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Abstract
We provide a parameterization of all fusion subcategories of the equivariantization by
a group action on a fusion category. As applications, we classify the Hopf subalgebras
of a family of semisimple Hopf algebras of Kac-Paljutkin type and recover Naidu-
Nikshych-Witherspoon classification of the fusion subcategories of the representation
category of a twisted quantum double of a finite group.

1 Introduction

Fusion categories generalize the representation categories of finite-dimensional semi-
simple (quasi) Hopf algebras [6]. A fundamental construction in the theory of fusion
categories is equivariantization by a group action, [5]. Given a categorical action of
a finite group G on a fusion category C, the equivariantization CG is a new fusion
category, consisting of categorical “fixed points” under the G action. Equivariantiza-
tion, and its reciprocal construction called de-equivariantization, have been extensively
studied and used in recent years to classify and characterize families of fusion cate-
gories, see [4, 7]. The goal of this note is to identify the lattice of fusion subcategories
of CG in terms of the lattice of fusion subcategory of C and cohomological data arising
from the G-action (Theorem 4.8).

If a fusion category C is equivalent to the category of (right) comodules of a finite-
dimensional semisimple Hopf algebra H , then the lattice of fusion subcategories of C
is isomorphic to the lattice of Hopf subalgebras of H , see [14, Theorem 6]. Many
interesting Hopf algebras (in particular Hopf algebras of Kac-Paljutkin type and
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quantum groups at roots of unity) contain a central Hopf subalgebra C
G , and this

implies the existence of a central exact sequence of Hopf algebras of the form

k → kG → H → Q → k.

In this case, the category of H -comodules is a G-equivariantization of the category
of Q-comodules, [1]. Thus, we can apply our results to obtain a parameterization of
the Hopf subalgebras of central extensions of semisimple Hopf algebras, particularly
to Hopf algebras of Kac-Paljutkin type associated to semidirect products of groups.

It is well known how to parameterize the simple objects of the equivariantization
and compute their fusion rules in terms of the data of the G action (for example,
[3]). Fusion subcategories of a fusion category D correspond to fusion sub-rules of
the Grothendieck ring K0(D). Hence, in principle, having the fusion rules of CG , the
computation of fusion subcategories of CG reduces to the computation of fusion sub-
rules of K0(CG). However, even the computation of K0(CG) and its multiplication
could be computationally demanding. Therefore, it is desirable to obtain a parameter-
ization of the fusion subcategories of an equivariantization directly in terms of the data
of the group action. The main result of this paper, Theorem 4.8, is a parameterization
of all fusion subcategories of the equivariantization CG in terms of the lattice of fusion
subcategories of C stables by the G-action and cohomological data arising from the
G-action.

After posting an initial version of this paper to the arXiv, Dmitri Nikshych brought
to our attention that our Theorem 4.8 was previously obtained by Alex Levin and pre-
sented at conferences in 2017. Levin’s work has not yet been made publicly available.
We thank Dmitri for bringing this to our attention.

The paper is organized as follows. In Sects. 2 and 3, we recall the basic defi-
nitions and results concerning equivariantization by a categorical group action and
de-equivariantization of a fusion category containing a central inclusion of Rep(G).
In Sect. 4, we prove our main result, which provides a parameterization of equivari-
ant fusion subcategories of a fusion category. In Sect. 5, we take a closer look at the
parameterization in the case of group actions on pointed fusion categories, providing
an obstruction theory for G-invariant trivializations. Finally, in Sect. 6, we apply this
to parameterize Hopf subalgebras of a class of Kac-Paljutkin type studied in [15]
and [10].

2 Preliminaries

A fusion category is a finite semi-simple rigid tensor category. In this paper, we
assume our field is algebraically closed and characteristic 0. We refer the reader to the
comprehensive reference [5] for categorical background. In this section, we will recall
some basic notions and set up notation for categorical actions of groups on fusion
categories and equivariantization.

Let Aut(C) denote the 2-group of tensor autoequivalences of a fusion category and
tensor natural isomorphisms with tensor product given by the composition of tensor
functors. A categorical action of a finite group G on C is a strong monoidal functor



Equivariant Fusion Subcategories

G → Aut(C), where G is the discrete monoidal category where the objects are the
elements of G and the tensor product is defined by the product of G. We denote the
assignment g �→ g∗, and the monoidal natural isomorphisms μg,h : g∗ ◦h∗ → (gh)∗.
We denote the component of a natural isomorphism with a superscript, i.e., the x
component of μg,h is denoted μx

g,h for x ∈ C.
Given a categorical action of G on C, recall that the equivariantization CG is a

new fusion category whose objects are equivariant objects, given by pairs (x, ρ),
where x ∈ C and ρ = {ρg : g∗(x) ∼= x}g∈G is a family of isomorphisms satisfying
μx
g,hρgg∗(ρh) = ρgh for all g, h ∈ G. Morphisms between equivariant objects (x, ρ)

and (y, δ) are morphisms f ∈ C(x, y) such that for all g ∈ G, f ρg = δgg∗( f ).
This forms a newmonoidal category called the equivariantization, denoted CG . The

product (x, ρ) ⊗ (y, δ) is defined by

(x ⊗ y, (ρ ⊗ δ) ◦ βx,y),

where β
x,y
g : g∗(x⊗ y) ∼= g∗(x)⊗g∗(y) is the tensorator of the monoidal equivalence

g∗.
An important point of note is that since the unit object of C is simple, there is a

canonical copy of Rep(G) ≤ CG embedded as a full subcategory, consisting of equiv-
ariant objects which are direct sums of the unit object 1. Furthermore, this subcategory
naturally lifts to the center Z(CG); see [5, Proposition 8.23.1]. Fusion categories C
equippedwith a fully faithfulmonoidal functor F : Rep(G) → C that factors through a
braided monoidal functor Rep(G) → Z(C) are called fusion categories over Rep(G).

Both G-fusion categories and fusion categories over Rep(G) naturally form 2-
categories (see [4, Section 4]). Equivariantization extends to a 2-functor fromG-fusion
categories to fusion categories over Rep(G). This 2-functor has an explicit inverse
called the de-equivariantization functor.

Given a fusion category over Rep(G), then identifying Rep(G) with its image
under F , the étale algebra Fun(G) ∈ Rep(G) can be viewed as a central algebra in
C. Thus, the category of right Fun(G) modules CFun(G) is a fusion category called
the de-equivariantization of C, which we also denote by CG . The free module functor
C → CFun(G) = CG is monoidal. Furthermore, one can equip the dequivariantization
with a natural categorical action of G, and in fact this extends to a 2-functor from the
2-category of fusion categories over Rep(G) to the 2-category of G-fusion categories.
The fundamental theorem of G-actions on fusion categories states that equivarianti-
zation and de-equivariantization are mutually inverse 2-functors [4, Theorem 4.4].

3 Sequential Equivariantization

LetG be a group acting on amonoidal categoryC and let H ≤ G be a normal subgroup.
First pick a section ι : G/H → G of the canonical projection π : G → G/H and
define α : G/H × G/H → H by α(a, b) := ι(a)ι(b)ι(ab)−1 for all a, b ∈ G/H .
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Using the bijection

H × G/H → G

(h, a) �→ hι(a).

the multiplication on G transports to

(h, a)(k, b) = (hι(a)kι(a)−1α(a, b), ab).

Given (x, ρ) ∈ CH , and a ∈ G/H , we define a∗(x, ρ) := (x ′, ρ′) where

x ′ := ι(a)∗(x)

and ρ′
h is defined via the composition

h∗(ι(a)∗(x))
can−−−→ ι(a)∗((ι(a)−1hι(a))∗(x))

ι(a)∗(ρh)−−−−−→ ι(a)∗(x).

It is straightforward to check for each a ∈ G/H this is a monoidal functor, using
the tensorator for ι(a)∗.

To obtain a categorical action, we need monoidal natural isomorphisms a∗ ◦ b∗ →
(ab)∗. Recall that ι(a)ι(b) = ι(ab)(ι(ab)−1α(a, b)ι(ab)), and thus we define ν

(x,ρ)
a,b

to be the morphism making the following diagram commute

ι(a)∗(ι(b)∗(x)) ι(ab)∗((ι(ab)−1α(a, b)ι(ab))∗(x))

ι(ab)∗(x)

can

ν
(x,ρ)
a,b

ι(ab)∗(ρι(ab)−1ι(a)ι(b))

which is an equivariant morphism. νa,b : a∗ ◦ b∗ → (ab)∗ assembles into a monoidal
natural isomorphism. This gives us a categorical action G/H → Aut(CH ).

It is not difficult to see there is a canonical monoidal equivalence (CH )G/H ∼= CG
(for example [4, Equation 75]). One way to see this is using the strictification result of
[8], which implies it suffices to consider the case where theG action on C is strict. Here
it is very easy to build this equivalence by simply rearranging the data of equivariant
objects.

4 The Parametrization

In this section, we parameterize fusion subcategories of an equivariantization of a
fusion category by a group action. If C is a fusion category, by a fusion subcategory,
we mean a full, replete monoidal subcategory (which itself is necessarily a fusion
category). These correspond bijectively to unital-based subrings of the fusion ring of
C.
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We define the trivial categorical action Tr of a group G on a monoidal category
C as the action that assigns each group element to the identity monoidal functor
IdC , with all structure maps being the identities as well. If we have a categorical
action α = (g∗, μg,h)g,h∈G : G → Aut(C), a trivialization is a monoidal natural
isomorphism α ∼= Tr. Unpacking this, a trivialization consists of

• For each g ∈ G, a monoidal natural isomorphism ηg : g∗ ∼= IdC .
• These {ηg}g∈G must satisfy the equation

ηx
gαg(η

x
h) = ηx

ghμ
x
g,h . (4.1)

Recall if E is a full, replete subcategory of C, we say E is invariant under the
G-action if αg restricts to an autoequivalence of E .
Definition 4.1 Let E ≤ C be a G-invariant fusion subcategory, and let H ≤ G be a
normal subgroup. We say a trivialization η of α|H on the category E is G-equivariant
if the following diagram commutes:

h∗(g∗(x)) g∗((g−1hg)∗(x))

g∗(x)

can

η
g∗(x)
h

g∗(ηxg−1hg
(x)) (4.2)

where can is the canonical morphism arising from coherence.

Writing can out explicitly gives the equation:

g(ηx
g−1hgμ

x
g−1,hgμ

x
h,g)(μ

h(g(x))
g,g−1 )−1 = η

g∗(x)
h .

Definition 4.2 Given a group G acting on a monoidal category C, a lifting of a fusion
subcategory E ≤ C is a choice, for every x ∈ E of equivariant structure (x, ρx ) such
that

(1) (x, ρx ) ⊗CG (y, ρ y) = (x ⊗ y, ρx⊗y)

(2) HomCG ((x, ρx ), (y, ρ y)) = HomC(x, y).

We denote the image of E in CG by Eρ ≤ CG .
Lemma 4.3 Let G be a group acting on a monoidal category C and let E ≤ C be a
fusion subcategory. A family of natural isomorphisms

{ηx
g : g∗(x) → x : x ∈ E, g ∈ G}

defines a lifting of E if and only if it defines a trivialization of the G-action on E .
Proof Given a lifting of E , we can define a trivialization of the G action on E as
follows. Set ηx

g : g∗(x) ∼= x by ηx
g := ρx

g . Equation (4.1) is (4.2) in the definition of
lifting and Eq. (4.2) is equivalent to the naturality of ηg for every g.
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Conversely, given a trivialization of G on E , then (x, ηx
g) defines an equivariant

structure. Since the ηg are natural, we see

HomCG ((x, ρx ), (y, ρ y)) = HomC(x, y).

��
Lemma 4.4 Given a G action on C, E ≤ C be a fusion subcategory, and a lifting ρ

of E to CH for some normal subgroup H ≤ G, then the corresponding trivialization
of the H action on E is G-equivariant if and only if Eρ ≤ CH is invariant under the
G-action.

Proof Let ρ be a lifting of E to CH , and let {ηh}h∈H be the trivialization defined by
ηx
h := ρx

h . If g ∈ G then g∗(x, ρ) = (x ′, ρ′) where x ′ = g∗(x) and ρ
′g∗(x)
h is defined

by the composition

h∗(g∗(x))
can−−−→ g∗((g−1hg)∗(x))

g∗(ρx
h )−−−→ g∗(x).

Hence, Eρ ≤ CH is G-invariant if and only if ρ′ = ρg∗(x), and that is exactly the
commutativity of diagram Eq. (4.2). ��
Definition 4.5 [12, Definition 3.1]

Let C be a fusion category, let E ⊆ C be a fusion subcategory, and let A be a
separable algebra in C. We will assume that HomC(A,1) ∼= k, that is, that A is a
connected algebra. We say that E is transversal to A if

HomC(X , A) = HomC(X ,1)

for all X ∈ E .
It is easy to see that transversality is equivalent to requiring

HomC(x, A) ∼= HomC(x,1)

for all x ∈ E . We denote by CA the semi-simple category of right A modules in C. We
have the following lemma:

Lemma 4.6 Let C be fusion, E ≤ C a fusion subcategory, and A ∈ C a connected
seperable algebra. Then, E is transversal to A if and only if the free module functor
FA : E → CA, FA(x) := x ⊗ A, is fully faithful.

Proof Let x, y ∈ E . Suppose E is transversal to A. Recall that the left adjoint of FA is
simply the forgetful functor, i.e., the functor that forgets the right A-module structure on
an object. Then, HomCA (FA(x), FA(y)) ∼= HomC(x, FA(y)) ∼= HomC(y∗ ⊗ x, A) ∼=
HomC(y∗ ⊗ x,1) ∼= HomC(x, y). Thus, the inclusion

FA : HomC(x, y) → HomCA(FA(x), FA(y))
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is an isomorphism, hence FA is fully faithful.
Conversely, if FA is fully faithful on E , then

HomC(x,1) ∼= HomCA(FA(x), FA(1)) ∼= HomC(x, A),

so E is transversal to A. ��
Lemma 4.7 Let C be a fusion category with G action. There is a bijection between the
following:

(1) G-invariant fusion subcategories D ≤ C with trivializations of the G action on
D.

(2) Fusion subcategories E ≤ CG such that FFun(G) restricted to E is fully faithful.
(3) Fusion subcategories of CG which are transversal to the algebra Fun(G) ∈

Rep(G) ≤ CG.
Proof First, we establish a bijection between items (1) and (2). Given D ≤ C and a
trivialization η, this uniquely defines a lifting ρ by Lemma 4.3. Then, we consider the
full subcategory E := Dρ ≤ CG , spanned by objects {(x, ρx )}x∈D. By the definition
of lifting, this is a full monodial catgeory of CG , such that the forgetful functor is fully
faithful.

In the other direction, suppose we have a E ≤ CG such that the forgetful functor
is fully faithful. Define D to be the image of E under the forgetful functor. Since the
forgetful functor is fully faithful, we have

HomE ((x, ηx ), (y, λy)) = HomC(x, y),

in particular, that implies that if (x, ηx ), (x, λx ) ∈ E , then ηx = λx . This follows since
1x ∈ HomC(x, x) = HomE ((x, ηx ), (x, λx )). Since E is monoidal, the uniqueness of
ηx for all x ∈ D implies Eq. (4.1). Now for each object x ∈ D, by definition, there
exists a unique pre-image (x, ηx ) ∈ CG , which is isomorphic to an object in E , and
thus by repleteness is in E . The isomorphisms {ηx }x∈D define a lifting of D.

The equivalence of items (2) and (3) follows from Lemma 4.6. ��
Theorem 4.8 Let C be a fusion category with G action. Fusion subcategories of CG
are parameterized by triples (E, H , η) where

(1) E ≤ C is a G-invariant fusion subcategory.
(2) H ≤ G is a normal subgroup.
(3) η is a G-equivariant trivialization of H on E .
Proof As explained in Sect. 3, a G/H -action on CH can be defined given a normal

subgroup H ≤ G and a section ι : G/H → G. This action satisfies
(CH

)G/H ∼= CG .
It is worth noting that any pair of sections ι, ι′ : G/H → G are related by a map ω :
G/H → H that ensures the associated (non-abelian) 2-cocycles are cohomologous,
and the actions associated with ι and ι′ are canonically equivalent. Thus, the sequential
equivariantization

(CH
)G/H ∼= CG , up to a canonical equivalence, is independent of

the choice of ι or the associated 2-cocycle.
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Given the above data, let ρ be the lift of E to CH defined by the trivialization
(Lemma 4.3). The fusion subcategory Eρ ≤ CH is G/H invariant by Lemma
4.4. Define D to be the replete image of (Eρ)G/H under the canonical equivalence
(CH )G/H ∼= CG . This gives a subcategory of CG from our data.

In the other direction, let D ≤ CG be a fusion subcategory. Let E ≤ C be the
full fusion subcategory generated by the image of D under the forgetful functor FG :
CG → C. Clearly E is G-invariant.

Let H be defined by Rep(G) ∩D ∼= Rep(G/H). To get the trivialization of the H
action on E note that we have the following diagram of monoidal functors commutes
up to canonical natural isomorphism:

CG

CH

C

FG/H

FG

FH

(4.3)

Thus, if we define E ′ = FG/H (D) ≤ CH , then we have FH (E ′) = FG(D) = E .
Alternatively, using the equivalence (CG)G/H ∼= CH , then we see E ′ := (D)G/H ≤
CH .

We claim that the separable, connected algebra Fun(H) ∈ (CG)G/H is transversal
to E ′, or in other words, Fun(H) ∩ E ′ ∼= 1. Let FG/H : C → CGFun(G/H) ∼= CH be the
forgetful functor, which is equivalent as a monoidal functor to FFun(G/H). This functor
is normal by [2, Corollary 5.4]. Thus, by [2, Corollary 4.3], for any two simple objects
x, y in CG , FG/H (x) and FG/H (y) are either isomorphic or disjoint. Since Rep(G)

and D are full, replete subcategories of CG this implies

FG/H (Rep(G) ∩ D) = FG/H (Rep(G)) ∩ FG/H (D).

But Rep(G) ∩ D ∼= Rep(G/H), so the left hand side reduces to Vec. The right hand
side is Rep(H) ∩ E ′. Since Fun(H) ∈ Rep(H) it must be transversal to E ′.

By Lemma 4.7, this implies FH induces an equivalence from E ′ to E , and such
an equivalence uniquely defines a lifting E → CH which is G/H invariant (since
E ′ is G/H invariant by construction). This gives a G-equivariant trivialization η by
Lemma 4.3.

It is easy to see that these two constructions are mutually inverse. Indeed, starting
with a full subcategory D ≤ CG , apply our construction to obtain a normal subgroup
H ≤ G, a full subcategory E ≤ C and a trivialization for H on E . By construction
E ′ = FG/H (D) is the lift of E corresponding to the trivialization of H on E Eq. (4.7),
and (FG/H (D))G/H ∼= D.

Starting from the data (E, H , η), then D is obtained by using η to lift E to an
E ′ ≤ CH Eq. (4.7) and then equivariantizing, so thatD = (E ′)G/H . We see that apply-
ing our construction in the reverse direction gives FG/H (D) = FG/H ((E ′)G/H ) = E ′,
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and thus the associated trivialization on E will agree with the original (again by
Lemma 4.7). ��

From the construction, we have the following corollary

Corollary 4.9 Let D(E, H , η) ≤ CG denote the subcategory constructed in the previ-
ous theorem. Then,

(1) FPdim(D(E, H , η)) = [G : H ]FPdim(E).
(2) D(E, H , η) ≤ D(F , K , ν) if and only if E ≤ F , K ≤ H and η|K = ν on E .

5 Pointed Fusion Categories

Let K be a finite group and ω ∈ Z3(K ,k×). The data of a categorical action of the
group G on Vec(K , ω) can be described by the following:

(1) A homomorphism G → Aut(K ), g �→ g∗
(2) A collection of scalars β

k,l
g ∈ k× for k, l ∈ K , g ∈ G and a collection of scalars

μk
g,h ∈ k× for k ∈ K and g, h ∈ G, satisying the following equations:

ωk,l,m

ωg∗(k),g∗(l),g∗(m)

= β
k,l
g β

kl,m
g

β
l,m
g β

k,lm
g

(5.1)

μk
g,hμ

k
f ,gh = μ

h(k)
f ,g μk

f g,h (5.2)

β
k,l
gh

β
h∗(k),h∗(l)
g β

k,l
h

= μk
g,hμ

l
g,h

μkl
g,h

(5.3)

To realize this data, pick a skeletal model of Vec(K , ω) with the associator given
by ω explicitly. Then, extend the action of g∗ on K linearly to a functor. By semi-
simplicity, it suffices to define natural transformations of functors on simple objects.
The tensorator g∗(k⊗l) ∼= g∗(k)⊗g∗(l) is given by β

k,l
g , and Eq. (5.1) above is exactly

the required compatibility with the associator. We define the natural isomorphisms
gh∗(k) ∼= g∗ ◦ h∗(k) by μk

g,h . Equation (5.3) ensures these are monoidal natural
isomorphisms, and Eq. (5.2) guarantees these assemble into a categorical action.

Now, our goal is to apply our general results to parameterize subcategories of the
equivariantization in terms of the above data. The only remaining task is to interpret
the G-equivariant trivializations in terms of this data.

Let L ≤ K be a G-invariant subgroup, and H ≤ G a normal subgroup such that
h∗|L is trivial. First, we can unpack the definition of a trivialization of the H action on
L .

It consists of a family ηkh ∈ k× for k ∈ L, h ∈ H satisfying for all g, h ∈ H

ηlkg = ηlgη
k
gβ

l,k
g (5.4)

ηlgη
l
h = ηlghμ

l
g,h (5.5)
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Viewing η : L × H → k, we see that it is almost a bicharacter. In particular, it is a
character in each variable up toβ andμ respectively. Thus, wewill call η : L×H → k
satisfying the above equations a (β, μ)-bicharacter.

Now, we can unpack the definition of a G-equivariant tivialization to obtain

η
g∗(k)
h = ηkg−1hg

⎛

⎝
μk
g−1,hg

μk
h,g

μ
gh∗(k)
g,g−1

⎞

⎠ (5.6)

or equivalently

η
g∗(k)
ghg−1 = ηkh

⎛

⎝
μk
g−1,gh

μk
ghg−1,g

μ
g(k)
g,g−1

⎞

⎠ (5.7)

where we have used in the superscript on the denominator that H is normal in G, and
since H acts trivially on L , g(ghg−1)∗(k) = g(k) for all k ∈ L .

Note that we can assume μk
h,g is normalized so that μk

h,g = 1 for all k if h or g

is 1. Then, the defining condition for μ implies μk
g−1,g

= μ
g∗(k)
g,g−1 . Furthermore, the

defining equation, together with normalization and the fact that h acts trivially on L
implies the equation

μk
g,hμ

k
g−1,gh = μk

g−1,g.

Solving forμk
g−1,gh

, replacingμk
g−1,g

withμ
g∗(k)
g,g−1 , and substituting into Eq. (5.7) gives

η
g∗(k)
ghg−1 = ηkh

(
μk
ghg−1,g

μk
g,h

)

. (5.8)

Definition 5.1 A (β, μ) bicharacter satisfying Eqs. (5.7) or (5.8) is called a G-
equivariant (β, μ) bicharacter.

Corollary 5.2 Consider a categorical action of G on Vec(K , ω), given by a homo-
morphism G → Aut(K ), together with (β, μ) as above. Then, fusion subcategories of
Vec(K , ω)G are parameterized by triples (L, H , η)where L ≤ K is aG-invariant sub-
group, H is a normal subgroup of G fixing every element of L, and η is a G-invariant
(β, μ) bicharacter.

5.1 Z(Vec(G,!))

Now, we compare our parametrizations with the results of [13]. To state their results,
we need to introduce some notation. Let ω ∈ Z3(G,k×). Following [13, Section
5.1]), for any a, x, y ∈ G define the quantities

ηa(x, y) := ω(x, y, a)ω(xyay−1x−1, x, y)

ω(x, yay−1, y)
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νa(x, y) := ω(axa−1, aya−1, a)ω(a, x, y)

ω(axa−1, a, y)

Settingμk
g,h := ηk(g, h) and β

h,k
g = νg(h, k), and g∗(h) := ghg−1, then it’s direct

calculations show this data satisfies Eqs. (5.1), (5.2), (5.3) (see [13, Equation 21])
and thus provides a G action on Vec(G, ω) via conjugation. It is well known that
Vec(G, ω)G ∼= Z(Vec(G, ω)).

Thus, according to Corollary 5.2, since the action of G on G is by conjugation, the
subcategories of Z(Vec(G, ω)) are parameterized by triples (L, H , η), where L, H
are commuting normal subgroups of G and η is a G-invariant (β, μ)-bicharacter.

The parameterization in [13] is given by triples (L, H , B), where L, H are com-
muting normal subgroups of G, and B : L × H → k× is a G-invariant ω-bicharacter
([13, Definition 5.4]). Using [13, Equation 19], we see that B is an ω-bicharacter if
and only if B−1 is a (β, μ)-bicharacter in our sense.

5.2 Obstruction Theory

In Corollary 5.2, we parameterized the subcategories of the equivariantization of a
pointed fusion category in terms of algebraic data, which can be described as solu-
tions to families of equations with a cohomological flavor. It is desirable to have an
obstruction theory that allows one to determine whether such data exists or not, and to
be able to count the solutions if they do exist. In this section, we present some results
in this direction.

Let G be a finite group acting on Vec(K , ω) with associated data β
k,l
g and μk

g,h .
Let L ≤ K be a G-invariant subgroup and H ≤ G a normal subgroup such that H
acts trivially on L . We will analyze the cohomological conditions for the existence of
a G-equivariant (β, μ)-bicharacter η : L × H → k×.

5.2.1 Existence of (ˇ,�) Bicharacters.

Since H acts trivially on L , it follows from Eq. 5.1 that

(βh)|L×L ∈ Z2(L,k×),

for all h ∈ H . If follows from Eq. 5.4 that a first necessary condition for the existence
of a (β, μ) bicharacter is that the cohomology class of (βh)|L×L is trivial for all h ∈ H .
If the cohomology class (βh)|L×L is trivial for all h ∈ H , there exist τ : L×H → k×
such that

τ hl1l2 = τ hl1τ
h
l2β

l1,l2
h

holds for all h ∈ H , l1, l2 ∈ L .
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The function

μ̃ : H × H × L → k×

(h1, h2, l) �→ μl
h1,h2

τ
h1h2
l

τ
h1
l τ

h2
l

,

defines an element in μ̃ ∈ Z2(H ,Hom(L,k×)). In fact,

μ̃
l1
h1,h2

μ̃
l2
h1,h2

= μ
l1
h1,h2

μ
l2
h1,h2

τ
h1h2
l1

τ
h1
l1

τ
h2
l1

τ
h1h2
l2

τ
h1
l2

τ
h2
l2

= μ
l1
h1,h2

μ
l2
h1,h2

β
l1,l2
h1

β
l1,l2
h2

τ
h1h2
l1

τ
h1h2
l2

τ
h1
l1l2

τ
h2
l1l2

= μ
l1l2
h1,h2

β
l1,l2
h1h2

τ
h1h2
l1

τ
h1h2
l2

τ
h1
l1l2

τ
h2
l1l2

= μ
l1l2
h1,h2

τ
h1h2
l1l2

τ
h1
l1l2

τ
h2
l1l2

= μ̃
l1l2
h1,h2

,

for all l1, l2 ∈ L, h1, h2 ∈ H . It is easy to see that the cohomology class of μ̃ ∈
Z2(H ,Hom(L,k×)) does not depend of the choice of τ . Hence, it follows from
Eq. 5.5 that a second necessary condition for the existence of a (β, μ)-bicharacter
is the triviality of the cohomology of μ̃. Moreover, the triviality of the cohomology
of μ̃ is a sufficient condition for the existence of a (β, μ)-bicharacter. In fact, if
χ ∈ Hom(L,k×) is such that μ̃(h1, h2) = χh1h2

χh1χh2
, then ηlh = τ lhχ

l
h is a (β, μ)-

bicharacter.

5.2.2 Existence of G-invariant (ˇ,�)-bicharacters

It is easy to see that the set of all (β, μ)-characters is a torsor over the abelian group of
all bicharacters H × L → k×. Let η : H × L → k× be a (β, μ)-bicharacter. Define
the function

�(η,μ) : G × H × L → k× (5.9)

(g, h, l) �→
⎛

⎝ ηlh

η
g∗(l)
ghg−1

⎞

⎠

(
μl
ghg−1,g

μl
g,h

)

.

Proposition 5.3 The following conditions are necessary and sufficient for the existence
of a G-invariant (β, μ)-bicharacter.



Equivariant Fusion Subcategories

(1) �(η,μ) defines an element in Z1(G,Hom(L,Hom(H ,k×))) whose cohomol-
ogy class does not depend on the choice of η. Here, the action of G on
Hom(L,Hom(H ,k×)) is induced by the action by conjugation of G on the nor-
mal subgroup H and the action ∗ of G on L.

(2) The cohomology class of �(η,μ) vanishes.

Proof Let τ : H×L → k× be aG-invariant (β, μ)-bicharacter. There is a bicharacter
χ : L × H → k× such that η = τχ . Hence,

�(η,μ)g,h,l = χ l
h

χ
g∗(l)
ghg−1

,

and

�(η,μ)g1,h,l
g1

(
�(η,μ)g2,h,l

) = χ l
h

χ
(g1)∗(l)
h

g1

(
χ l
h

χ
(g2)∗(l)
h

)

= χ l
h

χ
(g1g2)∗(l)
h

= �(η,μ)g1g2,h,l ,

so �(η,μ) ∈ Z1(G,Hom(K ,Hom(H ,k×))) and the cohomology does not depend
on η.

It follows by the definition of�(η,μ) that it vanishes ifη isG-invariant. Conversely,
if �(η,μ) ∈ Z1(G,Hom(K ,Hom(H ,k×))) and there exists a bicharacter χ such

that �(η,μ)g,h,l = χ l
h

χ
g∗(l)
h

then τ = η
χ
is a G-invariant ��

6 The Lattice of Hopf Subalgebras of a Hopf Algebra of Kac-Paljutkin
Type

6.1 Hopf Algebra of Kac-Paljutkin Type

Let G be a finite group acting on a finite group K and (β, μ) a data defining an action
of G on Vec(K ).

Let us denote kG := Maps(G,k), let δg ∈ kG be the function that assigns 1 to
g and 0 otherwise, and let δg,h be the Dirac’s delta associated to the pair g, h ∈ G,
namely δg,h is 1 whenever g = h and 0 otherwise.

The vector space kG#β
μkK with basis {δg#x |g ∈ G, x ∈ K } is a Hopf algebra with

product
(δg#x)(δh#y) = δg,hβ

x,y
g δg#xy,

coproduct,
�(δg#x) =

∑

a,b∈G:ab=g

μx
a,bδa#b · x⊗δb#x,
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counit, unit and antipode

ε(δg#x) = δg,e, 1#e, S(δg#x) = 1

β
gx,g−1

(gx)−1 μx
g−1,g

δg−1#(gx)−1,

for all g, h ∈ G, x, y ∈ K . See [11] for more details.

Corollary 6.1 Let kG#β
μkK be a semisimple Hopf algebra of Kac-Paljutkin type, then

the lattice ofHopf subalgebras is in correspondencewith the lattice of triples (L, H , η)

where

(1) L ≤ K is a G-invariant subgroup.
(2) H ≤ G is a normal subgroup.
(3) η : H × L → k× is a G-invariant (β, μ)-bicharacter.

Proof It follows from Corollary 5.2 that the triples are in correspondence with fusion
subcategories of Vec(K )G . Now, the fusion category of right kG#β

μkK -comodules is
tensor isomorphic to the fusion category Vec(K )G , (see [9, Theorem 7.1]) hence by
[14, Theorem 6] they correspond to Hopf subalgebras of kG#β

μkK . ��

6.2 Concrete Example

Let G = C2 = 〈σ 〉 a cyclic group of order two and K = Z/n × Z/n. Consider the
action of G on K given by σ(a, b) = (b, a). Since we can consider only normalized
maps β : C2 × K × K → k× μ : C2 × C2 × K → k×, hence the pair (β, μ) is
complete determined by elements β ∈ Z2(K ,k×) and μ ∈ C1(K ,k×) such that

δK (μ) = β(σ β), μ(σ μ) = 1. (6.1)

Up to equivalences, the pairs (β, μ) are classified byGn the group n-th root of unit,
see [10, Theorem 2.1]. In fact, given q ∈ Gn , we can define

βq(�a, �b) = qa1b2 , μq(�a) = q−a1a2 , (6.2)

where �a = (a1, a2) and �b = (b1, b2).
We now can divide the possible Hopf subalgrebras of kC2#

βq
μqk(Z/n×Z/n) in two

cases depending if H ≤ C2 is trivial or not.

6.2.1 When H = C2

In this case, the subgroup L is just a subgroup of �(Z/n) = {(a, a) : a ∈ Z/n}. Let
m be a divisor of n and x = n/m. Hence, L = 〈(x, x)〉 and

βq(a(x, x), b(x, x)) = qx
2ab.
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The 1-cochain
τq(l(x, x)) = q−x2 l(l+1)

2

satisfies δK (τq) = βq for all l(x, x) ∈ L .
In order to compute the obstruction, let us consider

μ̃q(l(x, x)) = μq(l(x, x))

τq(l(x, x))2

= q−l2x2qx
2l(l+1)

= qx
2l .

Then, the obstruction vanishes if and only if there is ζ ∈ Gm such that

qx
2 = ζ 2.

If qx
2 = ζ 2, the associated (β, μ)-bicharacter is

ηζ (l(x, x)) = τq(l(x, x))ζ
l = q−x2 l(l+1)

2 ζ l .

Moreover every ηζ is invariant.

6.2.2 When H is Trivial

In general, if H is trival the fusion subcategories associated are given just by pairs
(L, η) where L ≤ K is a G-invariant subgroup and η ∈ Ĝ is G-invariant linear
character.

Using Goursat’s lemma it is straightforward to see that C2-invariant subgroups of
Z/n×Z/n corresponds to triple (B, N , f ) where N ⊂ B ⊂ Z/n is a tower of groups
and f : B/N → B/N is an automorphism of order two. The subgroup associated
with the triple (B, N , f ) is

H(B,N , f ) = {(a, b) : f (aN ) = bN }.

As a conclusion of the Sections 6.2.1 and 6.2.2, we obtain the following result.

Theorem 6.2 The Hopf subalgebras of kC2#
βq
μqk(Z/n ×Z/n) come in two types, and

correspond to

Type 1: pairs (m, ζ ) where m is divisor of n and ζ is a root of unity of order n
m such

that q( n
m )

2 = ζ 2.
Type 2: four-tuples (B, N , f , η) where N ⊂ B ⊂ Z/n is a tower of groups, f :

B/N → B/N is an automorphism of order two, and η : H(B,N , f ) → k× is
a character such that η(a, b) = η(b, a) for all (a, b) ∈ H(B,N , f ).

��
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