 k(l+l)s ey (lbs kb))
Lemma 5.2.8
G) If (i, k), (', k') € O satisfy D7, k) 3 (i, k'), then D' S;  and Spr g strongly
commute for all £ € Z=.
(i) Let P = ((il, k1), ..., (p, kp)) € (Qg)p be a snake. If (iy+1, kr+1) is not in
prime snake position with respect to (i,, k;) for some r, then we have

S(P) = S(Pp1.r) @ S(Ppr+1,p))-

Proof Since 2! N R PD*S; i, the assertion (i) follows from Lemma 5.2.3 (b).
The assertion (ii) easily follows from (i). m]

Later, we will prove that S(P) is prime if P is a prime snake (Theorems 6.2.4 (ii)
and 7.2.6 (ii)).
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6 The Case of Untwisted Height Functions
6.1 Reineke’s Algorithm

In this section, we focus on (untwisted) height functions. We will prove that, if £ is a
height function and P is a prime snake in @g, the module S(P) satisfies the assump-
tions of Theorem 4.2.1, using Proposition 3.3.3 (c). For that, we need to calculate
& (b) and S;" (b) for some b € B"P. An algorithm for this was introduced by Reineke
in [43], which we recall in this subsection.

Fori € I,leti € {0, 1} be such that i = i mod 2. For § € {0, 1}, let £® ¢ HF
denote the unique height function satisfying Ei(‘s) € {0, 1} foralli € I and 51(8) = 4.

We have .§i(i) = 1foralli € I. We write T'® for 1"5(6), and ¢s) for ¢§(5) : 1"(()8) — RT.
For each i € I, define a subset 2; C F(()i) by

Q=G h el 161D =GR =l =193 e | 1= j<i<I<n)

When n = 5, T® and ¢s) are as follows:

i\kh 0 1 2 3 4 5 i\kh 0 1 2 3 4 5

| Y a3 1 a34 as

45 a2
NN SN SN 2 xS

> fan]  fems] w2 e fa e
AN 4 xS N 7N AN

CHER UM
AN N 7N N

W fm @ 4 e @] (e
SN NS N

5 as a34 a2 5 ags a3 oy

~

Here the vertices belonging to €25 in F(()O) and Q3 in F(()l) are boxed. The proof of the
following lemma is straightforward.

Lemma 6.1.1 Ler § € {0, 1}. For (i, k) € T, we have ¢(s) (i, k) = oy, where

= ; e ana y = . o
k—i+1 ifi —k <0, 2n+1—i—k ifi+k>n.

:i—k fi—k>0. ik ifi +k <n,

Let 8 € {0, 1}. Take a compatible reading {(i1, k1), ..., (ix, ky)} of T'® and
seti = (i1,...,in) € R(wp). For a F(()‘S)-tuple c = (c,-,k)(l. kyer® of nonnegative
’ 0

integers, we set .
B®(¢) ;= Bi(c) € B, 6.1.1)
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where in the right-hand side ¢ is regarded as an element of ZQ’O via the bijection

[1, N1 — T r = (i, kr). We easily see from Propositions 2.2.3 (i) and 5.1.3 that
B® (¢) does not depend on the choice of the compatible reading. If i # 8, it follows
from (2.2.3) that &; (B (¢)) = ¢; 0.

The other case is described as follows. For i € I, let U; be the set of lower closed
subsets of ©2;. That is, a subset ¥ C 2; belongs to 4; if and only if forany P, Q € Q;,
PeXand Q < Pimply Q € X.

Theorem 6.1.2 ([43, Theorem 7.1]) Let j € I, and set § = j € {0, 1}. For any
r®
c=(cix) € Z>0 , we have

ej(B® () = maX( D ik —cik- 2)>,

Y (i,k)ex

where we set ¢; = 0ifk <O.

I (%) V)
For § € {0,1},1et 8¥ = 8 +n € {0,1}. For ¢ € Z;% , define ¢ € Z.% by
Vo= (Ci*,n—k)(i fer®) By Lemma 2.2.1 we have *B® (¢) = B®)(¢V), and hence
; 0
e5(BY(0)) = £;(B®(c")) (6.1.2)

holds. Using this, we can also calculate the values of &}’s

6.2 Snake Modules Associated with Height Functions

Fix a strong duality datum D = {L;};<; associated with sl, 11, and a height function
&. We write Q for O, and S « for S7;° ((i, k) € Qo).

Lemma 6.2.1 Assume that a sequence P = ((i] k), (p, kp)) of elements of @O
is a snake, and (j,1) € Q.

(1) Suppose that (j, 1) < (i1, k1).

(@) If (i1,ky1) is in prime snake position with respect to (j,l), we have
D(Sj,l, S(P)) =1

(b) If (i1, k1) is not in snake position with respect to (j, 1) (that is, i1 € {j £ r}
and k1 = | + r hold for some r € Z~), then we have D(Sj,l, S(P)) =0.

(2) Suppose that (i, k) < (j, D).

© If (j,1) is in prime snake position with respect to (ip,kp), we have
o(S(P), Sj1) = 1.

(d) If(j, 1) isnot in snake position with respect to (i, k), we haveD(S(P), Sjyl) =
0.
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Proof We will use the notations in the previous subsection freely. (1) By replacing the
pair (D, &) using Lemma 5.2.2, we may assume that

[=-1,
and (D, &) is the following specific one:

Sio ifi#$

=£® and D={L}ie; with L; = -
E E { l}lEI ') Si*,n 7=

fori eI,

where we set § = j € {0, 1}. For any (i, k) € Qo satisfying 271G, D 7% (i, k), we
have 0(S;;, 27" S; ) = 0 for all r > 0 by Lemma 5.2.8 (i). Hence by Lemma 3.2.5
(i), we may further assume that (i, k) < 271(j, 1), which implies (is, k) € 1"(()5)
forall s € [1, p]. We have Sj; = @Sjx,, = IL;. Let {eix | (i, k) € TV} be the

standard basis of ZF((;S), and set ¢ = Zf: | €is.k,- It follows from Lemma 3.3.4 that
Lp(BP () =S(P), (6.2.1)
and hence we have
3(Sj.1,S(P)) =2(2L,,S(P)) = ¢;(BY (¢)) (6.2.2)
by Proposition 3.3.3 (c). We see from Theorem 6.1.2 that

ej(BW (@) = max (#{s € [1, pl| (s, ko) € T} —tifs € [1, p1 | s, ks +2) € 2)).

R (6.2.3)
Define Py, P, ..., P2y € Qo by

Py = (i5, ky) and Py = (isz, ks +2) fors € [1, p].

Note that Py < P, < P3 < --- < P31 < P, holds by the definition of the snake
position. Now we show the assertion (a). In this case, we have P € ;. For any
Y € Uj, we easily see from the lower closedness that there is some ¢ € [0, 2p] such
that P; € ¥ if and only if s € [1, ¢], and then we have

0 ifr e 2Z,

ﬁ{se[l,p]les162}—11{”[1’1’]'])2562}:{1 ift €27 — 1.

Hence (a) follows from (6.2.2) and (6.2.3). In the case of (b), we have P; ¢ ©; and
P, € 2, and the assertion is proved similarly.
(2)Lets =n — j € {0, 1}. Similarly as above, we may assume that

Sio ifi #38

- fori el.
Sixp ifi =26

I=n+1, £€=£69, and D={L}ic; with L,»={
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By a similar argument as above, we may further assume that (i, ks) € F(()S) for all
s € [1, p]. It follows from Proposition 3.3.3 that

o(S(P). Sj.1) =0(S(P). 27 'Ljx) = &5.(B® (0)).

®
where we set ¢ = Zle ek, € Zg‘(’) . We easily see that if P and (j, /) satisfy the

assumption of (c) (resp. (d)), then
PV = ((l;’ n— kp)s (i;_l’ n— kp*l)v sy (lik9 n— kl))

and (j*, n — [) do that of (a) (resp. (b)). Hence the assertions (c) and (d) are proved
from (the proof of) (a) and (b) by using (6.1.2). O

Let (i,k), (i’ k) € Qo, and suppose that (i’, k") is in prime snake position with
respect to (i, k). We define Q;”kk and R;’}{k , each of which is an element of @0 or the
empty set, by

v |GG+ +k—K), 50— i+ k4 k) ifk —k<i+i,
@ itk —k=i+1i

(3G +i" —k+k), (=i +i' +k+k)) ifk —k<2n+2—i—1i,
7] ifk' —k=2n+2—i—1i.

When n = 5, these are illustrated as follows, where (i, k) (resp. (i’ k'), Qﬁz’kk/, Rl’::}(k,)
are shown as o (resp. e, *, x):

i\k) 0 1 2 3 4 5 6 7 8 9 10

1 *

e

2 o ‘ . ’

3 / \

4 ' . ° ’ .

s S . \ /

Lemma6.2.2 Let (j,1), (j/, 1) € 0o, and assume that (j', U') is in prime snake posi-
tion with respect to (j, ). Then we have S; | A Sj/,l/ = Squ,/ ® SR-’/'[/’ where we set

Sy=1 ! "
9w =1

Proof Essentially, this is a formula for the product of two dual root vectors, which has
previously been known (see [42]). For the reader’s convenience, we give a proof.
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As above, we may assume that

Sio ifi #8,

I=—1, §¢=£9% with § =, and D= {Li}ie; with L; = -
Sixn ifi =36.

Set R
M:={G,k e 0ol (D)< k=<, Ncrd.

It follows from Lemma 6.2.1 that 0(S;;, S /) = 1, and thus by Lemma 4.2.2 we
have

Sj,lASj/J,zhd( 0% sf,f"-k) (6.2.4)
(i,k)ell

for some a; x € Zxo, where the factors are ordered compatibly with <. Set a =
(8)
(aix) € ZZ% , where a; = 0if (i, k) ¢ I1. As in (6.2.1), the image of B®)(a) under

Lp: BYP — Irr(%y) is isomorphic to the right-hand side of (6.2.4), and we have

wt(B(‘s)(a)) =— Z a; k) (i, k).

(i,k)ell
On the other hand, we have
LiV(Sj ASy =L V(S VL) =Sy,
and since L; and S/ ;s are the images under Lp of the dual root vectors of weight —a;

and —¢s)(j', I") respectively, we see that the weight of E;l (SjiASj ) € BPis
—¢@)(j', 1) + a. Hence it follows from (6.2.4) that

Z ai k) (I, k) = ox,y —aj = oy j—1 + Ujp1,y, (6.2.5)
(i kel

where we set ¢s5)(j’, ') = ay,y. We easily check from Lemma 6.1.1 that
oo (ID) CHaps [r<j<stufo j1|lr=<j—1}u{ajtis|j+1=5s},
and from this we see at once that (6.2.5) holds only when a is given as follows:

aix =1 if ¢y, k) € {oy, j—1,aj11,y} and a;x =0 otherwise.

It is easily seen from Lemma 6.1.1 that x = j if jSz’ll, = ) and ¢(5)(Q‘]/:t’ll/) =0y
otherwise. Similarly, we see that y = j if R;f = ) and ¢<5)(R§jl) = Qjyly

otherwise. Now, since Qj:t’ll/ and Rjj}l/ are incomparable when they are nonempty,
(6.2.4), together with Lemma 5.2.3 (d), completes the proof. O

The following lemma is proved by inspection.
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Lemma 6.2.3 ([38, Proposition 3.2]) Let P = ((il, k1),..., (p, kp)) € (@o)” be a
prime snake with p > 2, and set

_ in,ky i,k ip:kp
Q_(Qil,lq""’Qtp 1kp— ) and R = (Rllkl R, ),

lp—lykp—l
where () are ignored. Then Q and R are snakes with no elements in common.

Now we give the main theorem of this section, which is a generalization of [6,
Theorem 3.4] and [38, Proposition 3.1, Theorem 4.1] in type A.

Theorem 6.2.4 Let P = ((il, k1), ..., (p, kp)) € (Qo)p be a snake.
(i) The simple module S(P) is real.

(ii) If P is prime, then S(P) is prime.

(iii) Assume that P is prime with p > 2, and set

ipkp

in,k i i,k .
0= (Qi?,k?""’ Qp ) and R = (R112 k|2 "Rip_|,kp_1)'

Ip— Ikp 1

Then S(Q) and S(R) strongly commute, and there is a short exact sequence

0— S(Q)®S(R) — S(P[l,p—l]) ® S(P[z’p]) — S(P) ® S(P[2,p—1]) — 0.
(6.2.6)

Proof Using Lemma 6.2.1, the assertion (i) follows from Proposition 4.1.3 and Lemma
5.2.8 (i), and (ii) from Proposition 4.1.1. For (iii), it suffices to show by Theorem 4.2.1

that
p—1

hd( ®(S,~u,ka A Sia+l,ka+l)) = S(Q) ® S(R), 6.2.7)

which we prove by the 1nduct10n on p. The case p = 2 is just Lemma 6.2.2. Assume
that p > 2, and write Q for Q P p Ky and R for R ok _,- By the induction hypoth-
esis, we have

p—1
hd( (S ke A i) = (S(Q) @ S(RY) V (Sg & Sk,

a=1

where we set

; * ip—1.kp—
Q' = (@, Q) and R = (R, R,

lp—2, k 11)72»](1772

To prove (6.2.7), it is enough to show that 9(S(Q’), Sg) = d(S(R’), Sp) = 0. Indeed
if this holds, then we have

2(S(Q), S(R)) =2(S(Q") V S, S(R") V Sg) =0,
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and there is a surjection

(S(@) ®S(R)) ® (S ® Sr) = (S(Q") ® Sp) ® (S(R") ® Sk)
- S(Q) ® S(R),

which implies (6.2.7). Let us prove 2 (S( Q/ ), Sr) = 0 (the other is proved similarly).
We may assume that R # (. Set Q' = QZ:;Z:; If Q' # ¢, then 0(S(Q’), Sg) =0
follows from Lemma 6.2.1 (d). Assume that Q" = ¥}, which implies thatk,_1 —k,_» =
ip—1 +ip—2. We easily see that every element Q" appearing in Q' satisfies

Q" = (ip—2— 1, kp—o—1) ifipp#1 and Q" < (ip—2,kp—2—2) ifi,—o =1.
(6.2.8)

By Lemma 5.2.8, it suffices to show that 21 Q" # R holds if Q" satisfies (6.2.8).

We show this in the case i, > # 1 (the case i;, > = 1 is proved similarly). We have

270" < (—ip2+n+2,kpa+n)=(Gp1+s k-1 —2+5)

for suitable s € Z. On the other hand, R = (i,—1 + 7, kp_1 + r) holds for some
r € Z-o, and therefore we have g1 Q" % R, as required. The proof is complete. O

Example 6.2.5 Here we give an example of the short exact sequence (6.2.6), not cor-
responding to any of the Mukhin—Young’s extended 7 -systems in [38].

Let g be of type A(l), and set D = {L,;};¢[1,3) with L; = L(Y} 2;—1), which forms a
strong duality datum associated with sls. Define & € HF by & =i (i € [1, 3]). Then
it can be proved using Lemma 6.2.2 and (3.4.1) that

S12i-1 =L(Y12i—1) ( €[1,3]), S$22=L(Y13Y11),
S24=L(Y15Y13), and S33 = L(Y15Y13Y71,1).

By applying %! all Sik ((i,k) e Qg) are obtained (see (3.4.2)). Now the sequence
(6.2.6) for a snake P = ((2,0), (2,2), (1, 5)) is as follows:

0 — L(Y1,1) @ hd(L(Y1,9) ® L(Y15Y13Y1,1))
— hd(L(Y3,0Y37) ® L(Y13Y1,1)) @ hd(L(Y13Y1,1) ® L(Y15))
— hd(L(Y3,0Y37) ® L(Y13Y1,1) ® L(Y15)) ® L(Y13Y1,1) = 0,

or more explictily,

0— L(Y1,0Y15Y13Y7 )= L(Y30Y37Y13Y1,1) ® L(Y2,4Y1,1) — L(Y30Y37Y24Y13Y] ) —0.
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7 The Case of Twisted Height Functions
7.1 Change of a Reduced Word

Throughout this section, we assume that n = 2ng — 1 with ng € Zx5. Unlike the
untwisted case, the results in [43] cannot be applied to reduced expressions adapted to
twisted height functions. In this subsection, we will describe the connection between
untwisted and twisted cases, which enables us to apply the results in the previous
section to twisted cases.

Let 0 be the untwisted height function defined by

0 — i fori € [1, ngl,
"7 li—2 fori eng+1,nl,

and © the twisted height function defined by

i fori € [1,n9 — 1],
®; = {ng—1/2 fori = ny,
i—1 fori € [ng + 1, n].

In this section, we will treat these specific functions only. When n = 7, 'Y and I'®
are given as follows:

(i\k) 1 2 3 4 5 6 7 8 9 10 11
e e e T
o e T e T
- e S T
5 T T
) e e
7 e S
(z\lk)i 2 i 4 : 6 : 8 2 10 1.1
T T Y T
re. N I N
j T
: e

Similarly as in (6.1.1), given a Fg-tuple ¢ = (i, Kery of nonnegative integers,

define B? (¢) € B"P by taking a compatible reading Fg = {(i1, k1), ..., (in, kn)},
putting i = (i1,...,in) € R(wp), and setting B (¢c) = Bi(c). We also define
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BO(c') € B similarly for a I'{-tuple ¢/ = (Cz/‘,k)(i,k)er(? of nonnegative integers.
Given ¢/, the goal of this subsection is to give a formula for ¢ satisfying B? (¢) = B®(¢')
using Proposition 2.2.3 (ii), under certain conditions.

We prepare several notations. For j € [ng + 1, n], let V() be the subset of I x %Z
defined by

V(Y= (CoN L, j— 1 x D) uf(,j—3/2+k |k €[0,2n —2j + 1]}
U{G,i—14+2k)|i>j kel0,n—il}.

We also set V(ng) = F((? and Vin+1) = Fg. When n = 7, these are given as follows,
where » in V(j) denote the points (j, j+2r —1/2), (j+1, j+2r), (j, j+2r+1/2)
with 7 € [0,n — j — 1] appearing in Lemma 7.1.1 below (the dotted lines connecting
points are for illustrative purposes only):

Vid) =TQ V(5)
Nk 1 2 3 4 5 6 7 8 9 10 11 G\k 1 3 4 5 6 7 8 9 10 1
1 e ° ° ° e 1 ® o ° ° ° °
° ° o ° ° 2 ° ° o ° °
3 ° o ° ° 3 ° o ° °
4 * * * * * * ° -
g . 4 . . . .
3 * * * o x  xT k%7 e
6 ° ° 6 *” *
7 [ 1s 7 L
V(6) v(T)
[(AYIN] 2 3 4 5 6 7 8 9 10 1 G\k) 1 3 4 5 6 7 8 9 10 "
1 L] L] L] L] 1 e L] L] L] L] L]
° ° ° ° ° 2 o ° o ° °
3 ° o ° o 3 . o o °
4 L] L] L] L] 4 L] L] L] L]
5 ° ° ° o 5 . o o °
6 . * * . - )
7 S 6 . . .
7 . .
V(8) =T
0
(i\k) 1 2 3 4 5 6 7 8 9 10 11
1@ L] L] L]
2 L] ° (] ° (] (7 1 1)
3 L] L] ° L]
4 ° (] ° L]
5 [ ] L] L] L]
6 ° (] °
7 L] °

We have 4 V(j) = N for all j € [no,n + 1]. For each j € [no,n + 1], take and
fix a total ordering V(j) = {(i1, k1), ..., (in, kn)} such that r < s holds whenever
k. < kg, and set i (j) = (i1,...,iy) € IN. For (i,k) € V{j), denote by i©) the
letter i, ini(j), where r € [1, N]is such that (i, k) = (i, k). Obviously, i (ng) (resp.
i(n+ 1)) is adapted to the twisted height function ® (resp. the height function #), and
we easily see that i (n) and i (n 4 1) are commutation equivalent. Let [i (j)] denote the
commutation class containing i ().
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Lemma7.1.1

(i) For each j € [no,n — 1], there is a word i € [i(j)] containing consecutive
subwords

(j(j+2r_1/2), (] + 1)(j+2r)’ j(j+2r+l/2)) forall re [0’ n— ] _ 1]

Let i’ be the word obtained from i by transforming all these subwords into (j +
1, j,j+1). Then we have i’ € [i{j + 1)].
(i1) We have i (j) € R(wop) forall j € [ng,n + 1].

Proof The first assertion of (i) is easily checked, and the second is also checked directly
by noting that the transformation (j, j + 1,j) — (j + 1,j,j + 1) is expressed
pictorially as follows:

r—1 r r+1 r—1 r r+1
J [ [ ]
j+1 ° = °
j+1 o °
See (7.1.1). Now (ii) is obvious since i {ng) € R(wo). O

For each j € [ng, n], define the map

v V(j+1
Uy Z;()” — ZZ(OJ ' e= (ci ) oevy) P € = (€ Dakevi+1)

. ; / / / . .
as follow.s. forr e [0,n—j - 1], (cj+1,j+2r71/2, Cijtar ch’jJrer/z) is obtained
by applying the transformation (2.2.2) to (¢j, j+2r—1/2, Cj+1,j+2r, Cj,j+2r+1/2), and
the other ¢} ,’s are determined by ¢} , = ¢; k4, Where

12 if G k) =(.j—2),
t=9-1/2 if (i, k) =(j,2n— ),
0 ifi#j,j+1.

Set
l—()
P = Pn) © Pn—1) 0+ 0 Ping) LY —>Z

For any ¢ € Z>0’ it follows from Lemma 7.1.1 and Proposition 2.2.3 (ii) that

B®(c) = B (p(0)). (7.1.2)
Let {e;x | (i,k) € 1"(")} denote the standard basis of ZI0. We would like
to give an exphclt formula for p(c) when ¢ is expressed as Zr | €.k, With
((11 ki), ..., (p, p)) being a snake in FO - Q0 For this, the following remark

is useful.
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Remark 7.1.2 Under the transformation (ci_1, Ck, Ckr1) H> (c,’c_l,cl’(,c,’cﬂ) in
(2.2.2), we have

1 (1,0,0) — (0,0, 1), (i) (0,0,1) — (1,0,0),
Gi) (0,1,0) — (1,0, 1), @iv) (1,0,1) — (0, 1,0).

Pictorially, these are expressed as follows:

(1) * L4 = (11) ° * =

(i) o e o () » o+ o

Therefore, (i) (resp. (ii)) is seen as moving to lower right (resp. lower left), (iii) as
splitting in two points, and (iv) as combining two points into one.

For b € {<, >, U, D}, we write F?’b = Fg) N Qg)’b. We also write F((;),z =
rO\TS ™.

For (i, k) € Fg)’z, define X;k and Xj"k, each of which is an element of Fg (not
Fg) ) or the empty set, as follows:

v ]2 if (i,k) e Ty"P,
(O +k42), 50 +k—2)) if (i, k) eTg T Uy Y,
and
N if (i, k) eTg"Y,
(1O =k +2n0), 1 (=0 +k +2m)) it (i, k) e Ty T LTy P,

In addition, for (i, k), (i’, k') € Fg) = such that (i’, k') is in snake position (of twisted

type) with respect to (i, k), define X f:}(k/, which is an element of Fg or the empty set,
by

vx |9 if (i, k) eTgY,
T (@i 40y —k + k), M (=0 + Oy k + k) if (i, k) e T T uTgP.
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When n = 7, these are illustrated as follows. Here 1"((;) "< is omitted, (i, k) and (i’, k')
are shown as o whose first coordinates are read from the left-hand scale, and X ffk and

Xi’,k

/
; ¢ are shown as x whose first coordinates are read from the right-hand scale:

ik 3 4 5 6 7 8 9 /D G\kb 4 5 6 7 8 9 10 */i)
4 L] o . L] L] L] L] 4 .\ L] o L] .\ L] o

5 / . o 4 5 . o Sxo4
6 * [°R 5 6 o \ \* 5
7 */ 6 7 \\ * o

* 7 . B

For a sequence P = ((i1, k1), ..., (ip, kp)) of elements of Fg with £ € {9, ©}, set

€
e(P)=73, ek €Ly

Proposition 7.1.3 Assume that P = ((i] sk, .o, (p, kp)) is a snake of twisted type
in F(()9 C Qg). Letl =rg <ry < - <ri_1 <1 <rug1 = p—+ 1 be the unique
increasing sequence satisfying the following for all a € [0, t]:

(i) ifa € 27, then (i, k) € Fg)’< holds for all s € [ry, rq41 — 1], and

(i) if @ € 2Z + 1, then (iy, ky) € Ty~ holds for all s € [ry, rar1 — 11.

Foreacha € [1,t]witha € 27 + 1, set

PO = (G ke),s oy o, k1)) € (O5)' ™", and

— i - [ 1.k ”
09 =(X; xirnkeer = ek ) € (T)" for some r" € Lo,

ik i kg 0 ir’72’kr/727 ir’fl’kr’fl

where r = rq and r' = rqy1, and ¥ are ignored. Let PT denote the sequence of
elements of l"g obtained from P by replacing the subsequences P with Q' for all
a € [1,1t] such that a € 27 + 1. Then P is a snake of untwisted type in Fg and we
have p(e(P)) = e(P").
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Proof By tracing the transformations appearing in p using Remark 7.1.2, ,o(e(P)) =
e(P7") is proved directly. See the following example, which is the case where n = 7,

P =((54),(506), (4 17/2),(4,19/2)) and P" =((5,3),(5,5), (5.7), (4, 10)).

IS

Nk 1 2 3 4 5 6 7 8 9 10 [INAVOR 5 6 7 8
L] L]

9
L] L] L] L] °

3

1 e L] L] L] L] 1
2 e e e e e 2 ° L L L3 °
2 L] . ] . L] . i o L] R ° L] o\\ :> : L] . . L] . . L] . . L] 5
. = \./ \./ 5 o’ o o e
' * 7 o e
It is also checked directly by inspection that P is a snake of untwisted type. O

Example 7.1.4 When n = 15 and
P = ((9, 8), (9, 10), (8,25/2), (7, 15), (8, 35/2), (9, 20)),

we have

o y— v9.10 8,25/2 9,20 T
Pl = (Xg4, Xgg", Xo'1g 5 (7,15), Xg'35,5, Xg 59)

= ((9,7),9,9), (9, 11), (7, 15), (9, 19), (9, 21)).

7.2 Snake Modules Associated with Twisted Height Functions

Fix a strong duality datum D = {L;};c; € %} associated with sl;,; 1. In the sequel, we
usually omit D and write Si(")k for SiD ,’(@), etc. All the assertions in this subsection will

be stated for Sl.(j)k, but no generality is lost by this specific choice of a twisted height
function by Lemma 5.2.2.
By Proposition 7.1.3, (7.1.2) and Lemma 3.3.4, the following lemma is immediate.

Lemma 7.2.1 Assume that P = ((i] sk, (p, kp)) is a snake in Fg), and let PT
be the snake in 1"8 given in Proposition 7.1.3. Then the snake module S® (P) of twisted
type is isomorphic to the snake module S? (PT) of untwisted type.

Remark 7.2.2 We can also show that for any snake P of twisted type (not necessarily
contained in F((? ), the snake module S®(P) of twisted type is isomorphic to a snake
module of untwisted type. We will not use this fact in the sequel.

Lemma7.2.3 Let P = ((i1, k1), ..., (ip, kp)) be a snake in QF, and (j,1) € QY.
(1) Suppose that (j, 1) < (i1, k1).

(a) If (i1, k1) is in prime snake position with respect to (j, 1), we have D(Sj(?l,
sewP)) =1.

(b) Assume that ©;, € {®; £r} and ky = | + r hold for some r € %Z>o. Then
we have d(S?,, S°(P)) = 0.
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©IfG, 1) € Q5 and (i1, ki) € Q571 Qg™ or (j, 1) € Qg and (i1, k) €
Q((;)’< u Q((;)’D, then we have D(SJ(."?Z, sép)) =o.
(2) Suppose that (ip, kp) < (j, D).
(A If (j,1) is in prime snake position with respect to (ip,kp), we have
oSO(P), ST)) = 1.
(e) Assume that © j € {©;, £ r}and | = k; + r hold for some r € %Z>0. Then
we have (S°(P), S7) = 0.
() If Gip. kp) € Qg =0 05" and (j. 1) € O5"Y, or (ip. kp) € 09 L Qf P
and (j,1) € Qg)’D , then we have 2(S®(P), S?J) =0.

Proof (1) By applying Lemma 5.2.7, if necessary, we may (and do) assume in the
proof of each assertion that

@ (j.) e 0y~ 1", ,
(b) ®;, = ®; —r and k; = [ + r for some r, and in particular, j ¢ Qg)’D,
© (j,1) € 05"V and (i1, k1) € 05~ L OF"Y,

respectively. In all these three cases, we may further assume by a similar argument as
in Lemma 6.2.1 that

1=0;—d; and (is,ks) € T foralls e [1, pl, (7.2.1)

where we setd; = 2 — §; ,, for i € I. It follows from Lemma 7.2.1 that

(59, 8°(P))

C) ©
INE D(QSj*,(ajfdﬁn’S (P))

(25 (((*, ©; —dj +m)'), s (PT), (7.2.2)

and it is directly checked from Proposition 7.1.3 that

((n, —2+n),(j*,j—1+n)) if j < no,
(7%, ©j=d;+m)" = 1 ((ng, no — 1 +m)) if (j, 1) = (no, no — 3/2),
(G*.j=3+m) if j > no,

which implies

§Y 5V s if j < no,

J.i=2
78°((*, 0 —dj+m) = {80, if j = no,
Sje’j_4 if j > ng.
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On the other hand, we can also show using the same proposition that

(i1, k1) if (i1, k1) € Tg"
FT(P") = (i1 + 5, k1 + 5+ 1/2) forsome s if (i1, k1) € Tg"°,
(300 + ki +2), 5O + ki —2)) if (1, k) e Tg~ 0T,
(7.2.3)
where we denote by FT(PT) the first term of the sequence P.
Now let us prove the assertion (a), where we are assuming that (j, /) € Qg) ’<|_J§g) v
and [ = ®; — d;. By the above calculations, we have

o(s? _,vs?. . s/ph) ifj ,
2(59,.5°(P)) = o 13V 3,2, S )) 17 <o (7.2.4)
’ (S py_2s ST(PT)) if j = no.
By the definition of the snake position, we have (i1, k1) € Fg)’< ] Fé) D , and then we

easily see from (7.2.3) that
2,1 (1, =3) = (n,n — 2) £ FT(PY),

which implies that 2° Se _sand S?(PT) strongly commute for all s € Z=( by Lemma
5.2.8 (i). Therefore (7. 2 4) together with Lemma 3.2.5, gives

(8%, 8°(P)) = 0(89 ;5.8 (PT)) forall j < no.

It is easy to check using (7.2.3) that, if (i1, k1) is in prime snake position with respect
to ( Jj, D) in Q then FT(PT) is in prime snake position with respect to (j, j — 2) in
QO Since P? is a snake in Qe by Proposition 7.1.3, the assertion (a) now follows
from Lemma 6.2.1 (a).

Next let us prove (b), where we are assuming that

®, =0;—r, ki=I[+r forsomer, and [ =0; —d;. (7.2.5)
If j < no, then i} < ng holds and by the same calculation as above we have

o(59,.8%(P)) = (89 ;_,.8°(P")) and FT(PT) = (i1. k).

Jj=2
The assertion (b) then follows from Lemma 6.2.1 (b). If j > ng, on the other hand,
we have

( 2, S9(P)) =0(s4 s’(pPh).

=4

Noting that (i1, k1) ¢ F(; ", itis easy to show from (7.2.3) and (7.2.5) that FT(PT) =
(j—r', j—4+r") holds for some r’, and hence the assertion follows from Lemma 6.2.1
(b) in this case as well.

Finally let us prove (c), where we are assuming that

(. ) = (no,n0 —3/2) € 05"V and (i1, k1) e 57 Y,
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As calculated above, we have SJO = Sf:o no—2 and FT(PT) = (ng+ s, ng — 2 + ) for
suitable 5. Hence the assertion follows from Lemma 6.2.1 (b).
All the assertions of (2) are proved similarly. O
Let (i, k), (i’, k") € é((? , and suppose that (i’, k) is in prime snake position with
respect to (i, k). We define Q;:z’kk/ and Rf:}ck/, each of which is a sequence of zero, one

or two elements of Q\((;), as follows: if (i, k) € §$’< U @?’U, we set

ik )9 k' —k =0; +0,),
ik (A ®1 + 00 1k~ 1), 4@ — O +k+KY) K —k < ©; +60),
(GG +i" —k+K), 3(—i+i' +k+ k) (,i' <np, k' —k <2ng—i—1i),
((no, —i +k+no— 1), (no,i' + k' —no+ ) (,i' <no, k' —k =2ng—i —i"),
Rf:_,}ck/= ((no, —i +k+no — 1)) (i <no,i" = no),
((n(),i/—l—k/—no—i-%)) (i =np, i’ < ngp),
7 (i =i = ny).

If (i,k) € 05"~ L OF°, putting (j,1) = (i, k) and (j',1') = D', k), we set
Qf/*kk/ = @_1RJ " and Rij;{k/ =91 Q;”ll . These are illustrated as follows, where

(i, k) (resp. (i’, k/) Ql k , l'::}(k,) are shown as o (resp. e, *, %):

@(i\k)o 1 2 3 4 5 6 7
*

o e
\*/ O\/*\/. / \ / \
/
I

*>. S \/

Lemma7.2.4 Let (i,k), (i’ k') € @6) and assume that (i’, k') is in prime snake
position with respect to (i, k). Then we have

o

94 o VMEW R =

S AP =820 ) 8 SOR].
Proof Since
S} ~ ~
D(Six A ’k/) Sj(l %) VSJ(; K = Sj(l k) ASJ(; k)

we may assume by using Lemma 5.2.7 that (i, k) € /Q\g)‘ u @?’U. First let us
consider the case (i, k) € Q((? U We may further assume by Lemma 5.2.2 that (i, k) =
(no, no — 3/2), which forces (i’, k') € Tg"~ LT P If (i', k') € Tg"~, it is proved
directly from Proposition 7.1.3 and Lemma 6.2.2 that

S NS =St ASh =S, ®s,

ngy.ng—2 ng.np—2

'\/SO(Q )®SO(lek)
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and the assertion is proved. The case (i, k) € Fg) Pis proved by a similar calculation.
Next let us consider the case (i, k) € Qg) *~. We may assume that k = i, and then

by the definition of the prime snake position we have (i’, k') € 1"((;) Sy 1"(()) P Now

the assertion is proved by a similar argument as above. O
Similarly to Lemma 6.2.3, the following is proved by inspection.

Lemma7.2.5 ([38, Proposition 3.2]) Let p € Z>>, and P = ((il, ki), ..., (p, kp))
be a prime snake in Q((;). Set

12 k2 ip»kp 12 k2 i])skp
0= Qll K * Qip—l’kpfl and R = Rll k% *Rip—l-,kp—l’

where x denotes the concatenation. Then Q and R are snakes with no elements in
common.

Now we give the main theorem of this section, which is a generalization of [6,
Theorem 3.4] and [38, Proposition 3.1, Theorem 4.1] in type B.

Theorem 7.2.6 Let P = ((i1, k1), ..., (ip, kp)) be a snake in @8

(i) The simple module S® (P) is real.
(ii) If P is prime, then S® (P) is prime.
(iii) Assume that P is prime with p > 2, and set

i, kz ip.kp i, kz ip.kp
0= Qll K Fo * Q. and R = Ry %% R,

11,,1,kp,1 lp—l’kp—l'
Then S®( Q) and S® (R) strongly commute, and there is a short exact sequence

0—S®(Q)®S®(R) — S (P1.,—11)®S® (Ppa. ) — SP (P)®S® (Ppa. p—17) — 0.
(7.2.6)

Proof The proof is similar to that of Theorem 6.2.4.

Using Lemma 7.2.3, the assertions (i) and (ii) are proved from Propositions 4.1.3
and 4.1.1, respectively. For (iii), by the same argument as in the proof of Theorem
6.2.4, it suffices to show for p > 3 that

(SO(Q) SO(RIP kp )) =0= (SO(R) SO(le 1,kp—1 )

Ip— lkp 1

where we set

i7, kz ip—lskp—l I __ i2,k2 ip—l»kp—l
Q Qll k¥ Qip*ZJ‘p*Z and R = Rilvkl * * Ripfz,kpfz'
D s k 2
Let us show the former equality (the latter is proved similarly). Set R = Rl’ o Kyt

p]kpl

which we may assume not to be the empty set. If Q , # ¥, then the equahty is
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proved from Lemma 7.2.3 (e) and (f). Assume that QZ:;],ZZ:; =0.1f(ip—2.kp2) €

@g) U Q\g) U then the same argument as in the proof of Theorem 6.2.4 shows that
R4 27'0 forall 0 € Q'and R € R, (7.2.7)

and hence the equality holds. If (i,—2,k,2) € @g)’> ] @g’D, on the other hand,

ip—l,kpfl _ . .
Qip_z,k,,_z = {J implies

. 0.,D . 0,U D “0,U
(lp—kap—Z) € Qo s (lp—hkp—l) € Q() and R C Q() .

If p=3or Qi"’*z’k”*2 = (), then (7.2.7) holds as well, and the equality follows. If

ip—} ,kp—3

ip—2.kp—2 ip—2.kp—2 0, <
. . C
le_% ks # (J, on the other hand, we have le—& k3 S Q, "~ and therefore the

equality follows from Lemma 7.2.3 (f). The proof is complete. O

Example 7.2.7 Assume that g is of type Afl), and let D = {L;}ieq1,3) S €4 be the
strong duality datum of type sl4 defined by

Li = L(Y17), Ly=L(Y24), and L3 = L(Y37).
Then we have

SO =L(Y17), S350 =L(Y35), S3,=L(Y37Y35), S35, =L(Y37),
SP3=L(Y15), Sy7/=L(Y2.4),

and the exact sequence (7.2.6) for P = ((3, 2),(2,9/2), (2, 11/2)) is as follows:

0—hd(L(Y37)®L(Y13Y1,1)) = hd(L(Y37Y35)@L(Y1,1))®hd(L(Y1,1)®L(Y13))
— hd(L(Y3,7Y35) ® L(Y1,1) ® L(Y13)) ® L(Y1,1) = 0,

or more explicitly,

0— L(Y37Y13Y1,1) = L(Y37Y35Y11) ® L(Y22) — L(Y37Y35Y22Y11) — O.
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