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Abstract
The extended T -systems are a number of relations in the Grothendieck ring of the
category of finite-dimensional modules over the quantum affine algebras of types A(1)

n

and B(1)
n , introduced by Mukhin and Young as a generalization of the T -systems.

In this paper we establish the extended T -systems for more general modules, which
are constructed from an arbitrary strong duality datum of type A. Our approach does
not use the theory of q-characters, and so also provides a new proof to the original
Mukhin–Young’s extended T -systems.
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1 Introduction

The T -systems are remarkable functional relations appearing in solvable latticemodels
(see [32] and references therein). Let Cg denote the category of integrable finite-
dimensional modules over a quantum affine algebra U ′

q(g). It has been proved by
Nakajima [40] and Hernandez [12, 13] that the q-characters (or equivalently, the
classes in the Grothendieck ring) of Kirillov–Reshetikhin (KR) modules in Cg satisfy
the T -systems. These T -system relations of KR modules play an essential role in the
recent developments of the theory of monoidal categorifications of cluster algebras
([14, 16, 28, 30]).

Snake modules are a relatively large family of simple modules in Cg of types A(1)
n

and B(1)
n introduced in [39], which contain all minimal affinizations ([1]) of these

types. Via the monomial parametrization of simple modules in Cg (see [10]), each
snakemodule is expressed as L(

∏
r Yir ,aqkr )with a sequence

(
(i1, k1), . . . , (i p, kp)

) ∈
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(Ig0 × Z)p satisfying some combinatorial conditions, where Ig0 denotes the index set
of the simple Lie subalgebra g0 of g.

Mukhin and Young introduced in [38] a number of relations satisfied by the classes
of snake modules as generalizations of the T -systems. They call them the extended
T -systems. Let L(

∏p
r=1 Yir ,aqkr ) be a prime snakemodule (recall that a simplemodule

having no nontrivial tensor factorization is called prime). The corresponding extended
T -system is the relation in the Grothendieck ring of the form

[

L(

p−1∏

r=1

Yir ,aqkr )

][

L(

p∏

r=2

Yir ,aqkr )

]

=
[

L(

p∏

r=1

Yir ,aqkr )

][

L(

p−1∏

r=2

Yir ,aqkr )

]

+[M] [N ] ,

where M and N are other snake modules. In [38], these relations were proved using
the formula for the q-characters of snake modules established in [39].

It is a natural problem to find extended T -systems (containing, at least, all the
minimal affinizations) in other types (see [38, AppendixA]). Such a family of relations
was found for type G2 in [35] and for type C3 in [34], but in general types this is still
open as far as the author knows. One essential obstacle is that the q-characters of
minimal affinizations in other types are more complicated: they are not thin or special
in the terminology of q-characters, while the q-characters of all the snake modules (in
types A(1)

n and B(1)
n ) have these properties. To overcome this difficulty, one possible

way is to establish an approach to extended T -systems not relying on the theory of
q-characters.

For the T -systems, such an approach was developed in [30] using a strong duality
datum and affine cuspidal modules introduced in [29]. Let g be a simple Lie algebra
of type ADE . A strong duality datum associated with g is a family of simple U ′

q(g)-
modules D = {Li }i∈Ig ⊆ Cg, characterized using the invariant d introduced in [28].
Given a strong duality datum D and a reduced word i = (i1, . . . , iN ) of the longest
element of the Weyl group of g, one can construct the associated affine cuspidal
modules {SD,i

k }k∈Z ⊆ Cg. When the pair (D, i) is associated with a Q-datum ([9]),

the affine cuspidal modules {SD,i
k }k∈Z consist of fundamental modules. In [30], the

authors showed for any pair (D, i) that affine determinantial modules, each of which is
constructed as the head of the tensor product of some SD,i

k ’s, satisfy exact sequences
corresponding to the T -systems. When (D, i) is associated with a Q-datum, affine
determinantial modules coincide with KR modules, and the classical T -systems are
recovered. This result was obtained by applying several properties of strong duality
data and affine cuspidal modules, instead of q-characters.

In this paper, by applying a similar approach, we generalize the extended T -systems
of type A(1)

n and B(1)
n to more general modules constructed from an arbitrary strong

duality datum of type A, which we hope to be a first step toward extended T -systems
of general types.

In the first part of this paper, we give a sufficient condition for the head of the tensor
product of affine cuspidal modules of general type to satisfy a short exact sequence
similar to the T -system. More explicitly, for an arbitrary pair (D, i) of a strong duality
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datum and a reduced word and the associated affine cuspidal modules Sk := SD,i
k

(k ∈ Z), the following theorem is proved.

Theorem A (Theorem 4.2.1) Let k = (k1 < · · · < kp) be an increasing sequence of
integers with p ≥ 2. For 1 ≤ a < b ≤ p, write Sk[a, b] = hd(Ska ⊗Ska+1 ⊗· · ·⊗Skb ),
and set Sk = Sk[1, p]. Assume that the following two conditions are satisfied:

(a) for any 1 ≤ a < b ≤ p, we have d(Ska , Sk[a + 1, b]) = 1, and
(b) for any 1 ≤ a < b ≤ p, we have d(Sk[a, b − 1], Skb ) = 1.

Then there exists a short exact sequence

0 → hd

⎛

⎝
p−1⊗

a=1

(Ska � Ska+1)

⎞

⎠ → Sk[1, p−1]⊗Sk[2, p] → Sk ⊗Sk[2, p−1] → 0,

where the tensor product in the second term is ordered from left to right, and M � N
denotes the socle of M ⊗ N. Moreover, the first and third terms are both simple.

We also give sufficient conditions for Sk to be prime or real (Propositions 4.1.1 and
4.1.3).

In the latter half of this paper, we focus on cuspidal modules SD,i
k such that D is

associated with sln+1 and i belongs to either of two special families: reduced words
adapted to a height function and adapted to a twisted height function (see Section 5.1
for the definitions). Let ihf (resp. i tw) be a reduced word adapted to a height (resp.
twisted height) function (these notations are for this introduction only). For an arbitrary
strongduality datumD associatedwith sln+1 and i ∈ {ihf, i tw},we define an associated
snake module by the head of the tensor product of SD,i

k ’s satisfying some conditions.
When (D, ihf) (resp. (D, i tw)) is associated with a Q-datum corresponding to U ′

q(g)

of type A(1)
n (resp. B(1)

n0 with n = 2n0 − 1), these modules coincide with the Mukhin–
Young’s snake modules (recall that in both cases corresponding Q-data are of type An ,
see [9]).We show that these snakemodules satisfy short exact sequences of the form in
TheoremA, and moreover give more concrete description to the first terms (Theorems
6.2.4 and 7.2.6).When associated with a Q-datum, these recover theMukhin–Young’s
extended T -systems. We also show that snake modules are real, and give a necessary
and sufficient condition for them to be prime.

We explain our strategy for the proof of the short exact sequences. Given a strong
duality datumD, through the quantum affine Schur–Weyl duality functor FD ([26]), we
can define a crystal structure on a subset of the isomorphism classes of simple modules
in Cg, which is isomorphic to the crystal base ofU−

q (g). Letting εi , ε
∗
i (i ∈ Ig) be the

functions on this crystal, the conditions (a) and (b) in Theorem A can be rephrased
in terms of the values of these functions εi , ε

∗
i (see Proposition 3.3.3 (c)) at certain

elements expressed in Lusztig’s parametrization ([36]) with respect to i . Reineke
introduced in [43] a useful algorithm to calculate the values of εi and ε∗

i at an element
expressed in Lusztig’s parametrization with respect to a reduced word of some type.
We can apply this algorithm to the word ihf, and show that snake modules associated
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with ihf satisfy the conditions (a) and (b) of Theorem A. Hence the existence of the
short exact sequences in the case i = ihf is shown.

The Reineke’s algorithm cannot be applied in the case i = i tw. Instead, we give a
detailed description of the connection between Lusztig’s parametrizations with respect
to ihf and i tw. A similar work was previously done in [17, Section 12], but our result
is more involved: we give a transition formula for all elements corresponding to snake
modules (Proposition 7.1.3). Using this formula and the results of the previous case
i = ihf, we can show the existence of the short exact sequences in the case i = i tw as
well.

Note that in [38], the extended T -systems are given in terms of the relations in the
Grothendieck ring, and therefore there are two possibilities of short exact sequences.
As another advantage of our approach, we can determine which one is correct.

Theorem A holds for a strong duality datum of a general type, not only of type
A, and we hope that it will help us to study extended T -systems of other types. One
difficulty is that, not in type A, the Reineke’s algorithm cannot be applied in full
generality for any reduced word. We hope to return this problem in the future.

This paper is organized as follows. In Section 2, we recall basic notions concerning
a simple Lie algebra of type ADE , such as the upper global and dual PBW bases, and
crystals. In Section 3, we recall the basic notions and several properties on quantum
affine algebras, the invariants � and d, and affine cuspidal modules. In Section 4, we
give sufficient conditions for the head of the tensor product of affine cuspidal modules
to be prime or real, and prove Theorem A. In Section 5 we give the definition of snake
modules associated with D of type A and ihf or i tw, and several related notions. In
Section 6, we show that snake modules associated with ihf satisfy the extended T -
systems, and at the same time we discuss their reality and primeness. In Section 7, we
show analogous assertions for snake modules associated with i tw.

2 Preliminaries on Simple Lie Algebras of Type ADE

Conventions.

(i) For a base field k, we write ⊗ for ⊗k when no confusion is likely.
(ii) For a, b ∈ Z such that a ≤ b, we denote by [a, b] the set {k ∈ Z | a ≤ k ≤ b}.

We set [a, b] = ∅ if a > b.

2.1 Basic Notation

Let g be a complex simple Lie algebra of type ADE , with an index set I and a Cartan
matrix A = (ai j )i, j∈I . Let αi (i ∈ I ) be the simple roots, R the root system, R+ the
set of positive roots, P the weight lattice, W the Weyl group with simple reflections
{si | i ∈ I }, and w0 ∈ W the longest element. Denote by �(w) for w ∈ W the length
of w, and set N = �(w0). For i ∈ I , define i∗ ∈ I by w0(αi ) = −αi∗ . Let

R(w0) = {i = (i1, · · · , iN ) ∈ I N | si1 · · · siN = w0}
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denote the set of reduced words of w0. For two words i, i ′, we say i and i ′ are
commutation equivalent if i ′ is obtained from i by applying a sequence of operations
which transform some adjacent components (i, j) such that ai j = 0 into ( j, i). An
equivalence class for this relation is called a commutation class.

2.2 Dual PBW Bases and Crystals

Let k be a base field containing Q(q), and Uq(g) the quantized enveloping algebra
associated with g over k with generators {ei , fi , qhi | i ∈ I }. Let U−

q (g) be the k-
subalgebra of Uq(g) generated by fi (i ∈ I ), and denote by Bup the upper global
basis (or dual canonical basis) ofU−

q (g) (see [19]). LetA0 ⊆ Q(q) be the subring of
rational functions that are regular at q = 0, and setL ⊆ U−

q (g) to be theA0-span of
Bup.

We briefly recall dual PBW bases of U−
q (g). Let Ti = T ′′

i,+ (i ∈ I ) denote the
algebra automorphism of Uq(g) given in [37, Chapter 37], and take a reduced word
i = (i1, . . . , iN ) ∈ R(w0). For each 1 ≤ k ≤ N , set βk = si1 · · · sik−1(αik ) ∈ R+,

F i
low(βk) = Ti1 · · · Tik−1( fik ), and F i (βk) = F i

low(βk)
(
F i
low(βk), F i

low(βk)
) , (2.2.1)

where ( , ) is the bilinear form onU−
q (g) given in [19, Section 3.4]. F i (βk) is called a

dual root vector. We have F i (βk) ∈ Bup for any i and k. For c = (c1, . . . , cN ) ∈ Z
N≥0,

set
F i (c) = q

1
2

∑
k ck (ck−1)F i (β1)

c1 · · · F i (βk)
ck .

Then {F i (c) | c ∈ Z
N≥0} forms a basis of U−

q (g), and we call this the dual PBW basis

associated with i . For each c ∈ Z
N≥0, there is a unique element B i (c) ∈ Bup such that

F i (c) ≡ B i (c) mod qL ,

see [23, Theorem 4.29].
Let ∗ be the k-algebra anti-involution on U−

q (g) defined by ∗ fi = fi (i ∈ I ). This
∗ preserves Bup ([20], [23, Lemma 3.5]).

Lemma 2.2.1 ([36, Subsection 2.11]) For i = (i1, . . . , iN ) ∈ R(w0) and c =
(c1, . . . , cN ) ∈ Z

N≥0, set

i∨ = (i∗N , i∗N−1, . . . , i
∗
1 ) ∈ R(w0) and c∨ = (cN , cN−1, . . . , c1).

Then we have ∗F i (c) = F i∨(c∨) and ∗B i (c) = B i∨(c∨).

Proposition 2.2.2 For any i ∈ R(w0) and c ∈ Z
N≥0, we have

F i (c) ∈ B i (c) +
∑

c′≺c

qZ[q]B i (c′),
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where ≺ is the bi-lexicographic order on Z
N≥0, namely, (a1, . . . , aN ) ≺ (b1, . . . , bN )

if and only if there are 1 ≤ k ≤ l ≤ N satisfying ak < bk, al < bl , and a j = b j for
all j such that j < k or l < j .

Proof Except for the triangularity with respect to the bi-lexicographic order, the asser-
tion follows from [23, Theorem 4.29]. The triangularity is proved by applying ∗ and
using Lemma 2.2.1. ��
Proposition 2.2.3 ([36, Subsection 2.3]) Let i, i ′ ∈ R(w0), and c, c′ ∈ Z

N≥0.

(i) Assume for some 1 ≤ k < N that aik ik+1 = 0, i ′k = ik+1, i ′k+1 = ik , and il = i ′l
for all l �= k, k + 1. Then B i (c) = B i ′(c′) holds if and only if

c′
k = ck+1, c′

k+1 = ck, and c′
l = cl for all l �= k, k + 1.

(ii) Let i, j ∈ I be such that ai j = −1, and assume for some 1 < k < N that
(ik−1, ik, ik+1) = (i, j, i), (i ′k−1, i

′
k, i

′
k+1) = ( j, i, j), and il = i ′l for all l /∈

{k, k ± 1}. Then B i (c) = B i ′(c′) holds if and only if c′
l = cl for all l /∈ {k, k ± 1},

and

c′
k−1 = ck + ck+1 − c0, c′

k = c0, c′
k+1 = ck−1 + ck − c0, (2.2.2)

where we set c0 = min(ck−1, ck+1).

By identifying Bup with its image under the projection L → L /qL , we define
the canonical (abstract) crystal structure on Bup (see [20]). Let

wt : Bup → P, εi , ϕi : Bup → Z and ẽi , f̃i : Bup → Bup � {0} for i ∈ I

be the maps giving this crystal structure.
We also define maps ε∗

i , ϕ
∗
i , ẽ

∗
i , f̃

∗
i (i ∈ I ) on Bup by

ε∗
i = εi ◦ ∗, ϕ∗

i = ϕi ◦ ∗, ẽ∗
i = ∗ ◦ ẽi ◦ ∗, f̃ ∗

i = ∗ ◦ f̃i ◦ ∗.

For i = (i1, . . . , iN ) ∈ R(w0) and c = (c1, . . . , cN ) ∈ Z
N≥0, it follows from [37] and

Lemma 2.2.1 that
εi1

(
B i (c)

) = c1 and ε∗
i∗N

(
B i (c)

) = cN . (2.2.3)

3 Preliminaries on QuantumAffine Algebras

3.1 Basic Notation

Let g be an affine Kac–Moody Lie algebra with index set Ig and simple roots {αg
i |

i ∈ Ig}. Denote by 0 ∈ Ig the special element prescribed in [18, Section 4], except

A(2)
2n -type in which we set αg

0 to be the longest simple root. Let I 0g = Ig \ {0}, Pg be
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the weight lattice of g, and Pg
cl = Pg/(Pg ∩Qδ), where δ is the indivisible imaginary

positive root.
Now we fix the base field k to be the algebraic closure of C(q) in

⋃
m>0 C((q1/m)),

and denote by U ′
q(g) the quantized enveloping algebra over k associated with g with

generators {ei , fi , qh | i ∈ Ig, h ∈ Pg,∨
cl := Hom Z(Pg

cl , Z)} (here, by abuse of
notation, we use the same symbols with the generators of Uq(g)). We call U ′

q(g) a
quantum affine algebra in the sequel. Let � : U ′

q(g) → U ′
q(g) ⊗ U ′

q(g) denote the
coproduct (we follow the convention in [21, Section 7]).

A U ′
q(g)-module M is said to be integrable if M = ⊕

λ∈Pg
cl
Mλ with Mλ = {v ∈

M | qhv = q〈h,λ〉v (h ∈ Pg,∨
cl )}, and ei , fi (i ∈ Ig) act nilpotently on M . We denote

byCg the category of integrable finite-dimensionalU ′
q (g)-modules. Let 1 ∈ Cg denote

the trivial module. For M, N ∈ Cg, the tensor product M ⊗ N is also an object of
Cg via the coproduct �, and this gives a monoidal category structure on Cg with unit
object 1. Moreover, the monoidal category Cg is rigid, namely, every object M ∈ Cg

has its right dual DM and left dual D−1M . There are isomorphisms

HomCg
(M ⊗ X ,Y ) ∼= HomCg

(X ,DM ⊗ Y ), and

HomCg
(X ⊗ M,Y ) ∼= HomCg

(X ,Y ⊗ D−1M),

which are functorial in X ,Y ∈ Cg.
For simple modules M and N in Cg, we say that M and N commute if M ⊗ N ∼=

N ⊗ M , and strongly commute if M ⊗ N is simple. Note that, if M and N strongly
commute then they commute, since the Grothendieck ring of Cg is commutative [10].
We say M is real if M strongly commutes with itself.

Proposition 3.1.1 ([27])

(i) Let M j ( j = 1, 2, 3) be a module in Cg, and assume that M2 is simple. If
f : L → M2 ⊗ M3 and g : M1 ⊗ M2 → L ′ are nonzero homomorphisms, then
the composition

M1 ⊗ L
M1⊗ f−→ M1 ⊗ M2 ⊗ M3

g⊗M3−→ L ′ ⊗ M3

does not vanish.
(ii) Let M and N be simple modules in Cg, and assume that one of them is real. Then

both M ⊗ N and N ⊗ M have simple socles and simple heads.

For M ∈ Cg, we denote by hd(M) (resp. soc(M)) the head (resp. socle) of M . For
M, N ∈ Cg, we also use the notation M ∇ N (resp. M � N ) to denote hd(M ⊗ N )

(resp. soc(M ⊗ N )).

Proposition 3.1.2 ([27, Corollary 3.14]) Let M, N be simple modules in Cg, and
assume that M is real. Then we have

D−1M ∇ (N ∇ M) ∼= N and (M ∇ N )∇ DM ∼= N .
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3.2 R-matrices and Invariants

In this subsection we briefly recall the definitions and properties of some invariants on
pairs of modules in Cg, which were introduced in [28]. For more details, see [28–30].

For any simple module M in Cg, there is unique λ ∈ Pg
cl such that Mλ �= 0 and

Mμ = 0 unless μ ∈ λ − ∑
i∈Ig\{0} Z≥0cl(α

g

i ), where cl : Pg → Pg
cl is the canonical

projection. We call a nonzero vector u ∈ Mλ an �-highest weight vector, which is
unique up to a scalar multiplication.

For M ∈ Cg and an indeterminate z, denote by Mz the U ′
q(g)-module k[z±1] ⊗ M

defined by

ei
(
g(z) ⊗ u

) = zδi0g(z) ⊗ eiu, fi
(
g(z) ⊗ u

)= z−δi0g(z) ⊗ fi u,

qh
(
g(z) ⊗ u

)=g(z) ⊗ qhu

for i ∈ Ig, h ∈ Pg,∨
cl , g(z) ∈ k[z±1] and u ∈ M . We write uz = 1 ⊗ u ∈ Mz .

For simple modules M, N in Cg with �-highest weight vectors u ∈ M and v ∈ N ,
there exists a unique k(z) ⊗U ′

q(g)-module isomorphism

Rnorm
M,Nz

: k(z) ⊗k[z±1] (M ⊗ Nz)
∼→ k(z) ⊗k[z±1] (Nz ⊗ M)

satisfying Rnorm
M,Nz

(u ⊗ vz) = vz ⊗ u ([21]). Rnorm
M,Nz

is called the normalized R-matrix
of M and N . Let dM,N (z) ∈ k[z] be the monic polynomial of the smallest degree
satisfying

dM,N (z)Rnorm
M,Nz

(M ⊗ Nz) ⊆ Nz ⊗ M .

The polynomial dM,N (z) is called the denominator of Rnorm
M,Nz

. We denote by rM,N the
specialization at z = 1:

rM,N = (
dM,N (z)Rnorm

M,Nz

)∣∣
∣
z=1

: M ⊗ N → N ⊗ M .

We call this nonzero homomorphism rM,N the R-matrix of M and N . If either M or
N is real, then the image of rM,N is isomorphic to M ∇ N and N � M ([27]), and in
particular we have

M ∇ N ∼= N � M . (3.2.1)

Definition 3.2.1 ([28]) Let M, N be simple modules in Cg.

(i) We define d(M, N ) ∈ Z≥0 by the order of the zero of the polynomial dM,N

(z)dN ,M (z) at z = 1.
(ii) We define �(M, N ) ∈ Z by

�(M, N ) =
∑

k∈Z≥0

(−1)k d(M,Dk N ) −
∑

k∈Z<0

(−1)k d(M,Dk N ).

Remark 3.2.2 These definitions are different from [28, Definitions 3.6 and 3.14], but
equivalent to those by [28, Propositions 3.16 and 3.22]. In [28], the invariant�(M, N )
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are defined for not necessarily simple M and N as well, but we do not need this since
in the present paper we will only treat the cases where M and N are simple.

Let us list several properties of the invariants.

Proposition 3.2.3 ([28, Lemma 3.7 and Corollaries 3.19 and 3.17]) Let M and N be
simple modules in Cg.

(i) We have

d(M, N ) = 1

2

(
�(M, N ) + �(N , M)

) = d(DM,DN ).

(ii) Assume further that either M or N is real. Then M and N strongly commute if
and only if d(M, N ) = 0.

Proposition 3.2.4 ([28, Proposition 4.2 and Lemma 3.10]) Let X, Y and Z be simple
modules in Cg.

(i) For any simple subquotient S of X ⊗ Y , we have

d(S, Z) ≤ d(X , Z) + d(Y , Z).

(ii) Assume further that X and Y strongly commute. Then we have

d(X ⊗ Y , Z) = d(X , Z) + d(Y , Z).

Lemma 3.2.5 Let X ,Y , Z ∈ Cg be simple modules, and assume that Z is real.

(i) If d(X , Z) = d(X ,D−1Z) = 0, then we have d(X ,Y ∇ Z) = d(X ,Y ).
(ii) If d(X , Z) = d(X ,D Z) = 0, then we have d(X , Z ∇ Y ) = d(X ,Y ).

Proof (i) We have

d(X ,Y ∇ Z) ≤ d(X ,Y ) + d(X , Z) = d(X ,Y )

by Proposition 3.2.4. On the other hand, we have

d(X ,Y ) = d
(
X ,D−1Z ∇ (Y ∇ Z)

) ≤ d(X ,D−1Z) + d(X ,Y ∇ Z) = d(X ,Y ∇ Z)

by Proposition 3.1.2. Hence the assertion is proved. The proof of (ii) is similar. ��
Proposition 3.2.6 ([28, Proposition 4.7]) Let M and N be simple modules in Cg, and
assume that one of them is real and d(M, N ) = 1. Then the composition length of
M ⊗ N is 2, and we have an exact sequence

0 → N ∇ M → M ⊗ N → M ∇ N → 0.

Proposition 3.2.7 ([30, Lemma 2.22]) Let M, N be real simple modules in Cg such
that d(M, N ) ≤ 1. Then M ∇ N is real.
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Proposition 3.2.8 ([29, Proposition 2.17]) Let M, N be simple modules in Cg, and
assume that N is real. If d(M, N ) > 0, then we have

d(S, N ) < d(M, N )

for any simple subquotient S of M ⊗ N and also for any simple subquotient S of
N ⊗ M.

Proposition 3.2.9 ([30, Proposition 2.25]) Let X, Y and Z be simple modules in Cg

such that Y is real. Assume that

(i) d(DX ,Y ) = d(DY , Z) = 0, and
(ii) X ⊗ Y ⊗ Z has a simple head.

Then we have

d
(
Y , hd(X ⊗ Y ⊗ Z)

) = d(Y , X ∇ Y ) + d(Y ,Y ∇ Z).

Following [28, Definition 4.14] (see also [24, Definition 2.5]), we say a sequence
(M1, . . . , Mr ) of real simple modules in Cg is a normal sequence if the composition
of the R-matrices

(rMr−1,Mr ) ◦ · · · ◦ (rM2,Mr ◦ · · · ◦ rM2,M3) ◦ (rM1,Mr ◦ · · · ◦ rM1,M2)

: M1 ⊗ · · · ⊗ Mr → Mr ⊗ · · · ⊗ M1
(3.2.2)

does not vanish.

Proposition 3.2.10 ([28, Lemma 4.15]) If (M1, . . . , Mr ) is a normal sequence of real
simple modules in Cg, then hd(M1 ⊗ · · · ⊗ Mr ) and soc(Mr ⊗ · · · ⊗ M1) are simple
and isomorphic to the image of the composition (3.2.2). Moreover both (M2, . . . , Mr )

and (M1, . . . , Mr−1) are normal sequences, and we have

�(M1, hd(M2 ⊗ · · · ⊗ Mr )) =
r∑

k=2

�(M1, Mk) and

�(hd(M1 ⊗ · · · ⊗ Mr−1), Mr ) =
r−1∑

k=1

�(Mk, Mr ).

Proposition 3.2.11 ([28, Lemma 4.17]) For real simple modules X, Y and Z in Cg,
the triple (X ,Y , Z) is a normal sequence if DX and Z strongly commute.

Lemma 3.2.12 ([29, Lemma 2.24]) For real simple modules X ,Y , Z in Cg, d(X ,Y ∇
Z) = d(X ,Y )+d(X , Z) holds if and only if both (X ,Y , Z) and (Y , Z , X) are normal
sequences.
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Following [30, Definition 2.16], we say a sequence (M1, . . . , Mr ) of real simple
modules in Cg is unmixed (resp. strongly unmixed) if for all 1 ≤ j < k ≤ r we have

d(DMj , Mk) = 0
(
resp. d(D l M j , Mk) = 0 for all l ∈ Z>0

)
.

Proposition 3.2.13 ([29, Lemma 5.3]) Any unmixed sequence of real simple modules
is a normal sequence.

Lemma 3.2.14 ([30, Lemma 4.26]) Let X ,Y , Z be real simple modules in Cg, and
assume the following two conditions:

(i) (X ,Y , Z) is a normal sequence, and
(ii) �(Y , X) + �(Y , Z) − �(Y , X ∇ Z) = 2 d(X ,Y ).

Then the composition

X ⊗ Y ⊗ Z
rX ,Y⊗Z−→ Y ⊗ X ⊗ Z � Y ∇ (X ∇ Z)

is surjective and induces an isomorphism hd(X ⊗ Y ⊗ Z)
∼→ Y ∇ (X ∇ Z).

3.3 Strong Duality Data

Let g be a simple Lie algebra of type ADE with a Cartan matrix A = (ai j )i, j∈I as in
Section 2. We freely use the notation in the section. Recall that we mainly use plain
symbols such as I , αi , not for g but g.

A module L ∈ Cg is called a root module if L is a real simple module such that

d(L,Dk L) = δk,−1 + δk,1 for any k ∈ Z,

see [29, Section 3].

Definition 3.3.1 ([29, Definition 4.7]) LetD = {Li }i∈I be a family of simple modules
in Cg.

(i) We say D is a duality datum associated with g if the following conditions are
satisfied:

(a) Li is real for all i ∈ I , and
(b) d(Li , L j ) = −ai j for all i, j ∈ I such that i �= j .

(ii) We say D is a strong duality datum associated with g if the following conditions
are satisfied:

(c) Li is a root module for all i ∈ I , and
(d) d(Li ,DkL j ) = −δk,0ai j for all k ∈ Z and i, j ∈ I such that i �= j .

Let Q+ = ∑
i∈I Z≥0αi , and for β ∈ Q+ let R(β) = Rg(β) be a symmetric

quiver Hecke algebra at β associated with g (see [26]). If D = {Li }i∈I is a duality
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datum associated with g, then there exists an exact monoidal functor (quantum affine
Schur–Weyl duality functor)

FD :
⊕

β∈Q+
R(β)-gmod → Cg,

satisfying FD(qM) ∼= FD(M) for any M ∈ ⊕
β R(β)-gmod and FD

(
L(i)

) = Li
for all i ∈ I ([26]). Here

⊕
β R(β)-gmod is the direct sum of the categories of

finite-dimensional graded R(β)-modules equipped with a monoidal structure via the
convolution product, q the grading shift of degree 1, and L(i) the 1-dimensional simple
module over R(αi ). In the sequel, we write R-gmod = ⊕

β R(β)-gmod. By [31, 44],

there is a unique Z[q, q−1]-algebra isomorphism U−
Z

(g)up
∼→ K (R-gmod) mapping

fi to [L(i)], where U−
Z

(g)up denotes the Z[q, q−1]-subalgebra of U−
q (g) spanned by

Bup, and K (R-gmod) the Grothendieck ring of R-gmod. This isomorphism induces a
bijectionbetween theupper global basis and the set of not necessarily degreepreserving
isomorphism classes of simple modules in R-gmod ([45, 47]).

Given a duality datumD = {Li }i∈I , define a ring homomorphismLD fromU−
Z

(g)up

to the Grothendieck ring K (Cg) by the composition

LD : U−
Z

(g)up
∼→ K (R-gmod) → K (Cg), (3.3.1)

where the second one is induced from FD. By the properties of the isomorphism
U−
Z

(g)up
∼→ K (R-gmod) stated above and [29, Corollary 4.14], we obtain the fol-

lowing lemma (hereafter, we occasionally identify the isomorphism class of a simple
module in Cg with its class in K (Cg)).

Lemma 3.3.2 If D = {Li }i∈I is a strong duality datum associated with g, LD induces
an injection, which we also denote by LD, from Bup to the set Irr(Cg) of isomorphism
classes of simple modules in Cg.

The bicrystal structure on Bup is described in terms of U ′
q(g)-modules as follows.

Proposition 3.3.3 ([33, Lemma 3.2]) For a strong duality datumD = {Li }i∈I , b ∈Bup

and i ∈ I , we have

(a) LD(ẽi b) ∼= LD(b)∇ DLi if εi (b) �= 0, LD(ẽ∗
i b)

∼= D−1Li ∇ LD(b) if ε∗
i (b) �= 0,

(b) LD( f̃i b) ∼= Li ∇ LD(b), LD( f̃ ∗
i b)

∼= LD(b)∇ Li ,
(c) εi (b) = d

(
DLi ,LD(b)

)
and ε∗

i (b) = d
(
D−1Li ,LD(b)

)
.

Assume that D = {Li }i∈I is a strong duality datum associated with g, and fix
a reduced word i = (i1, . . . , iN ) ∈ R(w0). For each 1 ≤ k ≤ N , setting βk =
si1 · · · sik−1(αik ), we denote by Sk = SD,i

k the simple module LD
(
F i (βk)

) ∈ Cg (see
(2.2.1)). Note that we have

Sk ∼= Li if and only if βk = αi for 1 ≤ k ≤ N and i ∈ I . (3.3.2)
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It follows from the construction that

LD
(
F i (c)

) = [S⊗c1
1 ⊗ · · · ⊗ S⊗cN

N ] ∈ K (Cg) (3.3.3)

for any c = (c1, . . . , cN ) ∈ Z
N≥0. Moreover, we also have the following.

Lemma 3.3.4 For any c = (c1, . . . , cN ) ∈ Z
N≥0, we have

LD
(
B i (c)

) ∼= hd(S⊗c1
1 ⊗ · · · ⊗ S⊗cN

N ).

Proof This follows from (3.3.3) and [22, Corollary 4.8]. ��

Following [29], we extend the above definition of Sk = SD,i
k to all k ∈ Z by

Sk−N = DSk for all k ∈ Z. (3.3.4)

These modules Sk (k ∈ Z) are called the affine cuspidal modules corresponding to D
and i .

Remark 3.3.5 Our convention of affine cuspidal modules is different from that of
[29]. Setting i∨ = (i∗N , . . . , i∗1 ) ∈ R(w0), our S

D,i
k coincides with “SD,i∨

N+1−k" in [29,
Definition 5.6].

Proposition 3.3.6 ([29, Propositions 5.7]) The modules {Sk}k∈Z satisfy the following.

(i) Sk is a root module for all k ∈ Z.
(ii) For any a, b ∈ Z with a < b, the pair (Sa, Sb) is strongly unmixed.
(iii) For any increasing sequence k1 < k2 < · · · < kp of integers and (a1, . . . , ap) ∈

Z
p
>0, (S

⊗a1
k1

, . . . , S
⊗ap
kp

) is a normal sequence and hd
(
S⊗a1
k1

⊗· · ·⊗S
⊗ap
kp

)
is simple.

We have (i1, . . . , iN ) ∈ R(w0) if and only if (i2, . . . , iN , i∗1 ) ∈ R(w0). The fol-
lowing lemma is proved from [29, Propositions 5.9 and 5.10].

Lemma 3.3.7 Let {Sk}k∈Z be the sequence of affine cuspidal modules corresponding
to a strong duality datum D associated with g and (i1, . . . , iN ) ∈ R(w0). We extend
ik to all k ∈ Z by

ik−N = i∗k (k ∈ Z).

Fix a ∈ Z, and set i ′k = ia+k and S′
k = Sa+k for all k ∈ Z. Set β ′

k = si ′1 · · · si ′k−1
(αi ′k )

for 1 ≤ k ≤ N, and let k(i) ∈ [1, N ] (i ∈ I ) be the unique integer satisfying
β ′
k(i) = αi . Then the family D′ = {S′

k(i)}i∈I forms a strong duality datum associated
with g, and {S′

k}k∈Z is the sequence of affine cuspidal modules corresponding to D′
and (i ′1, . . . , i ′N ) ∈ R(w0).

The following lemma is easily proved from the construction and [37, Subsection
39.2.5].
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Lemma 3.3.8 Let {Sk}k∈Z be the sequence of affine cuspidal modules corresponding
to a strong duality datum D and i = (i1, . . . , iN ) ∈ R(w0). Assume that ail il+1 = 0
for some 1 ≤ l < N, and let i ′ ∈ R(w0) be such that i ′l = il+1, i ′l+1 = il and i ′k = ik
for k �= l, l + 1. For k ∈ Z, set

S′
k =

⎧
⎪⎨

⎪⎩

Sk+1 if k ≡ l mod N ,

Sk−1 if k ≡ l + 1 mod N ,

Sk otherwise.

Then {S′
k}k∈Z is the affine cuspidal modules corresponding to D and i ′.

3.4 Simple Modules inCg

The notations in this subsection will be used later in some examples for illustrating
notions or formulas. For simplicity, we assume that g is of untwisted type only in this
subsection.

LetP+ = (
1+uk[u])I 0g be the abelianmonoid (via coordinate-wisemultiplication)

of I 0g-tuples of polynomials with indeterminate u and constant term 1. By [3, 4], the
isomorphism classes of simple modules in Cg are parametrized by P+. For m ∈ P+,
denote by L(m) a simple module belonging to the associated isomorphism class.

Following [8, 10], we denote elements of P+ via monomials. Throughout the rest
of this paper we pick and fix α ∈ k× once and for all, and for i ∈ I 0g and k ∈ Z define

Yi,k = (
Y j
i,k(u)

)
j∈I 0g ∈ P+ by

Y j
i,k(u) =

{
1 − αqku j = i,

1 j �= i .

All elements of P+ appearing below will be expressed as monomials in {Yi,k | i ∈
I 0g, k ∈ Z}.

We call a simple module L(Yi,k) a fundamental module. For a sequence
(i1, k1), . . . , (i p, kp) of elements of I 0g × Z, it follows from [2, 21, 46] that

hd
(
L(Yi1,k1) ⊗ · · · ⊗ L(Yip,kp )

) ∼= L(Yi1,k1 · · · Yip,kp ) if k1 ≥ · · · ≥ kp. (3.4.1)

We also have

D±1L(Yi1,k1 · · · Yip,kp ) ∼= L(Yi∗1 ,k1±h∨ · · · Yi∗p,kp±h∨) (3.4.2)

by [5, 8], where h∨ is the dual Coxeter number of the simple Lie subalgebra g0 ⊆ g
corresponding to I 0g .
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4 Primeness, Reality, and Short Exact Sequences

Throughout this section, fix a strong duality datum D = {Li }i∈I ⊆ Cg associated
with g, a reduced word i = (i1, . . . , iN ) ∈ R(w0), and an increasing sequence
k = (k1 < k2 < · · · < kp) of integers. Let Sk = SD,i

k (k ∈ Z) be the affine cuspidal
modules corresponding to D and i . For a, b ∈ [1, p] with a ≤ b, we write

Sk[a, b] = hd(Ska ⊗ Ska+1 ⊗ · · · ⊗ Skb ),

which is simple by Proposition 3.3.6. Set Sk = Sk[1, p], and Sk[a, b] = 1 if a > b.

4.1 Primeness and Reality

AsimplemoduleM ∈ Cg is said to beprime if any tensor decompositionM ∼= N1⊗N2
satisfies N1 ∼= 1 or N2 ∼= 1.

Proposition 4.1.1 Assume that one of the following two conditions is satisfied:

(i) For all 1 ≤ a < p, we have d(Ska , Sk[a + 1, p]) > 0.
(ii) For all 1 < b ≤ p, we have d(Sk[1, b − 1], Skb ) > 0.

Then Sk is prime.

Proof We will show the assertion by the induction on p, assuming (ii) (the case (i) is
similarly proved). In this proof, we write k for kp. First assume that p = 1 (namely,
Sk = Sk), and M, N ∈ Cg satisfies Sk ∼= M ⊗ N . Recall that Sk is a root module by
Proposition 3.3.6. Since Sk is real, so are M and N . By Proposition 3.2.4 (ii), we have

1 = d(DSk, Sk) = d(DN ⊗ DM, M ⊗ N ) ≥ d(DM, M) + d(DN , N ),

which implies that either d(DM, M) = 0 or d(DN , N ) = 0 holds. Hence we have
M ∼= 1 or N ∼= 1, as required.

Let p > 1, and assume that Sk ∼= M ⊗ N . By Lemma 3.2.5 (ii) and Proposition
3.3.6 (ii), we have

d(D−1Sk, Sk) = d(D−1Sk, Sk) = 1.

From this, we see that either d(D−1Sk, M) = 0 or d(D−1Sk, N ) = 0 holds, and
we may assume the former. It follows from Proposition 3.1.2 that D−1Sk ∇ Sk ∼=
Sk[1, p − 1]. Since d(D−1Sk ∇ N , M) = 0, we have

Sk[1, p − 1] ∼= D−1Sk ∇ (M ⊗ N ) ∼= M ⊗ (D−1Sk ∇ N ).

Since Sk[1, p − 1] is prime by the induction hypothesis, we have M ∼= 1 or
D−1Sk ∇ N ∼= 1. If the latter occurs, we have N ∼= Sk and M ∼= Sk[1, p − 1] by
Proposition 3.1.2, which contradicts the assumption d(Sk[1, p − 1], Sk) > 0. Hence
M ∼= 1 holds, and the proof is complete. ��
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Lemma 4.1.2 Let a, b, c ∈ [1, p] with a ≤ b ≤ c, and assume that

d(Skb , Sk[a, b − 1]) ≤ 1 and d(Skb , Sk[b + 1, c]) ≤ 1. (4.1.1)

Then Skb and Sk[a, c] strongly commute.
Proof Set

X = Sk[a, b − 1], Y = Skb , Z = Sk[b + 1, c].
By Proposition 3.3.6 (ii), we have d(DX ,Y ) = 0 and d(DY , Z) = 0. This and
Proposition 3.3.6 (iii) imply that (X ,Y , Z) satisfies the assumptions of Proposition
3.2.9, and hence we have

d(Skb , Sk[a, c]) = d
(
Y , hd(X ⊗ Y ⊗ Z)

) = d(Y , X ∇ Y ) + d(Y ,Y ∇ Z).

By Proposition 3.2.8, our assumption (4.1.1) implies that d(Y , X ∇ Y ) = d(Y ,Y ∇
Z) = 0. Hence we have d(Skb , Sk[a, c]) = 0. Now the assertion follows from Propo-
sition 3.2.3 (ii). ��
Proposition 4.1.3 Let a, b ∈ [1, p] with a ≤ b, and assume that

d(Skc , Sk[a, c − 1]) ≤ 1 and d(Skc , Sk[c + 1, b]) ≤ 1 (4.1.2)

for all c ∈ [a, b].
(i) Sk[a, b] is a real simple module.
(ii) For any a′, b′ ∈ [a, b] with a′ ≤ b′, Sk[a, b] and Sk[a′, b′] strongly commute.
Proof The assertion (i) is proved inductively using Proposition 3.2.7, and then (ii)
follows from Lemma 4.1.2 and Propositions 3.2.3 (ii) and 3.2.4 (i). ��

4.2 A Sufficient Condition to have a Short Exact Sequence

Theorem 4.2.1 Assume that p ≥ 2, and both of the following two conditions are
satisfied:

(a) for any 1 ≤ a < b ≤ p, we have d(Ska , Sk[a + 1, b]) = 1, and
(b) for any 1 ≤ a < b ≤ p, we have d(Sk[a, b − 1], Skb ) = 1.

Then there exists a short exact sequence

0 → hd

⎛

⎝
p−1⊗

a=1

(Ska � Ska+1)

⎞

⎠ → Sk[1, p−1]⊗Sk[2, p] → Sk ⊗Sk[2, p−1] → 0,

(4.2.1)
where the tensor product in the second term is ordered from left to right. Moreover,
the first and third terms are simple.
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Our proof goes along a similar line as the one of [30, Theorem 4.25]. First we note
the following lemma, which is a special case of [29, Theorem 6.12]. For the reader’s
convenience, we give a proof here.

Lemma 4.2.2 Let l,m ∈ Z be such that l < m, and assume that d(Sl , Sm) > 0. Then
we have

Sl � Sm ∼= hd
(
S⊗cl+1
l+1 ⊗ S⊗cl+2

l+2 ⊗ · · · ⊗ S⊗cm−1
m−1

)
for some cl+1, . . . , cm−1 ∈ Z≥0.

Proof Since d(Sl , Sm) > 0, we have m ≤ l + N by (3.3.4) and Proposition 3.3.6 (ii).
If the equality holds, we have Sl � Sm ∼= 1, which implies the assertion with c j = 0
for all j . Assume that m < l + N . Extend ik ∈ I (fixed at the beginning of this
section) to all k ∈ Z by ik−N = i∗k , and set i ′ = (il , . . . , il+N−1) ∈ R(w0). By (3.3.3)
and Lemmas 3.3.4 and 3.3.7, there is a strong duality datum D′ such that the algebra
homomorphism LD′ : U−

Z
(g)up → K (Cg) satisfies

LD′
(
F i ′(d)

) = [S⊗dl
l ⊗ · · · ⊗ S⊗dl+N−1

l+N−1 ], and

LD′
(
B i ′(d)

) = [hd(S⊗dl
l ⊗ · · · ⊗ S⊗dl+N−1

l+N−1 )]

for all d = (dl , . . . , dl+N−1) ∈ Z
N≥0. The assertion is now proved by applying this

LD′ to F i ′(d), where

d = (dl , . . . , dl+N−1) with dr = δr ,l + δr ,m (r ∈ [l, l + N − 1]),

and using Proposition 2.2.2. ��
We devote the rest of this section to the proof of Theorem 4.2.1. Until the end of the

proof, we assume that the sequence (Sk1 , . . . , Skp ) satisfies the assumptions (a) and
(b) of the theorem. Note that then the first and third terms of (4.2.1) are both simple
by Lemma 4.2.2, Proposition 3.3.6, and Proposition 4.1.3.

Lemma 4.2.3

(i) We have d(Sk[1, p − 1], Sk[2, p]) ≤ 1.
(ii) We have Sk[1, p − 1] ∇ Sk[2, p] ∼= Sk ⊗ Sk[2, p − 1].
Proof (i) The assertion holds since

d(Sk[1, p − 1], Sk[2, p]) ≤ d(Sk1 , Sk[2, p]) + d(Sk[2, p − 1], Sk[2, p]) = 1

by Proposition 4.1.3 and the assumption (a). (ii) There are homomorphisms

Sk[1, p − 1] ⊗ Sk[2, p] ↪→ Sk[1, p − 1] ⊗ Skp ⊗ Sk[2, p − 1] � Sk ⊗ Sk[2, p − 1]

by (3.2.1), and the last term is simple. By Proposition 3.1.1 (i), we obtain a surjection
Sk[1, p − 1] ⊗ Sk[2, p] � Sk ⊗ Sk[2, p − 1], and the proof is complete. ��
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Lemma 4.2.4 We have Sk[2, p] ∇ Sk[1, p − 1] ∼= hd
( p−1⊗

a=1

(Ska � Ska+1)
)
.

Proof We shall show the assertion by the induction on p. The case p = 2 is obvious.
Assume that p > 2. In this proof, we write k for kp and k− for kp−1.

Claim 1 We have hd(Sk[1, p − 2] ⊗ Sk ⊗ Sk−) ∼= Sk ∇ Sk[1, p − 1]. We apply
Lemma 3.2.14 to X = Sk[1, p− 2], Y = Sk , and Z = Sk− . SinceDX and Z strongly
commute, (X ,Y , Z) is a normal sequence by Proposition 3.2.11 and the assumption
(i) of the lemma follows. The assumption (ii) is equivalent to

�(X ,Y ) − �(Y , Z) + �(Y , X ∇ Z) = 0 (4.2.2)

by Proposition 3.2.3 (i). It follows from our assumption (b) that

2 = 2 d(Sk[1, p − 1], Sk) = �(X ∇ Z ,Y ) + �(Y , X ∇ Z), and

2 = 2 d(Sk− , Sk) = �(Y , Z) + �(Z ,Y ),

from which we have
(
�(X ∇ Z ,Y ) − �(Z ,Y )

) − �(Y , Z) + �(Y , X ∇ Z) = 0.
Since (X , Z ,Y ) is a normal sequence, we have �(X ∇ Z ,Y ) = �(X ,Y ) + �(Z ,Y )

by Proposition 3.2.10. Hence (4.2.2) holds, and Claim 1 follows from Lemma 3.2.14.
Therefore, we have the following homomorphisms:

Sk[2, p − 1] ⊗ Sk ⊗ Sk[1, p − 1] � Sk[2, p − 1] ⊗ (Sk ∇ Sk[1, p − 1])
∼→ Sk[2, p − 1] ⊗ hd(Sk[1, p − 2] ⊗ Sk ⊗ Sk−)

∼→ Sk[2, p − 1] ⊗ (
Sk[1, p − 2] ∇ (Sk− � Sk)

)
.

(4.2.3)

We see from Lemma 4.2.2 that D Sk[2, p − 1] and Sk− � Sk strongly commute, and
thus (Sk[2, p−1], Sk[1, p−2], Sk− � Sk) is a normal sequence by Proposition 3.2.11.
Hence we obtain a surjection

Sk[2, p − 1] ⊗ Sk ⊗ Sk[1, p − 1] � (Sk[2, p − 1] ∇ Sk[1, p − 2])∇ (Sk− � Sk).

By the induction hypothesis, we have Sk[2, p − 1] ∇ Sk[1, p − 2] ∼= hd
( p−2⊗

a=1

(Ska �

Ska+1)
)
, and hence we obtain a surjection

Sk[2, p − 1] ⊗ Sk ⊗ Sk[1, p − 1] � hd
( p−1⊗

a=1

(Ska � Ska+1)
)
. (4.2.4)
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Since d(Sk[2, p − 1], Sk) = 1, we have a short exact sequence

0 → Sk ∇ Sk[2, p − 1] → Sk[2, p − 1] ⊗ Sk → Sk[2, p] → 0 (4.2.5)

by Proposition 3.2.6.

Claim 2 Sk[1, p − 1] and Sk ∇ Sk[2, p − 1] strongly commute. In the proof of this
claim, set X = Sk[1, p − 1], Y = Sk and Z = Sk[2, p − 1]. We have

d(X ,Y ∇ Z) ≤ d(X ,Y ) + d(X , Z) = 1 + 0 = 1,

and hence it suffices to show that d(X ,Y ∇ Z) �= d(X ,Y ) + d(X , Z). If the equality
holds, then Lemma 3.2.12 implies that (X ,Y , Z) is a normal sequence. Hence by
Proposition 3.2.10, we have

�(X ∇ Y , Z) = �(X , Z) + �(Y , Z).

Moreover, (Z , X ,Y ) is also a normal sequence since D Z and Y strongly commute,
and hence we have

�(Z , X ∇ Y ) = �(Z , X) + �(Z ,Y ).

On the other hand, since d(X ∇ Y , Z) = 0 and d(X , Z) = 0, it follows from Propo-
sition 3.2.3 (i) that

�(X ∇ Y , Z) = −�(Z , X ∇ Y ) and �(X , Z) = −�(Z , X).

Now by combining them, we have

0 = �(X ∇ Y , Z) − �(X , Z) − �(Y , Z) = −�(Z , X ∇ Y ) + �(Z , X) − �(Y , Z)

= −�(Z , X) − �(Z ,Y ) + �(Z , X) − �(Y , Z)

= −�(Z ,Y ) − �(Y , Z) = −2 d(Sk, Sk[2, p − 1]),

which contradicts the assumption (b). The proof is complete.

Write H = hd
( p−1⊗

a=1

(Ska � Ska+1)
)
. The simple modules (Sk ∇ Sk[2, p − 1]) ⊗

Sk[1, p − 1] and H are not isomorphic. Indeed, this follows since we have

d
(
DSk1 , (Sk ∇ Sk[2, p − 1]) ⊗ Sk[1, p − 1]) ≥ d(DSk1 , Sk[1, p − 1]) = 1

by Lemma 3.2.5, and, on the other hand, d(DSk1 , H) = 0 by Lemma 4.2.2. Hence the
composition

(Sk ∇ Sk[2, p − 1]) ⊗ Sk[1, p − 1] ↪→ Sk[2, p − 1] ⊗ Sk ⊗ Sk[1, p − 1] � H

vanishes, where the second homomorphism is (4.2.4). Hence we obtain a surjection
Sk[2, p] ⊗ Sk[1, p − 1] � H by (4.2.5), which completes the proof of the lemma. ��
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Proof of Theorem 4.2.1. By Proposition 3.2.6 and Lemmas 4.2.3 and 4.2.4, it suffices
to show that Sk ⊗ Sk[2, p − 1] and H are not isomorphic, which follows from

d(DSk1 , Sk ⊗ Sk[2, p − 1]) = 1 and d(DSk1 , H) = 0.

��

5 SnakeModules Associated with a Strong Duality Datum of Type A

5.1 Quivers and ReducedWords

In the remainder of this paper, we assume that g = sln+1, namely of type An , whose
index set is I = [1, n] and the Dynkin diagram � is given by

◦ ◦ ◦ ◦ ◦
1 2 3 n − 1 n

We have

N = n(n + 1)

2
,

and i∗ = n + 1 − i for i ∈ I . For i, j ∈ I with i ≤ j , we write αi, j = αi + αi+1 +
· · · + α j ∈ R+. If i > j , we set αi, j = 0. We still assume that g is an arbitrary affine
Lie algebra.

Definition 5.1.1 (i) A height function (or untwisted height function) on I is a function
ξ : I → Z satisfying

|ξi − ξi+1| = 1 for 1 ≤ i < n,

where we set ξi = ξ(i) for simplicity. We denote by HF the set of height functions.

(ii) Assume that n = 2n0 − 1 for some n0 ∈ Z≥2. A twisted height function on I is a
function ξ : I → 1

2Z satisfying

ξi ∈ Z for i ∈ I \ {n0}, |ξi − ξi+1| = 1 for i ∈ I \ {n0 − 1, n0, n},
|ξn0−1 − ξn0+1| = 1 and |ξn0 − min(ξn0−1, ξn0+1)| = 1/2.

We denote by HFtw the set of twisted height functions.

Remark 5.1.2 In [9], a notion of a height function on a pair of a Dynkin diagram and
a diagram automorphism was defined. In this terminology, (i) is a height function on
(�, id), and (ii) is that on (�, ( )∗), up to conventions.

Here are examples of untwisted and twisted height functions when n = 5, where
the numbers are the values of each function:

2 1 2 3 4
◦ ◦ ◦ ◦ ◦

−1 0 −1/2 1 2
◦ ◦ ◦ ◦ ◦

(5.1.1)
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Following [9], we will define several notions associated with an untwisted or a
twisted height function. Let ξ ∈ HF
 with 
 ∈ {∅, tw}, where HF∅ := HF. We say
i ∈ I is a sink (resp. source) of ξ if ξi < ξ j (resp. ξi − di > ξ j − d j ) for all j ∈ I
such that |i − j | = 1, where we set

di = 2 for all i ∈ I if ξ ∈ HF, and di =
{
2 for i ∈ I \ {n0}
1 for i = n0

if ξ ∈ HFtw.

If i ∈ I is a sink (resp. source) of ξ , we define a new function siξ ∈ HF
 by

(siξ) j = ξ j + diδi, j (resp. (siξ) j = ξ j − diδi, j ) for all j ∈ I .

We say a sequence (i1, . . . , ir ) of elements of I is adapted (or sink-adapted) to ξ if
ik is a sink of sik−1 · · · si1ξ for all k ∈ [1, r ]. The repetition quiver Q̂ξ associated with

ξ is a quiver whose vertex set Q̂ξ
0 and arrow set Q̂ξ

1 are given respectively by

Q̂ξ
0 = {(i, k) ∈ I × 1

2
Z | k − ξi ∈ diZ},

Q̂ξ
1 = {(i, k) → ( j, l) | (i, k), ( j, l) ∈ Q̂ξ

0, |i − j | = 1, l − k = min(di , d j )/2}.

For example, Q̂ξ for ξ in (5.1.1) are, respectively, as follows:

(i \ k) −2 −1 0 1 2 3 4 5 6

1 • • • • •
2 • • • •
3 · · · · · · • • • • • · · · · · ·
4 • • • •
5 • • • • •

(i \ k) −3 −2 −1 0 1 2 3 4 5
1 • • • • •
2 • • • •
3 · · · · · · • • • • • • • • · · · · · ·
4 • • • • •
5 • • • •

For ξ, ξ ′ ∈ HF
 with 
 ∈ {∅, tw}, we have Q̂ξ = Q̂ξ ′
if ξi − ξ ′

i ∈ 2Z for some (or any)
i ∈ I such that di = 2. Let Dξ : Q̂ξ → Q̂ξ denote the unique quiver automorphism
satisfying

Dξ (i, k) = (i∗, k− ñ) for all (i, k) ∈ Q̂ξ
0, where we set ñ =

{
n + 1 if ξ ∈ HF,

n if ξ ∈ HFtw.
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We also writeD forDξ when ξ is obvious. Define a partial order � on Q̂ξ
0 by (i, k) �

( j, l) if and only if there is an oriented path from (i, k) to ( j, l) in Q̂ξ .
For ξ ∈ HF
 with 
 ∈ {∅, tw}, let �ξ denote the full subquiver of Q̂ξ whose vertex

set �ξ
0 is given by

�
ξ
0 = {(i, k) ∈ Q̂ξ

0 | ξi ≤ k ≤ n − 1 + ξi∗}.

We easily see that the number of the vertices of �ξ is N . We say a total ordering
�

ξ
0 = {(i1, k1), . . . , (iN , kN )} of vertices of �ξ is a compatible reading of �ξ if r < s

holds whenever there is an arrow (ir , kr ) → (is, ks) in �ξ .

Proposition 5.1.3 ([9, Section 3]) Assume that ξ ∈ HF
 with 
 ∈ {∅, tw}.
(i) The set of reduced words of w0 adapted to ξ forms a single commutation class in

R(w0).
(ii) If {(i1, k1), . . . , (iN , kN )} is a compatible reading of �ξ , then (i1, . . . , iN ) is a

reduced word of w0 adapted to ξ . Conversely, any reduced word of w0 adapted
to ξ is obtained from a compatible reading of �ξ in this way.

Let ξ ∈ HF
 with 
 ∈ {∅, tw}, and take a compatible reading {(i1, k1), . . . , (iN , kN )}
of �ξ . Define a bijection φξ : �

ξ
0 → R+ by

φξ (il , kl) = βl with βl = si1 · · · sil−1(αil ) for l ∈ [1, N ].

Here and below we write φξ (i, k) instead of φξ

(
(i, k)

)
for simplicity. The map φξ

does not depend on the choice of the compatible reading by Proposition 5.1.3. If we
take ξ as in (5.1.1), �ξ and φξ are given, respectively, as follows:

(i \ k) 1 2 3 4 5 6 7 8

1 α1,2 α3 α4 α5

2 α2 α1,3 α3,4 α4,5

3 α2,3 α1,4 α3,5

4 α2,4 α1,5

5 α2,5 α1

(i \ k) −1 0 1 2 3 4 5

1 α1 α2,3 α4 α5

2 α1,3 α2,4 α4,5

3 α3 α1,2 α3,4 α2 α3,5

4 α1,4 α2,5

5 α1,5
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If ξ is an untwisted height function,�ξ is isomorphic to theAuslander-Reiten quiver of
the category of finite-dimensional modules over the path algebra of type An associated
with ξ (see [11]).

5.2 SnakeModules

Let D = {Li }i∈I ⊆ Cg be a strong duality datum associated with sln+1, and
assume that ξ ∈ HF
 with 
 ∈ {∅, tw}. Choose an arbitrary compatible reading
�

ξ
0 = {(i1, k1), . . . , (iN , kN )}, and set i = (i1, . . . , iN ) ∈ R(w0). Let S

D,i
k (k ∈ Z) be

the corresponding affine cuspidal modules. These modules are labeled by Z, and we
shall relabel them by Q̂ξ

0 as follows; set

SD,ξ
ir ,kr

:= SD,i
r for r ∈ [1, N ],

and extend this to all (i, k) ∈ Q̂ξ
0 by SD,ξ

Dξ (i,k) = DSD,ξ
i,k . It follows that

SD,ξ

D t
ξ (ir ,kr )

= SD,i
r−t N for 1 ≤ r ≤ N , t ∈ Z. (5.2.1)

It is easily seen from Lemma 3.3.8 that these SD,ξ
i,k do not depend on the choice of

the compatible reading (though SD,i
k do). We will write Si,k or S

ξ
i,k for S

D,ξ
i,k when no

confusion is likely.

Remark 5.2.1 Assume that ξ ∈ HF (resp. ξ ∈ HFtw) and g is of type A(1)
n (resp. B(1)

n0 ).
For each i ∈ I , set

Li = L(Y j,−l) (resp. Li = L(Y ĵ,−2l) with ĵ = min( j, j∗))

(see Subsection 3.4 for notation), where we put ( j, l) = φ−1
ξ (αi ) ∈ �

ξ
0 . Then D =

{Li }i∈I forms a strong duality datum associated with sln+1, and we have

SD,ξ
i,k

∼= L(Yi,−k) (resp. SD,ξ
i,k

∼= L(Yî,−2k)) for all (i, k) ∈ Q̂ξ
0,

see [9, 15, 25, 29] (note that source-adapted reduced words are used by convention in
these papers).

Lemma 5.2.2 Let D = {Li }i∈I be a strong duality datum associated with sln+1, and
assume that ξ, ξ ′ ∈ HF
 with 
 ∈ {∅, tw}.
(i) If ξ ′ −ξ is a constant function whose value is p ∈ Z, then we have SD,ξ ′

i,k
∼= SD,ξ

i,k−p

for all (i, k) ∈ Q̂ξ ′
0 .
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(ii) Assume that Q̂ξ = Q̂ξ ′
, and set L′

i = SD,ξ

φ−1
ξ ′ (αi )

for i ∈ I . Then D′ = {L′
i }i∈I forms

a strong duality datum associated with sln+1, and we have

SD,ξ
i,k

∼= SD
′,ξ ′

i,k for all (i, k) ∈ Q̂ξ
0. (5.2.2)

Proof (i) This is obvious from the construction. (ii) It is easily seen that there is a
sequence j1, j2, . . . , jr of elements of I such that jt is a sink or a source of s jt−1 · · · s j1ξ
for all 1 ≤ t ≤ r , and s jr · · · s j1ξ = ξ ′. Hence it suffices to show the assertion for
ξ ′ = s jξ , with j being a sink or a source of ξ . We show this for a sink j (the other case
is proved similarly). Take a compatible reading {(i1, k1), . . . , (iN , kN )} of �ξ such
that (i1, k1) = ( j, ξ j ), and set

(i ′r , k′
r ) = (ir+1, kr+1) for 1 ≤ r < N and (i ′N , k′

N ) = D−1
ξ (i1, k1).

We easily check that {(i ′1, k′
1), . . . , (i

′
N , k′

N )} is a compatible reading of �ξ ′
. Set i =

(i1, . . . , iN ), i ′ = (i ′1, . . . , i ′N ), and S′
k = SD,i

k+1 for all k ∈ Z. For i ∈ I and r ∈ [1, N ],

si ′1 · · · si ′r−1
(αi ′r ) = αi holds if and only if SD,ξ

φ−1
ξ ′ (αi )

= SD,ξ

i ′r ,k′
r

= S′
r .

Therefore by Lemma 3.3.7, D′ = {
SD,ξ

φ−1
ξ ′ (αi )

}
i∈I forms a strong duality datum, and

{S′
k}k∈Z are the affine cuspidal modules corresponding to D′ and i ′. Now (5.2.2) for

(i, k) ∈ �
ξ
0 is proved by

SD,ξ
i1,k1

∼= SD,i
1

∼= S′
0

∼= DS′
N

∼= DSD
′,ξ ′

i ′N ,k′
N

∼= SD
′,ξ ′

i1,k1
, and

SD,ξ
ir ,kr

∼= SD,i
r

∼= S′
r−1

∼= SD
′,ξ ′

i ′r−1,k
′
r−1

∼= SD
′,ξ ′

ir ,kr
for r ∈ [2, N ].

Then (5.2.2) for general (i, k) ∈ Q̂ξ
0 also follows from the construction. ��

Lemma 5.2.3 Let D = {Li } be a strong duality datum associated with sln+1, and ξ a
height function or a twisted height function.

(a) Each Si,k is a root module.
(b) Let (i, k), (i ′, k′) ∈ Q̂ξ

0 be such that (i, k) � (i ′, k′). Then the pair (Si,k, Si ′,k′) is
strongly unmixed.

(c) Let (i1, k1), . . . , (i p, kp) be a sequence of elements of Q̂ξ
0 , and assume that

(ir , kr ) � (is, ks) for all r , s ∈ [1, p] such that r < s. Then for any sequence

a1, . . . , ap of positive integers, the head of S⊗a1
i1,k1

⊗ · · · ⊗ S
⊗ap
i p,kp

is simple.

(d) If (i, k), (i ′, k′) ∈ Q̂ξ
0 are incomparable, then Si,k and Si ′,k′ strongly commute.
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Proof (a) This follows from Proposition 3.3.6 (i). (b) Let r , r ′ be the integers satisfying

Si,k = SD,i
r and Si ′,k′ = SD,i

r ′ ,

where i ∈ R(w0) is an element coming from a compatible reading of�ξ . By replacing
(D, ξ) and i using Lemma 5.2.2 (ii), if necessary, we may assume r < r ′. Then the
assertion follows from Proposition 3.3.6 (ii). (c) This follows from (b) and Proposition
3.2.13. (d) As above, we may assume that Si,k = SD,i

r and Si ′,k′ = SD,i
r+1 for some i

and r ∈ Z. If Si,k and Si ′,k′ do not strongly commute, it follows from Lemma 4.2.2 that
Si,k � Si ′,k′ ∼= 1, which implies Si,k ∼= DSi ′,k′ , or equivalently (i ′, k′) = D−1(i, k).
This obviously contradicts the assumption, and the assertion is proved. ��

Let D be a strong duality datum associated with sln+1 and ξ an untwisted or a
twisted height function. For a sequence P = (

(i1, k1), . . . , (i p, kp)
)
of elements of

Q̂ξ
0 satisfying (ir , kr ) � (is, ks) for all 1 ≤ r < s ≤ p, set

S
D,ξ (P) = hd(SD,ξ

i1,k1
⊗ · · · ⊗ SD,ξ

i p,kp
),

which is simple by Lemma 5.2.3. We often write S(P) for S
D,ξ (P).

When ξ is a twisted height function, we define four subsets Q̂ξ,≷
0 , Q̂ξ,D

0 and Q̂ξ,U
0

of Q̂ξ
0 by

Q̂
ξ,≷
0 = {(i, k) ∈ Q̂ξ

0 | i ≷ n0}, Q̂ξ,D
0 =

{
(n0, k) ∈ Q̂ξ

0

∣
∣
∣ (n0, k) →

(
n0 + 1, k + 1

2

)
∈ Q̂ξ

1

}
,

Q̂ξ,U
0 =

{
(n0, k) ∈ Q̂ξ

0

∣
∣
∣ (n0, k) →

(
n0 − 1, k + 1

2

)
∈ Q̂ξ

1

}
. (5.2.3)

Here “D” (resp. “U”) stands for “downward” (resp. “upward”), the direction of all
the arrows incident to the vertices belonging to the subset. When n = 5, these are
illustrated as follows, where ◦ (resp. ♥, ♠, •) belong to Q̂ξ,<

0 (resp. Q̂ξ,U
0 , Q̂ξ,D

0 ,

Q̂ξ,>
0 ):

(i \ k) −4 −3 −2 −1 0 1 2 3 4
1 ◦ ◦ ◦ ◦ ◦

2 ◦ ◦ ◦ ◦
3 · · · · · · ♥ ♠ ♥ ♠ ♥ ♠ ♥ ♠ · · · · · ·
4 • • • • •

5 • • • •

Note that D : Q̂ξ → Q̂ξ maps Q̂ξ,<
0 (resp. Q̂ξ,D

0 ) bijectively onto Q̂ξ,>
0 (resp.

Q̂ξ,U
0 ), and vice versa.
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Definition 5.2.4 ([39])

(1) Assume that ξ is a height function, and (i, k), (i ′, k′) ∈ Q̂ξ
0.

(i) We say (i ′, k′) is in snake position with respect to (i, k) if (i, k + 2) � (i ′, k′).
(ii) We say (i ′, k′) is in prime snake position with respect to (i, k) if

(i, k + 2) � (i ′, k′) � D−1(i, k).

(2) Assume that ξ is a twisted height function, and (i, k), (i ′, k′) ∈ Q̂ξ
0.

(i) We say (i ′, k′) is in snake position with respect to (i, k) if (i, k + 2− δi,n0) �
(i ′, k′),

(i ′, k′) ∈ Q̂ξ,< � Q̂ξ,D when (i, k) ∈ Q̂ξ,< � Q̂ξ,U, and

(i ′, k′) ∈ Q̂ξ,> � Q̂ξ,U when (i, k) ∈ Q̂ξ,> � Q̂ξ,D.

(ii) We say (i ′, k′) is in prime snake position with respect to (i, k) if (i ′, k′) is in
snake position with respect to (i, k), and (i ′, k′) � D−1(i, k).

When we would like to emphasize that ξ is untwisted (resp. twisted), we say (i ′, k′)
is in snake position of untwisted type (resp. of twisted type) with respect to (i, k).

When n = 5 these are illustrated as follows, where • and ◦ are in snake position
with respect to �, and • are in prime snake position with respect to �.

(i \ k) 0 1 2 3 4 5 6 7

1 • ◦ ◦
2 � • • ◦
3 • • ◦
4 • •
5 • ◦

(i \ k) −3 −2 −1 0 1 2 3 4

1 • ◦ ◦
2 � • • ◦
3 • • ◦
4

5

(i \ k) −3 −2 −1 0 1 2 3 4

1

2
3 � • • •
4 • • ◦
5 • ◦

Remark 5.2.5 The definition of prime snake position for ξ ∈ HF can be rephrased in
terms of the denominators of normalized R-matrices between fundamental modules
of type A(1)

n as follows: for (i, k), (i ′, k′) ∈ Q̂ξ
0, (i ′, k′) is in prime snake position

with respect to (i, k) if and only if dL(Yi ′,−k′ ),L(Yi,−k )(1) = 0. This follows from the
denominator formula in [7].
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Similar assertion does not hold for ξ ∈ HFtw. Assume that g is of type B(1)
n0 . For

(i, k), (i ′, k′) ∈ Q̂ξ
0, if (i ′, k′) is in prime snake position with respect to (i, k), then

dL(Yî ′,−2k′ ),L(Yî,−2k )
(1) = 0 holds (see Remark 5.2.1 for the notation), but the converse

is not true (see [41]).

The following definition (with (D, ξ) taken as in Remark 5.2.1) was introduced in
[39].

Definition 5.2.6 Let ξ be a height function or a twisted height function, and P =
(
(i1, k1), . . . , (i p, kp)

)
a sequence of elements of Q̂ξ

0.

(i) We say P is a snake (resp. prime snake) if (is+1, ks+1) is in snake position (resp.
in prime snake position) with respect to (is, ks) for all 1 ≤ s < p. We also say P
is a snake of untwisted or twisted type, when we would like to emphasize the type
of ξ . For a subset � of Q̂ξ

0, we say P is a snake in � if P is a snake and all the
elements of P belong to �.

(ii) Let D be a strong duality datum associated with sln+1. If P is a snake, we call
S(P) = S

D,ξ (P) a snake module (of untwisted or twisted type) associated with
D and ξ .

Lemma 5.2.7 If P = (
(i1, k1), . . . , (i p, kp)

)
is a snake, then so are

D±1P = (
D±1(i1, k1), . . . ,D

±1(i p, kp)
)
,

and we have D±1
S(P) ∼= S(D±1P). Moreover, if P is prime then so are D±1P .

Proof The first and last assertions are easily checked from the definition, and the
second follows from Proposition 3.2.10, since

D±1
S(P) ∼= soc(SD±1(i p,kp) ⊗ · · · ⊗ SD±1(i1,k1))

∼= hd(SD±1(i1,k1) ⊗ · · · ⊗ SD±1(i p,kp)) = S(D±1P).

��
For a sequence P = (

(i1, k1), . . . , (i p, kp)
)
of elements of Q̂ξ

0 and a, b ∈ [1, p] with
a ≤ b, set P[a,b] = (

(ia, ka), (ia+1, ka+1), . . . , (ib, kb)
)
.

Lemma 5.2.8
(i) If (i, k), (i ′, k′) ∈ Q̂ξ

0 satisfy D
−1(i, k) � (i ′, k′), then D�Si,k and Si ′,k′ strongly

commute for all � ∈ Z≥0.
(ii) Let P = (

(i1, k1), . . . , (i p, kp)
) ∈ (Q̂ξ

0)
p be a snake. If (ir+1, kr+1) is not in

prime snake position with respect to (ir , kr ) for some r, then we have

S(P) ∼= S(P[1,r ]) ⊗ S(P[r+1,p]).

Proof SinceD�+1SD−1(i,k)
∼= D�Si,k , the assertion (i) follows from Lemma 5.2.3 (b).

The assertion (ii) easily follows from (i). ��
Later, we will prove that S(P) is prime if P is a prime snake (Theorems 6.2.4 (ii)

and 7.2.6 (ii)).
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6 The Case of Untwisted Height Functions

6.1 Reineke’s Algorithm

In this section, we focus on (untwisted) height functions. We will prove that, if ξ is a
height function and P is a prime snake in Q̂ξ

0, the module S(P) satisfies the assump-
tions of Theorem 4.2.1, using Proposition 3.3.3 (c). For that, we need to calculate
εi (b) and ε∗

i (b) for some b ∈ Bup. An algorithm for this was introduced by Reineke
in [43], which we recall in this subsection.

For i ∈ I , let ī ∈ {0, 1} be such that ī ≡ i mod 2. For δ ∈ {0, 1}, let ξ (δ) ∈ HF
denote the unique height function satisfying ξ

(δ)
i ∈ {0, 1} for all i ∈ I and ξ

(δ)
1 = δ.

We have ξ
(ī)
i = 1 for all i ∈ I . We write �(δ) for �ξ(δ)

, and φ(δ) for φξ(δ) : �
(δ)
0 → R+.

For each i ∈ I , define a subset �i ⊆ �
(ī)
0 by

�i = {( j, k) ∈ �
(ī)
0 | (i, 1) � ( j, k) � (i∗, n)} = {φ−1

(ī)
(α j,l) | 1 ≤ j ≤ i ≤ l ≤ n}.

When n = 5, �(δ) and φ(δ) are as follows:

�(0) :

(i \ k) 0 1 2 3 4 5

1 α1 α2,3 α4,5

2 α1,3 α2,5 α4

3 α3 α1,5 α2,4

4 α3,5 α1,4 α2

5 α5 α3,4 α1,2

�(1) :

(i \ k) 0 1 2 3 4 5

1 α1,2 α3,4 α5

2 α2 α1,4 α3,5

3 α2,4 α1,5 α3

4 α4 α2,5 α1,3

5 α4,5 α2,3 α1

Here the vertices belonging to �2 in �
(0)
0 and �3 in �

(1)
0 are boxed. The proof of the

following lemma is straightforward.

Lemma 6.1.1 Let δ ∈ {0, 1}. For (i, k) ∈ �
(δ)
0 , we have φ(δ)(i, k) = αx,y , where

x =
{
i − k if i − k > 0,

k − i + 1 if i − k ≤ 0,
and y =

{
i + k if i + k ≤ n,

2n + 1 − i − k if i + k > n.

Let δ ∈ {0, 1}. Take a compatible reading {(i1, k1), . . . , (iN , kN )} of �(δ), and
set i = (i1, . . . , iN ) ∈ R(w0). For a �

(δ)
0 -tuple c = (ci,k)(i,k)∈�

(δ)
0

of nonnegative

integers, we set
B(δ)(c) := B i (c) ∈ Bup, (6.1.1)
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where in the right-hand side c is regarded as an element of Z
N≥0 via the bijection

[1, N ] → �
(δ)
0 : r �→ (ir , kr ). We easily see from Propositions 2.2.3 (i) and 5.1.3 that

B(δ)(c) does not depend on the choice of the compatible reading. If ī �= δ, it follows
from (2.2.3) that εi (B(δ)(c)) = ci,0.

The other case is described as follows. For i ∈ I , let Ui be the set of lower closed
subsets of�i . That is, a subset� ⊆ �i belongs to Ui if and only if for any P, Q ∈ �i ,
P ∈ � and Q � P imply Q ∈ �.

Theorem 6.1.2 ([43, Theorem 7.1]) Let j ∈ I , and set δ = j̄ ∈ {0, 1}. For any

c = (ci,k) ∈ Z
�

(δ)
0≥0 , we have

ε j
(
B(δ)(c)

) = max
�∈U j

( ∑

(i,k)∈�

(ci,k − ci,k−2)
)
,

where we set ci,k = 0 if k < 0.

For δ ∈ {0, 1}, let δ∨ = δ + n ∈ {0, 1}. For c ∈ Z
�

(δ)
0≥0 , define c∨ ∈ Z

�
(δ∨)
0≥0 by

c∨ = (ci∗,n−k)
(i,k)∈�

(δ∨)
0

. By Lemma 2.2.1 we have ∗B(δ)(c) = B(δ∨)(c∨), and hence

ε∗
j

(
B(δ)(c)

) = ε j
(
B(δ∨)(c∨)

)
(6.1.2)

holds. Using this, we can also calculate the values of ε∗
i ’s.

6.2 SnakeModules Associated with Height Functions

Fix a strong duality datum D = {Li }i∈I associated with sln+1, and a height function
ξ . We write Q̂ for Q̂ξ , and Si,k for S

D,ξ
i,k ((i, k) ∈ Q̂0).

Lemma 6.2.1 Assume that a sequence P = (
(i1, k1), . . . , (i p, kp)

)
of elements of Q̂0

is a snake, and ( j, l) ∈ Q̂0.

(1) Suppose that ( j, l) ≺ (i1, k1).

(a) If (i1, k1) is in prime snake position with respect to ( j, l), we have
d
(
S j,l , S(P)

) = 1.
(b) If (i1, k1) is not in snake position with respect to ( j, l) (that is, i1 ∈ { j ± r}

and k1 = l + r hold for some r ∈ Z>0), then we have d
(
S j,l , S(P)

) = 0.

(2) Suppose that (i p, kp) ≺ ( j, l).

(c) If ( j, l) is in prime snake position with respect to (i p, kp), we have
d
(
S(P), S j,l

) = 1.
(d) If ( j, l) is not in snakepositionwith respect to (i p, kp), wehaved

(
S(P), S j,l

) =
0.
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Proof We will use the notations in the previous subsection freely. (1) By replacing the
pair (D, ξ) using Lemma 5.2.2, we may assume that

l = −1,

and (D, ξ) is the following specific one:

ξ = ξ (δ) and D = {Li }i∈I with Li =
{
Si,0 if ī �= δ

Si∗,n if ī = δ
for i ∈ I ,

where we set δ = j̄ ∈ {0, 1}. For any (i, k) ∈ Q̂0 satisfying D−1( j, l) � (i, k), we
have d(S j,l ,D−r Si,k) = 0 for all r ≥ 0 by Lemma 5.2.8 (i). Hence by Lemma 3.2.5

(i), we may further assume that (i p, kp) � D−1( j, l), which implies (is, ks) ∈ �
(δ)
0

for all s ∈ [1, p]. We have S j,l = DS j∗,n = DL j . Let {ei,k | (i, k) ∈ �
(δ)
0 } be the

standard basis of Z
�

(δ)
0 , and set c = ∑p

s=1 eis ,ks . It follows from Lemma 3.3.4 that

LD
(
B(δ)(c)

) ∼= S(P), (6.2.1)

and hence we have

d
(
S j,l , S(P)

) = d
(
DL j , S(P)

) = ε j
(
B(δ)(c)

)
(6.2.2)

by Proposition 3.3.3 (c). We see from Theorem 6.1.2 that

ε j
(
B(δ)(c)

) = max
�∈U j

(
�{s ∈ [1, p] | (is, ks) ∈ �} − �{s ∈ [1, p] | (is, ks + 2) ∈ �}).

(6.2.3)
Define P1, P2, . . . , P2p ∈ Q̂0 by

P2s−1 = (is, ks) and P2s = (is, ks + 2) for s ∈ [1, p].

Note that P1 ≺ P2 � P3 ≺ · · · � P2p−1 ≺ P2p holds by the definition of the snake
position. Now we show the assertion (a). In this case, we have P1 ∈ � j . For any
� ∈ U j , we easily see from the lower closedness that there is some t ∈ [0, 2p] such
that Ps ∈ � if and only if s ∈ [1, t], and then we have

�{s ∈ [1, p] | P2s−1 ∈ �} − �{s ∈ [1, p] | P2s ∈ �} =
{
0 if t ∈ 2Z,

1 if t ∈ 2Z − 1.

Hence (a) follows from (6.2.2) and (6.2.3). In the case of (b), we have P1 /∈ � j and
P2 ∈ � j , and the assertion is proved similarly.

(2) Let δ = n − j ∈ {0, 1}. Similarly as above, we may assume that

l = n + 1, ξ = ξ (δ), and D = {Li }i∈I with Li =
{
Si,0 if ī �= δ

Si∗,n if ī = δ
for i ∈ I .
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By a similar argument as above, we may further assume that (is, ks) ∈ �
(δ)
0 for all

s ∈ [1, p]. It follows from Proposition 3.3.3 that

d
(
S(P), S j,l

) = d
(
S(P),D−1L j∗

) = ε∗
j∗

(
B(δ)(c)

)
,

where we set c = ∑p
s=1 eis ,ks ∈ Z

�
(δ)
0≥0 . We easily see that if P and ( j, l) satisfy the

assumption of (c) (resp. (d)), then

P∨ = (
(i∗p, n − kp), (i

∗
p−1, n − kp−1), . . . , (i

∗
1 , n − k1)

)

and ( j∗, n − l) do that of (a) (resp. (b)). Hence the assertions (c) and (d) are proved
from (the proof of) (a) and (b) by using (6.1.2). ��

Let (i, k), (i ′, k′) ∈ Q̂0, and suppose that (i ′, k′) is in prime snake position with
respect to (i, k). We define Qi ′,k′

i,k and Ri ′,k′
i,k , each of which is an element of Q̂0 or the

empty set, by

Qi ′,k′
i,k =

{( 1
2 (i + i ′ + k − k′), 1

2 (i − i ′ + k + k′)
)

if k′ − k < i + i ′,
∅ if k′ − k = i + i ′,

Ri ′,k′
i,k =

{( 1
2 (i + i ′ − k + k′), 1

2 (−i + i ′ + k + k′)
)

if k′ − k < 2n + 2 − i − i ′,
∅ if k′ − k = 2n + 2 − i − i ′.

When n = 5, these are illustrated as follows, where (i, k) (resp. (i ′.k′), Qi ′,k′
i,k , Ri ′,k′

i,k )
are shown as ◦ (resp. •, ∗, �):

(i \ k) 0 1 2 3 4 5 6 7 8 9 10

1 ∗
2 ◦ ∗
3

4 • ◦ •
5 �

Lemma 6.2.2 Let ( j, l), ( j ′, l ′) ∈ Q̂0, and assume that ( j ′, l ′) is in prime snake posi-
tion with respect to ( j, l). Then we have S j,l � S j ′,l ′ ∼= S

Q j ′,l′
j,l

⊗ S
R j ′,l′
j,l

, where we set

S∅ = 1.

Proof Essentially, this is a formula for the product of two dual root vectors, which has
previously been known (see [42]). For the reader’s convenience, we give a proof.
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As above, we may assume that

l = −1, ξ = ξ (δ) with δ = j̄, and D = {Li }i∈I with Li =
{
Si,0 if ī �= δ,

Si∗,n if ī = δ.

Set
� := {(i, k) ∈ Q̂0 | ( j, l) ≺ (i, k) ≺ ( j ′, l ′)} ⊆ �

(δ)
0 .

It follows from Lemma 6.2.1 that d(S j,l , S j ′,l ′) = 1, and thus by Lemma 4.2.2 we
have

S j,l � S j ′,l ′ ∼= hd
( ⊗

(i,k)∈�

S
⊗ai,k
i,k

)
(6.2.4)

for some ai,k ∈ Z≥0, where the factors are ordered compatibly with �. Set a =
(ai,k) ∈ Z

�
(δ)
0≥0 , where ai,k = 0 if (i, k) /∈ �. As in (6.2.1), the image of B(δ)(a) under

LD : Bup → Irr(Cg) is isomorphic to the right-hand side of (6.2.4), and we have

wt
(
B(δ)(a)

) = −
∑

(i,k)∈�

ai,kφ(δ)(i, k).

On the other hand, we have

L j ∇ (S j,l � S j ′,l ′) ∼= L j ∇ (S j ′,l ′ ∇ DL j ) ∼= S j ′,l ′ ,

and since L j and S j ′,l ′ are the images under LD of the dual root vectors of weight −α j

and −φ(δ)( j ′, l ′) respectively, we see that the weight of L−1
D (S j,l � S j ′,l ′) ∈ Bup is

−φ(δ)( j ′, l ′) + α j . Hence it follows from (6.2.4) that

∑

(i,k)∈�

ai,kφ(δ)(i, k) = αx,y − α j = αx, j−1 + α j+1,y, (6.2.5)

where we set φ(δ)( j ′, l ′) = αx,y . We easily check from Lemma 6.1.1 that

φ(δ)(�) ⊆ {αr ,s | r ≤ j ≤ s} � {αr , j−1 | r ≤ j − 1} � {α j+1,s | j + 1 ≤ s},

and from this we see at once that (6.2.5) holds only when a is given as follows:

ai,k = 1 if φ(δ)(i, k) ∈ {αx, j−1, α j+1,y} and ai,k = 0 otherwise.

It is easily seen from Lemma 6.1.1 that x = j if Q j ′,l ′
j,l = ∅ and φ(δ)(Q

j ′,l ′
j,l ) = αx, j−1

otherwise. Similarly, we see that y = j if R j ′,l ′
j,l = ∅ and φ(δ)(R

j ′,l ′
j,l ) = α j+1,y

otherwise. Now, since Q j ′,l ′
j,l and R j ′,l ′

j,l are incomparable when they are nonempty,
(6.2.4), together with Lemma 5.2.3 (d), completes the proof. ��

The following lemma is proved by inspection.
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Lemma 6.2.3 ([38, Proposition 3.2]) Let P = (
(i1, k1), . . . , (i p, kp)

) ∈ (Q̂0)
p be a

prime snake with p ≥ 2, and set

Q = (Qi2,k2
i1,k1

, . . . , Q
ip,kp
i p−1,kp−1

) and R = (Ri2,k2
i1,k1

, . . . , R
ip,kp
i p−1,kp−1

),

where ∅ are ignored. Then Q and R are snakes with no elements in common.

Now we give the main theorem of this section, which is a generalization of [6,
Theorem 3.4] and [38, Proposition 3.1, Theorem 4.1] in type A.

Theorem 6.2.4 Let P = (
(i1, k1), . . . , (i p, kp)

) ∈ (Q̂0)
p be a snake.

(i) The simple module S(P) is real.
(ii) If P is prime, then S(P) is prime.
(iii) Assume that P is prime with p ≥ 2, and set

Q = (Qi2,k2
i1,k1

, . . . , Q
ip,kp
i p−1,kp−1

) and R = (Ri2,k2
i1,k1

, . . . , R
ip .kp
i p−1,kp−1

).

Then S(Q) and S(R) strongly commute, and there is a short exact sequence

0 → S(Q) ⊗ S(R) → S(P[1,p−1]) ⊗ S(P[2,p]) → S(P) ⊗ S(P[2,p−1]) → 0.
(6.2.6)

Proof Using Lemma 6.2.1, the assertion (i) follows fromProposition 4.1.3 and Lemma
5.2.8 (i), and (ii) from Proposition 4.1.1. For (iii), it suffices to show by Theorem 4.2.1
that

hd
( p−1⊗

a=1

(Sia ,ka � Sia+1,ka+1)
) ∼= S(Q) ⊗ S(R), (6.2.7)

which we prove by the induction on p. The case p = 2 is just Lemma 6.2.2. Assume

that p > 2, and write Q for Q
ip,kp
i p−1,kp−1

and R for R
ip,kp
i p−1,kp−1

. By the induction hypoth-
esis, we have

hd
( p−1⊗

a=1

(Sia ,ka � Sia+1,ka+1)
) ∼= (

S(Q′) ⊗ S(R′)
)∇ (SQ ⊗ SR),

where we set

Q′ = (Qi2,k2
i1,k1

, . . . , Q
ip−1,kp−1
i p−2,kp−2

) and R′ = (Ri2,k2
i1,k1

, . . . , R
ip−1.kp−1
i p−2,kp−2

).

To prove (6.2.7), it is enough to show that d(S(Q′), SR) = d(S(R′), SQ) = 0. Indeed
if this holds, then we have

d
(
S(Q), S(R)

) = d
(
S(Q′)∇ SQ, S(R′)∇ SR

) = 0,
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and there is a surjection

(
S(Q′) ⊗ S(R′)

) ⊗ (SQ ⊗ SR) ∼= (
S(Q′) ⊗ SQ

) ⊗ (
S(R′) ⊗ SR

)

� S(Q) ⊗ S(R),

which implies (6.2.7). Let us prove d(S(Q′), SR) = 0 (the other is proved similarly).

We may assume that R �= ∅. Set Q′ = Q
ip−1,kp−1
i p−2,kp−2

. If Q′ �= ∅, then d(S(Q′), SR
) = 0

follows fromLemma6.2.1 (d). Assume that Q′ = ∅, which implies that kp−1−kp−2 =
i p−1 + i p−2. We easily see that every element Q′′ appearing in Q′ satisfies

Q′′ � (i p−2 − 1, kp−2 − 1) if i p−2 �= 1 and Q′′ � (i p−2, kp−2 − 2) if i p−2 = 1.
(6.2.8)

By Lemma 5.2.8, it suffices to show that D−1Q′′
� R holds if Q′′ satisfies (6.2.8).

We show this in the case i p−2 �= 1 (the case i p−2 = 1 is proved similarly). We have

D−1Q′′ � (−i p−2 + n + 2, kp−2 + n) = (i p−1 + s, kp−1 − 2 + s)

for suitable s ∈ Z. On the other hand, R = (i p−1 + r , kp−1 + r) holds for some
r ∈ Z>0, and therefore we have D−1Q′′

� R, as required. The proof is complete. ��

Example 6.2.5 Here we give an example of the short exact sequence (6.2.6), not cor-
responding to any of the Mukhin–Young’s extended T -systems in [38].

Let g be of type A(1)
3 , and setD = {Li }i∈[1,3] with Li = L(Y1,2i−1), which forms a

strong duality datum associated with sl4. Define ξ ∈ HF by ξi = i (i ∈ [1, 3]). Then
it can be proved using Lemma 6.2.2 and (3.4.1) that

S1,2i−1 = L(Y1,2i−1) (i ∈ [1, 3]), S2,2 = L(Y1,3Y1,1),

S2,4 = L(Y1,5Y1,3), and S3,3 = L(Y1,5Y1,3Y1,1).

By applying D±1, all Si,k ((i, k) ∈ Q̂ξ
0) are obtained (see (3.4.2)). Now the sequence

(6.2.6) for a snake P = (
(2, 0), (2, 2), (1, 5)

)
is as follows:

0 → L(Y1,1) ⊗ hd
(
L(Y1,9) ⊗ L(Y1,5Y1,3Y1,1)

)

→ hd
(
L(Y3,9Y3,7) ⊗ L(Y1,3Y1,1)

) ⊗ hd
(
L(Y1,3Y1,1) ⊗ L(Y1,5)

)

→ hd
(
L(Y3,9Y3,7) ⊗ L(Y1,3Y1,1) ⊗ L(Y1,5)

) ⊗ L(Y1,3Y1,1) → 0,

or more explictily,

0→L(Y1,9Y1,5Y1,3Y
2
1,1)→L(Y3,9Y3,7Y1,3Y1,1) ⊗ L(Y2,4Y1,1)→L(Y3,9Y3,7Y2,4Y1,3Y

2
1,1)→0.
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7 The Case of Twisted Height Functions

7.1 Change of a ReducedWord

Throughout this section, we assume that n = 2n0 − 1 with n0 ∈ Z≥2. Unlike the
untwisted case, the results in [43] cannot be applied to reduced expressions adapted to
twisted height functions. In this subsection, we will describe the connection between
untwisted and twisted cases, which enables us to apply the results in the previous
section to twisted cases.

Let θ be the untwisted height function defined by

θi =
{
i for i ∈ [1, n0],
i − 2 for i ∈ [n0 + 1, n],

and � the twisted height function defined by

�i =

⎧
⎪⎨

⎪⎩

i for i ∈ [1, n0 − 1],
n0 − 1/2 for i = n0,

i − 1 for i ∈ [n0 + 1, n].

In this section, we will treat these specific functions only. When n = 7, �θ and ��

are given as follows:

�θ :

(i \ k) 1 2 3 4 5 6 7 8 9 10 11
1 • • • • • •
2 • • • • •
3 • • • •
4 • • • •
5 • • • •
6 • • •
7 • •

�� :

(i \ k) 1 2 3 4 5 6 7 8 9 10 11
1 • • • • • •
2 • • • • •
3 • • • •
4 • • • • • • •
5 • • •
6 • •
7 •

Similarly as in (6.1.1), given a �θ
0 -tuple c = (ci,k)(i,k)∈�θ

0
of nonnegative integers,

define Bθ (c) ∈ Bup by taking a compatible reading �θ
0 = {(i1, k1), . . . , (iN , kN )},

putting i = (i1, . . . , iN ) ∈ R(w0), and setting Bθ (c) = B i (c). We also define
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B�(c′) ∈ Bup similarly for a ��
0 -tuple c′ = (c′

i,k)(i,k)∈��
0
of nonnegative integers.

Given c′, the goal of this subsection is to give a formula for c satisfying Bθ (c) = B�(c′)
using Proposition 2.2.3 (ii), under certain conditions.

We prepare several notations. For j ∈ [n0 + 1, n], let V〈 j〉 be the subset of I × 1
2Z

defined by

V〈 j〉 = (
�θ
0 ∩ ([1, j − 1] × Z)

) � {( j, j − 3/2 + k) | k ∈ [0, 2n − 2 j + 1]}
� {(i, i − 1 + 2k) | i > j, k ∈ [0, n − i]}.

We also set V〈n0〉 = ��
0 and V〈n+ 1〉 = �θ

0 . When n = 7, these are given as follows,
where � in V〈 j〉 denote the points ( j, j +2r −1/2), ( j +1, j +2r), ( j, j +2r +1/2)
with r ∈ [0, n − j − 1] appearing in Lemma 7.1.1 below (the dotted lines connecting
points are for illustrative purposes only):

V〈4〉 = ��
0

(i \ k) 1 2 3 4 5 6 7 8 9 10 11
1 • • • • • •
2 • • • • •
3 • • • •
4 � � � � � � •
5 � � �

6 • •
7 •

V〈5〉
(i \ k) 1 2 3 4 5 6 7 8 9 10 11

1 • • • • • •
2 • • • • •
3 • • • •
4 • • • •
5 • � � � � •
6 � �

7 •

V〈6〉
(i \ k) 1 2 3 4 5 6 7 8 9 10 11

1 • • • • • •
2 • • • • •
3 • • • •
4 • • • •
5 • • • •
6 • � � •
7 �

V〈7〉
(i \ k) 1 2 3 4 5 6 7 8 9 10 11

1 • • • • • •
2 • • • • •
3 • • • •
4 • • • •
5 • • • •
6 • • •
7 • •

V〈8〉 = �θ
0

(i \ k) 1 2 3 4 5 6 7 8 9 10 11
1 • • • • • •
2 • • • • •
3 • • • •
4 • • • •
5 • • • •
6 • • •
7 • •

(7.1.1)

We have � V〈 j〉 = N for all j ∈ [n0, n + 1]. For each j ∈ [n0, n + 1], take and
fix a total ordering V〈 j〉 = {(i1, k1), . . . , (iN , kN )} such that r < s holds whenever
kr < ks , and set i〈 j〉 = (i1, . . . , iN ) ∈ I N . For (i, k) ∈ V〈 j〉, denote by i (k) the
letter ir in i〈 j〉, where r ∈ [1, N ] is such that (ir , kr ) = (i, k). Obviously, i〈n0〉 (resp.
i〈n+ 1〉) is adapted to the twisted height function � (resp. the height function θ ), and
we easily see that i〈n〉 and i〈n+1〉 are commutation equivalent. Let [i〈 j〉] denote the
commutation class containing i〈 j〉.
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Lemma 7.1.1

(i) For each j ∈ [n0, n − 1], there is a word i ∈ [i〈 j〉] containing consecutive
subwords

(
j ( j+2r−1/2), ( j + 1)( j+2r), j ( j+2r+1/2)) for all r ∈ [0, n − j − 1].

Let i ′ be the word obtained from i by transforming all these subwords into ( j +
1, j, j + 1). Then we have i ′ ∈ [i〈 j + 1〉].

(ii) We have i〈 j〉 ∈ R(w0) for all j ∈ [n0, n + 1].
Proof The first assertion of (i) is easily checked, and the second is also checked directly
by noting that the transformation ( j, j + 1, j) → ( j + 1, j, j + 1) is expressed
pictorially as follows:

r − 1 r r + 1

j • •
j + 1 • ⇒

r − 1 r r + 1

j •
j + 1 • •

See (7.1.1). Now (ii) is obvious since i〈n0〉 ∈ R(w0). ��
For each j ∈ [n0, n], define the map

ρ〈 j〉 : Z
V〈 j〉
≥0 → Z

V〈 j+1〉
≥0 , c = (ci,k)(i,k)∈V〈 j〉 �→ c′ = (c′

i,k)(i,k)∈V〈 j+1〉

as follows: for r ∈ [0, n− j − 1], (c′
j+1, j+2r−1/2, c

′
j, j+2r , c

′
j+1, j+2r+1/2) is obtained

by applying the transformation (2.2.2) to (c j, j+2r−1/2, c j+1, j+2r , c j, j+2r+1/2), and
the other c′

i,k’s are determined by c′
i,k = ci,k+t , where

t =

⎧
⎪⎨

⎪⎩

1/2 if (i, k) = ( j, j − 2),

−1/2 if (i, k) = ( j, 2n − j),

0 if i �= j, j + 1.

Set

ρ = ρ〈n〉 ◦ ρ〈n−1〉 ◦ · · · ◦ ρ〈n0〉 : Z
��
0≥0 → Z

�θ
0≥0.

For any c ∈ Z
��
0≥0 , it follows from Lemma 7.1.1 and Proposition 2.2.3 (ii) that

B�(c) = Bθ
(
ρ(c)

)
. (7.1.2)

Let {ei,k | (i, k) ∈ ��
0 } denote the standard basis of Z

��
0 . We would like

to give an explicit formula for ρ(c) when c is expressed as
∑p

r=1 eir ,kr with(
(i1, k1), . . . , (i p, kp)

)
being a snake in ��

0 ⊆ Q̂�
0 . For this, the following remark

is useful.
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Remark 7.1.2 Under the transformation (ck−1, ck, ck+1) �→ (c′
k−1, c

′
k, c

′
k+1) in

(2.2.2), we have

(i) (1, 0, 0) �→ (0, 0, 1), (ii) (0, 0, 1) �→ (1, 0, 0),

(iii) (0, 1, 0) �→ (1, 0, 1), (iv) (1, 0, 1) �→ (0, 1, 0).

Pictorially, these are expressed as follows:

(i) � •
• ⇒ •

• �

(ii) • �
• ⇒ •

� •

(iii) • •
�

⇒ •
� �

(ii) � �
• ⇒

�
• •

Therefore, (i) (resp. (ii)) is seen as moving to lower right (resp. lower left), (iii) as
splitting in two points, and (iv) as combining two points into one.

For 
 ∈ {<,>,U,D}, we write �
�,

0 := ��

0 ∩ Q̂�,

0 . We also write �

�,≥
0 :=

��
0 \ �

�,<
0 .

For (i, k) ∈ �
�,≥
0 , define X−

i,k and X+
i,k , each of which is an element of �θ

0 (not

��
0 ) or the empty set, as follows:

X−
i,k =

{
∅ if (i, k) ∈ �

�,D
0 ,

( 1
2 (�i + k + 2), 1

2 (�i + k − 2)
)

if (i, k) ∈ �
�,>
0 � �

�,U
0 ,

and

X+
i,k =

{
∅ if (i, k) ∈ �

�,U
0 ,

( 1
2 (�i − k + 2n), 1

2 (−�i + k + 2n)
)

if (i, k) ∈ �
�,>
0 � �

�,D
0 .

In addition, for (i, k), (i ′, k′) ∈ �
�,≥
0 such that (i ′, k′) is in snake position (of twisted

type) with respect to (i, k), define Xi ′,k′
i,k , which is an element of �θ

0 or the empty set,
by

Xi ′,k′
i,k =

{
∅ if (i, k) ∈ �

�,U
0 ,

( 1
2 (�i +�i ′ − k + k′), 1

2 (−�i + �i ′ + k + k′)
)

if (i, k) ∈ �
�,>
0 � �

�,D
0 .
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When n = 7, these are illustrated as follows. Here �
�,<
0 is omitted, (i, k) and (i ′, k′)

are shown as ◦ whose first coordinates are read from the left-hand scale, and X±
i,k and

Xi ′,k′
i,k are shown as � whose first coordinates are read from the right-hand scale:

X−
i,k

(i \ k) 3 4 5 6 7 8 9 (k / i)
4 • ◦ • • • • •
5 • • ◦ 4

6 � ◦ • 5

7 � • 6

� 7

X+
i,k

(i \ k) 4 5 6 7 8 9 10 (k / i)
4 • • ◦ • • • ◦
5 • • ◦ � 4

6 ◦ • � 5

7 • � 6

� 7

Xi ′,k ′
i,k

(i \ k) 4 5 6 7 8 9 (k / i)
4 ◦ • ◦ ◦ • • •
5 • � • 4

6 • ◦ 5

7 � 6

7

For a sequence P = (
(i1, k1), . . . , (i p, kp)

)
of elements of �

ξ
0 with ξ ∈ {θ,�}, set

e(P) = ∑
r eir ,kr ∈ Z

�
ξ
0≥0.

Proposition 7.1.3 Assume that P = (
(i1, k1), . . . , (i p, kp)

)
is a snake of twisted type

in ��
0 ⊆ Q̂�

0 . Let 1 = r0 ≤ r1 < · · · < rt−1 < rt < rt+1 = p + 1 be the unique
increasing sequence satisfying the following for all a ∈ [0, t]:
(i) if a ∈ 2Z, then (is, ks) ∈ �

�,<
0 holds for all s ∈ [ra, ra+1 − 1], and

(ii) if a ∈ 2Z + 1, then (is, ks) ∈ �
�,≥
0 holds for all s ∈ [ra, ra+1 − 1].

For each a ∈ [1, t] with a ∈ 2Z + 1, set

P (a) = (
(ir , kr ), . . . , (ir ′−1, kr ′−1)

) ∈ (�
�,≥
0 )r

′−r , and

Q(a) =(X−
ir ,kr

, Xir+1,kr+1
ir ,kr

, . . . , X
ir ′−1,kr ′−1
ir ′−2,kr ′−2

, X+
ir ′−1,kr ′−1

) ∈ (�θ
0 )

r ′′
for some r ′′ ∈ Z>0,

where r = ra and r ′ = ra+1, and ∅ are ignored. Let P† denote the sequence of
elements of �θ

0 obtained from P by replacing the subsequences P (a) with Q(a) for all
a ∈ [1, t] such that a ∈ 2Z + 1. Then P† is a snake of untwisted type in �θ

0 and we
have ρ

(
e(P)

) = e(P†).
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Proof By tracing the transformations appearing in ρ using Remark 7.1.2, ρ
(
e(P)

) =
e(P†) is proved directly. See the following example, which is the case where n = 7,

P = (
(5, 4), (5, 6), (4, 17/2), (4, 19/2)

)
and P† = (

(5, 3), (5, 5), (5, 7), (4, 10)
)
.

(i \ k) 1 2 3 4 5 6 7 8 9 10 11
1 • • • • • •
2 • • • • •
3 • • • •
4 • • • • • ◦ ◦
5 ◦ ◦ •
6 • •
7 •

⇒

(i \ k) 1 2 3 4 5 6 7 8 9 10 11
1 • • • • • •
2 • • • • •
3 • • • •
4 • • • ◦
5 ◦ ◦ ◦ •
6 • • •
7 • •

It is also checked directly by inspection that P† is a snake of untwisted type. ��
Example 7.1.4 When n = 15 and

P = (
(9, 8), (9, 10), (8, 25/2), (7, 15), (8, 35/2), (9, 20)

)
,

we have

P† = (X−
9,8, X

9,10
9,8 , X8,25/2

9,10 , (7, 15), X9,20
8,35/2, X

+
9,20)

= (
(9, 7), (9, 9), (9, 11), (7, 15), (9, 19), (9, 21)

)
.

7.2 SnakeModules Associated with Twisted Height Functions

Fix a strong duality datumD = {Li }i∈I ⊆ Cg associated with sln+1. In the sequel, we
usually omit D and write S�

i,k for S
D,�
i,k , etc. All the assertions in this subsection will

be stated for S�
i,k , but no generality is lost by this specific choice of a twisted height

function by Lemma 5.2.2.
By Proposition 7.1.3, (7.1.2) and Lemma 3.3.4, the following lemma is immediate.

Lemma 7.2.1 Assume that P = (
(i1, k1), . . . , (i p, kp)

)
is a snake in ��

0 , and let P†

be the snake in�θ
0 given in Proposition 7.1.3. Then the snake module S

�(P) of twisted
type is isomorphic to the snake module S

θ (P†) of untwisted type.

Remark 7.2.2 We can also show that for any snake P of twisted type (not necessarily
contained in ��

0 ), the snake module S
�(P) of twisted type is isomorphic to a snake

module of untwisted type. We will not use this fact in the sequel.

Lemma 7.2.3 Let P = (
(i1, k1), . . . , (i p, kp)

)
be a snake in Q̂�

0 , and ( j, l) ∈ Q̂�
0 .

(1) Suppose that ( j, l) ≺ (i1, k1).

(a) If (i1, k1) is in prime snake position with respect to ( j, l), we have d
(
S�
j,l ,

S
�(P)

) = 1.
(b) Assume that �i1 ∈ {� j ± r} and k1 = l + r hold for some r ∈ 1

2Z>0. Then
we have d

(
S�
j,l , S

�(P)
) = 0.
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(c) If ( j, l) ∈ Q̂�,U
0 and (i1, k1) ∈ Q̂�,>

0 � Q̂�,U
0 , or ( j, l) ∈ Q̂�,D

0 and (i1, k1) ∈
Q̂�,<

0 � Q̂�,D
0 , then we have d

(
S�
j,l , S

�(P)
) = 0.

(2) Suppose that (i p, kp) ≺ ( j, l).

(d) If ( j, l) is in prime snake position with respect to (i p, kp), we have
d
(
S

�(P), S�
j,l

) = 1.

(e) Assume that � j ∈ {�i p ± r} and l = kp + r hold for some r ∈ 1
2Z>0. Then

we have d
(
S

�(P), S�
j,l

) = 0.

(f) If (i p, kp) ∈ Q̂�,<
0 � Q̂�,U

0 and ( j, l) ∈ Q̂�,U
0 , or (i p, kp) ∈ Q̂�,> � Q̂�,D

0

and ( j, l) ∈ Q̂�,D
0 , then we have d

(
S

�(P), S�
j,l

) = 0.

Proof (1) By applying Lemma 5.2.7, if necessary, we may (and do) assume in the
proof of each assertion that

(a) ( j, l) ∈ Q̂�,<
0 � Q̂�,U

0 ,

(b) �i1 = � j − r and k1 = l + r for some r , and in particular, j /∈ Q̂�,D
0 ,

(c) ( j, l) ∈ Q̂�,U
0 and (i1, k1) ∈ Q̂�,>

0 � Q̂�,U
0 ,

respectively. In all these three cases, we may further assume by a similar argument as
in Lemma 6.2.1 that

l = � j − d j and (is, ks) ∈ ��
0 for all s ∈ [1, p], (7.2.1)

where we set di = 2 − δi,n0 for i ∈ I . It follows from Lemma 7.2.1 that

d
(
S�
j,l , S

�(P)
) = d

(
DS�

j∗,� j−d j+n, S
�(P)

)

= d
(
D S

θ
((

( j∗,� j − d j + n)
)†)

, S
θ (P†)

)
, (7.2.2)

and it is directly checked from Proposition 7.1.3 that

(
( j∗,� j−d j+n)

)† =

⎧
⎪⎨

⎪⎩

(
(n,−2 + n), ( j∗, j − 1 + n)

)
if j < n0,(

(n0, n0 − 1 + n)
)

if ( j, l) = (n0, n0 − 3/2),
(
( j∗, j − 3 + n)

)
if j > n0,

which implies

D S
θ
(
( j∗,� j − d j + n)†

) ∼=

⎧
⎪⎨

⎪⎩

Sθ
1,−3 ∇ Sθ

j, j−2 if j < n0,

Sθ
n0,n0−2 if j = n0,

Sθ
j, j−4 if j > n0.
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On the other hand, we can also show using the same proposition that

FT(P†) =

⎧
⎪⎨

⎪⎩

(i1, k1) if (i1, k1) ∈ �
�,<
0 ,

(i1 + s, k1 + s + 1/2) for some s if (i1, k1) ∈ �
�,D
0 ,

( 1
2 (�i1 + k1 + 2), 1

2 (�i1 + k1 − 2)
)

if (i1, k1) ∈ �
�,>
0 � �

�,U
0 ,

(7.2.3)
where we denote by FT(P†) the first term of the sequence P†.

Now let us prove the assertion (a),wherewe are assuming that ( j, l) ∈ Q̂�,<
0 �Q̂�,U

0
and l = � j − d j . By the above calculations, we have

d
(
S�
j,l , S

�(P)
) =

{
d
(
Sθ
1,−3 ∇ Sθ

j, j−2, S
θ (P†)

)
if j < n0,

d
(
Sθ
n0,n0−2, S

θ (P†)
)

if j = n0.
(7.2.4)

By the definition of the snake position, we have (i1, k1) ∈ �
�,<
0 � �

�,D
0 , and then we

easily see from (7.2.3) that

D−1
θ (1,−3) = (n, n − 2) � FT(P†),

which implies thatD s Sθ
1,−3 and S

θ (P†) strongly commute for all s ∈ Z≥0 by Lemma
5.2.8 (i). Therefore (7.2.4), together with Lemma 3.2.5, gives

d
(
S�
j,l , S

�(P)
) = d

(
Sθ
j, j−2, S

θ (P†)
)

for all j ≤ n0.

It is easy to check using (7.2.3) that, if (i1, k1) is in prime snake position with respect
to ( j, l) in Q̂�

0 , then FT(P†) is in prime snake position with respect to ( j, j − 2) in
Q̂θ

0. Since P† is a snake in Q̂θ
0 by Proposition 7.1.3, the assertion (a) now follows

from Lemma 6.2.1 (a).
Next let us prove (b), where we are assuming that

�i1 = � j − r , k1 = l + r for some r , and l = � j − d j . (7.2.5)

If j ≤ n0, then i1 < n0 holds and by the same calculation as above we have

d
(
S�
j,l , S

�(P)
) = d

(
Sθ
j, j−2, S

θ (P†)
)

and FT(P†) = (i1, k1).

The assertion (b) then follows from Lemma 6.2.1 (b). If j > n0, on the other hand,
we have

d
(
S�
j,l , S

�(P)
) = d

(
Sθ
j, j−4, S

θ (P†)
)
.

Noting that (i1, k1) /∈ �
�,D
0 , it is easy to show from (7.2.3) and (7.2.5) that FT(P†) =

( j−r ′, j−4+r ′) holds for some r ′, and hence the assertion follows fromLemma 6.2.1
(b) in this case as well.

Finally let us prove (c), where we are assuming that

( j, l) = (n0, n0 − 3/2) ∈ Q̂�,U
0 and (i1, k1) ∈ �

�,>
0 � �

�,U
0 .
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As calculated above, we have S�
j,l

∼= Sθ
n0,n0−2 and FT(P†) = (n0 + s, n0 − 2+ s) for

suitable s. Hence the assertion follows from Lemma 6.2.1 (b).
All the assertions of (2) are proved similarly. ��
Let (i, k), (i ′, k′) ∈ Q̂�

0 , and suppose that (i ′, k′) is in prime snake position with

respect to (i, k). We define Qi ′,k′
i,k and Ri ′,k′

i,k , each of which is a sequence of zero, one

or two elements of Q̂�
0 , as follows: if (i, k) ∈ Q̂�,<

0 � Q̂�,U
0 , we set

Qi ′,k′
i,k =

{
∅ (k′ − k = �i + �i ′ ),
(
( 12 (�i + �i ′ + k − k′), 1

2 (�i − �i ′ + k + k′))
)

(k′ − k < �i + �i ′ ),

Ri ′,k′
i,k =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
( 12 (i + i ′ − k + k′), 1

2 (−i + i ′ + k + k′))
)

(i, i ′ < n0, k′ − k < 2n0 − i − i ′),
(
(n0,−i + k + n0 − 1

2 ), (n0, i ′ + k′ − n0 + 1
2 )

)
(i, i ′ < n0, k′ − k ≥ 2n0 − i − i ′),

(
(n0,−i + k + n0 − 1

2 )
)

(i < n0, i ′ = n0),
(
(n0, i ′ + k′ − n0 + 1

2 )
)

(i = n0, i ′ < n0),

∅ (i = i ′ = n0).

If (i, k) ∈ Q̂�,>
0 � Q̂�,D

0 , putting ( j, l) = D(i, k) and ( j ′, l ′) = D(i ′, k′), we set

Qi ′,k′
i,k = D−1R j ′,l ′

j,l and Ri ′,k′
i,k = D−1Q j ′,l ′

j,l . These are illustrated as follows, where

(i, k) (resp. (i ′, k′), Qi ′,k′
i,k , Ri ′,k′

i,k ) are shown as ◦ (resp. •, ∗, �):
(i \ k) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 ∗ ∗
2 ◦ • ∗ ∗
3 � ◦ • ◦ •
4 � � ◦ • � ∗ • ◦ • �
5 ∗ �

6 ◦ • ◦
7 �

Lemma 7.2.4 Let (i, k), (i ′, k′) ∈ Q̂�
0 , and assume that (i ′, k′) is in prime snake

position with respect to (i, k). Then we have

S�
i,k � S�

i ′,k′ ∼= S
�(Qi ′,k′

i,k ) ⊗ S
�(Ri ′,k′

i,k ).

Proof Since

D(S�
i,k � S�

i ′,k′) ∼= S�
D(i ′,k′) ∇ S�

D(i,k)
∼= S�

D(i,k) � S�
D(i ′,k′),

we may assume by using Lemma 5.2.7 that (i, k) ∈ Q̂�,<
0 � Q̂�,U

0 . First let us

consider the case (i, k) ∈ Q̂�,U
0 .Wemay further assume by Lemma 5.2.2 that (i, k) =

(n0, n0 − 3/2), which forces (i ′, k′) ∈ �
�,<
0 � �

�,D
0 . If (i ′, k′) ∈ �

�,<
0 , it is proved

directly from Proposition 7.1.3 and Lemma 6.2.2 that

S�
i,k � S�

i ′,k′ ∼= Sθ
n0,n0−2 � Sθ

i ′,k′ ∼= Sθ

Qi ′,k′
n0,n0−2

⊗ Sθ

Ri ′,k′
n0,n0−2

∼= S
�(Qi ′,k′

i,k ) ⊗ S
�(Ri ′,k′

i,k ),
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and the assertion is proved. The case (i ′, k′) ∈ �
�,D
0 is proved by a similar calculation.

Next let us consider the case (i, k) ∈ Q̂�,<
0 . We may assume that k = i , and then

by the definition of the prime snake position we have (i ′, k′) ∈ �
�,<
0 � �

�,D
0 . Now

the assertion is proved by a similar argument as above. ��
Similarly to Lemma 6.2.3, the following is proved by inspection.

Lemma 7.2.5 ([38, Proposition 3.2]) Let p ∈ Z≥2, and P = (
(i1, k1), . . . , (i p, kp)

)

be a prime snake in Q̂�
0 . Set

Q = Qi2,k2
i1,k1

∗ · · · ∗ Q
i p,kp
i p−1,kp−1

and R = Ri2,k2
i1,k1

∗ · · · ∗ R
i p,kp
i p−1,kp−1

,

where ∗ denotes the concatenation. Then Q and R are snakes with no elements in
common.

Now we give the main theorem of this section, which is a generalization of [6,
Theorem 3.4] and [38, Proposition 3.1, Theorem 4.1] in type B.

Theorem 7.2.6 Let P = (
(i1, k1), . . . , (i p, kp)

)
be a snake in Q̂�

0 .

(i) The simple module S
�(P) is real.

(ii) If P is prime, then S
�(P) is prime.

(iii) Assume that P is prime with p ≥ 2, and set

Q = Qi2,k2
i1,k1

∗ · · · ∗ Q
i p,kp
i p−1,kp−1

and R = Ri2,k2
i1,k1

∗ · · · ∗ R
i p,kp
i p−1,kp−1

.

Then S
�(Q) and S

�(R) strongly commute, and there is a short exact sequence

0→S
�(Q)⊗S

�(R)→S
�(P[1,p−1])⊗S

�(P[2,p])→S
�(P)⊗S

�(P[2,p−1])→0.
(7.2.6)

Proof The proof is similar to that of Theorem 6.2.4.
Using Lemma 7.2.3, the assertions (i) and (ii) are proved from Propositions 4.1.3

and 4.1.1, respectively. For (iii), by the same argument as in the proof of Theorem
6.2.4, it suffices to show for p ≥ 3 that

d
(
S

�(Q′), S
�(R

i p,kp
i p−1,kp−1

)
) = 0 = d

(
S

�(R′), S
�(Q

i p,kp
i p−1,kp−1

)
)
,

where we set

Q′ = Qi2,k2
i1,k1

∗ · · · ∗ Q
i p−1,kp−1
i p−2,kp−2

and R′ = Ri2,k2
i1,k1

∗ · · · ∗ R
i p−1,kp−1
i p−2,kp−2

.

Let us show the former equality (the latter is proved similarly). Set R̃ = R
i p,kp
i p−1,kp−1

,

which we may assume not to be the empty set. If Q
i p−1,kp−1
i p−2,kp−2

�= ∅, then the equality is



Strong duality Data of type A and extended T -systems

proved from Lemma 7.2.3 (e) and (f). Assume that Q
i p−1,kp−1
i p−2,kp−2

= ∅. If (i p−2, kp−2) ∈
Q̂�,<

0 � Q̂�,U
0 , then the same argument as in the proof of Theorem 6.2.4 shows that

R � D−1Q for all Q ∈ Q′ and R ∈ R̃, (7.2.7)

and hence the equality holds. If (i p−2, kp−2) ∈ Q̂�,>
0 � Q̂�,D

0 , on the other hand,

Q
i p−1,kp−1
i p−2,kp−2

= ∅ implies

(i p−2, kp−2) ∈ Q̂�,D
0 , (i p−1, kp−1) ∈ Q̂�,U

0 and R̃ ⊆ Q̂�,U
0 .

If p = 3 or Q
i p−2,kp−2
i p−3,kp−3

= ∅, then (7.2.7) holds as well, and the equality follows. If

Q
i p−2,kp−2
i p−3,kp−3

�= ∅, on the other hand, we have Q
i p−2,kp−2
i p−3,kp−3

⊆ Q̂�,<
0 and therefore the

equality follows from Lemma 7.2.3 (f). The proof is complete. ��

Example 7.2.7 Assume that g is of type A(1)
3 , and let D = {Li }i∈[1,3] ⊆ Cg be the

strong duality datum of type sl4 defined by

L1 = L(Y1,7), L2 = L(Y2,4), and L3 = L(Y3,7).

Then we have

S�
1,1 = L(Y1,7), S�

2,3/2 = L(Y3,5), S�
3,2 = L(Y3,7Y3,5), S�

2,5/2 = L(Y3,7),

S�
1,3 = L(Y1,5), S�

2,7/2 = L(Y2,4),

and the exact sequence (7.2.6) for P = (
(3, 2), (2, 9/2), (2, 11/2)

)
is as follows:

0→hd
(
L(Y3,7)⊗L(Y1,3Y1,1)

)→hd
(
L(Y3,7Y3,5)⊗L(Y1,1)

)⊗hd(L(Y1,1)⊗L(Y1,3)
)

→ hd
(
L(Y3,7Y3,5) ⊗ L(Y1,1) ⊗ L(Y1,3)

) ⊗ L(Y1,1) → 0,

or more explicitly,

0 → L(Y3,7Y1,3Y1,1) → L(Y3,7Y3,5Y1,1) ⊗ L(Y2,2) → L(Y3,7Y3,5Y2,2Y1,1) → 0.
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