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Abstract
We study a Serre functor in functor categories related to the category Pd of strict
polynomial functors over a field of positive characteristic. Our main result shows that
the derived category of the category of affine strict polynomial functors in some cases
carries the structure of Calabi–Yau category. We also re-obtain the Poincaré duality
formulas for Ext groups in Pd and construct a certain recollement diagram relating
the derived categories of affine and ordinary strict polynomial functors.
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1 Introduction

In the present article we study the Serre functor in the derived category of the
category Pd of strict polynomial functors of degree d over a field of positive charac-
teristic. Although the existence of Serre functor in our context follows from general
theory, and it was constructed in [15], we investigate its interplay with various struc-
tures existing on Pd (Frobenius twist, affine subcategories, blocks), which has some
interesting consequences.

We start by studying the Serre functor S in the bounded derived category of Pd .
The main goal of Section 2 is to show that the Poincaré type formulas for Ext groups
in Pd obtained in [6] and [17] are a consequence of the interplay between S and the
Frobenius twist, which motivates the further part of the paper. Namely we obtain

Corollary 2.4 Let λ be a Young diagram of weight d which is single in its block
(we call such a diagram and its block basic), let μ be any Young diagram of weight
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dpi . Let Fλ, Fμ be the corresponding simple objects. Then there is an isomorphism
of linear spaces:

ExtsP
dpi

(F
(i)
λ , Fμ) � Ext2d(pi−1)−s

P
dpi

(F
(i)
λ , Fμ)∗,

as a formal consequence of basic properties of S.
The main part of the paper consists of Sections 3–5. Our goal is to put the Poincaré

duality formula from Corollary 2.4 into a wider categorical context. To this end we
turn attention to the category Pafi

d of i-affine strict polynomial functors of degree d ,
and we introduce a (somewhat weaker version of) Serre functor on its derived cat-
egory DPafi

d . In general, a Serre functor produces Poincaré duality in Ext groups
when it acts on some object as the shift functor. Indeed, we see in our Proposition
2.3 that this exactly happens for some Frobenius twisted strict polynomial func-
tors (in fact, Corollaries 2.4 and 2.5 are formal consequences of Proposition 2.3).
We provide a categorical interpretation of this phenomenon by investigating a Serre
functor on the derived category of the category DPafi

d of i-affine strict polynomial
functors of degree d (c.f. [7]), which is a full triangulated subcategory of DPdpi

generated the i-times Frobenius twisted functors (c.f. [7]). Namely, we find certain
subcategories, called “basic affine semiblocks” of DPdpi , which correspond to “basic
blocks” appearing in Cor. 2.5, on which the Serre functor is isomorphic to the shift
functor (such categories are called Calabi–Yau). Thus we have succeeded in provid-
ing a categorical interpretation of both assumptions in Corollary 2.4: we specialize
to DPafi

d because F
(i)
λ is twisted and we restrict to the image of the block containing

Fλ to take advantage of the fact that λ is basic.
Below we describe the contents of the article in more detail.
Section 2 studies basic properties of the Serre functor in Pd (Th. 2.2, Corollary

2.3) and shows how they lead to the Poincaré duality formulas in Pd (Cor. 2.4).
We also point out that in Cor. 2.5 we obtain a new example of Poincareé duality,
which suggests that the approach to the Poincaré duality presented here may be more
flexible than that from [6].

Then in Section 3 we study a Serre functor in DPafi

d . We start with reviewing basic

properties of the categories Pafi

d and DPafi

d . This is mainly a recollection of some
facts from [7] where these concepts were introduced and adapting them to a slightly
more general setting of “multiple twists” in which we work in the present article. A
new ingredient is the “affine Kuhn duality” which is useful in all kinds of duality
issues. In order to have this piece of structure we were forced (in contrast to [7]) to
allow unbounded complexes in our derived categories. In the next subsection we use
the affine Kuhn duality to obtain the “affine recollement diagram” which is not used
in the rest of the paper but may be of independent interest. Then we proceed to define
the Serre functor Safi in DPafi

d . However, we need to adapt this notion to the fact that

DPafi

d has infinite dimensional Hom-spaces. Hence, technically, we define “a weak

Serre functor ” (Definition 3.14, 3.15) on DPafi

d .

In Section 4 we introduce “the semiblock decomposition” of DPafi

d . This is a

collection of reflective subcategories of DPafi

d indexed by the set of blocks in Pd .
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They generate DPafi

d but in contrast to genuine blocks they are not orthogonal. We
believe that this structure deserves a further investigation, however in the present
article we content ourselves to introducing the affine derived Kan extension and Serre
functor on the semiblocks. This is a non-trivial task due to the non-orthogonality of
semiblocks.

In Section 5 we focus on the basic semiblocks, i.e., the subcategories of DPafi

d

which correspond to the blocks containing a single simple object. We establish the
main result of the article

Theorem 5.1 For any basic Young diagram λ, the category DPafi ,b
λ is Calabi–

Yau of dimension 2d(pi − 1), the category DPafi

λ is weak Calabi–Yau of dimension
2d(pi − 1).

thus providing the promised categorical interpretation of our Poincaré duality
formulas. We finish our article by giving various explicit descriptions of basic semi-
blocks as categories of DG modules over certain graded algebras (Proposition 5.5,
Corollary 5.6) which should make them easier to handle.

2 Serre Functor inDPd

Let Pd be the category of strict polynomial functors of degree d over a fixed field
k of characteristic p > 0 as defined in [11]. Since Pd is an artinian category of
finite homological dimension, it follows from [3] that its bounded derived category
possesses a Serre functor. The Serre functor on DPd was studied by Krause in [15]
who described it explicitly and established its basic properties. In the present section
we recall Krause’s approach, and show how by using the interplay between the
Serre functor and the Frobenius twist to re-obtain (and slightly extend) the Poincaré
dualities from [6].

We start with recalling standard notations concerning strict polynomial functors.
Let V stand for the category of finite dimensional vectors spaces over k, and let �dV
stand for the category of dth divided powers over V . By this we mean that the objects
of �dV are those of V but

Hom�dV (V , W) := �d(Hom(V , W)),

where for a vector space X, �d(X) stands for the space of symmetric d-tensors on
X. Then the category Pd of strict polynomial functors of degree d is the category k-
linear functors from �dV to V (c.f. [12, Sect. 3]). For a finite dimensional k-vector
space U we define the strict polynomial functor Sd

U∗ ∈ Pd by the formula

V �→ Sd(U∗ ⊗ V ).

Then by the Yoneda lemma (c.f. [11, Th. 2.10]) we have the natural in U and F ∈ Pd

isomorphism

HomPd
(F, Sd

U∗) � F(U)∗.

It immediately follows from this formula that Sd
U∗ is injective and it was shown in

[11, Th. 2.10] that if dim(U) ≥ d then Sd
U∗ is a cogenerator of Pd . Dually, we have a
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family of projective objects �d
U∗ for which the Yoneda lemma gives the isomorphism

HomPd
(�d

U∗ , F ) � F(U).

Let DPd denote the bounded derived category of Pd . In order to describe explicitly
the Serre functor on DPd , we shall regard the assignment (V , W) �→ Sd(V ∗⊗W) =:
Sd(I ∗ ⊗ I ) as a strict polynomial bifunctor of degree (d, d) in the sense of [10].
It was shown in [7, Prop. 4.1], [5, pp. 10020–10021] that the category Pd

d of strict
polynomial bifunctors of degree (d, d) has a finite homological dimension and that
taking Hom with respect to the covariant variable produces the left balanced functor:

HomPd
: (Pd

d )op × Pd −→ Pd,

which has the total derived functor:

RHomPd
: (DPd

d )op × DPd −→ DPd .

Definition 2.1 We define a functor S : DPd −→ DPd by the formula:

S(F ) := RHomPd
(Sd(I ∗ ⊗ I ), F ).

Practically, for F ∈ Pd , we have:

H ∗(S(F ))(V ) � Ext∗Pd
(Sd

V ∗ , F ).

One can see that when we explicitly write down the definition of Serre functor given
in [15] in terms of the monoidal structure on Pd , we get (−)# ◦ S ◦ (−)#, where (−)#

stands for the Kuhn duality. Conjugating by the Kuhn duality is a consequence of the
fact that, as we will see in a moment, we obtain the left Serre functor (which is easier
to describe in terms of Hom-functors), while Krause considers the right one.

Now we gather the basic properties of S (c.f. [15, Cor. 5.5]):

Theorem 2.2 The functor S satisfies the following properties:

1. There is a natural in U isomorphism in DPd :

S(Sd
U∗) � �d

U∗ .

2. There is an isomorphism of functors:

S � � ◦ �

where � is the “Koszul duality” functor from [4] given by the formula:

�(F) := RHomPd
(�d(I ∗ ⊗ I ), F ),

where �d(I ∗ ⊗ I )(V , W) := �d(V ∗ ⊗ W).
3. For any F ∈ DPd , G ∈ DPd ′ there are isomorphisms in respectively DPdpi ,

DPd+d ′:

• S(F (i)) � S(F )(i)[−2d(pi − 1)]
• S(F ⊗ G) � S(F ) ⊗ S(G).

4. S is a self-equivalence of DPd .
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5. There is a natural in F, G ∈ DPd isomorphism

HomDPd
(F, G) � HomDPd

(S(G), F )∗,

that is, S is a left Serre functor in the sense of [2].

Proof To see the first part we recall that since Sd
U∗ is injective, we have a chain of

quasi-isomorphisms:

S(Sd
U∗)(V ) = HomDPd

(Sd
V ∗ , Sd

U∗) � HomPd
(Sd

V ∗ , Sd
U∗) � Sd

V ∗(U∗)∗ � �d
U∗(V )

by the Yoneda lemma.
In fact, [4, Prop. 2.2] can be easily extended to the “parameterized version”:

�((Sλ)U∗) � (W
˜λ)U∗ ,

where Sλ stands for the Schur functor associated to the Young diagram λ and W
˜λ

stands for the Weyl functor associated to the transposed Young diagram˜λ. From this
we obtain the isomorphisms: �(Sd

U∗) � �d
U∗ and �(�d

U∗) � �d
U∗ which give the

second part.
The formulas from part 3 follow from the analogous facts holding for �

[4, Prop. 2.6].
The fact that S is an equivalence follows from a general argument (we will resort

to it in a more general setting in Section 3), but it will be useful to explicitly describe
the inverse of S. Namely, it follows from [4, Def. 2.3, Cor. 2.4] that the“right Serre
functor” Sr := (−)# ◦ S ◦ (−)# where (−)# is the Kuhn duality, is the inverse of S.

In order to obtain the last part, it suffices to establish a natural in U isomorphism

HomDPd
(F, Sd

U∗) � HomDPd
(S(Sd

U∗), F )∗.

By the first part and the injectivity of Sd
U∗ and projectivity of �d

U∗ it reduces to

HomPd
(F, Sd

U∗) � HomPd
(�d

U∗ , F )∗,

which follows from the Yoneda lemma.

The fact that S is a Serre functor can be used to obtain the Poincaré like formulas
for the Ext groups, provided that we are able to compute S(F ) in some interesting
cases. We shall illustrate this idea by re-obtaining the most important example of the
Poincaré duality formula for Ext groups in Pd established in [6].

Let λ be a Young diagram of weight (=size) d which is a p-core. We recall that
the blocks in Pd are indexed by the p-core Young diagrams of weight d − jp for
j ≥ 0 (c.f. [19, Section 5], it was overlooked in [6] that the description of blocks
for Pd is simpler than that for the Schur algebra in general). Thus the block labeled
by λ contains only one simple object Fλ. We call such a Young diagram λ and the
corresponding block basic.

Proposition 2.3 Let λ be a basic Young diagram of weight d . Then

S(F
(i)
λ ) � F

(i)
λ [−2d(pi − 1)].
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Proof Since Fλ is single in its block, we have the isomorphisms: Fλ � Sλ � Wλ.
Therefore:

�(Fλ) � �(Sλ) = W
˜λ.

Now, since˜λ is a p-core, also F
˜λ is single in its block. Hence we obtain:

�(W
˜λ) � �(S̃λ) = Wλ � Fλ.

Thus we see that S(Fλ) � �2(Fλ) � Fλ and our formula follows from Theorem
2.2(3).

The Poincaré duality formula [6, Example 3.3] is a formal consequence of
Proposition 2.3.

Corollary 2.4 Let λ be a basic Young diagram of weight d , μ be any Young diagram
of weight dpi , and Fλ, Fμ be the corresponding simple objects. Then

ExtsP
dpi

(F
(i)
λ , Fμ) � Ext2d(pi−1)−s

P
pid

(F
(i)
λ , Fμ)∗.

Proof By applying first the Kuhn duality (−)# (we recall that simple objects are self-
dual with respect to (−)#), then the Serre functor and finally using Proposition 2.3
we obtain:

ExtsP
pid

(F
(i)
λ , Fμ) � ExtsP

pid
(Fμ, F

(i)
λ ) = HomDP

dpi
(Fμ, F

(i)
λ [s]) �

HomDP
dpi

(S(F
(i)
λ [s]), Fμ)∗ � HomDP

dpi
(F

(i)
λ [s − 2d(pi − 1)], Fμ)∗ �

Ext2d(pi−1)−s

P
dpi

(F
(i)
λ , Fμ)∗.

The next example shows that our approach to the Poincaré duality is more flexible
than that used in [6].

Corollary 2.5 There is a natural in U ∈ V and F ∈ Pdpi isomorphism

ExtsP
pid

(�
d(i)
U∗ , F ) � Ext2d(pi−1)−s

P
pid

(�
d(i)
U∗ , F #)∗.

Proof By applying the right Serre functor and the Kuhn duality we obtain

ExtsP
pid

(�
d(i)
U∗ , F ) � ExtsP

pid
(F,Sr (�

d(i)
U∗ ))∗ � ExtsP

pid
(F, S

d(i)
U∗ [−2d(pi − 1)])∗ �

� ExtsP
pid

(�
d(i)
U∗ [2d(pi − 1)], F #)∗ � Ext2d(pi−1)−s

P
pid

(�
d(i)
U∗ , F #)∗.

Let us observe that our Corollary 2.5 does not follow from [6, Th. 3.2], since �d
U∗

does not satisfy the assumption that its endomorphism algebra (which is the Schur
algebra) is a symmetric Frobenius algebra. This shows that our current approach to
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the Poincaré duality is more direct than that of [6] and may have a wider range of
applications.

In the further part of the paper we will try to put the mechanism which turns the
Serre duality into the Poincaré duality into a wider categorical context.

3 Serre Functor in Affine Categories

The aim of this section is to introduce a suitable version of Serre functor on the
category of affine strict polynomial functors. The notion of affine strict polynomial
functor was introduced in [7]. In the present paper we generalize it in two directions:
firstly we consider the case of multiple twists (i.e., our category Pafi

d for i = 1 cor-

responds to the original category Paf
d from [7]), and secondly we allow unbounded

graded objects. Both changes are rather innocuous but for the reader’s convenience
we briefly explain in Section 3.1 how to adapt the ideas of [7] to this more general
context. Then in Section 3.2 we introduce the affine Kuhn duality. This structure
was not investigated in [7] since it requires unbounded complexes (the Kuhn dual
of a complex bounded below is bounded above). However, in order to produce the
Poincaré duality at the level of affine categories we need this structure. This is the
reason for which we switched in the present article to unbounded graded objects and
complexes. In Section 3.3 we derive from the results of Section 3.2 the existence of a
certain recollement diagram. This fact is interesting for its own but will not be used
in the further part of the article. Finally, in Section 3.4 we endow the derived category
of Pafi

d with a Serre functor.

3.1 Review of i -Affine Functors

In this subsection we briefly describe the theory of i-affine strict polynomial func-
tors, which for i = 1 specializes to the theory of affine strict polynomial functors
developed in [7]. In fact the proofs of all the results of [7, Sections 2–3] carry over to
the current situation, hence here we just set up the framework and terminology and
formulate relevant facts. However handling the formality phenomena, which corre-
sponds to [7, Section 4] requires a substantial extension of the tools used there, hence
we discuss the relevant material in greater detail.

We start with a graded algebra Ai := k[x1, x2, . . . , xi]/(xp

1 , x
p

2 , . . . x
p
i ) for |xj | =

2pj (the reader of [7] sees that for i = 1 we get the graded algebra A studied there)
and set �dVAi

to be the following graded k-linear category. The objects of �dVAi

are finite dimensional vector spaces, though we follow the convention taken in [7,
Section 2] and label them as V ⊗ Ai where V is a finite dimensional vector space.
The morphisms are given as

Hom�dVAi
(V ⊗ Ai, W ⊗ Ai) := �d(Hom(V , W) ⊗ Ai).

Let Vf stand for the category of graded vector spaces over k, finite dimensional
in each degree. An i-affine strict polynomial functor of degree d is a graded func-
tor from �dVAi

to Vf . We point out for the difference with [7] here: we do not
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assume that our functors are bounded below (i.e., we replace the category Vf + from
[7] with Vf ). The i-affine strict polynomial functors of degree d form the k-linear
graded abelian category Pafi

d with morphisms being the natural transformations.
For any finite dimensional vector space U we have the representable i-affine strict
polynomial functors of degree d , hU⊗Ai given by the formula

V ⊗ Ai �→ Hom�dVAi
(U ⊗ Ai, V ⊗ Ai) = �d(Hom(U, V ) ⊗ Ai),

and by the Yoneda lemma [7, Prop. 2.2] we have

HomPafi
d

(hU⊗Ai , F ) � F(U ⊗ Ai).

Similarly, we have the corepresentable functor c∗
U⊗Ai

given by

V ⊗ Ai �→ Hom�dVAi
(V ⊗ Ai, U ⊗ Ai)

∗

where (−)∗ stands for the graded k-linear dual. This time the Yoneda lemma gives

HomPafi
d

(F, c∗
U⊗Ai

) � F(U ⊗ Ai)
∗.

Analogously to the non-affine case, Pafi

d is equivalent to a certain module category.

Namely, we define the i-affine Schur algebra S
afi

d,n := �d(End(kn) ⊗ Ai). Then

F(kn ⊗ Ai) is naturally a graded S
afi

d,n-module and we have (c.f. [7, Prop. 2.5])

Proposition 3.1 If n ≥ d then

evn : Pafi

d −→ S
afi

d,n-mod
f ,

where S
af
d,n-mod

f is the category of finite dimensional in each degree Z-graded S
af
d,n

modules, is an equivalence of graded abelian categories.

The forgetful functor z : �dVAi
−→ �dV induces an exact functor z∗ : Pf

d −→
Pafi

d where Pf
d stands for the category of graded functors from �dV regarded as the

graded category concentrated in degree 0 to Vf . This fact is not entirely trivial, since
it relies on the possibility of canonical extension of the domain of a strict polynomial
functor to the graded spaces (see the discussion in [7, p. 657]). The functor z∗ has a
right adjoint t∗ : Pafi

d −→ Pf
d which is explicitly given as t∗(F )(V ) := F(V ⊗ Ai).

The relation between Pafi

d and Pdpi is much deeper and it emerges only at the

level of derived categories. In order to develop homological algebra in Pafi

d we regard
it as a DG category, with the trivial differentials, and we apply the machinery of
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homological algebra for DG categories as developed in [13] (see also [14], [7, Section
3]). Namely we consider the DG category KPafi

d of graded functors from �dVAi

to the category of complexes of finite dimensional in each degree vector spaces.
The derived category DPafi

d is obtained from KPafi

d by inverting the class of quasi-
isomorphisms. It is very convenient to perform this localization process by applying
the formalism of Quillen model categories. We recall that the category of all graded
functors from �dVAi

to the category of complexes of vector spaces can be equipped
with either of two model structures: the projective one in which every object is fibrant
and hU⊗Ai are cofibrant (among others) and the injective one in which every object
is cofibrant and c∗

U⊗Ai
are fibrant. In both cases the weak equivalences are quasi-

isomorphisms [14, Section 3]. In order to apply this machinery to the subcategory
KPafi

d we need a fact analogous to [7, Th. 3.4].

Proposition 3.2 Any F ∈ KPafi

d has a cofibrant resolution p(F) and fibrant

resolution i(F ) inside KPafi

d .

Proof This fact follows from the “local finiteness” of KPafi

d , by which we mean:

Lemma 3.3 Any F ∈ KPafi

d has a filtration by finite dimensional sub-objects which
stabilizes in each degree.

Proof of the lemma It will be more convenient to work with the complex of S
afi

d,d

modules M := F(kd ⊗ Ai) (c.f. Proposition 3.1). We take a set {xs}∞s=1 which gen-
erates M as a k module and there is only a finite number of xs’ in each degree. Let
Mj be the smallest subcomplex of S

afi

d,d modules in M containing {x1, . . . , xj }. Then

Mj = Ai〈x1, . . . , xj 〉 + Ai〈d(x1), . . . , d(xj )〉,

hence it is finite dimensional and we obtain the required filtration.

We will find a cofibrant resolution, the proof in the fibrant case is similar (it could
also be deduced from the cofibrant case by means of the affine Kuhn duality dis-
cussed in the next subsection). We will use a construction analogous to that appearing
in the last part of the proof of [7, Th. 3.4]. For F ∈ KPafi

d let Fj be a filtration of F

by finite dimensional subcomplexes. By the argument used in the proof of [7, Th. 3.4]
we can construct for each j ≥ 0 a cofibrant replacement Pj � Fj satisfying the
following properties:

1. P k
j is finite dimensional for all j, k.

2. inf{k : P k
j �= 0} ≥ inf{k : Fk

j �= 0} − d0, where d0 is homological dimension of
Pd .

3. Pj embeds into Pj+1,
4. The quotient Pj+1/Pj is cofibrant.
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Then it is easy to see that P := ⋃

j Fj is a cofibrant replacement of F and that

P ∈ KPafi

d .
Now one can proceed along the lines of [7, Sections 4–5] to establish the adjunc-

tion between the triangulated categories DPafi

d and DPdpi (from now on also DPdpi

stands for the unbounded derived category). In fact the only place when the argu-
ments of [7] require a substantial modification is the proof of the formality result
analogous to [7, Th. 4.3].

Namely, let �d(I ∗⊗I (i)) ∈ Pd
dpi be the bifunctor given by the formula (V , W) �→

�d(Hom(V , W(i)) and let X be a projective resolution of �d(I ∗ ⊗ I (i)) in Pd
dpi . We

introduce the DG category �dVop
X whose objects are finite dimensional vector spaces

over k and

Homn

�dVop
X

(V , V ′) := HomP
dpi

(X(V ′, −), X(V, −)[n]),
where HomP

dpi
stands for the Hom complex (i.e., we do not require that the maps

preserve differentials). Then we have:

Theorem 3.4 The assignment V ⊗ Ai �→ V extends to a quasi-isomorphism of DG
categories φ : �dVAi

� �dVop
X .

Proof The proof is analogous to that of [7, Th. 4.3]. The only difference is that we
need more “Touzé classes” than those constructed in [5, Prop.3.2], since we need to
have “natural enough” classes in Ext∗P

dpi
(�d(V ′∗⊗(−)(i), �d(V ∗⊗(−)(i)) instead of

Ext∗P
dpi

(�d(V ′∗⊗(−)(1), �d(V ∗⊗(−)(1)) used in the proof of [7, Th. 4.3]. However,

we constructed the required classes in [8], where we studied formality phenomena
for affine functor categories in an even more general context. Namely, we have

Lemma 3.5 [8, Lemma 3.5] There exist classes

c[d](i) ∈ Ext2dpi−1

Pdpi

dpi

(�dpi

(I ∗ ⊗ I ), �d(I ∗(i) ⊗ I (i)))

such that c[1](i) �= 0 for all i ≥ 1, and are compatible with cup product, i.e.,

�∗(c[d](i)) = (c[1](i))∪d

where � : �d −→ I d is the standard embedding.

Having at our disposal the classes c[d](i) we can perform the proof exactly along
the lines of the proof of [7, Th. 4.3].

Thanks to Theorem 3.4 we can factorize the Frobenius twist functor at the level of
derived categories

CI (i) : DPd −→ DPdpi

through the full embedding

Cafi : DPafi

d −→ DPdpi ,
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and analogous factorization holds for the functor KI (i) right adjoint to CI (i) . More
precisely, we have the following analog of [7, Th. 5.1]:

Theorem 3.6 There exist exact functors: Cafi : DPafi

d −→ DPdpi , Kafi :
DPdpi −→ DPafi

d satisfying the following properties:

1. Cafi ◦ z∗ � C, t∗ ◦ Kafi � Kr .
2. Kafi is right adjoint to Cafi .
3. Kafi ◦ Cafi � IdDPaf

d

.

4. Cafi is fully faithful.
5. The triangulated quotient category DPdpi /DPafi

d is equivalent to the Verdier

localization ofDPdpi with respect to the essential image of Caf1 (see, e.g., [16]).

We refer the reader for the construction of Cafi and Kafi (or rather their special-
izations for i = 1) to [7, Section 5]. What will be important in the present article are
their properties listed in Theorem 3.6, especially part (4) which allows one to regard
DPafi

d as a full subcategory of DPdpi .

At last, we shall also use occasionally use the category KPafi ,b
d which is the full

subcategory of KPafi

d consisting of the complexes chain homotopic to bounded cofi-

brant objects. Clearly, all objects X ∈ KPafi ,b
d are still compact when regarded as

objects in DPafi

d , by which we mean that the functor HomDPafi
d

(X, −) commutes

with infinite coproducts in DPafi

d whenever they exist. When we localize KPafi ,b
d

with respect to the class of quasi-isomorphisms, we get the bounded derived category
DPafi ,b

d which is a full subcategory of DPafi

d .

3.2 Affine Kuhn Duality

We recall that the Kuhn duality (−)# is the contravariant self-equivalence of Pd given
by the formula F #(V ) := F(V ∗)∗. Since (−)# is exact, it extends to both bounded
and unbounded derived categories of Pd . Now we would like to have an analogous
self-equivalence on Pafi

d and its derived category. However, we face the problem
that, technically, the formula F #(V ⊗ Ai) = (F ((V ⊗ Ai)

∗))∗ does not make sense
since (V ⊗ Ai)

∗ is not an object of VAi
. To cope with this problem we recall that by

[20, Sect. 2.5] any strict polynomial functor can be extended to the functor on the cat-
egory of graded spaces and the same construction works for affine strict polynomial
functors. Then we observe that since A∗

i � Ai[2(pi − 1)] as graded Ai modules, we
just have (V ⊗ Ai)

∗ � V ∗ ⊗ A∗
i � V ∗ ⊗ Ai[2(pi − 1)]. Thus we formally define

F #(V ⊗ Ai) := Fgr(V ∗ ⊗ Ai[2d(pi − 1)])∗

where Fgr is the extension of F to the graded spaces we have just discussed. Now,
since all graded spaces considered are finite dimensional in each degree, the operation
(−)# is involutive and exact. The latter property allows one to extend it to DPafi

d in
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the obvious way. As one can expect, the affine Kuhn duality takes representable func-
tors to corepresentable ones. However, also here, some shifting phenomena emerge.
The best way to capture them is to allow representable and corepresentable functors
to be labeled by graded spaces, which again is justified by using graded extensions
of functors. Now we gather the basic properties of the Kuhn duality

Proposition 3.7

1. (hU⊗Ai )# � c∗
U∗⊗A∗

i
� c∗

U∗⊗Ai
[−2d(pi − 1)].

2. Let χs,j ∈ Pafi

1 for 1 ≤ s ≤ i, 0 ≤ j ≤ p − 1 be defined as

χs,j (V ⊗ Ai) := (xs)
j · (V ⊗ Ai)/(xs)

j+1 · (V ⊗ Ai).

Then (χs,j )
# = χs,p−1−j .

3. We have an isomorphism of functors on DPd : z∗ ◦ (−)# � (−)# ◦ z∗.
4. The functor h∗ := (−)# ◦ t∗ ◦ (−)# is left adjoint to z∗.
5. Explicitly: h∗(F )(V ) � F(V ⊗ A∗

i ), hence h∗ � t∗[2d(pi − 1)].

Proof For the first part we compute

(hU⊗Ai )#(V ⊗Ai) = (�d(HomAi
(U ⊗Ai, (V ⊗Ai)

∗)))∗ � (�d(HomAi
(V ⊗Ai, (U ⊗Ai)

∗))) =

cU∗⊗A∗
i
(V ⊗ Ai).

The isomorphism c∗
U∗⊗A∗

i
� c∗

U∗⊗Ai
[−2d(pi − 1)] follows from the elementary

properties of graded extension of a functor.
The second part follows from the fact that

χs,j (V ⊗ Ai) � V ⊗ A ⊗ . . . ⊗ A(s−1) ⊗ k[−2ps−1j ] ⊗ A(s+1) ⊗ . . . A(i).

The third part is obvious, the fourth part follows formally from the third part and
{z∗, t∗} adjunction. The fifth part is obvious.

Now we would like to show that the affine Kuhn duality preserves the bounded
derived category DPafi ,b

d . For this we need the following important technical fact.

Proposition 3.8 For any U ∈ V , c∗
U⊗Ai

has a cofibrant resolution in KPafi ,b
d .

Therefore c∗
U⊗Ai

is a compact object of DPafi

d .

Proof Let P •
U be a finite projective resolution of Sd

U∗ in Pd . Then

z∗(P •
U) � z∗(Sd

U∗) = c∗
U⊗Ai

[−2d(pi − 1)].
Since z∗ preserves cofibrant objects, z∗(P •

U)[2d(pi−1)] is a cofibrant replacement of
c∗
U⊗Ai

. To conclude the proof we observe that since P •
U is finite, z∗(P •

U)[2d(pi − 1)]
is bounded.
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This immediately gives

Corollary 3.9 If F ∈ DPafi ,b
d then F # ∈ DPafi ,b

d .

Proof Any F ∈ DPafi ,b
d has a finite filtration with relatively projective (i.e., sum-

mands in the sums of shifts of hU⊗Ai ’s) subquotients. Therefore it suffices to show
that the Kuhn dual of a relatively projective object belongs to DPafi ,b

d . This follows
from the fact that any relatively projective object is a summand in the finite sum of
shifted representable objects and Propositions 3.7(1) and 3.8.

We finish our discussion of the affine Kuhn duality by investigating its compati-
bility with Cafi and Kafi .

Proposition 3.10 We have the following isomorphisms of functors:

1.
(−)# ◦ Kafi ◦ (−)# � Kafi

as functors between DPdpi and DPafi

d ,
2.

(−)# ◦ Cafi ◦ (−)# � Cafi

as functors between DPafi ,b
d and DPb

dpi .

Proof We shall compare contravariant functors (−)# ◦ Kafi and Kafi ◦ (−)#. Let X

be a projective resolution of the bifunctor �d(I ∗ ⊗ I (i)). Then we have

(−)#◦Kafi (F )(V )=HomP
dpi

(X(V, −), F )# =HomP
dpi

(X(V ∗, −), F [2d(pi−1)])∗.

Then by applying the right Serre functor we get

HomP
dpi

(X(V ∗, −), F [2d(pi−1)])∗ �RHomP
dpi

(F,Sr (X(V ∗, −))[−2d(pi−1)]).
Let Y ∈ DPd

dpi be an injective resolution of the complex of bifunctors (V , W) �→
Sr (X(V ∗, W)). Then we have an isomorphism of functors

(−)# ◦ Kafi � HomP
dpi

((−), Y [−2d(pi − 1)]).
Now let us look at Kafi ◦ (−)#. This time we obtain

Kafi ◦ (−)#(F )(V ) = HomP
dpi

(X(V, −), F #) � HomP
dpi

(F, X(V, −)#).

Now, let Z ∈ DPd
dpi be an injective resolution of the complex of bifunctors

(V , W) �→ X(V, −)# (in fact it may be shown that P(V, −)# is already injective).
Then we have an isomorphism of functors

Kafi ◦ (−)# � HomP
dpi

((−), Z).

Now, we recall that Y is isomorphic in DPd
dpi to the complex of bifunctors (V , W) �→

Sr (�
d(i)
V ∗ )(W) and Z is isomorphic in DPd

dpi to the complex of bifunctors (V , W) �→
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S
d(i)
V ∗ (W). Thus, by Theorem 2.2(1),(3) and the injectivity of Y and Z there exists

a quasi-isomorphism α : Y −→ Z and also its quasi-inverse can be realized as a
genuine map of complexes. Then the postcomposing with α gives an isomorphism of
functors

α∗ : (−)# ◦ Kafi −→ Kafi ◦ (−)#,

which finishes the proof of the first part of the proposition.
For the second part we recall that Caf = LTX ◦ φ∗−1 where φ∗−1 : DPaf

d −→
DPX is an equivalence between DPaf

d and the derived category of certain inter-
mediate DG category PX and TX is a tensor functor in a sense of [13, Section 6].
Moreover, DPX can be equipped with the Kuhn duality by the construction analo-
gous to that applied to DPaf

d and φ∗−1 and TX clearly commutes with the dualities.
Then our assertion essentially follows from the acyclicity of c∗

U⊗Ai
with respect to

TX. Let us make this statement precise.
Let Q : C −→ D be a left Quillen functor between Quillen model categories.

We call A ∈ C Q-acyclic if the augmentation map LQ(A) −→ Q(A) is a weak
equivalence.

Lemma 3.11 Let F ∈ KPafi ,b
d be bounded and fibrant. Then F is TX ◦φ∗−1-acyclic.

Proof Let us first assume that F = c∗
U⊗Ai

. Then we have

L(TX ◦ φ∗−1)(cU⊗Ai
) = Cafi (cU⊗Ai

) = Cafi (z∗(Sd
U∗)[2d(pi − 1)]) �

CI (i) (S
d
U∗ [2d(pi − 1)]) = S

d(i)
U∗ [2d(pi − 1)].

On the other hand, since TX commutes with (−)#, we have

TX(c∗
U⊗Ai

) = X(U, −)# � S
d(i)
U∗ [−2d(pi − 1)].

Moreover, since also TX(c∗
U⊗Ai

) was described in terms of the complex X, we see
that the quasi-isomorphism

L(TX ◦ φ∗−1)(cU⊗Ai
) � (TX ◦ φ∗−1)(cU⊗Ai

)

is realized by the augmentation map. This shows that c∗
U⊗Ai

, and hence also its direct

summands, are TX ◦φ∗−1-acyclic. Now, let F be an arbitrary bounded fibrant object.
Then it has a finite filtration with subquotients being finite sums of direct summands
of c∗

U⊗Ai
. Our lemma follows from a general fact that if in a short exact sequence of

objects of KPafi ,f
d , the outer terms are acyclic, so is the middle term.

In order to apply Lemma 3.11 we consider two skeletons of DPafi ,b
d : Cb consisting

of bounded cofibrant objects and Fb consisting of bounded fibrant objects. Then
(Cb)# = Fb and when we restrict our functors to Cb, we obtain

Caf
i ◦ (−)# � TX ◦ φ∗−1 ◦ (−)# � (−)# ◦ TX ◦ φ∗−1 � (−)# ◦ Cafi .

We finish this subsection by providing an example showing that Cafi commutes
with (−)# only for compact objects. For this we need a few basic computations in
DPaf1

1 .
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Proposition 3.12 We have the following isomorphisms:

1. Let |y| = −2(p − 1), |z| = −1. There is an isomorphism of graded rings:

Hom∗
DPaf1

1

(χ1,0, χ1,0) =
{

k[y] ⊗ �(z) if p > 2

k[z] if p = 2.

2. There is an isomorphism in DPaf1
1 : Kaf1(Sp) � χ1,0.

Proof It will be easier to write down explicit formulas when interpreting Paf1
1 as

A1-modf via Proposition 3.1. Under this identification χ1,0 just corresponds to the
trivial A1 module k. Thus as its cofibrant replacement we can take the suitably shifted
periodic resolution:

. . .
·x1−→ A1[−2p] ·xp−1

1−→ A1[−2] ·x1−→ A1.

Therefore we derive the first part of Prop. 3.12 from the classical computation of the
cohomology ring of the cyclic group Z/p with the only difference following from our
graded setting being the negative degrees of the multiplicative generators. In order to
get the second part we observe that in the special case of d = i = 1 as a resolution
X used to construct Kafi we can just take a complex of bifunctors of the form:

(V , W) �→ W ∗ ⊗ C•(V )

where C• is any projective resolution of I (1). Hence using the graded module
description of Paf1

1 again, we obtain

H ∗(Kaf1(F )) = Ext∗Pp
(I (1), F )

for any F ∈ Pp. Applying this formula to F = Sp we get

H ∗(Kaf1(Sp)) = H 0(Kaf1(Sp)) = k.

Now we observe that since H ∗(Kaf1(Sp)) is concentrated in a single degree,
Kaf1(Sp) is formal. This finishes the proof.

Now we are ready to provide the promised example. By Proposition 3.7(2) we
have:

χ#
1,0 � χ1,p−1 � χ1,0[−2(p − 1)].

Therefore if we had
Caf1(χ#

1,0) � (Caf1(χ1,0))
#,

it would imply that

(Caf1(χ1,0))
# � Caf1(χ1,0)[−2(p − 1)].

But this is impossible, because, as we will see, H ∗(Caf1(χ1,0)) evaluated on a one-
dimensional space is bounded below but not bounded above. To this end we observe
that by the Yoneda lemma and Proposition 3.12(2):

Hn(Caf1(χ1,0))(k)∗ � Hom−n
DPp

(Caf1(χ1,0), S
p) � Hom−n

DPaf1
1

(χ1,0,Kaf1(Sp)) �
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Hom−n
DPp

(χ1,0, χ1,0),

and the latter group is non-trivial when n = 2j (p − 1) or n = 2j (p − 1) − 1 for
j ≥ 0, by Proposition 3.12(1).

3.3 Affine Recollement Diagram

In this short subsection we show how to extend the adjunction {Cafi ,Kafi } to a
recollement of triangulated categories, thus answering question posed in [5] and par-
tially addressed in [7]. We do not use the results of this subsection elsewhere in the
article but we decided to discuss them here, since they are formal consequences of
Proposition 3.7.

Let us define the functor Cafi ,r : DPafi

d −→ DPdpi as the composite

Cafi ,r := (−)# ◦ Cafi ◦ (−)#.

Then we have

Theorem 3.13 The functor Cafi ,r is right adjoint to Kafi .
Moreover, the triple {Kafi ,Cafi ,Cafi ,r} is a part of recollement diagram of

triangulated categories:

ker(Kafi )
←−−→←−DPdpi

←−−→←−DPafi

d

Proof The adjunction is a formal consequence of commuting Kafi with (−)#.
Namely, for any X ∈ DPdpi and Y ∈ DPafi

d we have

HomDP
dpi

(X,Cafi ,r (Y )) = HomDP
dpi

(X, (Cafi (Y #))#) � HomDP
dpi

(Cafi (Y #), X#) �

HomDPd
(Y #,Kafi (X#)) � HomDPd

((Kafi (X#))#, Y ) � HomDPd
((Kafi (X), Y ).

The fact that our two-sided adjunction can be extended to a recollement diagram
follows from [9, Prop. 2.1] for j∗ = Kafi , j∗ = Cafi , j! = Cafi ,r and the fact that
Kafi ◦ Cafi � Id .

The idea of finding a recollement of triangulated categories analogous to the rec-

ollement of abelian categories Pd
←−−→←− Pdp1 considered by Kuhn [18] was the main

motivation for introducing the category DPaf
d in [7]. Unfortunately, infinite homo-

logical dimension of DPafi

d generates serious problems. In particular, it implies that
Cafi does not preserve infinite products, hence it cannot have a left adjoint. More
concretely, if we try to define the left adjoint by conjugating Kafi by the Kuhn dual-
ity, the construction fails because Cafi does not commute with (−)# on the whole
DPafi

d but merely on DPafi ,b
d . Thus, as we remarked at the end of [7], we could only

obtain recollement between bounded derived categories, which is less useful, because
(co)fibrant replacements are usually not bounded. However, this obstacle disappears
when we change our setting into the dual one. In other words, we should rather think
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of DPafi

d as a quotient category of DPdpi instead of a subcategory. This change of
perspective is quite surprising when we think of abelian counterparts which inspired
our work. On the other hand, it is coherent with [6, Section 3] where we observed
that the approach to the Poincaré duality based on the “left–right homological shift”
is formally analogous to the “dual Verdier duality”.

At last, let us take a closer look at the recollement diagram in the bounded case.
Strictly speaking, we have a recollement between DPafi ,b

d and

X := (Cafi )−1(DPafi ,b
d ).

However, the situation simplifies drastically, since here Cafi and Kafi are mutually
two-sided adjoint. Therefore our recollement splits into the orthogonal decomposi-
tion

X � im(Cafi ) × ker(Kafi ).

Thus we see that the affine-bounded and affine-unbounded cases are fundamentally
different, since we have no analogous orthogonal decomposition of DPdpi .

At last, we warn the reader that there is no orthogonal decomposition of DPb
dpi ,

since it is strictly larger than X .

3.4 Serre Functor inDPafi
d

In this subsection we introduce (a suitably modified version of) Serre functor on
DPafi

d . In fact a genuine Serre functor exists only on DPafi ,b
d but this is not very use-

ful for us since the objects of DPafi

d rarely have cofibrant replacements in DPafi ,b
d .

On the other hand one cannot hope for a Serre functor in DPafi

d , since it is not even
a Hom-finite category. What we really have is the following weaker version of Serre
functor:

Definition 3.14 Let C be a k-linear category. A k-linear functor S : C −→ C is a
weak (left) Serre functor if:

1. There is a natural in X, Y isomorphism

HomC(S(X), Y ) � HomC(Y, X)∗

whenever X or Y is compact.
2. S is an auto-equivalence.

For example, if C is the bounded derived category of category of finitely generated
modules over a finite dimensional algebra of finite homological dimension then by
[3] C possesses a Serre functor. In that case, it is easy to see that it extends to a
weak Serre functor on the unbounded derived category. However, our situation is
quite different, since Pafi

d is of infinite homological dimension. By this we mean

that a cofibrant replacements of objects of Pafi

d does not necessarily belong to the

smallest triangular subcategory of DPafi

d contain relatively projective objects, which

is in our case equivalent to DPafi ,b
d . The crucial property of DPafi

d which makes
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a construction analogous to that used in Section 2 work is the fact that c∗
U⊗Ai

is
compact (Proposition 3.5).

Technically, in order to ensure that our functors are well defined we have to
consider affine bifunctors. Namely we introduce the category Pe,afi

d of i-affine
bifunctors of bi-degree (d, e) as the category of k-linear graded functors from
�e(VAi

)op ⊗�d(VAi
) to V . The homological algebra in Pe,afi

d can be developed anal-

ogously to that in Pafi

d . Let us take, like in Section 2, P •, the projective resolution of
the bifunctor (V , W) �→ Sd(V ∗ ⊗ W). Now similarly to the case of functors in one
variable, we have the exact functor z∗ : Pe

d −→ Pe,afi

d which extends to the category
of complexes and preserves cofibrant objects. Then it is easy to see that

C := z∗(P •)[2d(pi − 1)]
is a cofibrant replacement of the affine bifunctor c∗(I ∗ ⊗ I ) defined by the formula:

(V ⊗ Ai, W ⊗ Ai) �→ c∗
V ⊗Ai

(W ⊗ Ai),

(c.f. Proposition 3.8). For the future use we remark that C is bounded. Then,
analogously to Section 2 we put:

Definition 3.15 We define a functor Safi : DPafi

d −→ DPafi

d by the formula

Safi (F ) := RHomPafi
d

(c∗(I ∗ ⊗ I ), F ).

We collect the basic properties of Safi which will be needed for the applications
described in Section 5.

Theorem 3.16 The functor Safi satisfies the following properties:

1. There is a natural in U ⊗ Ai isomorphism in DPafi

d

Safi (c∗
U⊗Ai

) � hU⊗Ai .

2. Safi is an auto-equivalence of DPafi

d .

3. Safi restricted toDPafi ,b
d is a left Serre functor and it is a weak left Serre functor

on the whole DPafi

d .
4. There are isomorphisms of functors

Safi ◦ z∗[2d(pi − 1)] � z∗ ◦ S, S ◦ t∗ � t∗ ◦ Safi [2d(pi − 1)],
Safi ◦ Kafi � Kafi ◦ S, S ◦ Cafi � Cafi ◦ Safi .

Proof Since c∗
U⊗Ai

is fibrant in the injective Quillen structure we get

Saf (c∗
U⊗Ai

)(V ⊗ Ai) � HomPafi
d

(c∗
V ⊗Ai

, c∗
U⊗Ai

) � (c∗
V ⊗Ai

(U ⊗ Ai))
∗ =

�d(Hom(U, V ) ⊗ Ai) = hU⊗Ai (V ⊗ Ai).

In order to show that Safi is an equivalence we observe that by the first part it is
faithfully full on the subcategory consisting of corepresentable objects. Then, by
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Lemma 3.3 and the fact that Safi preserves infinite coproducts, whenever they exist,
our assertion follows from [13, Lemma 4.2].

In order to get the third part, we establish a natural in F ∈ DPafi

d and U ⊗ Ai

isomorphism

HomDPafi
d

(F, c∗
U⊗Ai

) � HomDPafi
d

(Safi (c∗
U⊗Ai

), F )∗,

which by the first part and the fact that hU⊗Ai is cofibrant and c∗
U⊗Ai

is fibrant
reduces to the isomorphism

HomPafi
d

(F, c∗
U⊗Ai

) � HomPafi
d

(hU⊗Ai , F )∗,

which follows from the Yoneda lemma. This shows that Safi restricted to DPafi ,b
d

is a left Serre functor. In the unbounded case we observe that if Z ∈ DPafi ,b
d then

for any W ∈ DPafi

d , the spaces HomDPafi ,

d

(Z, W) and HomDPafi ,

d

(W, Z) are finite

dimensional. Thus we see that if X or Y is compact, we still have the required
isomorphism.

In order to obtain the first isomorphism in part 4, we recall that z∗(�d
U∗) = hU⊗Ai

and z∗(Sd
U∗) = c∗

U⊗Ai
[−2d(pi − 1)]. Hence we get natural in U isomorphisms:

Safi ◦ z∗(Sd
U∗) = Safi (c∗

U⊗Ai
[−2d(pi − 1)]) = hU⊗Ai [−2d(pi − 1)]

and

z∗ ◦ S(Sd
U∗) = z∗(�d

U∗) = hU⊗Ai .

The second isomorphism follows from the facts that t∗(c∗
U⊗Ai

) = Sd
(U⊗Ai)

∗ and

t∗(hU⊗Ai ) = �d
(U⊗Ai)

∗ [−2d(pi − 1)].
The proof of the last two isomorphisms is analogous to that of Proposition 3.7. The

last formula holds on the whole DPafi

d because Cafi commutes with direct colimits.

Remark When we compose the isomorphisms from part 4, we obtain the formulas:

S ◦ Kr � Kr ◦ S[2d(pi − 1)], S ◦ C � C ◦ S[−2d(pi − 1)],
from which, in particular, Theorem 2.2.(3.1) follows. Thus we see that the shift phe-
nomenon which produces the Poincaré duality is related to the scalar extension from
Pd to Pafi

d .

4 Affine Semiblocks

In this section we introduce certain subcategories of Pafi

d we call semiblocks, which
correspond to the blocks in Pd . This structure may be interesting for its own but
in the present article we are mainly interested in the Serre functor restricted to the
semiblocks, since, as it will be shown in the next section, in certain cases it enjoys
very special properties.
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We recall that the category Pd admits decomposition into the blocks:

Pd � Pλ1 × . . . × Pλs

and the set of blocks is indexed by the family λ1, . . . , λs of p-core Young diagrams of
weight d−pj for some j ≥ 0 (see, e.g., [19, Section 5]). By the Yoneda lemma, there
is the corresponding decomposition of the bifunctor (V , W) �→ �d(Hom(V , W))

into the “block bifunctors”:

�d(Hom(V , W)) � Bλ1(V , W) ⊕ . . . ⊕ Bλs (V , W).

The Cauchy decomposition [1, Th. III.1.4] provides the filtration of bifunctor
�d(Hom(V , W)) with the associated object

⊕

μ∈Yd

Wμ(V ∗) ⊗ Wμ(W)

where Yd stands for the set of Young diagrams of weight d . Hence each Bλ(V, W)

has the filtration with the associated object
⊕

μ∈Y
λj

Wμ(V ∗) ⊗ Wμ(W)

where Yλj is the set of Young diagrams of degree d belonging to the block labeled by
λj .

Moreover, the bifunctor Bλj can be used to form the category BλjV whose objects
are finite vector spaces and

HomB
λj V (V , W) := Bλj (V , W).

Then the category Pλj can be identified with the category of k-linear functors from
BλjV to the category of finite dimensional vector spaces over k. The main objective
of the present section is to define the affine counterpart of Pλ, relate it to Pλ and
Pdpi , and equip it with a Serre functor.

Let us fix a p-core Young diagram λ of weight |λ| = d − pj and let B
(i)
λ denote

the bifunctor (V , W) �→ Bλ(V, W(i)). We introduce the graded category BλVAi
with

the objects being finite dimensional vector spaces and the morphisms given by the
formula

HomBλVAi
(V ⊗ Ai, V

′ ⊗ Ai) := Bλ(V, V ′ ⊗ Ai),

where we choose to label the objects by V ⊗ Ai in order to make our terminology
coherent with that used in Section 3 and [7]. Thanks to the Collapsing Conjecture
[6, Cor. 3.7], the Hom spaces in BλVAi

admit descriptions as appropriate Ext groups.
Namely, we have natural in V, V ′ isomorphisms

Ext∗P
dpi

(B
(i)
λ (V ′, −), B

(i)
λ (V , −)) � Ext∗Pd

(Bλ(V
′, −), Bλ(V, − ⊗ Ai)) �

Bλ(V, V ′ ⊗ Ai).

We define Pafi

λ as the category of graded k-linear functors from BλVAi
to the

category of Z-graded finite dimensional in each degree vector spaces.
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The category Pafi

λ shares with Pafi

d its basic properties. In particular, we have the

representable functor h
U⊗Ai

λ in DPafi

λ given explicitly by the formula

h
U⊗Ai

λ (V ⊗ Ai) := HomBλVAi
(U ⊗ Ai, V ⊗ Ai),

the corepresentable functor c∗
λ,U⊗Ai

, and the block affine Kuhn duality. Also the
analog of Proposition 3.1 holds. Let us call the block affine Schur algebra the graded
algebra

S
afi

λ,n := HomBλVAi
(kn ⊗ Ai,kn ⊗ Ai) � Bλ(kn,kn ⊗ Ai).

Then

Proposition 4.1 For any n ≥ d , the evaluation functor F �→ F(kn ⊗ Ai) gives an
equivalence of graded abelian categories:

Pafi

λ � S
afi

λ,n − modf ,

where S
afi

λ,n-mod
f stands for the category of Z-graded S

afi

λ,n-modules finite dimen-
sional in each degree.

The adjunction {z∗, t∗} between Pd and Pafi

d clearly extends to the adjunction

{z∗
λ, t

∗
λ } between Pλ and Pafi

λ .
Now, let us observe an important yet unfortunate phenomenon: when we try to

decompose Pafi

d , into the product of Pafi

λj we face a problem that for λ �= λ′, Pafi

λ

and Pafi

λ′ are not orthogonal as subcategories of Pafi

d . We will come back to this
observation later, since it is best understood at the level of derived categories.

Now we turn to describing relation between Pafi

λ and Pafi

d more precisely. Let

iλ : Bλ(V, W ⊗ Ai) −→ �d(Hom(V , W ⊗ Ai))

be the natural embedding and

πλ : �d(Hom(V , W ⊗ Ai)) −→ Bλ(V, W ⊗ Ai)

be the natural projection. Then the composite ελ := iλ ◦ πλ can be thought of as
an idempotent endofunctor on �dVAi

(being the identity on the objects). Thus the
category BλVAi

can be identified with the category ελ(�
dVAi

)ελ whose objects are
those of �dVAi

but

Homελ(�dVAi
)ελ

(V ⊗ Ai, V
′ ⊗ Ai) := ελ(Hom�dVAi

(V ⊗ Ai, V
′ ⊗ Ai))ελ.

Then the assignment

(V , V ′) �→ ελ(Hom�dVAi
(V ⊗ Ai, V

′ ⊗ Ai))

defines a �dVAi
–BλVAi

bimodule in the terminology of [13, Sect. 6]. Hence we get
a pair of functors jλ!, j∗

λ which satisfy the following properties.

Proposition 4.2 1. The functor jλ! : Pafi

λ −→ Pafi

d is a full embedding.
2. The functor j∗

λ is right adjoint to jλ!.
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Proof The adjunction follows from the machinery of standard functors developed in
[13, Sect. 6]. The full embedding is a formal consequence of the fact that j∗

λ ◦ jλ! �
idPafi

λ

which follows from the fact that eλ is an idempotent.

Remark Proposition 4.2 may be thought of as a categorification of [9, Prop. 2.1].
This explains our choice of notations with j!, j∗ instead of TX, HX used in [13]. In
particular, the functor j∗

λ has a right adjoint jλ∗ and the triple {jλ!, jλ∗, j∗
λ } form a

part of recollement diagram of graded abelian categories. In fact we could derive
Proposition 4.2 directly from [9, Prop. 2.1] by invoking our Proposition 4.1 but we
prefer to consistently work in functor categories.

We also mention that Proposition 4.2 carries over to the level of derived categories
which was the main objective of [13] and [9] and which will be discussed in the next
paragraph.

Namely, we define DPafi

λ as the derived category of DG category KPafi

λ in the
manner analogous to that in Section 3. The adjunctions {z∗

λ, t
∗
λ } and {jλ!, jλ∗} carry

over to the derived categories and, as we have already mentioned, the analog of
Proposition 4.2 holds. In particular we still have a full embedding which will be
denoted by the same symbol as its graded abelian counterpart:

jλ! : DPafi

λ −→ DPafi

d ,

which allows us to regard DPafi

λ as a full subcategory of DPafi

d . Then it is clear that

our construction is compatible with the scalar extension from DPd to DPafi

d :

Proposition 4.3 There are isomorphisms of functors between DPλ and DPafi

d :

z∗ ◦ bλ! � jλ! ◦ z∗
λ, t∗λ ◦ j∗

λ � b∗
λ ◦ t∗,

where bλ! and bλ∗ are induced respectively by the embedding of and the projection
onto the block.

Now we would like to construct a block version of the affine derived Kan extension
in order to relate DPafi

λ to DPdpi . For this we need an analog of the formality result

[7, Th. 4.2]. Let B
(i)
λ denote the bifunctor (V , W) �→ Bλ(V, W(i)) and let Xλ be a

projective resolution of B
(i)
λ in Pd

dpi . We introduce a DG category �dVXλ with the
objects being finite dimensional vector spaces and

Hom�dVXλ
(V , V ′) := HomP

dpi
(Xλ(V, −), Xλ(V

′, −)).

Then BλVAi
is clearly the cohomology category of �dVop

Xλ
but we have a much

stronger result (c.f. [7, Th. 4.3]):

Proposition 4.4 The identity on the objects extends to a quasi-isomorphism of DG
categories φλ : BλVAi

� �dVop
Xλ

.
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Proof Since �d(Hom(V , W(i))) � B
(i)
λ (V , W) ⊕ B ′(V , W), we can obtain X, the

projective resolution of �d(Hom(V , W(i))), as the direct sum X = Xλ ⊕ X′ of
projective resolutions of B

(i)
λ and B ′. Let

iλ : Ext∗P
dpi

(B
(i)
λ (V ′, −), B

(i)
λ (V , −)) −→ Ext∗P

dpi
(�d(V ′, (−)(i)), �d(V, (−)(i)))

be the embedding induced by the decomposition �d(I (i) ⊗ I ∗) � B
(i)
λ ⊕B ′ (we have

already encountered this embedding when constructing the idempotent functor ελ).
We similarly define the projection

π̃λ : HomPdp
(X(V ′, −), X(V, −)) −→ HomP

dpi
(Xλ(V

′, −), Xλ(V, −)).

We define φλ : BλVAi
−→ �dVXλ as the composite φλ := π̃λ ◦ φ ◦ iλ where

φ : �dVAi
−→ �dVX is the transformation from [7, Theorem 4.2] or rather its

multitwist analog (as we mentioned in Section 3, this generalization is not entirely
trivial, we again refer the reader to [8, Theorem 3.1] where an analogous construction
is conducted in even greater generality). Then the fact that φλ is a quasi-isomorphism
follows from the fact that φ is a quasi-isomorphism and that it commutes with the
idempotent ελ := iλ ◦ πλ and its �dVXλ-analog ε̃λ :=˜iλ ◦ π̃λ.

Thanks to Proposition 4.4 we are able to construct the block affine derived Kan
extension. We summarize its basic properties below

Proposition 4.5 There exist functors Cafi

λ : DPafi

λ −→ DPdpi and Kafi

λ :
DPdpi −→ DPafi

λ satisfying the following properties:

1. Kafi

λ is right adjoint to Cafi

λ .

2. Cafi

λ is a full embedding.

3. The functors Cafi

λ (restricted to DPafi ,b
λ ) and Kafi

λ commute with the Kuhn
duality.

4. There are isomorphisms of functors between DPλ and DPdpi :

Cafi ◦ jλ! � Cafi

λ , j∗
λ ◦ Kafi � Kafi

λ .

Proof The proofs of parts 1, 2, 3 are analogous to those of [7, Th. 5.1] and our The-
orem 3.6, Proposition 3.10. The compatibility formula in part 4 follows immediately
from the construction of the considered functors.

Having at our disposal the block affine derived Kan extension we can offer a better
explanation of the phenomenon of non-orthogonality of semiblocks. Namely let us
take F ∈ Pλ, G ∈ Pλ′ for λ �= λ′. Then

Hom∗
DPafi

d

(jλ!(z∗
λ(F )), jλ′ !(z∗

λ′ (G))) � Hom∗
DP

dpi
(Cafi (j∗

λ (z∗
λ(F ))),Cafi (j∗

λ′ (z∗
λ′ (G)))) �

� Ext∗P
dpi

(F (i), G(i))



M. Chałupnik

and the latter Ext groups may well be non-trivial. Thus we see that the reason for the
non-orthogonality of semiblocks is simply that the Frobenius twist transfers all the
blocks from Pd into the single (principal) block in Pdpi .

We finish this section by endowing the category DPafi

λ with a Serre functor. This
may be achieved by a construction analogous to that given in the global (affine) case.
We consider the affine corepresentable bifunctor c∗

λ(I
∗ ⊗ I ) given by the formula

(V ⊗ Ai, W ⊗ Ai) �→ c∗
λ,V ⊗Ai

(W ⊗ Ai).

Definition 4.6 We define the block affine Serre functor Safi

λ : DPafi

λ −→ DPafi

λ by
the formula

Safi

λ (F ) := RHomPafi
λ

(c∗
λ(I

∗ ⊗ I ), F ).

Then we have

Theorem 4.7 The functor Safi

λ satisfies the following properties:

1. There is a natural in U ⊗ Ai isomorphism in DPafi

λ

Safi

λ (c∗
λ,U⊗Ai

) � h
U⊗Ai

λ .

2. Safi

λ is an auto-equivalence of DPafi

λ .

3. Safi

λ restricted toDPafi ,b
λ is a left Serre functor and it is a weak left Serre functor

on the whole DPafi

λ .
4. There are isomorphisms of functors

Safi

λ ◦ z∗
λ[2d(pi − 1)] � z∗

λ ◦ Sλ, Sλ ◦ t∗λ � t∗λ ◦ Safi

λ [2d(pi − 1)],
Safi

λ ◦ Kafi

λ � Kafi

λ ◦ S, Sλ ◦ Cafi

λ � Cafi

λ ◦ Safi

λ ,

where Sλ is S restricted to the block DPλ.

The proof of Theorem 3.16 carries over to the current situation.

5 Basic Affine Semiblocks and Calabi–Yau Categories

In this section we show that the affine Serre functor when restricted to certain semi-
blocks in DPafi

d is isomorphic to the shift functor. We also show that in that case our
functor category is equivalent to the category of finite dimensional graded modules
over a certain explicitly described graded algebra, which refines Proposition 4.1.

5.1 The Calabi–Yau Structure on Basic Affine Semiblocks

We recall that a block in Pd is called basic if it contains a single simple object.
Hence the basic blocks are indexed by p-core Young diagrams of weight d and we
also call such Young diagrams basic. So, let us fix a basic Young diagram λ. Then
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Sλ � Wλ � Fλ. Moreover, Sλ is injective and projective and every object of Pλ is a
direct sum of Sλ, therefore the category Pλ is semisimple.

We recall that a triangulated category T with a Serre functor ST is called Calabi–
Yau of dimension n if there is an isomorphism of functors ST � id[n]. Then we call
a triangulated category T weak Calabi–Yau of dimension n if it has a weak Serre
functor ST such that ST � id[n].

Theorem 5.1 For any basic Young diagram λ, the categoryDPafi ,b
λ is Calabi–Yau of

dimension 2d(pi −1), the categoryDPafi

λ is weak Calabi–Yau of dimension 2d(pi −
1).

Proof The theorem is a formal consequence of the following properties of the
bifunctor Bλ (the crucial second property is specific to basic blocks).

Lemma 5.2 There are the following isomorphisms of bifunctors:

1. Bλ(V, W ⊗ Ai) � Bλ(V ⊗ A∗
i , W) for any λ.

2. Bλ(V, W) � Sλ(V
∗) ⊗ Sλ(W) for basic λ.

Proof of the Lemma We recall that by the Yoneda lemma

Bλ(V, W) = HomPd
(Bλ(W, −), Bλ(V, −))

and a general fact that

HomPd
(F (− ⊗ X), G) � HomPd

(F, G(− ⊗ X∗))
for any graded space X and F, G ∈ Pd . This gives the first isomorphism.

The second isomorphism immediately follows from the Cauchy decomposition
and the fact that Sλ � Wλ for basic λ.

We recall that we deal with left Serre functors, hence we should show that Safi

λ �
id[−2d(pi − 1)].

Since
Safi

λ (F )(V ⊗ Ai) � RHomPafi
λ

(c∗
λ,V ⊗Ai

, F )

and by the Yoneda lemma

F(V ⊗ Ai) = RHomPafi
λ

(h
V ⊗Ai

λ , F ),

it suffices to find a natural in V isomorphism

c∗
λ,V ⊗Ai

� h
V ⊗Ai

λ [2d(pi − 1)].
On the one hand we have:

h
V ⊗Ai

λ (W) = HomBλVAi
(V , W) = (Bλ(V, W ⊗ Ai) � Sλ(V

∗) ⊗ Sλ(W ⊗ Ai).

On the other hand, by using the both parts of Lemma 5.2, we obtain:

c∗
λ,V ⊗Ai

(W) = (HomBλVAi
(W, V ))∗ = (Bλ(W, V ⊗ Ai))

∗ � (Bλ(W ⊗ A∗
i , V ))∗ �
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(Sλ(W
∗ ⊗ Ai) ⊗ Sλ(V ))∗ = Sλ(V

∗) ⊗ Sλ(W ⊗ A∗
i ).

Since A∗
i � Ai[2(pi − 1)] we have an isomorphism of functors

Sλ(− ⊗ A∗
i ) � Sλ(− ⊗ Ai)[2d(pi − 1)]

which completes the proof.

Corollary 5.3 The category DPafi ,b

1 is Calabi–Yau of dimension 2(pi − 1) and

DPafi

1 is weak Calabi–Yau of dimension 2(pi − 1).

Proof The corollary follows from Theorem 5.1 and the fact that P1 consists of a
single block which is obviously basic.

This fact has the following global generalization.

Proposition 5.4 For any d < p, the category DPafi ,b
d is Calabi–Yau of dimension

2d(pi − 1) and DPafi

d is weak Calabi–Yau of dimension 2d(pi − 1).

Proof In fact for d < p all the blocks in Pd are basic but since Pafi

d is not a product
of its affine semiblocks, our statement cannot be directly deduced from Theorem 5.1.
Instead one can repeat the proof of Theorem 5.1 in the present context. The crucial
fact is that �d � Sd if d < p. We leave the straightforward details to the reader.

As we have said in the Introduction, the Calabi–Yau structure on DPafi

λ provides
sort of categorical interpretation of the Poincaré duality. Hence it is not surprising
that one can deduce Corollary 2.4 from Theorem 5.1 (and the compatibility of the
(block) affine derived Kan extension with the Kuhn duality).

Namely, by the block affine derived Kan extension we obtain

ExtsP
pid

(F
(i)
λ , Fμ) � HomDPafi

λ

(z∗
λ(Fλ),K

afi

λ (Fμ)[s]).
Then we apply the Calabi–Yau isomorphism (we emphasize the fact that we need
“the weak Calabi–Yau structure” here, since Kafi does not preserve compact objects)

HomDPafi
λ

(z∗
λ(Fλ),K

afi

λ (Fμ)[s]) � HomDPafi
λ

(Kafi

λ (Fμ)[s −2d(pi −1)], z∗
λ(Fλ))

∗.

Next we apply the Kuhn duality and use the fact that it commutes with z∗ (Proposition
3.7(3)) and with Kafi

λ (Proposition 3.10(1))

HomDPafi
λ

(Kafi

λ (Fμ)[s−2d(pi−1)], z∗
λ(Fλ))

∗ � HomDPafi
λ

(z∗
λ(F

#
λ )[s−2d(pi−1)],Kafi

λ (F #
μ))∗.

At last we come back to DPdpi :

HomDPafi
λ

(z∗
λ(F

#
λ )[s − 2d(pi − 1)],Kafi

λ (F #
μ))∗ � HomDP

dpi
(F

(i)#
λ [s − 2d(pi − 1)], F #

μ))∗
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and by using the self-duality of simples we finally obtain our formula

HomDP
dpi

(F
(i)#
λ [s − 2d(pi − 1)], F #

μ))∗ � Ext2d(pi−1)−s

P
dpi

(F
(i)
λ , Fμ)∗.

Of course this approach is technically much more involved than that taken in
Section 2, but it shows how classical and affine phenomena are related and also
explains why we insist on considering weak Serre functors.

5.2 Pafi
λ as a Module Category

In this subsection we provide various descriptions of Pafi

λ as a category of graded
modules over a certain explicitly described graded algebra. We recall that for a finite
dimensional graded algebra S, we denote by S-modf the graded abelian category
of Z-graded S-modules finite dimensional in each degree. Then as we remember
from Proposition 4.1, for any λ, i ≥ 1, n ≥ d , the category Pafi

λ is equivalent to

S
afi

d,n-modf , where S
afi

d,n is the block affine Schur algebra. However, this fact is not
very useful in practice, since this graded algebra is quite complicated. Luckily, in the
case of basic block the situation massively simplifies. First of all, as we observed in
Lemma 5.2 we have an isomorphism of graded vector spaces

Bλ(kd ,kd ⊗ Ai) � Sλ(kd∗) ⊗ Sλ(kd ⊗ Ai).

However, in order to understand the multiplicative structure it is better to take a
different point of view. Namely, by Lemma 5.2 we have a decomposition

Bλ(kd , −) �
sλ,d
⊕

j=1

Sλ

where sλ,d = dim(Sλ(kd)). Let us define a graded algebra

Ai,λ := Ext∗P
dpi

(S
(i)
λ , S

(i)
λ ).

Then we have isomorphisms of graded algebras

Bλ(kd ,kd ⊗ Ai) � Ext∗P
dpi

(B
(i)
λ (−, kd ), B

(i)
λ (−, kd )) � Ext∗P

dpi
(

sλ,d
⊕

j=1

S
(i)
λ ,

sλ,d
⊕

j=1

S
(i)
λ ) �

Msλ,d
(Ai,λ).

Since any matrix algebra is Morita equivalent to the ground algebra, we obtain

Proposition 5.5 For any basic Young diagram λ, the categories Pafi

λ and
Ai,λ−modf are equivalent as graded abelian categories.

Finally, let us take a closer a look at the graded algebra Ai,λ. Firstly, by the
Collapsing Conjecture [5, Cor. 3.7]:

Ai,λ � HomPd
(Sλ, Sλ,Ai

).
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The dimension of the latter algebra can be explicitly expressed in terms of the
Littlewood-Richardson numbers. This point of view also allows one to describe the
multiplication: it comes as the composite of scalar extension, Hom-multiplication
and the multiplication in Ai :

HomPd
(Sλ, Sλ,Ai

) ⊗ HomPd
(Sλ, Sλ,Ai

) −→
HomPd

(Sλ, Sλ,Ai
) ⊗ HomPd

(Sλ⊗Ai
, Sλ,Ai⊗Ai

) −→ HomPd
(Sλ, Sλ,Ai⊗Ai

) −→
HomPd

(Sλ, Sλ,Ai
).

A bit different description of Ai,λ is perhaps even more down to earth. It follows
from the fact that since λ is basic, Sλ is a direct summand in I d . Hence there exists
an idempotent eλ ∈ k[�d ] such that Sλ = eλI

d . Therefore we get

Ai,λ � eλ(Ext∗P
dpi

(I d(i), I d(i)))eλ � eλ(A
⊗d
i ⊗ k[�d ])eλ.

A subtle point here is that even if we would take the whole Sλ-isotypical sum-
mand in I d and the corresponding central idempotent e′

λ, this e′
λ is not central in

the algebra A⊗d
i ⊗ k[�d ]. Hence Ai,λ is not Morita equivalent to a direct factor in

A⊗d
i ⊗k[�d ]. This is another manifestation of the fact that affine semiblocks are not

genuine blocks.
All these descriptions drastically simplify for d = 1. In this case we just obtain

Corollary 5.6 The categories Pafi

1 and Ai−modf are equivalent as graded abelian
categories.
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