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Abstract
In this paper, we give Z [1/2]-forms of SO(3,C)-orbits in the flag variety of SL3(C).
We also prove that they give a Z [1/2]-form of the SO(3,C)-orbit decomposition of
the flag variety of SL3.

1 Introduction

Motivated by applications to special values of automorphic L-functions, Michael Har-
ris, Günter Harder, and Fabian Januszewski started to work on (g, K )-modules over
number fields and localization of the rings of their integers in the 2010s ([8–10, 18–
20]). For general theory of (g, K )-modules over commutative rings, see [12, 13].
Among those, Harris proposed to construct rational models of discrete series repre-
sentations from the corresponding closed K -orbits in the flag variety and line bundles
on them over the field C of complex numbers through the localization. In [16], we
studied descent properties of rings of definition of certain closed K -orbits in themoduli
scheme of parabolic subgroups of G for reductive group schemes K ⊂ G in the sense
of [2, Définition 2.7]. As a consequence, we established real and smaller arithmetic
forms of Aq(λ)-modules ([16, Section 6.2]).

In this paper, we study rings of definition of the remaining three SO(3,C)-orbits
in the complex flag variety of SL3. The main result is to establish a Z [1/2]-analog of
the SO(3,C)-orbit decomposition of the complex flag variety of SL3:

Theorem 1.1 (Theorem 3.4, Theorem 3.13, Lemma 3.14, Theorem 4.1) The flag
scheme BSL3 of SL3 over Z [1/2] is decomposed into four affinely imbedded sub-
schemes which are SO(3)-homogeneous in the étale topology in the sense of [1,
Proposition et défintion 6.7.3].
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1.1 First Perspective: (g, K)-Modules over Commutative Rings

In the representation theory of Lie groups, there are many phenomena which we can
understand through real and complex geometry. For instance, there are two geometric
realizations of principal series representations of the special linear Lie group SL3(R).
For simplicity, we restrict ourselves to (the Harish-Chandra module of) the principal
series representation Xps with trivial parameter. We can realize Xps by using the
real flag manifold SL3(R)/Bstd(R), where Bstd(R) is the Borel subgroup of SL3(R)

consisting of upper triangular matrices. The representation Xps can be realized as the
space of functions of SL3(R)/Bstd(R). According to the Iwasawa decomposition, it
can be identified with SO(3,R)/Bstd(R) ∩ SO(3,R), where SO(3,R) is the special
orthogonal group. This is a geometric explanation why Xps is induced from the trivial
representation of SO(3,R) ∩ Bstd(R) as a representation of SO(3,R). We also note
that Xps admits a natural real structure by this construction. The other realization is to
use the complex flag variety of SL3. We define the complex algebraic groups SL3(C),
Bstd(C), SO(3,C) in a similar way. Then, we have a unique open SO(3,C)-orbit in
the complex flag variety SL3(C)/Bstd(C). As a complex SO(3,C)-variety, it is given
by SO(3,C)/SO(3,C)∩ Bstd(C). The representation Xps can be realized as the space
of regular functions on this orbit. We can think of these regular functions as global
sections of the pushforward of the coordinate ring of this orbit to SL3(C)/Bstd(C).
These two realizations are related by the analytic continuation.

What happens to other kinds of representations? The Beilinson-Bernstein corre-
spondence tells us that irreducible Harish-Chandra modules of SL3(R) with trivial
infinitesimal character are obtained by D-modules on the complex flag variety. For
example, the fundamental representation Ab(0) is attached to the unique closed
SO(3,C)-orbit. Can we obtain them from real geometric objects? The transitivity
of the SO(3)-action on the real flag manifold of SL3 tells us that principal series rep-
resentations should be the only representations which we can obtain from the real flag
manifold.

To give another nice answer to the above question, we shall change the point of
view. Since there is only one closed SO(3,C)-orbit in SL3(C)/Bstd(C), this orbit is
stable under formation of the complex conjugation. Hence, it is naturally defined over
the real numbers by Galois descent. In fact, we realized this object as the real flag
variety of SO(3) in [16, Section 5]. More strongly, we gave an equivariant closed
immersion of flag schemes over Z [1/2]. The point is that this real algebraic variety
which does exist does not admit real points. Hence, it cannot appear in the formalism
of manifolds. It is not an SO(3)-orbit as well by the same reason. However, it is
homogeneous in the sense of [1, Proposition et défintion 6.7.3]. This appears to be a
nice formalism to study “orbit-like” objects over general base fields (rings). This real
algebraic subvariety gives rise to a real form of the fundamental series representation
Ab(0) via localization ([16, Section 6.2]). The existence of the real form of Ab(0)was
proved algebraically in [19, Theorem 7.3].

The main purpose of this paper is to construct Z [1/2]-forms of the remaining
SO(3,C)-orbits explicitly. Philosophically, this result says that all irreducible admis-
sible representations of SL3(R) (with regular infinitesimal character) are controlled
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by real algebro-geometric objects (cf. [16, Definition 3.5.1, Corollary 4.2.2]). We will
even control representations over Z[1/2] at the level of orbits. As a consequence of
our direct computational approach, we find that the Z[1/2]-forms of the orbits are
represented by affine schemes except the closed one. This fact makes the study of
the global section modules of the direct and proper direct image twisted D-modules
(cf. [14, Appendix A]).

1.2 Second Perspective: Combinatorics of Orbit Decomposition

Traditional problems in the theory of combinatorics of orbit decomposition are sum-
marized as follows:

Problem 1.2 Let k be a commutative ring, and X be a k-scheme, equipped with an
action of a group scheme K over k. Classify the K (F)-orbits in X(F) for a field F
over k.

The ring k in Problem 1.2 should be usually a certain localization of the ring of
integers or the field of rational numbers. The description of the classification depends
on F in most cases. For instance, the number of orbits may differ by F . On the other
hand, one can find by experience that some parts of the classifications are independent
of F . In fact, we (possibly implicitly) happen to solve equations on the course of
classification by nature of the algebro-geometric formulation. Among those equations,
some may be defined over k. As far as such equations are concerned, there are two
factors why the dependence happens:

1. Existence of solutions;
2. Dependence on choice of solutions (Galois symmetry).

Hence, the larger rings k′, we replace k by, the more uniform classification we obtain.
In this paper, we suggest the three things.

1. We quit solving equations whose solutions essentially depend on fields F .
2. Attach a Galois extension k → k′ with Galois group� to an independent equation.

Then, we find �-invariant parts of a decomposition of X(F ′) for fields F ′ over k′.
3. We do these things at the level of schemes to get a decomposition of X into K -

invariant subspaces Zλ as a set.

Decomposition into subspaces Zλ may not give a complete answer to Problem 1.2 but
instead that we obtain a uniform decomposition of X(F) in F into K (F)-invariant
subsets Zλ(F). In fact, Zλ(F) can have multiple K (F)-orbits. We explain below that
Zλ(F) can be also empty.

Problem 1.3 Decompose X into smaller pieces of K -invariant subspaces represented
by k-schemes.

We would like to suggest a basic strategy to get Zλ, which consists of four phases.

1. Take a Galois extension k → k′.
2. Define K ⊗k k′-orbits of X ⊗k k′ by taking k′-points of X .
3. Prove that the K ⊗k k′-orbits decompose X ⊗k k′ as a set.
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4. Study the Galois orbit of the set of K ⊗k k′-orbits to get subspaces over k by the
Galois descent.

The last phase says that we prove that a K ⊗k k′-orbit admits a k-form by showing
that it admits a Galois action; otherwise, we get a k-scheme by joining K ⊗k k′-
orbits. For example, see [16, Example 5.2.22]. We can regard that [16, Proposition
5.1.1] is the case that the Galois orbit has two elements (K = SO(2), k = Z [1/2],
k′ = Z

[
1/2,

√−1
]
). This is the reason why Zλ(k) may be empty. This observation

tells us that even if the Galois orbit is a singleton, the expected “orbits” (subspaces)
Zλ may not have a base point. The author believes that the key ingredients to achieve
each phase of our program lie in the combinatorial study of Problem 1.2.

More specifically, we shall think of the KC-orbit decomposition of flag varieties.
For this, recall the Matsuki classification ([22], see also [25] for similar results over
algebraically closed fields of characteristic �= 2). Let G be a connected real reductive
algebraic group, and g0 be its Lie algebra. Let K be a maximal compact subgroup
of the group G(R) of real points of G, and KC be its complexification. Let θ be the
Cartan involution relative to K . For a θ -stable Cartan subalgebra h0 ⊂ g0, set

h = h0 ⊗R C, WG(g, h) = NG(C)(h)/ZG(C)(h), WG(g, h)σ = NK (h)/ZK (h),

where N and Z denote the normalizer and the centralizer respectively. Let BG be the
flag variety of G. There exists a bijection

KC\BG(C) ∼=
∐

h0

WG(g, h)σ \WG(g, h),

where h0 runs through fixed representatives of K -conjugacy classes of θ -stable Cartan
subalgebras.

Example 1.4 The special orthogonal group SO(2,R) acts on the real projective line
P
1(R) transitively. On the other hand, there are three SO(2,C)-orbits in P

1(C). This
difference suggests us to decomposeP1 into the SO(2)-orbit containing real points and
the others which are closed. Since the complex conjugation switches the two closed
orbits {√−1} and {−√−1} in C ∪ {∞} ∼= P

1(C), the two SO(2,C)-orbits are not
defined over R but their union is. Technically, observe that the Galois action

√−1 �→
−√−1 is represented by the diagonal matrix diag(1,−1) ∈ O(2,R) \ SO(2,R),
where O(2,R) is the orthogonal group. Moreover, O(2,C) is generated by SO(2,C)

and this matrix. Therefore, the union is an O(2,C)-orbit defined over R. Based on
this idea, we proved a Z-analog of the O(2,C)-orbit decomposition of the flag variety
of GL2 in [16, Section 5.1]. We summarize the present observation as follows: the
closed SO(2,C)-orbits are not defined over R but that the closed O(2,C)-orbit is so.
This difference comes from the fact diag(1,−1) ∈ O(2,R) \ SO(2,R). This matrix
appears in the Matsuki classification. In fact, we denote split Cartan subalgebras of
the real special linear Lie algebra sl2(R) and the real general linear lie algebra gl2(R)

by the same symbol hstd,0, and denote the fundamental Cartan subalgebras of sl2(R)

and gl2(R) containing the orthogonal Lie algebra so(2,R) by the same symbol hfun,0.
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Then, we have

WSL2(sl2, hstd)
σ ∼= WSL2(sl2, hstd)

∼= WGL2(gl2, hstd)
∼= WGL2(gl2, hstd)

σ ,

WSL2(sl2, hfun)
σ = {1}, WGL2(gl2, hfun)

σ ∼= Z/2Z.

The nontrivial element of WGL2(g, hfun)
σ is represented by diag(1,−1).

Example 1.5 Put G = SL3. The compact Lie group SO(3,R) acts transitively on
BSL3(R), and there are four SO(3,C)-orbits in BSL3(C). One should separate the
SO(3)-orbit containing real points and the others. We can see that the unique closed
SO(3,C)-orbit is defined over the real numbers from [16, Proposition 5.5.2]. The key
idea for its proof is that a corresponding Borel subgroup of SL3 is determined by a
regular cocharacter to SO(3,C), and that its conjugation is expressed by the action of
w0 = diag(1,−1,−1) ∈ SO(3,R). That is, w0 plays the role of the Galois action.
This should happen sincew0 = −1 as an element of the Weyl group of SO(3,C). The
main idea of this paper is as follows: w0 also plays the role of the Galois action to
certain Borel subgroups corresponding to the other two orbits since the Weyl group of
SL3(C) does not contain −1. For example, we can explain it at the Lie algebra level
as follows: set

tfun,0 = R

⎛

⎝
0 1 0

−1 0 0
0 0 0

⎞

⎠ ,

and hfun,0 ⊂ sl(3,R) be the fundamental Cartan subalgebra containing tfun,0. Let
hfun,0 = tfun,0 ⊕ afun,0 denote the Cartan decomposition. Then, w0 acts on tfun,0
by −1. Since w0 �= −1 and w2

0 = 1 as an element of the Weyl group of SL3, and
dim afun,0 = 1, w0 acts on afun,0 by 1. Since an element of hfun determining each of
the above two Borel subgroups belongs to

√−1tfun,0 ⊕ afun,0, the action of w0 on
this element coincides with the conjugate action. In this paper, we improve this idea
to work over Z [1/2].

Like the last part of Example 1.5, we will have to analyze combinatorial results
carefully in general to get hints from them. The author is working in progress on a
Z [1/2]-analog of the KC-orbit decomposition of the flag varieties for higher rank
classical groups by proactive use of [25]. There is also a more general formalism:

Problem 1.6 Let G be a reductive group scheme over k, and K be a closed subgroup
scheme ofG. Decompose the moduli scheme of parabolic subgroups ofG into smaller
pieces of K -invariant subschemes.

Note that symmetric subgroups in the sense of [15, Example 3.1.2] will be typical
examples of K .

1.3 Organization of this Paper

In Section2, we collect some general results on decompositions of schemes to verify
ideas of Section1.2. In Appendix A, we collect some general results on descent tech-
niques in abstract algebraic geometry. They will be helpful when we try to find forms



T. Hayashi

of orbit decompositions of schemes, based on our general program of Section1.2. In
Section3, we use them to construct Z [1/2]-forms of the SO(3,C)-orbits in BSL3(C).
We also give their moduli descriptions.We cost many pages to this section for confirm-
ing the moduli descriptions (particularly Theorem 3.4 and Lemma 3.9) because we
perform theGram-Schmidt process and its versions explicitly and independently to the
general matrices of size 3×3. As a result, we find explicit formulas of the defining rela-
tions of the SO(3)-homogeneous subschemes of BSL3 . We also cost pages to the proof
of the isomorphism SO(3)/SO(2) ∼= SpecZ[1/2,√−1, x, y, z]/(x2 + y2 + z2 − 1)
in Proposition 3.6, based on the sheaf-theoretic definition of SO(3)/SO(2). In fact,
we construct the inverse of the canonical map from left to right étale locally. On these
courses and the formulations to these results, we meet many matrices of size 3 × 3.
Section4 is devoted to the conclusion. In Appendix B, we use ideas of this paper to
give a reasonable realization of the flag scheme of SO(3) over Z [1/2]. We also estab-
lish a Z [1/2]-form of the SO(3,C)-orbit decomposition of a proper complex partial
flag variety of SL3. We again meet matrices of size 3 × 3 which take large space.
Totally, the many pages are needed for the case-by-case studies of the orbits through
computations of large matrices.

1.4 Notation

We follow [15] for the notations and conventions. In the below, we list additional
notations.

To save space, we denote vertical vectors in R3 as (a1 a2 a3)T for a commutative
ring R.

For a field F , we denote its algebraic closure by F̄ .
Let k be a commutative ring. Let CAlgredk denote the full subcategory of CAlgk

consisting of reduced k-algebras.A sheaf on the big affine étale site over k will be called
an étale k-sheaf, which will be identified with a copresheaf on CAlgk in this paper. If
necessary, see [24, Section 2] for the general formalism of sheaves on sites. We will
regard k-schemes as étale k-sheaves by the restrictedYoneda functor (see [24, Theorem
4.1.2]). For a copresheaf F on CAlgk and a k-algebra R, we will sometimes identify
an element x ∈ F(R) with a natural transformation Spec R → F of copresheaves by
the Yoneda lemma. It is evident by definitions that for any homomorphism k → k′ of
commutative rings, the base change −⊗k k′ sends étale k-sheaves to étale k′-sheaves.

For the formalism of quotient by group schemes, we adopt the quotient in the étale
topology. That is, let k be a commutative ring, G be a group k-scheme, and H ⊂ G be
a subsegroup k-scheme. Then, G/H is the étale sheafification of the k-space defined
by R �→ G(R)/H(R). See [1] for the general formalism. Although G/H is not
represented by a k-scheme in general, we will see that the quotients appearing in this
paper are representable.

For a reductive group scheme G over a scheme S in the sense of [2, Définition 2.7],
the moduli scheme of Borel subgroups of G will be denoted by BG (see [3, Corollaire
5.8.3 (i)]).

Let X be a scheme over k. Let |X | denote the underlying set of X . We will use a
similar notation for morphisms of schemes. For a point x ∈ |X |, let κ(x) denote the
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residue field at x . If we are given a field F over k and an element x ∈ X(F), we will
also denote the residue field of X at the image of the point of |Spec F | along the map
|x | : |Spec F | → |X | by the same symbol κ(x). For a point x ∈ |X |, we denote the
geometric point Spec κ(x) → Spec κ(x) → X by x̄ .

Let Bstd denote the Borel subgroup of SL3 over Z [1/2] consisting of upper trian-
gular matrices.

2 Remark on Set-Theoretic Decomposition of Schemes

Fix k as a commutative ground ring. Let X be a k-scheme, and {iλ : Zλ → X}λ∈� be
a small set of monomorphisms of k-schemes. We say that {Zλ} exhibits a set-theoretic
decomposition of X if the canonical map

∐
λ∈� |Zλ| → |X | is a bijection. The goal

of this paper is to decompose the flag scheme BSL3 into SO(3)-invariant subschemes
as a set. In this section, we note some general results on set-theoretic decompositions
of schemes to relate them with the results of combinatorics.

Theorem 2.1 The following conditions are equivalent:

(a) The canonical map
∐

λ∈� |Zλ| → |X | is a bijection.
(b) The canonical map

∐
λ∈� Zλ(F) → X(F) be a bijection for every field F over

k.
(c) The canonical map

∐
λ∈� Zλ(F) → X(F) be a bijection for every algebraically

closed field F over k.

Proof It is clear that (b) implies (c). Suppose that {Zλ} satisfies (c). We prove {Zλ}
exhibits a set-theoretic decomposition of X . Let x ∈ |X |. Since the map

(iλ) :
∐

λ

Zλ(κ(x)) → X(κ(x))

is a bijection, there exist an index λ and a unique element zλ ∈ Zλ(κ(x)) such that
iλ(zλ) = x̄ . The point x is the image of the unique point of |Spec κ(x)| along the
composite map |x̄ | = |iλ| ◦ |zλ| :| Spec κ(x) |→| X |. This shows that the map∐

λ |Zλ| → |X | is surjective. To see that it is injective, recall that each map |iλ| :
|Zλ| → |X | is injective by [6, Remarque 8.11.5.1]. Hence, it will suffice to show that
the images of |iλ| are disjoint in |X |. Let λ,μ ∈ � be distinct indices, zλ ∈ |Zλ|,
and zμ ∈ |Zμ|. Suppose that |iλ|(zλ) = |iμ|(zμ) =: x . Then, we canonically obtain a
commutative diagram

Spec κ(zλ) Zλ X Zμ Spec κ(zλ′)

Spec κ(x)

zλ iλ iμ zλ′

x
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Then, we can find an algebraically closed field F enjoying a commutative diagram

Spec κ(zλ) Spec κ(x) Spec κ(zμ)

Spec F .

This shows that x |Spec F is in the images of both iλ and iμ. It contradicts to the
assumption that {Zλ} exhibits a fieldwise decomposition. This proves the implication
(c)⇒(a).

Finally, suppose that {Zλ} satisfies (a). We wish to show that {Zλ} satisfies (b).
Fix a field F over k. To see that the map (iλ) : ∐

λ∈� Zλ(F) → X(F) is injective,
it will suffice to show that the images of Zλ(F) in X(F) are disjoint since iλ are
monomorphisms. Let λ,μ ∈ � be distinct indices, zλ ∈ Zλ(F), and zμ ∈ Zμ(F).
Let us wirte the corresponding elements in |Zλ| and |Zμ| by the same symbols zλ and
zμ respectively. Suppose iλ(zλ) = iμ(zμ). Then, we have |iλ|(zλ) = |iμ|(zμ), which
contradicts to the condition (a) since λ �= μ.

The proof is completed by showing that (iλ) : ∐
λ∈� Zλ(F) → X(F) is surjective.

Let x ∈ X(F). Then, the corresponding element x ∈ |X | can be expressed as |iλ|(zλ)
for some index λ and an element zλ ∈ |Zλ|. Let Zλ,x be the fiber of iλ at x ∈ |X |.
Consider the commutative diagram

Zλ,x Zλ

Spec F Spec κ(x) X .

∼

iλ

x

The left vertical arrow in this diagram is an isomorphism by [6, Remarque 8.11.5.1]
since Zλ,x is nonempty. Hence, the morphism iλ sends the element of Zλ(F) given
by Spec F → Spec κ(x) ∼= Zλ,x → Zλ to x . ��

Corollary 2.2 Let k′ be a k-algebra. If {Zλ} exhibits a set-theoretic decomposition of
X, {Zλ ⊗k k′} exhibits a set-theoretic decomposition of X ⊗k k′. The converse holds
if k′ is a faithfully flat k-algebra.

Proof The first part is clear from the definition of base changes in terms of
copresheaves. Let k′ be a faithfully flat k-algebra. Let F be an algebraically closed
field over k. Then, k′ ⊗k F is nonzero by the hypothesis on k′. Choose an algebraically
closed field F ′ over k′ ⊗k F . For example, it is given by (k′ ⊗k F)/m for some max-
imal ideal m of k′ ⊗k F which exists since k′ ⊗k F �= 0. In particular, F ′ is an
algebraically closed field over k′ via the canonical homomorphism k′ → k′ ⊗k F .
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Since the embedding F → F ′ is a k-algebra homomorphism, we get a commutative
diagram

∐
λ∈� Zλ(F) X(F)

∐
λ∈� Zλ(F ′) X(F ′)

∐
λ∈�(Zλ ⊗k k′)(F ′) (X ⊗k k′)(F ′),

(iλ)

(iλ)

∼

where the bottom arrow is a bijection since {Zλ ⊗k k′} exhibits a fieldwise decom-
position of X ⊗k k′. The left upper vertical arrow is injective since the embedding
F → F ′ is faithfully flat. Therefore, the upper horizontal arrow is injective.

Suppose that we are given an element x ∈ X(F). Then, there exist an index λ ∈ �

and z′λ ∈ Zλ(F ′) such that x |Spec F ′ = iλ(z′λ). Consider the canonical map ι j : F ′ →
F ′ ⊗F F ′ to the j th factor ( j ∈ {1, 2}). Since x ∈ X(F), we have

iλ(Zλ(ι1)z′λ) = X(ι1)(iλ(z′λ)) = X(ι1)(x |Spec F ′) = X(ι2)(x |Spec F ′)
= X(ι2)(iλ(z′λ)) = iλ(Zλ(ι2)z′λ).

Since iλ is a monomorphism, this implies Zλ(ι1)z′λ = Zλ(ι2)z′λ. Since Zλ is a sheaf
in the fpqc topology, there is a unique element zλ ∈ Zλ(F) such that zλ|Spec F ′ = z′λ.
Since the restriction X(F) → X(F ′) is injective by the faithfully flat descent, the
equality iλ(zλ) = x follows from iλ(zλ)|Spec F ′ = iλ(zλ|Spec F ′) = iλ(z′λ) = x |Spec F ′ .
This completes the proof. ��

Let K be a group scheme over k, X be a scheme over k, equipped with an action of
K . Let {iλ : Zλ → X} be a set-theoretic decomposition of X . Suppose that for each
index λ, the following conditions are satisfied:

(i) The action of K on X restricts to Zλ.
(ii) Every geometric fiber of Zλ is nonempty and locally of finite type.
(iii) For every algebraically closed field F over k, K (F) acts transitively on Zλ(F).

Such a set-theoretic decomposition is minimal in the following sense:

Corollary 2.3 For each λ, suppose that we are given a set-theoretic decomposition
{Z ′

λμ ↪→ Zλ}. Then, each set {Z ′
λμ ↪→ Zλ} is a singleton if the following conditions

are satisfied for every pair (λ, μ):

(i) The action of K on X restricts to Z ′
λμ.

(ii) Every geometric fiber of Z ′
λμ is nonempty and locally of finite type.

Proof This is an immediate consequence of Hilbert’s Nullstellensatz. ��

3 Construction of Z
[
1/2

]
-Forms of SO(3,C)-Orbits

We constructed a Z [1/2]-form of the closed SO(3,C)-orbit in BSL3(C) in [16] by
the Galois descent. In this section, we construct Z [1/2]-forms of the remaining three
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SO(3,C)-orbits. We also give their moduli descriptions. To achieve them, remark that
if we are given a Borel subgroup of SL3 over a Z [1/2]-algebra R, the stabilizer of the
action of SO(3) at B ∈ BSL3(R) is SO(3) ∩ B since the normalizer of B coincides
with itself ([3, Corollaire 5.3.12 and Proposition 5.1.3]).

3.1 Preliminary Computation

Let R be a commutative ring. Let {e1, e2, e3} denote the standard basis of R3.We define
an R-bilinear form (−,−) : R3⊗R R3 → R by (

∑3
i=1 ai ei ,

∑3
i=1 bi ei ) = ∑3

i=1 aibi .
Let g ∈ SL3(R). For i ∈ {1, 2, 3}, write vi (g) = (g1i g2i g3i )T . Set

c1(g) = (v1(g), v1(g))

c2(g) = (v1(g), v1(g))(v2(g), v2(g)) − (v1(g), v2(g))
2.

c3(g) = (v1(g), v2(g)).

We will omit (g) if the matrix g is clear from the context.

Lemma 3.1 Let g ∈ SL3(R), b ∈ Bstd(R), and k ∈ SO(3, R).

(1) For i ∈ {1, 2}, ci (g) ∈ R× (resp. ci (g) = 0) if and only if ci (kgb) ∈ R× (resp.
ci (kgb) = 0).

(2) Suppose that c1(g) = 0. We then have c3(g) ∈ R× (resp. c3(g) = 0) if and only
if c3(kgb) ∈ R× (resp. c3(kgb) = 0).

Proof We remark that kvi (g) = vi (kg) for i ∈ {1, 2, 3}. Since k respects the bilinear
form (−,−) on R3, we have c1(kgb) = c1(gb), c2(kgb) = c2(gb), and c3(kgb) =
c3(gb). By definitions, we have

v1(gb) = b11v1(g), v2(gb) = b12v1(g) + b22v2(g),
c1(gb) = b211c1(g), c2(gb) = b211b

2
22c2(g).

If c1(g) = 0, we also have c3(gb) = b11b22c3(g). We remark that b11, b22 ∈ R×
since b belongs to Bstd(R). The equivalences are now obvious. ��

3.2 Open Orbit U

Let U = SO(3)/SO(3) ∩ Bstd be the SO(3)-orbit sheaf over Z [1/2] attached to
Bstd ∈ BSL3(Z [1/2]), and iop : U ↪→ BSL3 be the corresponding embedding.

Lemma 3.2 The group scheme SO(3) ∩ Bstd is a finite étale diagonalizable group
scheme.

Proof Consider the embedding SpecZ [1/2, b1, b2] /(b21 − 1, b22 − 1) ↪→ SL3 over
Z [1/2] defined by (b1, b2) �→ diag(b1, b2, b1b2). It clearly factors through Bstd ∩
SO(3). We prove that it is an isomorphism onto Bstd ∩ SO(3). Let R be an arbitrary
Z [1/2]-algebra, and b = (bi j ) ∈ Bstd(R) ∩ SO(3, R). Since b ∈ Bstd(R) ⊂ SL3(R),
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we have det b = b11b22b33 = 1. In particular, the diagonal entries of b are units
of R. For i ∈ {2, 3} (resp. i ∈ {1, 2}), we have b1i = 0 (resp. bi3 = 0) since the
(i, 1)-entry of bT b (resp. the (i, 3)-entry of bbT ) is b11b1i (resp. bi3b33). Therefore, b
is diagonal. Since bT b = 1, we have b211 = b222 = b233 = 1. Since det b = 1, we have
b33 = b11b22. Hence, b is the image of (b11, b22). This completes the proof. ��

We next show that U is the locus in BSL3 where we can apply the Gram-Schmidt
process in order to prove that iop is an affine open immersion. In other words,U can be
identified with the moduli scheme of flags where the Gram-Schmidt process works.

Property 3.3 Let F be an algebraically closed field of characteristic different from
2. We say that a full flag V = (0 ⊂ Fv1 ⊂ V2 ⊂ F3) satisfies Property (O) if
(v1, v1) �= 0, and every nonzero element v ∈ V2 satisfies either (v1, v) �= 0 or
(v, v) �= 0. We remark that a nonzero vector v ∈ V such that (v1, v) = 0 is unique up
to nonzero scalar since dim V2 = 2.

Theorem 3.4 (1) Let R be an arbitrary Z [1/2]-algebra. For a Borel subgroup B ∈
BSL3(R), the following conditions are equivalent:

(a) B belongs to the image of iop.
(b) The flags corresponding to all geometric fibers of B satisfy Property (O).

(2) The sheaf U is represented by an affine Z [1/2]-scheme.
(3) The morphism iop is an affine open immersion.

Proof Part (2) follows from (1). In fact, U is a sheaf in the fpqc topology by (1)
since the condition (b) is local in the fpqc topology (use Lemma A.1 if necessary). In
particular,U is the fpqc quotient of SO(3) by SO(3)∩ Bstd. Part (2) then follows from
Lemma 3.2 and [5, Corollaire 5.6] (or [17, I.5.6 (6)]).

Let R be a Z [1/2]-algebra, and B ∈ BSL3(R). Suppose that B satisfies (a). Since
(b) is local in the étale topology, we may pass to an étale cover to assume that there
exists an element k ∈ SO(3, R) such that B = kBstdk−1 by [17, I 5.4 (4), 5.5, 5.6
(2)]. Since Bstd satisfies (b), B does so by k ∈ SO(3, R). Conversely, suppose that B
satisfies (b). Since (a) is local in the étale topology by LemmaA.5, wemay assume that
B = gBstdg−1 for some matrix g ∈ SL3(R) by [3, Proposition 5.1.3 and Corollaire
5.3.12]. Since c1 = c1(g) is nonzero at every (geometric) fiber, c1 is a unit of R. Let
us pass to the étale cover Spec R

[√
c1

] → Spec R. Since B = gbBstdb−1g−1 for
every element b ∈ Bstd(R), one can replace g by

g

⎛

⎝
1√
c1

− (v1,v2)
c1

0

0 1 0
0 0

√
c1

⎞

⎠

to assume that (v1, v1) = 1 and (v1, v2) = 0. Since v2 is nonzero at each geometric
fiber, (b) implies c2 = (v2, v2) ∈ R×. Pass to the étale cover Spec R

[√
c2

]
. Then,

replace g by g diag(1, 1√
c2

,
√
c2) to assume (v2, v2) = 1. Note that (v1, v1) = 1 and

(v1, v2) = 0 still hold. Define a matrix k by

v1(k) = v1(g), v2(k) = v2(g),
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v3(k) = v3(g) − (v1(g), v3(g))v1(g) − (v2(g), v3(g))v2(g).

Then, v1(k), v2(k), and v3(k) are orthogonal to each other. Since det is alternating
multilinear, we have det k = det g = 1. Therefore, we obtain (v3(k), v3(k)) = 1 from

1 = (det k)2 = det kT k = det((vi (k), v j (k))) = (v3(k), v3(k)).

As a consequence, k belongs to SO(3, R). Since

g = k

⎛

⎝
1 0 (v3(g), v1(g))
0 1 (v3(g), v2(g))
0 0 1

⎞

⎠ ,

B = kBstdk−1 belongs to the image of iop. This shows (1).
For (3), we show that for every test affine scheme Spec R over Z [1/2] and a

morphism Spec R → BSL3 , the base change Spec R ×BSL3
U → Spec R is an affine

open immersion. Let B be the Borel subgroup corresponding to Spec R → BSL3 .
Since the assertion is étale local in Spec R, we may again assume B = gBstdg−1 for
some g ∈ SL3(R). For a ring homomorphism f : R → S, the following conditions
are equivalent:

(a) f belongs to (U ×BSL3
Spec R)(S) ⊂ (Spec R)(S);

(b) f (c1) and f (c2) are nonzero in each residue field of Spec S;
(c) f (c1) and f (c2) are units of S.
(d) The homomorphism f descends to a map Rc1c2 → S.

Therefore, U ×BSL3
Spec R is isomorphic to Spec Rc1c2 . This completes the proof. ��

Remark 3.5 The formula c1c2 appear more directly by the pull back of this open sub-
scheme along the projection SL3 → SL3 /Bstd ∼= BSL3 . That is, the open subscheme
of SL3 obtained by this base change is defined by c1c2. Similar results hold in the
forms of the other orbits below.

3.3 Middle Subschemes Z1 and Z2

We next construct by Galois descent Z [1/2]-forms of the two orbits which are neither
open or closed. Let � = Z/2Z, and σ denote its nontrivial element. Recall that
Z [1/2] ⊂ Z

[
1/2,

√−1
]
is a Galois extension of Galois group � for the conjugation√−1 �→ −√−1.

Set

g1 =
⎛

⎝
1 −√−1 0

−√−1 1 0
0 0 1

⎞

⎠ , g2 =
⎛

⎝
1 0 0
0 1 −√−1
0 −√−1 1

⎞

⎠ ∈ GL2(Z
[
1/2,

√−1
]
)

Bj = g j Bstdg
−1
j ( j ∈ {1, 2}).
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Write A = Z
[
1/2,

√−1, x, y, z
]
/(x2 + y2 + z2 −1). Then, SO(3) acts on Spec A

by the restriction of the canonical action of SO(3) on SpecZ
[
1/2,

√−1, x, y, z
]
. That

is, for aZ
[
1/2,

√−1
]
-algebra R, each element g ∈ SO(3, R) acts on (Spec A)(R) as a

3×3matrix via the identification (Spec A)(R) ∼= {
(x y z)T ∈ R3 : x2 + y2 + z2 = 1

}

⊂ R3.

Proposition 3.6 (1) We have

B1 ∩ SO(3) = diag(SO(2), 1), B2 ∩ SO(3) = diag(1,SO(2)).

(2) Let j ∈ {1, 2}. We have an SO(3)-equivariant isomorphism

SO(3)/Bj ∩ SO(3) ∼= Spec A.

Define SO(3)-equivariant monomorphisms i j as

i j : Spec A ∼= SO(3)/Bj ∩ SO(3) ↪→ BSL3 .

(3) Define an action of � on A by

σ(
√−1) = −√−1, σ (x) = −x, σ (y) = −y, σ (z) = −z.

Then, the elements of BSL3(A) corresponding to i1 and i2 are �-invariant.

Proof We only prove the assertions for B1. The other is proved in a similar way. For
(1), we may prove the equality

Bstd ∩ g−1
1 SO(3)g1 = g−1

1 diag(SO(2), 1)g1. (1)

by passing to the conjugate by g−1
1 . Let R be an arbitraryZ

[
1/2,

√−1
]
-algebra. Then,

the computation of μ2 in [15, Section 3.2] implies

g−1
1 diag(SO(2, R), 1)g1 = {diag(a, a−1, 1) ∈ SL3(R) : a ∈ R×}.

Let b = (bi j ) ∈ Bstd(R). Then, g1bg
−1
1 belongs to SO(3, R) if and only if the

equality g−2
1 bT g21b = 1 holds since g1 is symmetric. One can check

g−2
1 bT g21b=

⎛

⎝
b11b22 2b12b22 b12b23+b22b13

0 b−1
33 b11b23

−2
√−1b11b23 −2

√−1b22b13− 2
√−1b22b13 −4

√−1b23b13+b233

⎞

⎠

(use b11b22 = b−1
33 ). It is now straightforward that g−2

1 bT g21b = 1 if and only if
b22 = b−1

11 , b33 = 1, and b12 = b23 = b13 = 0. This proves the equality (1).
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We next prove (2). It is easy to show that the stabilizer subgroup of SO(3) at
(0 0 1)T ∈ (Spec A)(Z

[
1/2,

√−1
]
) is SO(2). We thus obtain a monomorphism

SO(3)/SO(2) ↪→ Spec A.

To see that it is an isomorphism, it will suffice to show that the identity map of A is
étale locally expressed as g(0 0 1)T for some g ∈ SO(3). Since

(x2 + y2) + (y2 + z2) + (z2 + x2) = 2 ∈ (Z [1/2, x, y, z] /(x2 + y2 + z2 − 1))×,

the affine schemes Spec A
[
1/

√
x2 + y2

]
, Spec A

[
1/

√
y2 + z2

]
, and Spec A

[
1/

√
z2 + x2

]
form an étale cover of Spec A. Set

gxy =

⎛

⎜⎜
⎝

zx√
x2+y2

− y√
x2+y2

x
zy√
x2+y2

x√
x2+y2

y

−√
x2 + y2 0 z

⎞

⎟⎟
⎠ ∈ SO(3, A

[
1/

√
x2 + y2

]
).

Then, we have gxy(0 0 1)T = (x y z)T on this étale locus. One can find similar
matrices sending (0 0 1)T to (x y z)T on the other étale loci. This shows (2).

For (3), observe that the automorphismσ on A naturally extends to A
[
1/

√
x2 + y2

]

by σ(
√
x2 + y2) = √

x2 + y2. By construction of i1, the Borel subgroups of SL3

corresponding to i1 on Spec A
[
1/

√
x2 + y2

]
is gxy B1g−1

xy ∈ BSL3(A
[
1/

√
x2 + y2

]
).

Since σ(gxyg1) = gxyw0σ(g1) = gxyg1w0 for w0 := diag(1,−1,−1), i1 is �-
invariant on this étale locus. Similar arguments work on the other loci. This completes
the proof. ��
Remark 3.7 The argument of (2) clearly works if we replace A by

Z [1/2, x, y, z] /(x2 + y2 + z2 − 1).

Notice that the structure morphism Z
[
1/2,

√−1
] → A is clearly �-equivariant.

Put an action of SO(3) on Spec A� ⊗Z[1/2] Z
[
1/2,

√−1
]
by the isomorphism

A ∼= A� ⊗Z[1/2] Z

[
1/2,

√−1
]

(see Theorem A.3 (2)). In view of Theorem A.3 (3) and Proposition A.4, we obtain
two SO(3)-equivariant monomorphisms Z j := Spec A� ↪→ BSL3 , which we denote
by the same symbol i j . For a digression, we describe A�:

Proposition 3.8 Define an action of SO(3) on

SpecZ
[
1/2, x ′, y′, z′

]
/((x ′)2 + (y′)2 + (z′)2 + 1)
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in a similar way to that on Spec A. Then, there is an SO(3)-equivariant isomorphism

Spec A� ∼= SpecZ
[
1/2, x ′, y′, z′

]
/((x ′)2 + (y′)2 + (z′)2 + 1).

Proof Define f : Z [
1/2, x ′, y′, z′

]
/((x ′)2 + (y′)2 + (z′)2 + 1) → A� by

x ′ �→ √−1x, y′ �→ √−1y, z′ �→ √−1z.

In view of Theorem A.3, Z
[
1/2,

√−1
] ⊗Z[1/2] f can be identified with the map

Z

[
1/2,

√−1, x ′, y′, z′
]
/((x ′)2 + (y′)2 + (z′)2 + 1) → A;

√−1 �→ √−1, x ′ �→ √−1x, y′ �→ √−1y, z′ �→ √−1z.

The resulting morphism

Spec A → SpecZ
[
1/2,

√−1, x ′, y′, z′
]
/((x ′)2 + (y′)2 + (z′)2 + 1)

is clearly an SO(3)-equivariant isomorphism. Since the action of SO(3) on

Spec A� ⊗Z[1/2] Z

[
1/2,

√−1
]

is induced from the action on Spec A via the isomorphism A ∼= A� ⊗Z[1/2]
Z

[
1/2,

√−1
]
, Z

[
1/2,

√−1
] ⊗Z[1/2] Spec f is an SO(3)-equivariant isomorphism.

Since the containment Z [1/2] ⊂ Z
[
1/2,

√−1
]
is faithfully flat, Spec f is an SO(3)-

equivariant isomorphism. ��
We demonstrate similar computations to the proof of Theorem 3.4 (b)⇒(a) to give

moduli descriptions of Z1 and Z2, and to prove that i1 and i2 are affine immersions:

Lemma 3.9 Let R be a Z [1/2]-algebra, and g ∈ SL3(R). Set B = gBstdg−1.

(1) The Borel subgroup B belongs to the image of i1 if and only if c1(g) = 0 and
c3(g) ∈ R×.

(2) The Borel subgroup B belongs to the image of i2 if and only if c1(g) ∈ R× and
c2(g) = 0.

Proof We remark that all conditions are local in the étale topology by Lemma A.5 and
Lemma A.1. Hence, we may replace R by R

[√−1
]
to assume that R is a Z

[√−1
]
-

algebra. Put

g′
1 =

⎛

⎝
1 −√−1 0

−√−1 1 0
0 0 1

2

⎞

⎠ ∈ SL3(Z
[
1/2,

√−1
]
).

One can easily check B1 = g′
1Bstd(g′

1)
−1. Suppose that B belongs to the image

of i1. To prove that c1(g) = 0 and c3(g) ∈ R×, we may assume that there exists
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k ∈ SO(3, R) such that B = kB1k−1. Then, [3, Corollaire 5.3.12 and Proposition
5.1.3] imply g−1kg′

1 ∈ Bstd(R). The assertions c1(g) = 0 and c3(g) ∈ R× now
follow from Lemma 3.1.

Conversely, suppose that c1(g) = 0 and c3(g) ∈ R×. Since B = gbBstdb−1g−1

for every element b ∈ Bstd(R), one can replace g by

g

⎛

⎝
1
c3

1−(v2,v2)
2c3

0
0 1 0
0 0 c3

⎞

⎠

to assume that (v2, v2) = c3 = 1. We remark that c1 = 0 still holds from Lemma 3.1.
Set

k = (
v2 −√−1(v2 − v1)

√−1(v3 + (v1 − v2, v3)v1 − (v1, v3)v2)
)
.

By a similar argument to Theorem 3.4, k belongs to SO(3, R). In view of Lemma 3.1,
we may replace g by k−1g to assume v1 = e1 − √−1e2 and v2 = e1. Set

b =
⎛

⎜
⎝

1
√−1 1

2g13
0 −2

√−1 −
√−1
2 g13 − 1

2g23
0 0

√−1
2

⎞

⎟
⎠ .

Then, we have gb = g′
1 since det g = 1. The assertion now follows from

B = gBstdg
−1 = g′

1Bstd(g
′
1)

−1 = B1.

We next prove (2). The “only if” direction follows by a similar argument to (1).
Suppose that c1(g) ∈ R× and c2(g) = 0.Wemay pass to the étale cover Spec R

[√
r1

]
,

and multiply ⎛

⎜
⎝

1√
r1

− (v1,v2)
c1

0

0 1 0
0 0

√
r1

⎞

⎟
⎠

to g from the right side to assume c1 = 1 and (v1, v2) = 0. Since c2 = 0, we have
(v2, v2) = 0. Compute 1 = (det g)2 = det ggT to get (v2, v3)

2 = −1. We then
replace g by

g

⎛

⎝
1 0 0
0 1 (1−(v3,v3))(v2,v3)

2
0 0 1

⎞

⎠

to assume (v3, v3) = 1. It is clear that the equalities

c1 = 1, (v1, v2) = (v2, v2) = 0, (v2, v3)
2 = −1

still hold. Define a matrix k by

v1(k) = √−1(v2(g), v3(g))v1(g),
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v3(k) = √−1(v2(g), v3(g))(v3(g) − (v1(g), v3(g))v1(g)

− 1

2
(v1(g), v3(g))

2(v2(g), v3(g))v2(g)),

v2(k) = v2(g) + √−1v3(k).

Then, k belongs to SO(3, R). Replace g by k−1g to assume

v1(g) = √−1(v2(g), v3(g))e1, v2(g) = e2 − √−1e3.

Set

b =
⎛

⎝

√−1(v2,v3)
2 0 −2g13
0 1 −√−1(1 + 2g23(v2, v3))
0 0 2

√−1(v2, v3)

⎞

⎠ .

Then, we have

gb =
⎛

⎝
1
2 0 0
0 1 −√−1
0 −√−1 1

⎞

⎠

since det g = 1. The assertion now follows from

gBstdg
−1 =

⎛

⎝
1
2 0 0
0 1 −√−1
0 −√−1 1

⎞

⎠ Bstd

⎛

⎝
1
2 0 0
0 1 −√−1
0 −√−1 1

⎞

⎠

−1

= g2Bstdg
−1
2 .

This completes the proof. ��
Property 3.10 Let F be an algebraically closed field of characteristic different from
2, and V = (0 ⊂ Fv1 ⊂ V2 ⊂ F3) be a flag.

(1) We say V satisfies Property (LC1) if (v1, v1) = 0, and every vector v ∈ V2
satisfies either Fv1 = Fv or (v1, v) �= 0.

(2) We say V satisfies Property (LC2) if (v1, v1) �= 0, and there exists a nonzero
element v ∈ V2 such that (v1, v) = (v, v) = 0. We remark that if such v exists,
v is uniquely determined up to nonzero scalar by the property (v1, v) = 0 since
dim V2 = 2.

Lemma 3.11 Let R be a Z [1/2]-algebra, and g ∈ SL3(R).

(1) If c1(g) = 0, and c3(g) ∈ R× then the flags corresponding to all geometric fibers
of B satisfy Property (LC1). The converse holds if R is reduced.

(2) If c1(g) ∈ R×, and c2(g) = 0 then the flags corresponding to all geometric fibers
of B satisfy Property (LC2). The converse holds if R is reduced.

Proof We remark that if R is reduced, an element r ∈ R is zero if and only if it is zero
in all residue fields of R. Therefore, we may assume that R = F is an algebraically
closed field.
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Part (1) follows since the flag V = (0 ⊂ Fv1 ⊂ Fv1 ⊕ Fv2 ⊂ F3) satisfies (LC1)
if and only if (v1, v1) = 0 and (v1, v2) �= 0. We next prove that V satisfies (LC2) if
and only if c1(g) ∈ F× and c2(g) = 0. Notice that c1(g) �= 0 holds under the both
conditions. We also have

v2 − (v1,v2)
c1

v1 �= 0, (v2 − (v1,v2)
c1

v1, v1)=0, c2=c1(v2 − (v1,v2)
c1

v1, v2 − (v1,v2)
c1

v1).

The equivalence of (2) is now obvious. ��
Let Ẑ1 (resp. Ẑ2) be the moduli space of flags with Property (LC1) (resp. (LC2)).

That is, for a Z [1/2]-algebra R, Ẑ1(R) (resp. Ẑ2(R)) consists of Borel subgroups of
SL3 over R whose corresponding flags at geometric points of Spec R satisfy (LC1)
(resp. (LC2)).

Theorem 3.12 Let R be a reduced Z [1/2]-algebra, and B ∈ BSL3(R).

1. The following conditions are equivalent:

(a) B belongs to the image of i1.
(b) The flags corresponding to all geometric fibers of B satisfy Property (LC1).

2. The following conditions are equivalent:

(a) B belongs to the image of i2.
(b) The flags corresponding to all geometric fibers of B satisfy Property (LC2).

In particular, Z1 (resp. Z2) is the left Kan extension of the copresheaf Ẑ1|CAlgred
Z[1/2]

(resp. Ẑ2|CAlgred
Z[1/2]

).

Proof Since all conditions are local in the étale topology, we may assume that B is
SL3-conjugate to Bstd. Then, the equivalences follow from Lemma 3.9 and Lemma
3.11. ��
Theorem 3.13 The morphisms i1 and i2 are affine immersions.

Proof We only prove (1). It will suffice to prove i1 : Spec A → BSL3 is an
affine immersion by taking the base change − ⊗Z[1/2] Z

[
1/2,

√−1
]
. Let R be a

Z
[
1/2,

√−1
]
-algebra, and g ∈ SL3(R). Consider the morphism Spec R → BSL3

determined by B := gBstdg−1. By a similar argument to Theorem 3.4 (2), it will
suffice to show that the projection Spec A ×BSL3

Spec R → Spec R is represented
by the affine immersion Spec Rc1(g)/(c2(g)) ↪→ Spec R. For this, it will suffice to
show that for a Z

[
1/2,

√−1
]
-algebra S, a Z

[
1/2,

√−1
]
-algebra homomorphism

f ∈ (Spec R)(S) belongs to (Spec A ×BSL3
Spec R)(S) ⊂ (Spec R)(S) if and only if

f (c1) ∈ S× and f (c2) = 0. This follows from Lemma 3.9. ��

3.4 Closed SubschemeBSO(3)

Define an involution θ on SL3 by θ(g) = (gT )−1. Let Bθ
SL3

be the moduli scheme
of θ -stable Borel subgroups of SL3 (see [15, Lemma 3.1.1]). A similar argument to
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[16, Proposition 5.5.2] implies that the map B �→ B ∩ SO(3) determines an SO(3)-
equivariant isomorphism Bθ

SL3
∼= BSO(3). Write iclo for the composite arrow BSO(3) ∼=

Bθ
SL3

↪→ BSL3 .

Lemma 3.14 The morphism iclo is a closed immersion.

Proof This follows since Bθ
SL3

is a closed subscheme of BSL3 ; see [15, Lemma 3.1.1].
��

As in the former sections, let us study R-points of Bθ
SL3

in terms of flags at fibers.

Lemma 3.15 Let R be a Z [1/2]-algebra, and g ∈ SL3(R). Then, the Borel subgroup
B := gBstdg−1 is θ -stable if and only if c1(g) = c3(g) = 0.

Proof Recall that BT
std = (−K3)Bstd(−K3)

−1. Hence, gBstdg−1 is θ -stable if and only
if −K3gT g is upper triangular. It follows by the direct computation of K3gT g that it
is equivalent to the condition that c1(g) = c3(g) = 0. ��
Property 3.16 Let F be an algebraically closed field of characteristic different from 2.
We say that a flag V = (0 ⊂ Fv1 ⊂ V2 ⊂ F3) satisfies Property (C) if (v1, v1) = 0,
and every vector v ∈ V2 satisfies (v1, v) = 0.

Lemma 3.17 Let R be a Z [1/2]-algebra, and g ∈ SL3(R). If c1(g) = c3(g) = 0 then
the flags corresponding to all geometric fibers of B satisfy Property (C). The converse
holds if R is reduced.

Proof By a similar argument to Lemma 3.11, we nay assume that R = F is an
algebraically closed of characteristic �= 2. Then, the flag corresponding to gBstdg−1 is
given by (0 ⊂ Fv1 ⊂ Fv1 ⊕ Fv2 ⊂ F3). Under the both conditions, we clearly have
c1(g) = 0. We may, therefore, assume c1(g) = 0. Then, it is clear that (v1, v2) = 0 if
and only if every vector v ∈ Fv1 ⊕ Fv2 satisfies (v1, v) = 0. ��
Theorem 3.18 Let R be a reduced Z [1/2]-algebra. For a Borel subgroup B ∈
BSL3(R), the following conditions are equivalent:

(a) B belongs to the image of iclo.
(b) The flags corresponding to all geometric fibers of B satisfy Property (C).

Proof This is proved in a similar way to Theorem 3.12. ��

4 SO(3)-Homogeneous Decomposition ofBSL3 over Z
[
1/2

]

Theorem 4.1 (1) The set

{iop : U ↪→ BSL3 , i1 : Z1 ↪→ BSL3 , i2 : Z2 ↪→ BSL3 , iclo : BSO(3) ↪→ BSL3}

exhibits a set-theoretic decomposition of BSL3 .
(2) The subschemes Z1, Z2, andBSO(3) are notSO(3)-orbits, butSO(3)-homogeneous

in the étale topology in the sense of [1, Proposition et défintion 6.7.3].
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Proof For (1), let F be an algebraically closed field of characteristic not equal to 2.
Identify BSL3(F) with the set of full flags of F3. Notice that every flag of F3 has only
one of Property (O), (LC1), (LC2), and (C). The assertion now follows from Theorem
3.4, Theorem 3.12, Theorem 3.18, and Theorem 2.1.

The first part of (2) follows since the subschemes Z1, Z2, and BSO(3) do not admit
Z [1/2]-points. The latter assertion of (2) is evident by the constructions of these three
subschemes. ��

Appendix A: Descent Technique

In this section, we develop the descent results we use in this paper. The first result is
easy:

Lemma A.1 Let f : R → S be a faithfully flat homomorphism of commutative rings.

(1) An element r ∈ R is zero if and only if f (r) = 0.
(2) An element r ∈ R belongs to R× if and only if f (r) ∈ S×.

Proof The “only if” direction in each assertion is obvious. The “if” direction of (1)
follows since f is injective. In fact, we have a canonical equalizer sequence

R
f→ S ⇒ S ⊗R S.

We next prove the “if” direction of (2). Suppose that we are given an element r ∈ R
such that f (r) ∈ S×. To see r ∈ R×, it will suffice to show r /∈ p for every prime ideal
p of R. Since f is faithfully flat, there exists a prime ideal q ⊂ S such that f −1(q) = p.
Since f (r) is a unit of S, we have f (r) /∈ q.We thus obtain r /∈ f −1(q) = p as desired.
This completes the proof. ��

In this paper, we try to find a smaller ring of definition of schemes and morphisms.
Firstly, let us give some remarks on the Galois descent of morphisms.

Lemma A.2 Let k → k′ be a faithfully flat homomorphism of commutative rings,
X be a k-space, and Y be a k-sheaf in the fpqc topology. Then, for a morphism
f ′ : X ⊗k k′ → Y ⊗k k′ of k′-schemes, there is at most unique morphism f : X → Y
such that f ′ = f ⊗k k′.

We remark that if k → k′ is étale, Y can be an étale k-sheaf.

Proof Let g be another morphism satisfying f ′ = g ⊗k k′. For each commutative
k-algebra R, the canonical homomorphism R → R ⊗k k′ is faithfully flat. Since

Y (R) → Y (R ⊗k k
′) ⇒ Y ((R ⊗k k

′) ⊗R (R ⊗k k
′))



SO(3)-Homogeneous Decomposition of the Flag Scheme...

is an equalizer sequence,Y (R) → Y (R⊗k k′) is injective. The uniqueness now follows
from the commutative diagram

X(R) X(R ⊗k k′)

Y (R) Y (R ⊗k k′).
gTfR fR⊗k k

′=gR⊗k k
′= f ′

R⊗k k
′

��
The descent of f ′ is to find the unique morphism f in the above lemma. The

next result enables us to descend rings of definition of morphisms and their domains
simultaneously.

Theorem A.3 Let i : k → k′ be a Galois extension of commutative rings of Galois
group�. Let S bea commutative ring, equippedwith anactionof� anda�-equivariant
ring homomorphism g : k′ → S. We denote R = S� , and j : R → S be the
canonical embedding. In particular, g ◦ i : k → S is factorized into j ◦ f for a unique
homomorphism f : k → R. Let X be an étale k-sheaf.

(1) The homomorphism j : R → S is a Galois extension of Galois group �.
(2) Put an action of � on R ⊗k k′ by the base change. Then, we have a canonical

�-equivariant isomorphism R⊗k k′ ∼= S which we denote by ( j, g). In particular,
the canonical homomorphism R → R⊗k k′ is a Galois extension of Galois group
� for this action.

(3) Let α ∈ X(S)� ⊂ X(S) = (X ⊗k k′)(S). Let ᾱ ∈ X(R) be an element satisfying
X( j)(ᾱ) = α which uniquely exists by Galois descent. We denote the correspond-
ing morphisms α : Spec S → X ⊗k k′ and Spec R → X by the same symbols α

and ᾱ respectively. Then, the composite map

Spec R ⊗k k
′ ( j,g)−1

∼= Spec S
α→ X ⊗k k

′

coincides with the base change of ᾱ.

Proof Part (1) and (2) are proved in a similar way to [4, Theorems 14.86 and 14.85].
For (3), it will suffice to compare the images of idR⊗kk′ ∈ (Spec R ⊗k k′)(R ⊗k k′)

by theYoneda lemma. The image along themap constructed in (3) is X(( j, g))−1(α) ∈
X(R ⊗k k′) = (X ⊗k k′)(R ⊗k k′). Let l : R → R ⊗k k′ denote the canonical map.
Then, the image along ᾱ ⊗k k′ is computed as

X(l)(ᾱ) = X(( j, g))−1X( j)(ᾱ) = X(( j, g))−1(α).

Hence, the two images coincide. This completes the proof. ��
For the relation of descent of spaces and actions of groups, the following result is

useful:
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Proposition A.4 Let k → k′ be a faithfully flat ane étale homomorphism of commuta-
tive rings. Let i : X → Y be a monomorphism of étale k-sheaves, and K be a group
étale k-sheaf. Suppose that K acts on G. If the induced action of K ⊗k k′ on Y ⊗k k′
restricts to X ⊗k k′, the action of K on Y restricts to X. Moreover, the base change of
the resulting action on X coincides with the given action on X ⊗k k′.

Proof We denote the action map K ×Y → Y (resp. (K ⊗k k′)×(X⊗k k′) → X⊗k k′)
by ψ (resp. φ′). Let R be a k-algebra. Write l : R → R ⊗k k′ for the canonical
homomorphism. For j ∈ {1, 2}, let ι j : R ⊗k k′ → (R ⊗k k′) ⊗R (R ⊗k k′) be
the canonical homomorphism onto the j th factor. Take g ∈ K (R) and x ∈ X(R).
We check the descent condition for φ′ ◦ (K × X)(l)(g, x) along l. Observe that for
j ∈ {1, 2}, we have

i ◦ X(ι j ) ◦ φ′ ◦ (K × X)(l)(g, x) = Y (ι j ) ◦ i ◦ φ′ ◦ (K × X)(l)(g, x)

= Y (ι j ) ◦ ψ ◦ (K × i) ◦ (K × X)(l)(g, x)

= ψ ◦ (K × Y )(ι j ) ◦ (K × i) ◦ (K × X)(l)(g, x)

= ψ ◦ (K × i) ◦ (K × X)(ι j ) ◦ (K × X)(l)(g, x)

= ψ ◦ (K × i) ◦ (K × X)(ι j ◦ l)(g, x).

We used the hypothesis that i ⊗k k′ is K ⊗k k′-equivariant for the second equality.
Since ι1 ◦ l = ι2 ◦ l, we have

i ◦ X(ι1) ◦ φ′ ◦ (K × X)(l)(g, x) = ψ ◦ (K × i) ◦ (K × X)(ι1 ◦ l)(g, x)
= ψ ◦ (K × i) ◦ (K × X)(ι2 ◦ l)(g, x)
= i ◦ X(ι2) ◦ φ′ ◦ (K × X)(l)(g, x).

Since i is monic, we have X(ι1) ◦ φ′ ◦ (K × X)(l)(g, x) = X(ι2) ◦ φ′ ◦ (K ×
X)(l)(g, x). Since X is an étale sheaf, there is a unique element φ(g, x) ∈ X(R) such
that X(l)(φ(g, x)) = φ′ ◦ (K × X)(l)(g, x). To see that this gives the restriction of
the action of K on Y to X , notice that

Y (l) ◦ i(φ(g, x)) = i ◦ X(l)(φ(g, x))

= i ◦ φ′ ◦ (K × X)(l)(g, x)

= ψ ◦ (K × i) ◦ (K × X)(l)(g, x)

= ψ ◦ (K × Y )(l) ◦ (K × i)(g, x)

= Y (l) ◦ ψ ◦ (K × i)(g, x)

= Y (l) ◦ ψ(g, i(x)).

Since l is étale and faithfully flat, Y (l) is injective. Therefore, we get the equality
i(φ(g, x)) = ψ(g, i(x)) as desired. In particular, φ determines the restriction of the
action of ψ (use the hypothesis that i is monic for the naturality of φ).
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The proof is completed by showing φ′ = φ ⊗k k′. Let R′ be a k′-algebra, g ∈
(K ⊗k k′)(R′) = K (R′), and x ∈ (X ⊗k k′)(R′) = X(R′). Then, we have

i(φ′(g, x)) = ψ ◦ (K × i)(g, x) = ψ(g, i(x)) = i(φ(g, x)),

Since i is monic, we have φ′(g, x) = φ(g, x). ��
In Section3.3, we consider orbit sheaves in the scheme BSL3 . To compute their

moduli description, the following observation is useful since many objects are local
in the étale topology:

Lemma A.5 Let k be a commutative ring, and f : R → R′ be a faithfully flat étale
homomorphism of k-algebras. Let i : F → G be a monomorphism of étale k-sheaves,
and y ∈ G(R). Then, y belongs to the image of i if and only if G( f )(y) is so.

Proof The “only if” direction is clear. To see the “if” direction, suppose that we are
given an element x ′ ∈ F(R′) such that i(x ′) = G( f )(y). For j ∈ {1, 2}, let ι j denote
the caonical homomorphism R′ → R′ ⊗R R′ onto the j th factor. Then, we have

i(F(ι1)(x ′)) = G(ι1)(i(x ′)) = G(ι1 ◦ f )(y) = G(ι2 ◦ f )(y)
= G(ι2)(i(x ′)) = i(F(ι2)(x ′)).

This implies F(ι1)(x ′) = F(ι2)(x ′) since i a monomorphism. Since F is an étale
k-sheaf, there is a (unique) element x ∈ F(R) such that F( f )(x) = x ′. The proof is
completed by showing i(x) = y. This follows from the equality

G( f )(i(x)) = i(F( f )(x)) = i(x ′) = G( f )(y)

since G is an étale k-sheaf. ��

Appendix B:BSO(3) as a Subspace of P2

In [3], themoduli spaceBSO(3) of Borel subgroups of SO(3) is proved to be represented
by a projective scheme over Z [1/2]. The key result for its proof is that the moduli
space of subgroups of SO(3) of type (R) is represented by a quasi-projective scheme. In
this appendix, we realize BSO(3) as a moduli subspace of P2 = ProjZ [1/2, x, y, z] by
using ideas in this paper. To be precise, set Z ′ = ProjZ [1/2, x, y, z] /(x2+y2+z2) ⊂
P
2. We establish an SO(3)-equivariant isomorphism BSO(3) ∼= Z ′. We also show that

|P2| = |Z ′| ∐ |U ′| is a Z [1/2]-form of the SO(3)-orbit decomposition of P2 over
Z

[
1/2,

√−1
]
, where U ′ = P

2 \ Z ′.
To achieve them, let us recall amoduli description ofP2: for a commutativeZ [1/2]-

algebra R, P2(R) is naturally bijective to the set of equivalence classes of line bundles
L on Spec R with generators (a1, a2, a3). IfL is the structure sheafOSpec R of Spec R,
we will denote it by [a1 a2 a3]T .
Property B.1 Let F be an algebraically closed field of characteristic different from 2.
We say that a one dimensional subspace V = Fv ⊂ F3 satisfies Property (O)’ (resp.
(C)’) if (v, v) �= 0 (resp. (v, v) = 0).



T. Hayashi

Notice that for a field F (of characteristic �= 2), F-points of P2 are identified with
one dimensional subspaces of F3 by the correspondence

[a1 a2 a3]T ↔ F(a1 a2 a3)
T .

The open subscheme U ′ is the moduli space of one dimensional subspaces V ⊂ F3

satisfying Property (O)’. That is, for a Z [1/2]-algebra R,

U ′(R) = {V ∈ P
2(R) : the geometric fibers of V satisfy (O)′}.

Since the condition (O)’ is stable under the action of SO(3), U ′ is an SO(3)-invariant
open subscheme of P2.

Theorem B.2 There is an SO(3)-equivariant isomorphism SO(3)/SO(2) ∼= U ′.

Proof Take the SO(3)-orbit attached to [0 0 1]T to get a monomorphism

SO(3)/SO(2) ↪→ U ′.

To see that this morphism is epic, take an arbitrary Z [1/2]-algebra R and an R-
point V ∈ U ′(R). We wish to show that V lies in the image of the above morphism.
We may identify V with a pair of a line bundle L on Spec R and its global sections
(a1, a2, a3) of L which (locally) generate L by [11, Theorem 7.1].

Since the assertion is Zariski local by Lemma A.5, we may assume L is the coor-
dinate ring of Spec R. In particular, a1, a2, a3 are generators of R as an R-module

with a21 + a22 + a23 ∈ R×. We may replace R by R

[√
a21 + a22 + a23

]
to assume

a21 + a22 + a23 = 1. Then, use the matrices gxy, gyz, gzx in the proof of Proposition 3.6
to see that there étale locally exists g′ ∈ SO(3, R) such that g′[0 0 1]T = [a1 a2 a3]T .
This completes the proof. ��

We next study Z ′. Let P be the parabolic subgroup of SL3 defined by

P(A) = {g = (gi j ) ∈ SL3(A) : g21 = g31 = 0}.

Take the SL3-orbit of P2 attached to [1 0 0]T to get an isomorphism SL3 /P ∼= P
2

(see [17, I.5.6 (3)]).
We can define an SO(3)-equivariant morphism

i ′ : BSO(3)
iclo
↪→ BSL3

∼= SL3 /Bstd → SL3 /P ∼= P
2,

where the map SL3 /Bstd → SL3 /P is the quotient map attached to Bstd ⊂ P .

Proposition B.3 The morphism i ′ is an SO(3)-equivariant closed immersion.
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To prove this, we realize i ′ as composition of morphisms between quotient spaces
over Z

[
1/2,

√−1
]
.

Set

gclo =
⎛

⎝
1 0 −√−1

−√−1 0 1
0 1 0

⎞

⎠ .

Define a cocharacter μ : Gm → SO(3) over Z
[
1/2,

√−1
]
by

μ(a) = gclo diag(a, a−1, 1)g−1
clo .

Define a θ -stable Borel subgroup of SL3 over Z [1/2] by Bclo = PSL3(μ) (θ =
((−)T )−1). It is evident by definitions that Bclo = gcloBstdg

−1
clo . Set

Bclo,SO(3) = SO(3) ∩ Bclo.

Lemma B.4 We have Bclo,SO(3) = SO(3) ∩ gcloPg
−1
clo .

Proof Recall that Bclo,SO(3) is a Borel subgroup of SO(3) ([16, Proposition 5.2.5 (2)]).
In particular, Bclo,SO(3) is flat over Z

[
1/2,

√−1
]
. In view of [7, Corollaire 17.9.5],

we may pass to geometric fibers.
Let so(3) and p be the Lie algebras of SO(3) and P respectively. Then, we have

2 = dim Bclo,SO(3) ≤ dim SO(3) ∩ gcloPg
−1
clo ≤ dim so(3) ∩ gclopg

−1
clo = 2,

where the last equality is followed by straightforward computations. In particular,
SO(3)∩ gcloPg

−1
clo is smooth of dimension 2 ([23, Proposition 1.37]). Since Bclo,SO(3)

is a Borel subgroup of SO(3), we have Bclo,SO(3) = SO(3) ∩ gcloPg
−1
clo . ��

Proof (Proof of Proposition B.3) It will suffice to prove that i ′ is a monomorphism.
We may work over Z

[
1/2,

√−1
]
. Then, i ′ can be identified with

SO(3)/Bclo,SO(3) ↪→ SL3 /Bclo ∼= SL3 /Bstd → SL3 /P,

where SL3 /Bclo ∼= SL3 /Bstd is defined by gBclo �→ ggcloBstd. The assertion now
follows from Lemma B.4. ��

To relate BSO(3) with Z ′, let us recall the moduli description of Z ′.

Property B.5 Let R be a commutativeZ [1/2]-algebra.We say an R-point (L, (a1, a2,
a3)) ∈ P

2(R) satisfies Property (C)’ if
∑3

i=1 ai ⊗ ai = 0 as a global section of
L ⊗OSpec R L.

Then, for each R, Z ′(R) consists of R-points ofP2(R) satisfying Property (C)’. If R
is reduced, a point (L, (a1, a2, a3)) ∈ P

2(R) satisfies (C)’ if and only if its geometric
fibers satisfy (C)’.



T. Hayashi

Theorem B.6 The map i ′ is an isomorphism onto Z ′.

Proof Observe that the structure morphisms

BSO(3) → SpecZ [1/2] , Z ′ → SpecZ [1/2]

are smooth surjective (see [21, 4 Example 3.37] for the smoothness of Z ′). Since the
reducedness is local in the smooth topology, BSO(3) and Z ′ are reduced. In view of the
uniqueness of reduced structure on the underlying set of a closed subscheme, it will
suffice to show that |i ′| is surjective onto Z ′.

Let F be an algebraically closed field over Z
[
1/2,

√−1
]
. Notice that

i ′(Bclo,SO(3)) = F(1 − √−1 0)T ∈ Z ′(F).

Since SO(3, F) acts transitively on BSO(3)(F), i ′F factors through Z ′(F). Let Fv ∈
Z ′(F). Then, we can choose a vector u ∈ F3 such that (v, u) �= 0. By the proof of
Lemma 3.9 (1), there is a matrix k ∈ SO(3, F) such that Fk(1 − √−1 0)T = Fv.
This completes the proof. ��
Corollary B.7 The SO(3)-equivariant immersions

SO(3)/SO(2) ∼= U ′ ⊂ P
2 ∼= SL3 /P, BSO(3)

iclo
↪→ BSL3

∼= SL3 /Bstd → SL3 /P

form a set-theoretic decomposition of SL3 /P.

One can think of Corollary B.7 as a Z [1/2]-analog of the SO(3,C)-orbit decom-
position of SL3(C)/P(C).
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