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Abstract
We define a stratification of the moduli stack of coherent sheaves on an elliptic
curve which allows us (1) to give an explicit description of the irreducible com-
ponents of the global nilpotent cone of elliptic curves, (2) to establish an explicit
bijection between the simple objects of the category of perverse sheaves defined
by Schiffmann to categorify the elliptic Hall algebra (the so-called spherical Eisen-
stein sheaves) and the irreducible components of the global nilpotent cone and (3) to
give an explicit description and parametrization of the perverse sheaves on the mod-
uli stack of coherent sheaves on an elliptic curve having nilpotent singular support.
Along the way, we find a combinatorial parametrization of the irreducible compo-
nents of the semistable locus of the elliptic global nilpotent cone. The comparison
with Bozec’s parametrization leads to an interesting combinatorial problem.

1 Introduction

In this paper, we study the relationship between the irreducible components of the
global nilpotent cone of an elliptic curve and the simple objects of some categories
of perverse sheaves on the stack of coherent sheaves (Eisenstein perverse sheaves)
relevant in the geometric Langlands program. The global nilpotent cone is a closed
substack of the stack of Higgs bundles whose geometry has been studied in depth
and is also an essential object in the geometric Langlands program [17, 18]. The
stack of Higgs bundles is the cotangent stack to the stack of coherent sheaves and the
global nilpotent cone is a Lagrangian substack ([8, 18]). When the underlying curve
is the affine line, the global nilpotent cone for torsion sheaves of length d is the quo-
tient stack given by pairs of d × d matrices, the second one being nilpotent, modulo
the simultaneous conjugation by the general linear group GLd . This stack plays a
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important role in Springer theory and in the microlocal study of character sheaves on
reductive Lie algebras ([23]). Spherical Eisenstein sheaves form a category of per-
verse sheaves on the stack of coherent sheaves and are the perverse sheaves appearing
as shifted direct summands of the induction of trivial local systems ([29]). In this
paper, we define twisted spherical Eisenstein sheaves. They form a bigger category:
we take the simple constituents of inductions of arbitrary local systems. They can be
defined for an arbitrary smooth, projective curve (over a finite field and in the �-adic
setting or over a complex curve, working with coefficients in Q or C). The particu-
lar structure of the stack of coherent sheaves on an elliptic curve which rests upon
the description by Atiyah of the category of such objects ([1]) allowed Schiffmann to
describe in explicit terms the whole category of spherical Eisenstein sheaves ([29]).
For curves of genus bigger that two, the description remains mysterious (see however
[28] and [12]). The interest in this category lies in the fact that it gives a geometric
categorification of the elliptic Hall algebra defined in [4]. The elliptic Hall algebra is
a deformation of the Hopf algebra of diagonally symmetric polynomials

��+ = C[x±1
1 , . . . , y1, . . .]S∞ .

The combinatorial study of such a ring is part of the theory of multisymmetric func-
tions, which attempts to generalize to an arbitrary number of sets of variables the
classical theory of Macdonald of symmetric functions ([22]). The elliptic Hall alge-
bra has now appeared in a great diversity of problems: in the study of the K-theory
of the Hilbert scheme of the affine plane ([31]), in skein theory of tori ([24]), in
diagrammatic categorification ([5]),...

Motivated by a putative Lagrangian construction of a specialization of the elliptic
Hall algebra in the spirit of Lusztig’s semicanonical basis of quantum groups ([21]),
by the fact that in the context of quivers, Lusztig sheaves ([20]) are in canonical
one-to-one correspondence with irreducible components of Lusztig nilpotent vari-
ety ([15]) and by a possible geometric interpretation of elliptic Kostka polynomials,
which we leave for future investigations, we were led to the study of the characteris-
tic cycle map from the category of spherical Eisenstein sheaves to Lagrangian cycles
in the stack of Higgs bundles. Our main results are the description of the irreducible
components of the global nilpotent cone of an elliptic curve, the unitriangularity of
the characteristic cycle map and the description of simple perverse sheaves on the
stack of coherent sheaves on an elliptic curve having nilpotent singular support. As a
corollary, we deduce that the characteristic cycle map induces a canonical bijection
between isomorphism classes of simple spherical Eisenstein sheaves and irreducible
components of the global nilpotent cone.

We would like to mention that Bozec has an other approach to the description of
the irreducible components of the global nilpotent cone which works for any genus
([3]). His approach uses the Jordan type of the Higgs field while our is very spe-
cific to elliptic curves. An interesting combinatorial problem is to relate these two
parametrizations. We do this in small ranks, where piecewise linear structures arise.
We can conjecture that these kinds of behaviours, reminiscent of properties visible in
the theory of cluster algebras and Kashiwara-Lusztig parametrizations of canonical
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bases, hold in arbitrary ranks. Indeed, the irreducible components of the global nilpo-
tent cone are expected to provide a (semi-)canonical basis for the top cohomological
Hall algebra of the curve. We keep this question for future research.

1.1 TheMain Results

We give a brief overview of the main results of this paper. We refer to relevant sec-
tions for more details on the notation. We assume throughout this section that X is
an elliptic curve.

1.1.1 The Irreducible Components of the Elliptic Global Nilpotent cone

We consider a complex elliptic curve X. The category of coherent sheaves on X is
denoted by Coh(X), the set of isomorphism classes of coherent sheaves by |Coh(X)|
and the moduli stack of objects of Coh(X) by Coh(X). We adopt similar notations
for subcategories of Coh(X) when this makes sense. The class of a coherent sheaf F
on X is the pair α = (r, d) of its rank and degree, r = rankF , d = degF . It is an
element of the monoid Z+ = {(r, d) ∈ Z2 | r > 0 or (r = 0 and d > 0)}. A coherent
sheaf F on X is said semistable provided that for any proper nonzero subsheaf G,
the inequality degG

rankG ≤ degF
rankF holds. The quantity degF

rankF is called the slope of F and
is denoted by μ(F). If the inequalities are always strict, the sheaf is said stable. Let
P stand for the set of all partitions of nonnegative integers. In Section 2.3, we will
define a partition of the set of isomorphism classes of rank r , degree d semistable
coherent sheaves on X,

|Cohss
α (X)| =

⊔

ξ∈(NP)δ

|Cohss
α,ξ (X)|

where α = (r, d), δ = gcd(r, d) and (NP )δ denotes the set of functions P → N
such that

∑
λ∈P ξ(λ)|λ| = δ (in particular, ξ has finite support).

The Harder-Narasinhan filtration of a coherent sheaf F on X is the unique fil-
tration 0 = F0 ⊂ F1 ⊂ . . . ⊂ Fs = F such that any successive subquotient
Fj /Fj−1 is semistable and the sequence (μ(Fj /Fj−1))1≤j≤s is strictly decreasing.
The sequence

(
rkFj /Fj−1, degFj /Fj−1

)
1≤j≤s

is called the Harder-Narasimhan

type of F . More generally, for any α ∈ Z+, we will define a partition of the set
of isomorphism classes of coherent sheaves of Harder-Narasimhan type (abbreviated
HN-type) α = (α1, . . . , αs), where αi = (ri , di) ∈ Z+:

|Cohα(X)| =
⊔

ξ∈(NP)δ

|Cohα,ξ (X)|

where (NP )δ = {ξ = (ξ1, . . . , ξs) ∈ (NP )s | ξi ∈ (NP )δi
for 1 ≤ i ≤ s}, δi =

gcd(αi) and δ = (δ1, . . . , δs). An element ξ is said regular provided that for any
1 ≤ i ≤ s and any partition λ ∈ P , ξi(λ) �= 0 only if the length of λ is 1. The datum
of a regular ξ is equivalent to the datum of the s-tuple of partitions λ = (λ1, . . . , λs)

where λi = (
jξi ((j)), j ≥ 1

)
, and (j) denotes the partition of j of length one. In
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particular, λ ∈ Pδ = {(λ1, . . . , λs) ∈ Ps | |λi | = δi}. In this case, we denote
ξi = ξλi

and ξ = ξλ.
This partition induces a locally closed stratification of the moduli stack of coherent

sheaves of HN-type α:

Cohα(X) =
⊔

ξ∈(NP)δ

Cohα,ξ (X)

and a stratification of the moduli stack of coherent sheaves of class α = (r, d) ∈ Z+
in the numerical Grothendieck group:

Cohα(X) =
⊔

α∈HN(α)

⊔

ξ∈(NP)δ

Cohα,ξ (X)

where the first union runs over HN-types of rank r and degree d . The moduli stack of
Higgs sheaves of class α = (r, d) is denoted Higgsα(X) (Section 3). It contains the
closed substack of nilpotent Higgs sheaves Nα and there is a natural projection πα :
Higgsα(X) → Cohα(X) forgetting the Higgs field. The restriction of this projection
to the global nilpotent cone is denoted

πα,N : Nα → Cohα(X).

For α ∈ HN(α), we let Nα be the union of the irreducible components of dimension
dim Nα of π−1

α,N (Cohα(X)). This preimage can a priori have irreducible compo-
nents of smaller dimension, but these will come from irreducible components of Nα

having an open subset contained in an other preimage π−1
α,N (Cohβ(X)) for some

β ∈ HN(α). There is an induced projection

πα,N : Nα → Cohα(X)

If furthermore ξ ∈ (NP )δ , we let Nα,ξ = π−1
α,N (Cohα,ξ (X)), Nα,ξ denote the

closure of Nα,ξ in Nα and denote the closure of Nα,ξ in Nα . If ξ = ξλ for
some tuple of partitions λ ∈ Pδ , that is ξ is regular, we let Nα,λ = Nα,ξλ

.
The following theorem gives a description of the irreducible components of Nα

and Nα different from that of [3] and more convenient for the computation of the
characteristic cycle of spherical Eisenstein sheaves (Theorem 1.2).

Theorem 1.1 Let α ∈ Z+. The irreducible components of Nα are the for
α ∈ HN(α) and λ ∈ Pδ .

Let α ∈ HN(α). The irreducible components of Nα are the Nα,λ for λ ∈ Pδ .

We order the set of irreducible components of Nα as follows (see Section 2.5 for
more details):

The first condition on the containment of Harder-Narasimhan strata can be refor-
mulated in purely combinatorial terms using Harder-Narasimhan polytopes (see
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[29, §1.1 e)]). We order similarly the set of irreducible components Nα,λ of Nα (it
reduces to the antidominant order on the tuple of partitions λ).

1.1.2 Bijectivity of the Characteristic Cycle Map

Let α ∈ Z+. Denote by ̂Z[Irr(Nα)] the completion of the space Z[Irr(Nα)] of
functions Irr(Nα) → Z with respect to the dimension of the support. More pre-
cisely, ̂Z[Irr(Nα)] consists of all sums

∑
i≥0 ai[�i] where ai ∈ Z and �i is an

irreducible component of Nα . The category of spherical Eisenstein perverse sheaves
on Cohα(X) is denoted by Pα (Section 4). Isomorphism classes of simple spheri-
cal Eisenstein perverse sheaves on Cohα(X) are parametrized by pairs (α, λ) where
α = (α1, . . . , αs) ∈ HN(α) and λ = (λ1, . . . , λs) is a s-tuple of partitions such that
|λi | = δi := gcd αi (Theorem 4.2). We let Fα,λ be the corresponding simple per-
verse sheaf. Isomorphism classes of simple perverse sheaves in Pα are ordered in the
same way as irreducible components of Nα:

[Fα,λ] ≤ [Fβ,ν] ⇐⇒

⎧
⎪⎨

⎪⎩

Cohβ(X) ⊂ Cohα(X) is a strict inclusion

or

β = α and for any 1 ≤ i ≤ s, νi ≤ λi

We complete the Grothendieck group of Pα in a similar manner, in terms of
the dimension of the support. The completed Grothendieck group is then denoted
̂K0(Pα). This completion was defined in [4, 29] by defining an adic valuation on

K0(Pα).

Theorem 1.2 The characteristic cycle map

CC : ̂K0(Pα) → ̂Z[Irr(Nα)]
is an isomorphism of Z-modules. This isomorphism is lower unitriangular with
respect to the basis of simple perverse sheaves on the left and the basis of irreducible
components of Nα on the right, when ordered as above.

The isomorphism of Theorem 1.2 induces a canonical bijection between the set of
isomorphism classes of simple sheaves in Pα and Irr(Nα). This bijection is described
by .

1.1.3 Perverse Sheaves with Nilpotent Singular Support on the Stack of Coherent
Sheaves on an Elliptic Curve

In our last main result, which we prove in Section 6.4, we describe explicitly the
simple perverse sheaves on the stack Cohα(X), α ∈ Z+, whose singular supports
are nilpotent (that is, a union of some of the irreducible components of the global
nilpotent cone Nα). We introduce some piece of notation. Let X be an elliptic curve.
If α = (r, d) ∈ Z+ is coprime, then the semistable locus Coh(α)(X) is isomorphic
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to the stack quotient X/Gm, where the action of Gm is trivial (Section 2.3). There-
fore, we have a family of local systems Lz on Coh(α)(X) indexed by characters of

π1(X) � Z2 if we work with the topological fundamental group, or πét
1 (X) � Ẑ2

when considering the étale fundamental group. We prove in Proposition 6.5 that such
a local system extends to the whole of Cohα(X). Theorem 6.10 can be formulated as
follows. The second statement is a consequence of Lemma 6.8.

Theorem 1.3 The perverse sheaves on Cohα(X) having a nilpotent singular support
are precisely the perverse sheaves which are the simple constituents of the inductions
of perverse sheaves of the form IC(Lz) on various Cohα(X), α ∈ Z+ coprime as
defined above. Moreover, it suffices to take α = (0, 1) and α = (1, d) for d in a
subset of the integers not bounded below.

Such perverse sheaves are called in this paper twisted spherical Eisenstein per-
verse sheaves as when all the local systems Lz are trivial (that is z = 1), then
we obtain the perverse sheaves considered by Schiffmann in [29] and called there
spherical Eisenstein perverse sheaves.

The proofs of Theorems 1.1, 1.2 will be given in Section 5. The proof of Theorem
1.3 will be given in Section 6.4.

1.2 Strategy of Proof

1.2.1 Theorem 1.1

We compute the dimension of the locally closed substacks Nα,ξ of Nα in two steps.
First, we assume that α = (α), so that we only deal with semistable sheaves of
fixed rank and degree. By the classification due to Atiyah of vector bundles over
an elliptic curve, such coherent sheaves form an algebraic stack isomorphic to the
stack of torsion sheaves of degree gcd(α). The case of torsion sheaves corresponds
to the Springer situation for which the description of the irreducible components is
well-known. Then, we use the morphism

pα : Cohα(X) →
s∏

i=1

Coh(αi )
(X)

which sends a coherent sheaf of HN-type α to the collection of semistable factors
of the Harder-Narasimhan filtration. This morphism has very favourable properties
(it is a vector bundle stack ([9, 11])– or more precisely an iteration of vector bundle
stacks), and the dimension of the fiber is easy to compute. This allows us to perform
efficiently the computation of the dimension of Nα,ξ . Combined with the irreducibil-
ity of Cohα,ξ (X), this will allow us to prove Theorem 1.1. Our strategy is inspired by
the work of Ringel who determined the irreducible components of Lusztig nilpotent
variety for affine quivers ([25, 26]).

The relevant sections of the paper are Sections 2, 3.1, 3.2 and 5.
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1.2.2 Theorem 1.2

Let α ∈ Z+ and α ∈ HN(α). We let Coh≤α(X) be the open substack of Cohα(X)

which is the union of the Cohβ(X) such that Cohα(X) ⊂ Cohβ(X). We let jα :
Coh≤α(X) → Cohα(X) be the (open) inclusion. Since we work with comple-
tions, using a poset structure on the set of Harder-Narasimhan strata (endowed with
inclusion of strata closure order) and letting

Pα = {(jα)∗F : F ∈ Ob(Pα), supp F = supp F ∩ Cohα(X)},
it suffices to show that the characteristic cycle map

CC : K0(Pα) → Z[Irr(Nα)]
is a unitriangular isomorphism. We proceed in two steps by first assuming α = (α)

so that we work on the semistable locus. There we use again the structure of coherent
sheaves on an elliptic curve which allows us to consider only torsion sheaves. Last,
using the explicit description of the simple objects of Pα , and the morphism pα ,
we are able to give a rather concrete description of the characteristic cycle of any
perverse sheaf of the category Pα . Proving the isomorphism is now easy.

The relevant sections are Sections 2, 3.1, 3.2, 3.3, 3.4, 3.5, 4 and 5.3.

1.2.3 Theorem 1.3

The key fact, which is true not only for elliptic curves but also for curves of genus
g ≥ 2, is that any local system on some connected component of the semisimple
locus extends to the whole connected component of Coh(X). This can be proved by
codimension considerations and by using the determinant morphism to the Picard
stack, which provides a retraction to the inclusion of the Picard stack in the stack
of rank one coherent sheaves. This allows us to prove that any induction of perverse
sheaves as in Theorem 1.3 has nilpotent singular support. The other implication of
Theorem 1.3 does not present difficulties and follows from the consideration of the
restriction of the induction diagram to the sheaves of HN-type α ∈ HN(α) (4.3).

The relevant sections are Sections 2, 3, 4 and 6.

1.3 Contents of the Paper

In Section 2, we recall some standard facts concerning the stack of coherent sheaves
on curves with an emphasis on the case of elliptic curves. We follow the presen-
tation of Schiffmann ([29]). In Section 3, we introduce the stack of Higgs sheaves
and the global nilpotent cone. We give a description of the irreducible components
of the global nilpotent cone and of its semistable locus for an elliptic curve. A par-
tial order on the set of its irreducible components is defined combining the natural
order on Harder-Narasimhan strata given by the dominance order and the antidomi-
nance order on partitions. We investigate in small ranks the problem of the relation of
the two parametrizations of the irreducible components of the global nilpotent cone
of an elliptic curve: the parametrization of Bozec and the one described here. This
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underlies nontrivial combinatorics and piecewise linear structures. In Section 4, we
recall the induction and restriction functors on the derived category of constructible
sheaves and the definition of spherical Eisenstein sheaves. In this generality, these
functors appear in the work of Schiffmann [29]. They are defined in analogy with
the quiver induction and restriction functors considered by Lusztig [20] and with the
induction functor studied by Laumon [17, 19]. We recall the explicit description of
simple Eisenstein perverse sheaves in terms of a local system on a smooth part of their
support due to Schiffmann. This description allows us to describe the multiplicities of
the irreducible components of the global nilpotent cone in the singular support of the
restriction of a simple Eisenstein sheaf to its supporting Harder-Narasimhan stratum.
Perverse sheaves on the nilpotent cone of gln and the Kostka numbers appear in this
description. In Section 5, we detail the proof of the first two main theorems, namely
the description of the irreducible components of the global nilpotent cone (Theorem
1.1) and the lower unitriangularity of the characteristic cycle map from the category
of spherical Eisenstein sheaves (Theorem 1.2). In Section 6, we introduce the material
needed to prove the third main result, Theorem 1.3, which gives an explicit descrip-
tion of the simple perverse sheaves on the stack of coherent sheaves on an elliptic
curve having singular support in the global nilpotent cone. Along the way, we deter-
mine codimension one Harder-Narasimhan strata and show that local systems on the
semistable locus always extend to the whole stack of coherent sheaves, for any curve.

1.4 Notations and Conventions

We let P be the set of partitions of positive integers. If j ≥ 1, the unique partition
of j of length one is (j). The set P is naturally ordered by the dominance order.
If d ≥ 1, Pd is the subset of partitions of d . If λ ∈ Pd , |λ| = d and l(λ) is the
length of λ (the number of nonzero parts). If d = (d1, . . . , ds) is a s-tuple, Pd =
{(λ1, . . . , λs) ∈ Ps | λi ∈ Pdi

}. We let NP be the set of functions P → N.
For d ∈ N, (NP )d is the set of functions ξ ∈ NP such that

∑
λ∈P ξ(λ)|λ| = d .

If ξ ∈ (NP )d is such that for any λ ∈ P , ξ(λ) �= 0 =⇒ l(λ) = 1, the datum
of ξ is equivalent to the datum of the partition λ = (j ξ((j)) : j ≥ 1) ∈ Pd . In
this case, we write ξ = ξλ. If d = (d1, . . . , ds) is a s-tuple, (NP )d is the set of
s-tuples of functions (ξ1, . . . , ξs) such that for 1 ≤ i ≤ s, ξi ∈ (NP )di

. If for
any 1 ≤ i ≤ s and any λ ∈ P , ξi(λ) �= 0 =⇒ l(λ) = 1, the datum of ξ is
equivalent to the datum of the s-tuple of partitions λ = (λ1, . . . , λs) ∈ Pd , where
λi = (j ξi ((j)) : j ≥ 1). In this case, we write ξ = ξλ. We denote Coh(X) the stack of
coherent sheaves on a given fixed curve X. We let Z+ = {(r, d) ∈ Z2 | r > 0 or r =
0 and d > 0}. For α ∈ Z+, Cohα(X) is the substack of coherent sheaves of class
α and μ(α) = d

r
if α = (r, d). The set of Harder-Narasimhan types of class α is

HN(α). Its elements are tuples α = (α1, . . . , αs) for some s ≥ 1, αi ∈ Z+, μ(α1) >

. . . > μ(αs),
∑s

i=1 αi = α. For α = (r, d) ∈ Z2, δ = gcd(α) = gcd(r, d). For
α = (α1, . . . , αs) ∈ (Z2)s , δ = gcd(α) = (gcd(α1), . . . , gcd(αs)). For α ∈ Z+ and
α ∈ HN(α), Cohα(X) denotes the corresponding Harder-Narasimhan stratum. We
will consider the derived category of constructible sheaves on the stack of coherent
sheaves on a smooth projective curve. Each connected component Cohα(X) of this
stack has a presentation as an increasing union of open substacks which are quotient
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stacks, Cohα(X) = lim−→
n

Xn/Gn where Xn is an open subvariety of some Quot scheme

and Gn some (reductive) algebraic group. The derived category of the Artin stack
Cohα(X) can be dealt with using the formalism of equivariant derived categories
([2]): Dc(Cohα(X)) = lim←−

n

Dc,Gn(Xn). If X is any algebraic variety and n ≥ 1 an

integer, we let 
 ⊂ Xn and 
 ⊂ SnX be the big diagonals (the closed subvarieties
of n-tuples (x1, . . . , xn) such that two or more coordinates are equal).

2 TheModuli Stack of Coherent Sheaves on Elliptic Curves

Let X be a smooth projective curve over C. We will later assume that X is of genus
one.

2.1 Coherent Sheaves on a Curve

We recall here the fundamental properties of the stack of coherent sheaves on a curve
that we will need. We consider a smooth projective curve X over the field of complex
numbers C. We let Coh(X) be the category of coherent sheaves on X. This is an
abelian category of homological dimension one. To a coherent sheaf F , we can assign
its rank r and its degree d . The pair α = (r, d) belongs to

Z+ = {(r, d) ∈ Z2 | r > 0 or r = 0, d > 0}.

and is called the class of F . This assignment yields a group homomorphism

K0(Coh(X)) → Z2.

For a coherent sheaf F on X, we let [F] ∈ Z+ be the corresponding pair. The Euler
form of the category Coh(X) factors through this morphism: for any coherent sheaves
F,G on X such that [F] = (r1, d1) and [G] = (r2, d2),

〈F,G〉 = dim Hom(F,G) − dim Ext1(F,G) = (1 − g)r1r2 + (r1d2 − r2d1) (2.1)

if g is the genus of X, thanks to Serre duality and the Riemann-Roch formula.
When X is an elliptic curve, the first term disappears. There is a smooth stack
Coh(X) parametrizing the objects of Coh(X). It has an infinite number of connected
components indexed by Z+:

Coh(X) =
⊔

α∈Z+
Cohα(X)

where the connected component Cohα(X) is an Artin stack locally of finite type
which parametrizes coherent sheaves on X of class α. The dimension of Cohα(X) is
r2(g − 1) if α = (r, d). In particular, it is of dimension 0 when X is an elliptic curve.
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2.2 The Category andModuli Stack of Torsion Sheaves

2.2.1 Torsion Sheaves on a Curve

The moduli stack of torsion sheaves is the union Tor(X) of the connected compo-
nents Coh(0,d)(X), d > 0 of Coh(X). Fix d > 0. There is a support map:

χ : Coh(0,d)(X) → SdX

to the dth symmetric power of X sending a coherent sheaf to its support (with
multiplicities).

The category of torsion sheaves on X is denoted Tor(X). For any closed point
x ∈ X, we let Torx(X) be the subcategory of torsion sheaves supported at x. It is
equivalent to the category of nilpotent representations of the Jordan quiver (the quiver
with one vertex and one loop). In other words, the datum of a torsion sheaf of degree
d supported at a given point is the same thing as the datum of a nilpotent d×d matrix.
In particular, isomorphism classes of torsion sheaves supported at x are indexed by
partitions according to the sizes of the Jordan blocks. We let Tx,λ be the torsion sheaf
associated to the partition λ ∈ P and supported at x.

2.2.2 Stratification of the Stack of Torsion Sheaves on a Curve

Let d ≥ 0. The stack Coh(0,d)(X) admits a stratification indexed by the set (NP )d
of functions ξ : P → N satisfying

∑
λ∈P ξ(λ)|λ| = d . Namely, we write

Coh(0,d)(X) =
⊔

ξ∈(NP)d

Coh(0,d),ξ (X)

where Coh(0,d),ξ (X) is defined as follows. We pick partitions λ1, . . . , λs ∈ P so that
in this collection, any partition λ ∈ P appears precisely ξ(λ) times. Then, geomet-
ric points of Coh(0,d),ξ (X) parametrize by definition isomorphism classes of torsion
sheaves T on X isomorphic to a direct sum

s⊕

i=1

Txi ,λi

for pairwise distinct points xi ∈ X. This stratification is analogous to the Jordan strat-
ification of gld (the case when X = A1) and also to the stratification of the regular
locus of the representation stack of affine quivers ([26]) which has been of great help
to the author in the understanding of perverse sheaves with nilpotent singular support
(see [13]).

2.3 Category and Stack of Semistable Sheaves of Fixed Rank and Degree

Let α = (r, d) ∈ Z+. For a nonzero coherent sheaf F on X of rank r and degree d ,
we define its slope μ(F) = d

r
with the convention that the slope of a torsion sheaf

is infinite. We say that F is semistable if for any nonzero proper subsheaf G ⊂ F ,
μ(G) ≤ μ(F). Stable sheaves are those F for which the inequality is always strict.
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Given a fixed slope μ ∈ Q, the category of semistable coherent sheaves on X of slope
μ is abelian, noetherian and artinian. There is a moduli stack of semistable coherent
sheaves of slope μ, Cohμ(X). It is an open substack of Coh(X). If α = (r, d) ∈
Z+ is such that μ = d

r
and gcd(r, d) = 1, we have a decomposition in connected

components of Cohμ(X):

Cohμ(X) =
⊔

l≥1

Coh(lα)(X),

where for any β ∈ Z+, Coh(β)(X) is the open subtack of Cohβ(X) classifying
semistable coherent sheaves of class β.

We assume from now on that X is an elliptic curve until the end of Section 2.
There is an equivalence of categories between Tor(X) = Coh∞(X) and Cohμ(X),

which can be constructed using mutations or equivalently, Fourier-Mukai transforms
(see [29, §1.1 d)], [16]). We let Tor(X) be the stack of torsion sheaves on X. It
coincides with Coh∞(X). The equivalence sends semistable sheaves of rank r and
degree d with μ = d

r
to torsion sheaves of degree δ = gcd(r, d). It also induces

isomorphisms at the level of stacks

εμ : Tor(X) → Cohμ(X)

and

εα : Coh(0,δ)(X) → Coh(α)(X).

Thanks to the isomorphism εα , we transport the stratification of Coh(0,δ)(X) to
Coh(α)(X):

Coh(α)(X) =
⊔

ξ∈(NP)δ

Coh(α),ξ (X)

where Coh(α),ξ (X) = εα(Coh(0,δ),ξ (X)).
We have the following properties for semistable sheaves of different slopes which

will be useful for understanding the induction of perverse sheaves. If ν > μ ∈ Q are
two slopes, F ∈ Cohμ(X) and G ∈ Cohν(X), then

HomOX
(G,F) = 0.

Since the canonical bundle of an elliptic curve is trivial, Serre duality implies that

Ext1OX
(F,G) = 0. (2.2)

2.4 A Refinement of the Harder-Narasimhan Stratification

2.4.1 The Harder-Narasimhan Stratification

Let F be a coherent sheaf on X. It admits a unique filtration 0 = F0 ⊂ F1 ⊂ . . . ⊂
Fs = F such that for any 1 ≤ i ≤ s, the quotient Fi/Fi−1 is semistable and if μi

denotes its slope, μ1 > μ2 > . . . > μs . It is called the Harder-Narasimhan stratifica-
tion of F . The Harder-Narasimhan type of F is then the collection ([Fi/Fi−1])1≤i≤s .
We let HN(α) be the set of all possible Harder-Narasimhan types of coherent sheaves
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of class α. For α ∈ Z+, the Harder-Narasimhan stratification of Cohα(X) is then

Cohα(X) =
⊔

α∈HN(α)

Cohα(X),

where Cohα(X) is the locally closed substack parametrizing coherent sheaves on
X of HN-type α. In particular, if α = (α) for some α ∈ Z+, then the notation
Cohα(X) = Coh(α)(X) is the one introduced in Section 2.3.

2.4.2 Refinement of the Harder-Narasimhan Stratification for Elliptic Curves

Let α = (r, d) ∈ Z+ and α = (α1, . . . , αs) ∈ HN(α). There is a morphism of stacks

pα : Cohα(X) →
s∏

i=1

Coh(αi )
(X)

which sends a coherent sheaf of HN-type α to the collection of the subquotients of
the Harder-Narasimhan filtration. If X is an elliptic curve, the Harder-Narasimhan
filtration splits (noncanonically): if F is a coherent sheaf on X and (Fi )1≤i≤s is its
Harder-Narasimhan filtration,

F �
s⊕

i=1

Fi/Fi−1.

This is a consequence of the Ext-vanishing property (2.2). Therefore, the fiber of pα

over a C-point (F1, . . . ,Fs) can be identified with the stack quotient

pt/
⊕

j<i

HomOX
(Fi/Fi−1,Fj /Fj−1).

In particular, its dimension is

dα = −
∑

j<i

(ridj − rj di), (2.3)

where αi = (ri , di) = [Fi/Fi−1].
We define a stratification of Cohα(X):

Cohα(X) =
⊔

ξ∈(NP)δ

Cohα,ξ (X)

indexed by (NP )δ = {ξ = (ξ1, . . . , ξs) ∈ (NP )s | ∑
λ∈P ξi(λ)|λ| =

gcd(αi) for any 1 ≤ i ≤ s}, where

(Cohα,ξ (X)) = p−1
α

(
s∏

i=1

Coh(αi ),ξi
(X)

)
.
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In concrete terms, the C-points of Cohα,ξ (X) are the isomorphism classes of
coherent sheaves on X having HN-type α and such that the ith subquotient of the
HN-filtration belongs to Coh(αi ),ξi

(X).

2.5 A Partial Order on the Set of Harder-Narasimhan Types

In this paper, we fix once and for all a partial order on HN(α) for α ∈ Z+ such that
for any α, β ∈ HN(α), if Cohα(X) ⊂ Cohβ(X), then β ≤ α. Actually, the inclusion
of closure already induces a partial order on HN(α):

(1) It is reflexive since obviously Cohα(X) ⊂ Cohα(X), so that α ≤ α,
(2) It is transitive since if Cohα(X) ⊂ Cohβ(X) and Cohβ(X) ⊂ Cohγ (X) for some

α, β, γ , then Cohα(X) ⊂ Cohγ (X),

(3) It is antisymmetric: if Cohα(X) ⊂ Cohβ(X) and Cohβ(X) ⊂ Cohα(X), then
Cohα(X) = Cohβ(X) since Harder-Narasimhan strata are irreducible locally
closed substacks, and therefore α = β.

It is also possible to define such a partial order using the relative position of Harder-
Narasimhan polygons, as in [27, p. 482] or in [29], before Proposition 6.7. The results
of this paper do not depend on the choice of such a partial order and it will be con-
venient to assume that it is the one given by comparing the Harder-Narasimham
polytopes: this is the one we use in Section 2.6.

2.6 SL2(Z)-Action on the Stack of Coherent Sheaves

It is a well-known fact that Harder-Narasimhan strata of Coh(X) can be indexed
by convex path in Z+ starting from the origin. Namely, for α ∈ Z+ and α =
(α1, . . . , αs) ∈ HN(α), we take the piecewise affine path

⊔s−1
i=0 [∑i−1

j=0 αs−j ,∑i
j=0 αs−j ] with the convention that α0 = 0 = ∑−1

j=0 αs−j . We denote pα this
path. The convexity comes from the condition on the successive slopes of a Harder-
Narasimhan type. The inclusion of closures order on Harder-Narasimhan strata
admits a refinement given by a partial order on HN(α). This partial order can be
described in terms of convex paths: for any α, β ∈ HN(α), we say that β ≥ α if pβ

lies below pα . Then, for any α, β ∈ HN(α), Cohβ(X) ⊂ Cohα(X) implies that pβ

lies below pα and therefore β ≥ α. We have Cohβ(X) ⊂ Cohα(X) =⇒ β ≥ α

(the dense stratum is the smallest element of HN(α)). The group SL2(Z) acts nat-
urally on Z2 by Z-linear automorphisms. Therefore, it acts on tuples (α1, . . . , αs)

by γ · (α1, . . . , αs) = (γ · α1, . . . , γ · αs). If A ⊂ HN(α) is some set of Harder-
Narasimhan types such that for any β ∈ HN(α) and α ∈ A, β ≤ α implies β ∈ A

and γ ∈ SL2(Z) is such that γ · A = {γ · α : α ∈ A} ⊂ HN(γ · α) (this is
the condition that γ sends pα to a path contained in Z+), then γ induces an iso-
morphism between the open substacks CohA = ⊔

α∈A Cohα(X) of Cohα(X) and
Cohγ ·A = ⊔

α∈A Cohγ ·α(X) of Cohγ ·α(X),

iγ : CohA → Cohγ ·A (2.4)

already used in the proof of [29, Proposition 6.7].

115



L. Hennecart

3 The Global Nilpotent Cone

In this section, we describe the irreducible components of the global nilpotent cone
in terms of the stratification of Section 2.4.

Let X be a smooth projective curve.

3.1 Lagrangian Substacks of a Cotangent Stack and Dimension of Substacks

In this section, we explain what a Lagrangian substack of the cotangent stack T ∗X
of a global quotient stack X = X/G for a smooth algebraic variety X acted on by an
algebraic group G is and how we can understand the dimension of (locally) closed
substacks of the cotangent stack using the smooth cover X → X. These results
apply to the cotangent stack of a smooth stack presented as a union of open sub-
stacks that are global quotient stacks (checking the compatibility with the inclusion
of open charts). The stack of coherent sheaves on a smooth projective curve is such
a stack and its cotangent stack is the stack of Higgs sheaves recalled in Section 3.2.
The restriction on X (being a quotient stack) is not necessary but sufficient for our
purposes. We have T ∗X = μ−1(0)/G where μ : T ∗X → g∗ is a moment map for
the (hamiltonian) action of G on T ∗X. In general, μ−1(0) is singular, has many irre-
ducible component and is not pure dimensional. We are interested in locally closed
substacks Y of T ∗X of the form Y/G where Y is a G-invariant locally closed sub-
variety of μ−1(0). The dimension of Y is then dimY = dim(Y ) − dim(G). We say
that Y is Lagrangian if the smooth Y sm locus of Y is Lagrangian in T ∗X. In par-
ticular, for such an Y, dim(Y) = dim(Y ) − dim(G) = dim(X). The Lagrangian
substacks of T ∗X that will appear are closures conormal bundles to smooth locally
closed substacks Y = Y/G ⊂ X where Y ⊂ X is a smooth locally closed G-invariant
subvariety of X. This conormal bundle T ∗

Y
X is defined as T ∗

Y X/G, where the G-

invariance of Y implies the inclusion T ∗
Y X ⊂ μ−1(0). The closure of this conormal

bundle is then T ∗
Y
X = T ∗

Y X/G.

3.2 Higgs Sheaves and the Global Nilpotent Cone

We refer to [30, §2.3] for more details and general properties of the stack of Higgs
sheaves. A Higgs sheaf on X is a pair (F, θ) of a coherent sheaf F and a morphism
θ : F → F ⊗OX

K where K is the canonical bundle of X. The moduli stack of
Higgs sheaves on X is denoted Higgs(X). It has an infinite number of connected
components indexed by Z+:

Higgs(X) =
⊔

α∈Z+
Higgsα(X)

where Higgsα(X) parametrizes those Higgs sheaves on X whose underlying coherent
sheaf is of class α. There is a projection

π : Higgs(X) → Coh(X)
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forgetting the Higgs field which is compatible with the decompositions into con-
nected components. For α ∈ Z+, πα : Higgsα(X) → Cohα(X) denotes the
restriction of π . It is the cotangent stack of Cohα(X). Moreover, Higgsα(X) is locally
of finite type. The global nilpotent cone is the closed substack N parametrizing
nilpotent Higgs sheaves, that is pairs (F, θ) such that the composition

F θ−→ F ⊗ K
θ⊗idK−−−→ F ⊗ K⊗2 θ⊗id

K⊗2−−−−−→ . . .
θ⊗id

K⊗(n−1)−−−−−−−→ F ⊗ K⊗n

vanishes for n sufficiently large. We write it N = ⊔
α∈Z+ Nα . For any α ∈ Z+,

Nα is a Lagrangian substack of Higgsα(X) ([8, 18]). The restriction of πα to Nα is
denoted πα,N .

3.3 Irreducible Components of the Global Nilpotent Cone

From now on and until the end of Section 3, we assume that X is of genus one.
Let α ∈ Z+ and α ∈ HN(α). Recall that Nα denotes union of the irreducible

components of dimension dim Nα of π−1
α,N (Cohα(X)). If α = (α1, . . . , αs) and ξ =

(ξ1, . . . , ξs) ∈ (NP )δ , we let Nα,ξ = π−1
α,N (Cohα,ξ (X)). In particular, for α = (α)

and ξ = ξ ∈ (NP )δ , we obtain the locally closed substacks N(α),ξ of N(α) defined

in Section 3.4. Also, Nα,ξ is the closure of Nα,ξ in Nα and is the closure of
Nα,ξ in Nα . If ξ = ξλ for some tuple of partitions λ ∈ Pδ , we let Nα,λ = Nα,ξ .

Let � ⊂ Nα be an irreducible component. We call supporting stratum of � the
unique HN-stratum S of Cohα(X) such that S ∩ πα(�) = πα(�). We reformulate
here Theorem 1.1 whose proof will be given in Section 5.1.

Theorem 3.1 Let α ∈ Z+ and α ∈ HN(α). Irreducible components of Nα whose
supporting stratum is Cohα(X) are the irreducible components of Nα ⊂ Nα . They
are the for λ ∈ Pδ .

3.4 Irreducible Components of the Semistable Nilpotent Cone

We introduce the notion of stability for Higgs sheaves and show that for elliptic
curve it coincides with the stability of the underlying coherent sheaf. Then, we give a
parametrization of the irreducible components of the semistable locus of the elliptic
global nilpotent cone (Corollary 3.3). For higher genus, see [3].

Let (F, θ) be a Higgs sheaf on X. We say that it is semistable if for any 0 � G � F
such that θ(G) ⊂ G ⊗ K , μ(G) ≤ μ(F), and stable if these inequalities are always
strict.

Lemma 3.2 Assume X is an elliptic curve. A Higgs sheaf on X is semistable (resp.
stable) if and only if the underlying coherent sheaf is semistable (resp. stable).

Proof Let (F, θ) be a Higgs sheaf on X. The canonical bundle of an elliptic curve is
trivial, so θ ∈ EndF . Moreover, any endomorphism respects the Harder-Narasimhan
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filtration of F so the condition of being a semistable or stable Higgs sheaf is the same
as the condition on the underlying coherent sheaf of being semistable or stable.

The same argument shows that the Harder-Narasimhan stratification of Higgsα(X)

is induced by the Harder-Narasimhan stratification of Cohα(X) when X is an ellip-
tic curve: the former is the pull-back by πα of the latter. For a HN-type α, we let
Higgsα(X) be the locally closed substack of Higgs bundles of HN-type α. We have
Higgsα(X) = π−1

α (Cohα(X)). We let Nα be the union of the irreducible components
of dimension dim Nα of Higgsα(X)∩Nα . In particular, since semistability is an open
condition, all irreducible components of Higgs(α)(X) ∩ Nα have dimension dim Nα

and therefore, N(α) is the stack of nilpotent semistable Higgs bundles of class α on
an elliptic curve X. By Lemma 3.2, we have

N(α) = π−1
α,N (Coh(α)(X)).

Therefore, by Theorem 1.1, the irreducible components of N(α) can be described as
in Corollary 3.3 below.

The semistable nilpotent cone is the union

N ss =
⊔

α∈Z+
N(α)

Since Coh(α)(X) is open in Cohα(X), N(α) is a Lagrangian substack of
N(α) = π−1

α,N (Coh(α)(X)). For ξ ∈ (NP )δ (δ = gcd(α)), we let N(α),ξ =
π−1

α,N (Coh(α),ξ (X)). We let N(α),ξ be the closure of N(α),ξ in N(α) and be the
closure of N(α),ξ in Nα . If ξ = ξλ for some partition λ ∈ Pδ , we write Nα,λ = Nα,ξ .
We can now formulate a corollary of Theorem 1.1.

Corollary 3.3 The irreducible components of N(α) are the closed substacks Nα,λ

for λ ∈ (NP )δ , δ = gcd α.

Proof This corollary is a consequence of Lemma 3.2 and Theorem 1.1 for α = (α)

which we prove in Section 5.1

3.5 Partial Order on the Set of Irreducible Components of the Global Nilpotent
Cone

We define a partial order on the set of irreducible components of the global nilpotent
cone as follows. If and are two irreducible components of Nα . We say
that if Cohβ(X) is strictly contained in Cohα(X) or α = β and
λi ≥ νi for any 1 ≤ i ≤ s when we write λ = (λ1, . . . , λs) and ν = (ν1, . . . , νs). We
order similarly the set of irreducible components Irr(Nα) = {Nα,λ : λ ∈ (NP )δ}
of Nα for α ∈ HN(α) (this order reduces to the antidominant order on the tuple
of partitions λ). We define a completion of the Z-modules Z[Irr(Nα)] of functions
Irr(Nα) → Z with finite support. Namely, we let ̂Z[Irr(Nα)] be the Z-module of all
functions Irr(Nα) → Z. We define in a similar way the completion ̂Z[Irr(Nα)] of
Z[Irr(Nα)].
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3.6 Comparison of the Two Parametrizations of the Irreducible Components

In [3], Bozec describes a parametrization of the irreducible components of the global
nilpotent cone (in arbitrary genus). We raise the question of the comparison of his
parametrization with the one given in this paper. This Section assumes Theorem 1.1
and is not used in any of the proofs. We briefly recall his parametrization for elliptic
curves. Let α ∈ Z+. An α-partition is a s-tuple α = (α1, . . . , αs) of elements of Z+
such that

∑s
i=1 iαi = α. If (F, θ) is a nilpotent Higgs sheaf with nilpotency order s,

its Jordan type is the α-partition α = (α1, . . . , αs) such that

αk = [ker(imθk−1/imθk θ−→ imθk/imθk+1)].
We let JT (α) be the set of α-partitions. For any α-partition α, we let �α ⊂ Nα be
the locally closed substack parametrizing nilpotent Higgs sheaves of Jordan-type α.
We have then the following theorem.

Theorem 3.4 ([3, Corollary 2.5]) We have a locally closed partition

Nα =
⊔

α∈JT (α)

�α .

Moreover, the irreducible components of Nα are the closures of the strata of this
partition: Irr(Nα) = {�α : α ∈ JT (α)}.

We have two parametrizations of the irreducible components of the global nilpo-
tent cone given by Theorem 3.1 and Theorem 3.4. An interesting and rather subtle
question is to understand how they correspond to each other. The bijection between
the parametrizations can be made quite explicit in small ranks but becomes much
more intricate as the rank increases. In rank 0, the two parametrizations amount to
the parametrization by partitions of the length of a general torsion sheaf of the irre-
ducible component and is similar to the parametrization of nilpotent orbits of gld for
d ≥ 0. We can restrict ourselves to the case of vector bundles thanks to the following
proposition (which holds for any curve).

Proposition 3.5 Let X be a smooth projective curve, α ∈ Z+ and α = (α1, . . . , αs)

an α-partition. Then, a general Higgs sheaf (F, θ) of the irreducible component �α

is a Higgs bundle if and only if αs is not a torsion class. Moreover, if 0 ≤ r ≤ s is the
biggest integer such that αr is not a torsion class, the torsion part of a general Higgs
sheaf of �α has Jordan type (αr+1, . . . , αs).

Proof If αs is of rank 0 and positive degree, since αs = [
imθs−1(−(s − 1)KX)

]

where KX is the dualizing sheaf of X ([3, §2]), a Higgs sheaf with Jordan type α

has a torsion subsheaf. Conversely, let �α be an irreducible component of the global
nilpotent cone such that a general Higgs sheaf of �α has a nontrivial torsion part. We
have to show that αs is torsion. A general Higgs sheaf of �α is of the form (T ⊕F, θ)

where T is a direct sum of indecomposable torsion sheaves supported at pairwise
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distinct points of X and θ is a general nilpotent Higgs field. The Higgs field θ is of
the form

θ = f g

0 h

where h ∈ Hom(F,F ⊗ OX), g ∈ Hom(F, T ) and f ∈ End(T ). Let 0 ≤ r ≤ s be
the nilpotency order of h. Then, imht (−tKX) ⊂ F is a vector bundle for 1 ≤ t ≤
r − 1. By Lemma 3.6, if g is general, g|imht (−tKX) is surjective for 1 ≤ t ≤ r − 1.
Therefore, for r ≤ t ≤ s, imθ t (−tKX) = imf t−r ⊂ T . It suffices to prove that
imθr (−rKX) = T because the restriction of θ to T is given by f . To avoid heavy
notation, we assume that T is indecomposable. The general case works similarly by
looking at all points of the support of T . We have

θr(−rKX) = f r
∑

u+v=r−1

(
r−1
u

)
f ughv

0 0
(−rKX).

Therefore,

imθr (−rKX) = imf r + im
∑

u+v=r−1

(
r − 1

u

)
f ughv .

Let T ′ ⊂ T be the maximal proper subsheaf of T . Such a sheaf is unique, since T
is assumed to be indecomposable. If T ′′ ⊂ T is a subsheaf which is not a subsheaf
of T ′, then T ′′ coincides with T . Now, by nilpotency of f , imf w ⊂ T ′ if w > 0.
Since imghr−1 = T (ghr−1 is the term corresponding to u = 0 in the sum) by
surjectivity of g| imhr−1(−(r−1)KX) stated above and imf ughv ⊂ T ′ for u > 0, we
have the equality imθr−1(−(r − 1)KX) = T .

This proves the converse and the last assertion of the Proposition.

Lemma 3.6 Let X be a smooth projective curve and T = ⊕N
i=1 Ti be a direct sum

of indecomposable torsion sheaves supported at pairwise distinct points. Then, for
any vector bundle F , a general morphism F → T is surjective.

Proof It follows immediately from the fact that a vector bundle over a smooth pro-
jective curve is Zariski locally trivial, so we can assume F = OX and then the result
is trivial.

Thanks to Proposition 3.5, we can make the link between the two parametrizations
(given by Theorem 3.1 and Theorem 3.4) in small ranks. It suffices to treat Higgs
bundles.

3.6.1 Rank 1

To illustrate Proposition 3.5, we do not restrict ourselves to Higgs bundles yet. Let
α = ((0, d1), (1, d2)) ∈ HN(1, d1 + d2) be a Harder-Narasimhan type of rank 1
and λ = (λ1, λ2) where λ1 is a partition of d1 and λ2 = (1) the unique partition of
gcd (1, d2) = 1. Then, we have

120



Perverse Sheaves on the Stack of Coherent sheaves

where α = ((1, d), (0, m1), . . . , (0, ms)) if λ1 = (1m1, . . . , sms ) and d = d1 + d2 −∑s
i=1 mi .

3.6.2 Rank 2

Let α = (2, d) ∈ Z+ and α = (α1, . . . , αs) ∈ HN(α). Thanks to Proposition 3.5, it
suffices to treat the cases of Higgs bundles. The different cases are as follows.

(1) s = 1, d odd, (α, λ) = ((α), (1))

(2) s = 1, d even, (α, λ) = ((α), (2)),
(3) s = 1, d even, (α, λ) = ((α), (1, 1)),
(4) s = 2, (α, λ) = (((1, d1), (1, d2)), ((1), (1))) with d1 > d2, d1 + d2 = d .

The associated Jordan type are as follows.

(1) (α),
(2) ((0, 0), (1, d

2 )),
(3) (α),
(4) ((0, d1 − d2), (1, d2)).

3.6.3 Rank 3

From rank 3, the situation becomes more subtle. In particular, we need to be able to
compute the general type of the image of a morphism from a rank two vector bundle
to a line bundle.

Let α = (3, d) ∈ Z+ and α ∈ HN(α). The different cases are as follows.

(1) s = 1, gcd(3, d) = 1, (α, λ) = ((α), (1)),
(2) s = 1, d = 3e for some e ∈ Z, (α, λ) = ((α), (3)),
(3) s = 1, d = 3e for some e ∈ Z, (α, λ) = ((α), (2, 1)),
(4) s = 1, d = 3e for some e ∈ Z, (α, λ) = ((α), (1, 1, 1)),
(5) s = 2, (α, λ) = (((1, d1), (2, d2)), ((1), (1))) with d2 odd and 2d1 > d2,

d1 + d2 = d ,
(6) s = 2, (α, λ) = (((2, d1), (1, d2)), ((1), (1))) with d1 odd and d1 > 2d2,

d1 + d2 = d ,
(7) s = 2, (α, λ) = (((1, d1), (2, d2)), ((1), (2))) with d2 even and 2d1 > d2,

d1 + d2 = d ,
(8) s = 2, (α, λ) = (((1, d1), (2, d2)), ((1), (1, 1))) with d2 even and 2d1 > d2,

d1 + d2 = d ,
(9) s = 2, (α, λ) = (((2, d1), (1, d2)), ((2), (1))) with d1 even and d1 > 2d2,

d1 + d2 = d

(10) s = 2, (α, λ) = (((2, d1), (1, d2)), ((1, 1), (1))) with d1 even and d1 > 2d2,
d1 + d2 = d

(11) s = 3, (α, λ) = (((1, d1), (1, d2), (1, d3)), ((1), (1), (1))) with d1 > d2 > d3,
d1 + d2 + d3 = d

The corresponding Jordan types are as follows.

(1) (α),
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(2) ((0, 0), (0, 0), (1, e)),
(3) ((1, e), (1, e)),
(4) (α),
(5) ((1, d2 − d1), (1, d1)),
(6) ((1, d1 − d2), (1, d2)),
(7) ((0, d1 − d2

2 ), (0, 0), (1, d2
2 )),

(8) ((1, d2 − d1), (1, d1)),
(9) ((0, 0), (0, d1

2 − d2), (1, d2)),
(10) ((1, d1 − d2), (1, d2)),
(11) ((0, d1 − d2), (0, d2 − d3), (1, d3)),

Proof The only nontrivial cases are (7) and (9). We only prove (7), the proof of (9)

being similar. Let L and L′ be line bundles of respective degrees d2
2 and d1. Let F be

the nontrivial extension of L by itself. We therefore have a non-split exact sequence:

0 → L → F → L → 0 (3.1)

We have to prove that the Jordan type of a general nilpotent Higgs field for L′ ⊕F
is

((
0, d1 − d2

2

)
, (0, 0),

(
1, d2

2

))
. For slope reasons, such a Higgs field has the form

θ = 0 g

0 h

where g ∈ Hom(F,L′) and h ∈ End(F) is nilpotent. Therefore, imh = L ⊂ F
(since we assume that θ is general). If g is general, θ|F = (g, h) : F → L′ ⊕ F
is injective and the restriction to the subsheaf L of F, g|L : L → L′, is injective.
Indeed, ker(h) = L ⊂ F and moreover, for slope reasons, there exists nonzero
morphisms L → L′, which are necessary injective since L is a line bundle and such
a morphism extends to a morphism F → L′ thanks to the exact sequence

0 → Hom(L,L′) → Hom(F,L′) → Hom(L,L′) → 0

obtained by applying the left exact functor Hom(−,L′) to (3.1) and because
Ext1(L,L′) = 0 for slope reasons. Consequently, if g is such an extension, θ|F is

injective. Therefore, [imθ ] = [F] = (2, d2), [imθ2] =
(

1, d2
2

)
and θ3 = 0. This

proves that the Jordan type of θ is
((

0, d1 − d2
2

)
, (0, 0),

(
1, d2

2

))
.

We observe that it seems not obvious to extract a general pattern or to read
the Harder-Narasimhan type of an irreducible component on its Jordan type and
vice-versa. Nevertheless, there should be a piecewise linear map which associates a
Harder-Narasimhan type to a Jordan type, that is a map

(Z+)(N≥1) → (Z+)(N≥1)

where (Z+)(N≥1) is the set of finitely supported functions N≥1 → Z+. This leads to
an interesting combinatorial problem which we leave for further investigations. If we
see the set of irreducible components of the global nilpotent cone as a basis for the top
cohomological Hall algebra of a curve ([30]), this question leads to the consideration
of analogues of crystals for curves and their parametrizations. For quivers, crystals
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have been studied for a long time by Kashiwara, Lusztig and now through clus-
ter algebras. The question of reading the Harder-Narasimhan type of an irreducible
component of Nα on its Jordan type can be posed for curves of any genus.

4 Spherical Eisenstein Perverse Sheaves on theModuli Stack of
Coherent Sheaves

Let X be a smooth projective curve.

4.1 Induction and Restriction Functors

We recall the definitions of the induction and restriction functors appearing in the
work of Schiffmann [29]. Let α, β ∈ Z+. We let Exactα,β be the Artin stack
parametrizing exact sequences of coherent sheaves 0 → G → F → H → 0 such
that [G] = α and [H] = β. We consider the correspondence:

(4.1)

where the morphisms p and q are described on geometric points as follows. If E =
(0 → G → F → H → 0) is an exact sequence with [G] = α and [H] = β,
p(E) = F and q(E) = (H,G). The morphism q is smooth with connected fibers
(and in fact is a vector bundle stack, see [9, 11]) while p is proper. We let

Indβ,α : Db(Cohβ(X)) × Db(Cohα(X)) → Db(Cohα+β(X))

(F , G ) �→ p!q∗(F � G )[−〈β, α〉]
be the induction functor and

Resβ,α : Db(Cohα+β(X)) → Db(Cohβ(X) × Cohα(X))

F �→ q!p∗F [−〈β, α〉]
be the restriction functor.

4.2 A Category of Perverse Sheaves on the Stack of Coherent Sheaves

In the paper [29], Schiffmann considers the semisimple category of perverse sheaves
on Coh(X) whose simple objects are the simple perverse sheaves on Coh(X) which
appear with a possible shift as a direct summand of an iterated induction of the
constant sheaf on Cohα(X) for various α = (r, d) with r ≤ 1. We let P be the
corresponding category of perverse sheaves on Coh(X). These are called spheri-
cal Eisenstein perverse sheaves. It decomposes as a direct sum P = ⊕

α∈Z+ Pα

according to the decomposition of Coh(X) into connected components. In his paper,
Schiffmann proves that the induction and restriction functors preserve P . Moreover,
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he gives an explicit description of the simple objects of P which we recall now. Recall
the support map:

χ : Tord(X) → SdX.

It induces an isomorphism

Torrssd (X) := χ−1(SdX \ 
) → (SdX \ 
)/(Gm)d

where (Gm)d acts trivially on SdX \
. In particular, we have a Sd -cover Xd \
 →
SdX \ 
 which gives a family (Lλ)λ∈Pd

of irreducible local systems on Torrssd (X)

indexed by irreducible representations of Sd , and hence partitions of d . This bijection
between partitions and irreducible representations of Sd is induced by the Springer
correspondence, so that the partition λ = (1d) corresponds to the trivial character
of Sd and λ = (d) corresponds to the sign character. Therefore, L(1d ) is the trivial
local system of rank 1.

Let α ∈ Z+ and α = (α1, . . . , αs) ∈ Zs such that
∑s

i=1 αi = α. We consider the
iterated induction diagram:

(4.2)

where Exactα1,...,αs
parametrizes filtrations (0 = F0 ⊂ . . . ⊂ Fs) of coherent

sheaves such that [Fi/Fi−1] = αi for any 1 ≤ i ≤ s. The category Pα is then
the semisimple category on Cohα(α)(X) containing the simple constituents of the
inductions of the constant sheaf p∗q∗C∏s

i=1 Cohαs+1−i
(X).

We assume now that α ∈ HN(α). In the diagram (4.2), p−1(Cohα(X)) =
q−1

(∏s
i=1 Coh(αs+1−i )

(X)
)
. We let Exactα be this locally closed substack of

Exactα1,...,αs
. The iterated induction diagram restricted to sheaves of HN-type α is:

(4.3)

By uniqueness of the Harder-Narasimhan filtration, the map p is an isomorphism.
Moreover, q is smooth with connected fibers of dimension dim q = dα given by For-
mula (2.3). If F is a simple perverse sheaf on Cohα(X), its supporting stratum is
the Harder-Narasimhan stratum S of Cohα(X) such that supp F = supp F ∩ S. We
let Coh≤α(X) be the union of the Harder-Narasimhan strata Cohβ(X) (β ∈ HN(α))

such that Cohα(X) ⊂ Cohβ(X). It is an open substack of Cohα(X). We denote
by jα the open inclusion Coh≤α(X) → Cohα(X) (recall the poset structure on
Harder-Narasimhan strata defined in Section 4.2). We let Pα denote the restriction to
Coh≤α(X) of perverse sheaves in Pα whose supporting stratum is Cohα(X):

Pα = {j∗
αF : F ∈ Ob(Pα), supp F = supp F ∩ Cohα(X)}.
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Remark 4.1 In Section 2.4.2, we defined the map

pα : Cohα(X) →
s∏

i=1

Coh(αi )
(X).

Up to reversing the orders of the factors of the right-hand-side, this map coincides
with the map q ◦ p−1, referring to the notation of (4.3).

Theorem 4.2 ([29, Proposition 3.4]) Let X be an elliptic curve.

(1) Let d ∈ N. The simple objects of the category P(0,d) are the perverse
sheaves on Tord(X) isomorphic to one of the intersection complexes ICλ =
IC

(
Torrssd , Lλ

)
for λ ∈ Pd .

(2) Let α ∈ Z+. Recall the isomorphism εα from Section 2.3. The simple objects of
the category Pα whose supports intersect the semistable locus Coh(α)(X) are
the perverse sheaves isomorphic to one of the intermediate extensions

(jα)!∗(εα)∗ IC
(
Torrssgcd(α), Lλ

)

for λ ∈ Pd , d = gcd(α), where jα : Coh(α)(X) → Cohα(X) is the inclusion
of the semistable locus. For α ∈ Z+, we let ICλ = (εα)∗ IC

(
Torrssd , Lλ

)
. The

context makes clear on which space we consider the perverse sheaves.
(3) Let α ∈ HN(α). Then, simple perverse sheaves of the category Pα on Cohα(X)

whose supporting stratum is Cohα(X) are the perverse sheaves isomorphic to
one of the following intermediate extensions

(jα)!∗p∗
α(ICλ1 � . . . � ICλs )[dα]

for multipartitions λ = (λ1, . . . , λs) ∈ Pδ , where dα is the relative dimension
of pα given by Formula (2.3). We let Fα,λ denote this perverse sheaf.

We order the isomorphism classes of simple spherical Eisenstein perverse sheaves
as follows:

[Fα,λ] ≤ [Fβ,ν] ⇐⇒

⎧
⎪⎨

⎪⎩

Cohβ(X) ⊂ Cohα(X) is a strict inclusion

or

β = α and for any 1 ≤ i ≤ s, νi ≤ λi .

We define a completion of the Grothendieck group K0(Pα), ̂K0(Pα). By definition,
̂K0(Pα) consists of all formal sums

∑
α∈HN(α)

λ∈Pδ

aα,λ[Fα,λ] with aα,λ ∈ Z.

4.3 Singular Support of Spherical Eisenstein Perverse Sheaves

Let X be a smooth projective curve.
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4.3.1 Nilpotency

Consider α ∈ Z+, s ≥ 0 and α = (α1, . . . , αs) ∈ (Z+)s such that
∑s

i=1 αi = α.
We let Yα = Cohα(X), Yα = ∏s

i=1 Cohαi
(X) and Xα = Exactα be the stack

parametrizing filtrations (0 = F0 ⊂ F1 ⊂ . . . ⊂ Fs = F) such that for 1 ≤ i ≤ s,
[Fi/Fi−1] = αi . With these notations, the iterated induction diagram (4.2) is

Proposition 4.3 Spherical Eisenstein perverse sheaves have nilpotent singular
support.

Proof It suffices to show that p!q∗CYα
has a nilpotent singular support for any α ∈

(Z+)s . Since q∗CYα
is the constant local system on Xα , it suffices to understand

how the zero section of T ∗Xα transforms under the cotangent correspondence:

We can describe T ∗Yα as the stack of Higgs bundles, which parametrizes pairs
(F, θ), where F is a coherent sheaf on X verifying [F] = α and θ ∈ HomOX

(F,F⊗
KX) (see Section 3.2); analogously, T ∗Yα = ∏s

i=1 T ∗Yαi
and T ∗Yα ×Yα

Xα is
the stack parametrizing pairs (F•, θ) where F• = (0 = F0 ⊂ . . . ⊂ Fs = F)

and θ ∈ HomOX
(F,F ⊗ KX). The map pr1 sends (F•, θ) to (F, θ). If we write

Xα for the zero section of T ∗Xα , the geometric points of (dp∗)−1(Xα) parametrize
pairs (F•, θ) such that θ(Fi ) ⊂ Fi−1 ⊗ KX for any 1 ≤ i ≤ s. Consequently,
pr1(dp

∗)−1(Xα) ⊂ Nα and since the properness of p implies SS(p!q∗CYα
) ⊂

pr1(dp
∗)−1(Xα), this proves the nilpotency of the singular support.

Remark 4.4 The same proof shows that for any local system L on Xα , the singular
support of p!L is nilpotent.

Remark 4.5 The situation of Proposition 4.3 is analogous to the situation of the
induction of perverse sheaves for reductive Lie algebras. Let P ⊂ G be a parabolic
subgroup of a reductive algebraic group with Lévi quotient L and p ⊂ g and l be the
corresponding Lie algebras. In this situation, the induction diagram reads

(see for example [10, §1.1]).

4.3.2 The Singular Support over the Supporting HN-Stratum

We assume until the end of Section 4 that X is an elliptic curve.
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In this section, we compute the singular support of the restriction of spherical
Eisenstein sheaves to their supporting stratum. We assume Theorem 1.1, which is
proved in Section 5.1. Let F be a simple spherical Eisenstein sheaf on Cohα(X)

supported on the stratum Cohα(X) (that is, supp F = supp F ∩ Cohα(X)). Recall
the open immersion jα : Coh≤α(X) → Cohα(X) from Section 4.2. The character-
istic cycle of (jα)∗F is a Z-linear combination with nonnegative coefficients of the
irreducible components of Nα . By Theorem 1.1, we can write

CC((jα)∗F ) =
∑

λ∈Pδ

mF ,λ[Nα,λ] (4.4)

for some uniquely defined integers mFi ,λ. See Section 3.3 for details on the notation
Nα,λ. Write F = (jα)!∗p∗

α(IC(Lλ1) � . . . � IC(Lλs ))[dα] (using Theorem 4.2).
Then, the restriction of F to Cohα(X) is p∗

α(IC(Lλ1) � . . . � IC(Lλs ))[dα]. We
let Fi = IC(Lλi

) for 1 ≤ i ≤ s. This is a perverse sheaf on Cohαi
(X). With these

notations, we have in particular

CC((j(αi))
∗Fi ) =

∑

λ∈Pδi

mFi ,λ[N(αi ),λ].

This is Formula (4.4) applied to α = αi and α = (αi), using that d(αi) = 0.

Lemma 4.6 The multiplicies mF ,λ are given by the formula

mF ,λ =
s∏

i=1

mFi ,λi

for any λ = (λ1, . . . , λs) ∈ Pδ .

Proof This formula follows from the fact that the characteristic cycle of an exte-
rior product is the product of the characteristic cycles, from the smoothness of q

and its compatibility with the stratifications defined in Section 2.4.2 (see [14]).
More precisely, Proposition 9.4.5 of op. cit. asserts that a shift by k transforms the
characteristic cycle by (−1)k , Proposition 9.4.3 that the characteristic cycle map is
compatible with pull-back by non-characteristic morphisms and the remark following
Definition 5.4.12 that a smooth morphism in non-characteristic.

Before giving the microlocal multiplicities of spherical Eisenstein sheaves whose
supporting stratum is the semistable one, that is α = (α), we need a digression on
perverse sheaves on general linear Lie algebras gld for d ≥ 0. Let d ∈ N. Nilpotent
orbits of gld are in bijection with partitions of d in such a way that for any two
partitions λ, ν, Oν ⊂ Oλ if and only if ν ≤ λ for the dominance order ≤ on partitions.
In particular, the orbit {0} ⊂ gld corresponds to the partition (1d) and the regular
nilpotent orbit to λ = (d).

Let �ν = [T ∗
Oν

gld ] as a Lagrangian cycle of T ∗gld . Then, we have the following
easy lemma.
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Lemma 4.7 The characteristic cycle map

CC : K0(PervGLd
(N )) → Z[�ν : ν ∈ Pd ]

is an isomorphism of Z-modules. Moreover, it is lower unitriangular with respect to
the basis of simple perverse sheaves on the left and the basis given by the �ν on the
right, both ordered using the antidominance order on partitions.

Consider the Grothendieck-Springer resolution for g = gld :

πg : g̃ → g.

The decomposition theorem gives the decomposition (πg)∗C = ⊕
λ∈Pd

IC(Lλ) ⊗
Vλ where IC(Lλ) = F IC(Oλ) and Vλ is a (nonzero) multiplicity complex. Here,
F is the Fourier-Sato transform of perverse sheaves on g and Lλ is the local system
on g associated to the partition λ (the map πg is small and is a Sd -cover over the
regular semisimple locus of g). In particular, L(1d ) = Cg is the trivial local system
while L(d) is associated to the sign character of Sd . Precomposing the isomorphism
of Lemma 4.7 with the Fourier-Sato transform gives a Z-module isomorphism

CC : K0(Pg) → Z[�ν : ν ∈ Pd ], (4.5)

where Pg is the semisimple category of perverse sheaves on g generated by the
IC(Lλ), λ ∈ Pd . Moreover, by ordering the basis given by classes of simple per-
verse sheaves on the left and the basis (�ν)ν∈Pd

on the right by the antidominance
order, this isomorphism is lower unitriangular. Note that identifying T ∗g, T ∗g∗ and
g × g in the natural way using the trace pairing, the Fourier transform and the char-
acteristic cycle map are compatible with these isomorphisms, that is the microlocal
multiplicities are preserved (see [14, Exercise IX.7]). It is possible to give explicitly
the microlocal multiplicities thanks to the following result of Evens and Mirković.

Theorem 4.8 ([7, Theorem 0.2 b)]) Let d ∈ N. Let λ and ν be two partitions of d

corresponding to nilpotent orbits Oλ and Oν . The multiplicity αν,λ of [T ∗
Oν

gld ] in
CC(IC(Oλ)) is given by the multiplicity of the Springer representation Vλ of Sd in
the cohomology of the Springer fiber H ∗(Be) at e ∈ Oν , which is the Kostka number
Kλν .

Let F be a simple spherical Eisenstein sheaf on Cohα(X) whose support inter-
sects the semistable stratum Coh(α)(X) (that is, the restriction (j(α))

∗F is a nonzero
perverse sheaf of the category P(α)). By Theorem 4.2, there exists a partition λ ∈ P
such that F = IC(Lλ). Then, the characteristic cycle of (j(α))

∗F is given by the
following lemma.

Lemma 4.9 We have

CC((j(α))
∗F ) =

∑

ν≤λ

mν,λ[N(α),ν],
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where mν,λ = αν,λ. In particular, the map

CC : K0(P(α)) → Z[N(α),ν : ν ∈ Pδ]
F �→ CC(F )

is a lower unitriangular isomorphism ofZ-modules when the basis of simple perverse
sheaves on the left and irreducible components of N(α) on the right are ordered using
the antidominance order on partitions.

Proof We first reduce to the case α = (0, d) for some d ≥ 0. Recall the isomorphism
of stacks

εα : Coh(0,δ)(X) → Coh(α)(X)

where δ = gcd(α). It is induced by an equivalence of categories so it also gives an
isomorphism at the level of the stacks of Higgs bundles:

εα : Higgs(0,δ)(X) → Higgs(α)(X)

making the following natural diagram commute:

and εα also induces an isomorphism of the semistable parts of the global nilpotent
cones:

εα : N(0,δ) → N(α).

Therefore, we can assume α = (0, d) for some d ≥ 0. The problem is then local
(and does not depend anymore on X being an elliptic curve), so that we can assume
X = A1 (for the same reason as in the proof of [17, Théorème (3.3.13)]). We are now
in the situation of the classical Springer correspondence for gld and the Theorem is a
consequence of the properties of the map (4.5).

Lemma 4.10 Let α ∈ Z+ and α ∈ HN(α). The characteristic cycle map

CC : K0(Pα) �→ Z[Nα,λ : λ ∈ Pδ]
F �→ CC(F )

is a lower unitriangular isomorphism of Z-modules when the set of s-tuples of
partitions Pδ is ordered by the antidominance order, that is

λ ≤ ν ⇐⇒ for 1 ≤ i ≤ s, λi ≥ νi .

Proof It is an immediate consequence of Lemmas 4.9 and 4.6.
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5 Proofs of theMain Theorems 1.1, 1.2 and 3.1

In this Section, X is a fixed elliptic curve.

5.1 Some Lemmas

Lemma 5.1 Let d ≥ 1, ξ ∈ (NP )d and T = ⊕s
i=1 Txi ,λi

be a torsion sheaf
in the stratum Coh(0,d),ξ (X). Then, the closed subset NT of End(T ) of nilpotent
endomorphisms is irreducible of codimension

∑

λ∈P

ξ(λ)l(λ).

Proof Note that
∑

λ∈P ξ(λ)l(λ) is the number of indecomposable summands of T

(see Section 2.2.2). Write

T =
t⊕

j=1

T
⊕mj

j

where the Tj are the pairwise distinct indecomposable summands of T and mj are
their multiplicities. We have to show that the codimension of NT in End(T ) is∑t

j=1 mj . Let J be the radical of End(T ). The quotient End(T )/J is isomorphic to

t∏

j=1

Mmi
(C)

where for any n ∈ N, Mn(C) is the ring of n×n matrices with complex coefficients.
The projection

p : End(T ) → End(T )/J

is a fiber bundle and f ∈ End(T ) is nilpotent if and only if p(f ) is nilpotent.
Therefore,

NT = p−1

⎛

⎝
t∏

j=1

Nmj

⎞

⎠

where Nmj
denotes the nilpotent cone of Mmj

(C), and for any n ∈ N, the nilpotent
cone of Mn(C) is irreducible of codimension n (it is the vanishing locus of the n

symmetric polynomials in the n eigenvalues). The result for NT follows.

For α ∈ Z+ and ξ ∈ (NP )δ , the dimension of the endomorphism ring of
a semistable coherent sheaf whose isomorphism class belongs to |Coh(α),ξ (X)| is
constant and only depends on ξ . We denote it e(ξ).

Next, we need the dimension of the stratum Coh(α),ξ (X). Thanks to the isomor-
phism εα between Coh(0,δ)(X) and Coh(α)(X) (δ = gcd α), we can assume that
α = (0, δ). Then,

∑
λ∈P ξ(λ) is the number of parameters of Coh(0,δ),ξ (X) (see

Section 2.2) and e(ξ) is the dimension of the automorphism group. We easily deduce
the following lemma.
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Lemma 5.2 Let α ∈ Z+ and ξ ∈ (NP )δ . Then, Coh(α),ξ (X) is irreducible of
dimension ∑

λ∈P

ξ(λ) − e(ξ).

Lemma 5.3 For any ξ ∈ (NP )δ , the stratum Cohα,ξ (X) is irreducible of dimension

s∑

i=1

(
∑

λ∈P

ξi(λ) − e(ξi)

)
−

∑

i<j

(rj di − ridj )

Proof The morphism pα : Cohα(X) → ∏s
i=1 Coh(αi )

(X) is a stack bundle with
fibers of dimension dα given by Formula (2.3). Together with Lemma 5.2, this gives
Lemma 5.3.

Lemma 5.4 For any ξ ∈ (NP )δ , and any geometric point F ∈ Cohα,ξ (X),

π−1
α,N (F) is irreducible of dimension

∑

i<j

(rj di − ridj ) +
s∑

i=1

(
e(ξi) −

∑

λ∈P

ξi(λ)l(λ)

)
.

Proof The geometric points of the fiber of πα,N over F ∈ Cohα,ξ (X) are nilpotent
endomorphisms of F . Let F = ⊕s

i=1 Fi be its Harder-Narasimhan decomposition
(since the Harder-Narasimhan filtration splits), where [Fi] = αi = (ri , di). An endo-
morphism of F is the datum of fij ∈ Hom(Fi ,Fj ) for 1 ≤ j ≤ i ≤ s and it is
nilpotent if and only if fi,i is nilpotent for any 1 ≤ i ≤ s. From the equality

dim Hom(Fi ,Fj ) = ridj − rj di

and Lemma 5.1, we get the desired formula.

Lemma 5.5 For ξ ∈ (NP )δ , π
−1
α,N (Cohα,ξ (X)) is irreducible of dimension

s∑

i=1

∑

λ∈P

ξi(λ)(1 − l(λ)).

In particular, this dimension is nonpositive and equals 0 = dim N if and only if for
any 1 ≤ i ≤ s and λ ∈ P , ξi(λ) �= 0 implies l(λ) = 1, which is the definition of ξ

being regular.

Proof The restriction of πα,N

πα,N : π−1
α,N (Cohα,ξ (X)) → Cohα,ξ (X)

is surjective with irreducible target (whose dimension is given by Lemma 5.3) and
irreducible fibers (of dimension given by Lemma 5.4). Hence, π−1

α,N (Cohα,ξ (X)) is
irreducible, of dimension
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s∑

i=1

(
∑

λ∈P

ξi(λ) − e(ξi)

)
−

∑

i<j

(rj di − ridj )+
∑

i<j

(rj di − ridj )+
s∑

i=1

(
e(ξi) −

∑

λ∈P

ξi(λ)l(λ)

)

which yields the formula of the Lemma.

5.2 Proof of Theorem 1.1

Let � be an irreducible component of Nα . It is of dimension 0. Since

Nα =
⋃

ξ∈(NP)δ

π−1
α,N (Cohα,ξ (X))

and this is a locally closed stratification of Nα , there exists ξ such that
π−1

α,N (Cohα,ξ (X)) ∩ � is open and dense in �. Therefore, π−1
α,N (Cohα,ξ (X)) is of

dimension 0 = dim N hence ξ is regular by Lemma 5.5. Write ξ = ξλ for some

λ ∈ Pδ . Then, � = π−1
α,N (Cohα,ξ (X)) = Nα,λ.

For the converse, if ξ is regular, by Lemma 5.5, π−1
α,N (Cohα,ξ (X)) is an irreducible

substack of Nα of dimension 0 and hence its closure is an irreducible component of
Nα .

This proves the description of the irreducible components of Nα . The descrip-
tion of the irreducible components of Nα follows immediately. Indeed, if � is
such an irreducible component, we let Cohα(X) be its supporting stratum. Then,
� ∩ π−1

α (Cohα(X)) is an irreducible component of Nα . Therefore, it is of the form
Nα,λ for some λ ∈ Pδ . Hence, � = .

5.3 Proof of Theorem 1.2

Let F ∈ Pα be a simple Eisenstein perverse sheaf. Let Cohα(X) be its supporting
stratum. Then, its characteristic cycle can be written

where the sum runs over pairs (β, λ) of a Harder-Narasimhan type β =
(β1, . . . , βs) ∈ HN(α) and a multipartition λ ∈ Pδ , δ = gcd(β). Moreover,
mβ,λ = 0 unless Cohβ(X) ⊂ Cohα(X) and

CC(j∗
αF ) =

∑

λ∈Pδ

mα,λ[Nα,λ]

is given by Lemma 4.6. By Lemma 4.10, we obtain the lower unitriangularity of the
characteristic cycle map

CC : ̂K0(Pα) → ̂Z[Irr(Nα)].
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6 Perverse Sheaves with Nilpotent Singular Support on the Stack of
Coherent Sheaves

Let X be an elliptic curve. Some results are valid for an arbitrary smooth projective
curve. We mention it when it is the case.

In this section, we will describe explicitly the simple objects of the category
Perv(Cohα(X), Nα) of perverse sheaves on the stack of coherent sheaves on an
elliptic curve whose singular support is nilpotent (that is, a union of some of the
irreducible components of Nα).

6.1 Local Systems on the Semistable Locus of the Stack of Coherent Sheaves

6.1.1 Local Systems on the Picard Stack

Proposition 6.1 Let X be a smooth projective curve. Let α = (1, d) ∈ Z+ and L be
a local system onPicd = Coh(α)(X) ⊂ Cohα(X). Then, L extends to a local system
on Cohα(X).

Proof Consider the determinant morphism

det : Cohα(X) → Picd .

It restricts to the identity on Coh(α)(X) = Picd . Let L be a local system on
Coh(α)(X). Then, L = j∗

(α) det∗(L ). Consequently, det∗(L ) is a local system on
Cohα(X) which extends L .

6.1.2 Codimension One Harder-Narasimhan Strata of Cohα(X )

Proposition 6.2 Let X be an elliptic curve. Let α = (r, d) ∈ Z+. Then, Cohα(X) has
a codimension one Harder-Narasimhan stratum if and only if r and d are coprime.
In this case, such a stratum is unique.

Proof Let α = (α1, . . . , αs) ∈ HN(α) be a Harder-Narasimhan type. By For-
mula (2.3), dimCohα(X) = − ∑

j<i(ridj − rj di) when we write αi = (ri , di).
Consequently, the codimension of Cohα(X) in Cohα(X) is the opposite, since

dimCohα(X) = 0. Since the slopes strictly decrease, for any j < i,
dj

rj
>

di

ri
. Each

term of the sum is therefore positive.
Assume that Cohα(X) is of codimension one. Then necessarily α = (α1, α2) has

length two and r2d1 − r1d2 = 1. Using that r2 = r − r1 and d2 = d − d1, we get
rd1 − r1d = 1, that is a Bézout relation between r and d . This proves that r and d

have to be coprime. If rd ′
1 − r ′

1d = 1 is an other Bézout relation between r and d ,
there exists k ∈ Z such that {

r ′
1 = r1 + kr

d ′
1 = d1 + kd
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If this new Bézout relation comes from a codimension one stratum given by α′ =
(α′

1, α
′
2) ∈ HN(α), we have furthermore 0 ≤ r ′

1 ≤ r . If 0 < r1 < r , then necessarily
r ′

1 = r1 and d ′
1 = d1 so that α′ = α. The case r1 = r is excluded since in this

case, α = ((r, d1), (0, d − d1)) and the slopes do not decrease. If r1 = 0, r ′
1 = 0 or

r ′
1 = r but the second case is not allowed for the same reason. Hence α = α′ in any

case. This proves one implication and the last statement of the Proposition. For the
converse, assume (r, d) is coprime. Let rd1 − r1d = 1 be the Bézout relation with
0 ≤ r1 < r . We let α = (α1, α2) = ((r1, d1), (r − r1, d − d1)). Let r2 = r − r1
and d2 = d − d1. The Bézout relation can be rewritten r2d1 − r1d2 = 1. Therefore,
d1
r1

− d2
r2

= 1
d1d2

> 0. This proves that α ∈ HN(α).

Remark 6.3 When X is a smooth projective curve of genus g ≥ 2, we can prove a
similar result which we mention here, but we will not need it in this paper.

Proposition 6.4 Let X be a smooth projective curve of genus g ≥ 2 and α ∈
Z+. Then, the stack Cohα(X) has a codimension one Harder-Narasimhan stra-
tum if and only if α = (1, d). In this case, it is unique and corresponds to the
Harder-Narasimhan type ((0, 1), (1, d − 1)).

Proof Write α = (r, d). Let α = (α1, . . . , αs) ∈ HN(α). Consider the projection
pα : Cohα(X) → ∏s

i=1 Coh(αi )
(X). It is a smooth morphism of relative dimension

− ∑
j<i〈αi, αj 〉 where 〈−, −〉 is the Euler form (see Formula (2.1)). Therefore,

dimCohα(X) =
s∑

i=1

(g − 1)r2
i + (g − 1)

∑

j<i

rirj −
∑

j<i

(ridj − rj di).

Since dimCohα(X) = (g − 1)
(∑s

i=1 ri
)2, we have,

dimCohα(X) − dimCohα(X) = −(g − 1)
∑

j<i

rirj −
∑

j<i

(ridj − rj di).

By the condition on the slopes, for any j < i, ridj − rj di > 0. If s ≥ 3, then the
codimension of Cohα(X) in Cohα(X) is at least two (even three). If α = (α1, α2),

dimCohα(X) − dimCohα(X) = −(g − 1)r1r2 − (r2d1 − r1d2)

so if r1r2 �= 0, then the codimension is at least two. If r1r2 = 0, we have r1 = 0 for
slope reasons. Then, the codimension is one if and only if r2 = 1 and d1 = 1. So
α = ((0, 1), (1, d2)) This proves the proposition.

6.1.3 Local Systems on the Semistable Locus

Proposition 6.5 Let X be a smooth projective curve, α ∈ Z+ and let L be a local
system on the semistable Harder-Narasimhan stratum Coh(α) ⊂ Cohα . Then, L
extends to a local system on Cohα(X).
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Proof We assume X is an elliptic curve. The same arguments combined with Propo-
sition 6.4 give a proof for curves of genus g ≥ 2. If gcd(α) > 1, then the closed
complement of the open substack Coh(α)(X) of Cohα(X) is of codimension at least
two by Proposition 6.2. Since any local system extends over closed substacks of
codimension at least two, L extends to a local system on Cohα(X).

If gcd(α) = 1, we let α = (α1, α2) be the Harder-Narasimhan type of the
codimension one stratum of Cohα(X) (see Proposition 6.2). The open substack
Cohα(X)∪Cohα(X) is of codimension at least two. It suffices to show that L extends

over this open substack. Since
r d

r1 d1
has determinant one (see the proof of Proposi-

tion 6.2), there exists γ ∈ SL2(Z) such that γ ·α = (1, 1) and γ ·α1 = (0, 1). By the
isomorphism (2.4) of Section 2.6, it suffices to consider the case when α = (1, 1). In
this case, the result is implied by Proposition 6.1

6.2 Twisted Spherical Eisenstein Perverse Sheaves on the Stack of Coherent
Sheaves on an Elliptic Curve

6.2.1 The Surface Braid Group

Let X be a connected topological surface. We will mainly be interested in the case
when X is an elliptic curve. Let n ∈ N. The pure braid group Pn(X) is by definition
the fundamental group of Xn \ 
 while the braid group Bn(X) is the fundamental
group of SnX \ 
. The Sn-covering pn : Xn \ 
 → SnX \ 
 induces an exact
sequence of groups:

1 → Pn(X) → Bn(X) → Sn → 1.

Proposition 6.6 There is a canonical quotient Bn(X) → K making the following
diagram commute:

Proof The surjective morphism Pn(X) → π1(X
n) � π1(X)n is induced by the

inclusion Xn \ 
 → Xn and the group K is constructed by push-out of the upper
exact sequence.

Remark 6.7 It is possible to show that K is isomorphic to the wreath product
π1(X)n � Sn. Indeed, we can construct a section to the projection K → Sn as
follows. We fix a set Q = (q1, . . . , qn) of n distinct points on X and interpret
Bn(X) as the group of braids on X, that is of isotopy classes of collections of n

paths p = (p1, . . . , pn) parametrized by [0, 1] on X starting and ending at Q such
that for any t ∈ [0, 1] and any i �= j , pi(t) �= pj (t). The pure braid group is the
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subgroup of Bn(X) of braids such that for any i, pi is a loop at i. The left-most
quotient Pn(X) → π1(X)n is the quotient by the (normal) subgroup generated by
braids whose strands are trivial in π1(X). For clarity, we assume that Q is contained
in an open subset D of X homeomorphic to a disk. For σ ∈ Sn, we choose a braid
pσ ∈ Bn(X) such that each strand pσ,i is contained in D (this is possible since
SnD \
 is path-connected) and such that pσ induces the permutation σ . The section
of K → Sn is then the composition of the map Sn → Bn(X), σ �→ pσ , with the
projection Bn(X) → K . If pσ and p′

σ are two different choices of braids contained
on D inducing the permutation σ , then (p′

σ )−1pσ is an element of the pure braid
group whose strands are trivial in π1(X) since contained in the simply connected
open disk D. Therefore, they give the same element in K , so that the composition is
a group homomorphism.

When X is a projective algebraic curve over C, we can consider all local systems,
that is representations of π1(X) and we can also work with local systems coming
from finite coverings of X, that is with representation of the étale fundamental group
πét

1 (X) which is the profinite completion ̂π1(X) of π1(X). In the case when X is an
elliptic curve, πét

1 (X) = Ẑ × Ẑ and its representations correspond to local systems
on X having finite monodromy. Representations of K are those local systems on
Sn(X) \ 
 whose pull-back by the Sn-covering pn : Xn \ 
 → SnX \ 
 extends to
Xn.

The following remark will be useful in Section 6.3. Let ρ : Pn(X) → GL(V ) be an
irreducible representation of Pn(X) and L be the corresponding local system on Xn\

. The local system (pn)∗L on SnX \ 
 is associated to the induced representation
IndBn(X)

Pn(X)(ρ). The pull-back p∗
n(pn)∗L is the restriction to Pn(X) of IndBn(X)

Pn(X)(ρ). Its
decomposition into irreducible representations of Pn(X) is

⊕

ωPn(X)∈Bn(X)/Pn(X)=Sn

ω · ρ

where ω · ρ : Pn(X) = π1(X
n \ 
) → GL(V ), g �→ ρ(ωgω−1). This is the

representation obtained from ρ by permuting according to ω the factors of Xn \ 
.
Therefore, when ρ factors through π1(X)n and hence corresponds to a local system
of the form L = L1 � . . . . . . � Ln on Xn, p∗

n(pn)∗LXn\
 is a local system on
Xn \ 
 which extends to Xn and this extension is the local system

⊕

σ∈Sn

(Lσ(1) � . . . � Lσ(n)). (6.1)

Consequently, if L ′ is a simple direct summand of (pn)∗LXn\
, p∗
nL

′ is a local
system on Xn\
 which extends to Xn and the extension is a direct sum of some of the
local systems appearing in the direct sum (6.1). Consequently, if Li , L

′
i , 1 ≤ i ≤ n

are two collections of simple local systems on X such that that the second is not a
permutation of the first, then, letting L = L1 � . . .�Ln and L ′ = L ′

1 � . . .�L ′
n,

the simple direct summands of (pn)∗L and (pn)∗L ′ are pairwise non-isomorphic.
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6.2.2 A Class of Perverse Sheaves on the Moduli Stack of Coherent Sheaves on an
Elliptic Curve

Until the end of the paper, X is assumed to be an elliptic curve.
In this Section, we define a category of perverse sheaves on the moduli stack

of coherent sheaves on an elliptic curve. We will call these sheaves twisted spheri-
cal Eisenstein sheaves. Let α ∈ Z+. We let Pα

tw be the semisimple subcategory of
Perv(Cohα(X)) whose simple objects are the simple perverse sheaves appearing with
a possible shift as a direct summand of the induction of the perverse sheaves IC(Li ),
1 ≤ i ≤ t for some t ≥ 1, Li local systems on Coh(αi )

(X) with coprime αi ∈ Z+
such that

∑t
i=1 αi = α. We denote Pα

tw,f the category obtained in a similar way when
allowing only local systems with finite monodromy. We will respectively denote Qα

tw

and Qα
tw,f the full semisimple triangulated subcategories of D(Cohα(X)) generated

by Pα
tw (resp. Pα

tw,f ). Since the map q of the induction diagram (Section 4) is smooth
and the map p is proper, by the argument of [29, §3.3] involving the decomposition
theorem, the induction functor induces a functor

Indβ,α : Qβ
� �Qα

� → Qα+β
�

for � = tw and � = tw, f . For � = tw, we need the generalization of the decom-
position theorem which applies to any semisimple perverse sheaves and not only to
whose of geometric origin (see for example [6]). The next proposition shows that in
the definition of Pα

� (� = tw or � = tw, f ), it suffices to consider inductions for
rk(αi) ≤ 1.

Lemma 6.8 Let α ∈ Z+ and L be a local system on Cohα(X). If rk(α) > 1, there
exists d ′ ∈ Z such that gcd(r −1, d−d ′) = 1, a local system L ′ on Coh(1,d ′)(X) and
a local system L ′′ on Coh(r−1,d−d ′)(X) such that L is a direct summand (possibly
shifted) of the induction Ind(r−1,d−d ′),(1,d ′)(L ′′ � L ′).

Proof Let d ′ ∈ Z, d ′ � 0. Then, any nonzero morphism from a line bundle of
degree d ′ to a semistable coherent sheaf of class α is injective. We choose d ′ so that
(r −1, d−d ′) is coprime. We let α′ = (1, d) and α′′ = (r −1, d−d ′). The restriction
diagram is

The map p is proper, and surjective by our condition on d ′. Therefore, L appears
up to a shift in p∗p∗L . Since p∗L is a local system on Exactα′,α′′ and q is a vec-

tor bundle stack, there exists a local system L̃ on Cohα′′(X) × Cohα′(X) such that
q∗L̃ = p∗L . We write L̃ = L ′′ � L ′ for local systems L ′ (resp. L ′′) on
Cohα′(X) (resp. Cohα′′(X)). Then, L appears up to a shift in Indα′′,α′(L ′′�L ′).

As in Section 4.2, for α ∈ Z+ and α ∈ HN(α), we let Pα
tw (resp. Pα

tw,f ) denote
the additive subcategory of perverse sheaves (j∗

(α))F = FCoh≤α(X) where F ∈ Pα
tw

(resp. Pα
tw,f ) satisfies supp F = supp F ∩ Cohα(X).
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6.3 Perverse Sheaves with Nilpotent Singular Support on the Semistable Locus

In this section, we describe the simple perverse sheaf on the semistable locus of the
stack of coherent sheaves on an elliptic curve whose singular support is nilpotent.
We first define a family of local systems on the open substack of torsion sheaves of
degree n supported at n pairwise distinct points of X. Consider the stack of torsion
sheaves of degree n on X, Torn. The open substack Torrssn of torsion sheaves of
degree n supported at n distinct points is isomorphic to (SnX \ 
)/Gn

m where the
action of (Gm)n is trivial. It therefore admits a Sn-cover pn : (Xn \ 
)/Gn

m →
Torrssn . Let Li be simple local systems on X for 1 ≤ i ≤ n. When a basis of
π1(X) � Z2 is fixed, this datum is equivalent to a n-tuple z ∈ ((C∗)2)n describing the
monodromy. The exterior product L1�. . .�Ln is a local system on Xn. We consider
its restriction to Xn\
 and let L be the induced local system on (Xn\
)/Gn

m. Then,
the (underived) pushforward (pn)∗L decomposes as a direct sum of local systems
on Torrssn indexed by representations of the symmetric group:

(pn)∗L �
⊕

λ∈Pn

Lz,λ ⊗ Vλ

where Vλ is the multiplicity vector space (Sn acts on π∗L and this is its decompo-
sition in isotypical components, where each Lz,λ is assumed to be irreducible). The
multiplicity complexes Vλ are nonzero. One can see this as follows. Since Sn acts
on π∗L , we have an algebra morphism C[Sn] → End(π∗L ). This algebra mor-
phism is injective since the fiber of π over any point x ∈ SnX \ 
 has n! points and
(π∗L )x � Cn! is acted on by Sn by the regular representation. Hence, the compo-
sition C[Sn] → End(π∗L ) → End((π∗L )x) is an isomorphism. In particular, this
gives nontrivial orthogonal idempotents 1λ in End(π∗L ), one for each partition λ of
n. On the other hand, End(π∗L ) = ⊕

λ∈Pn
HomC(Vλ, Vλ). The nontrivial idempo-

tents of this algebra are the identity morphisms idVλ ∈ Hom(Vλ, Vλ). Consequently,
none of the multiplicity vector spaces Vλ is trivial. Therefore, all the local systems
Lz,λ occur in the direct sum decomposition. Moreover, by the discussion following
Proposition 6.6, if z and z′ cannot be obtained from each other by permuting the fac-
tors of ((C∗)2)n, then for any partitions λ and ν, Lz,λ and Lz′,ν are not isomorphic.
Of course, π∗L only depends on the local systems Li up to permutation.

Let α ∈ Z+. By the isomorphism εα : Torδ = Coh(0,δ) → Coh(α)(X)

(Section 2.3), we can transport the local systems on Torrssδ on local systems on
an open substack of Cohα(X). These are still denoted Lz,λ for z ∈ ((C∗)2)δ and
λ ∈ Pδ .

Proposition 6.9 Let α ∈ Z+ and F be a simple perverse sheaf on Coh(α)(X) having
a nilpotent singular support. Then,F is the intersection cohomology sheaf IC(Lz,λ)

of one of the local systems defined above.

Proof By the isomorphisms εα between Torδ(X) and Coh(α)(X), it suffices to con-
sider the case when α = (0, d) for some d ≥ 1. The singular support only depends
on the local behaviour of the perverse sheaf, so we can assume that X = A1 is the
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affine line (as in the proof of [17, Théorème (3.3.13)]). In this case, Coh(0,d)(X) �
gld/GLd and the nilpotent cone is Ngld

= {(x, ξ) ∈ gld × N | [x, ξ ] =
0}/GLd . By Springer theory, perverse sheaves on gld/GLd with singular support
in Ngld

are the Fourier-Sato transforms of the intersection cohomology sheaves
of nilpotent orbits of gld . These are given by the local systems Lλ on the open
substack glrssd /GLd � (An \ 
)/Sn of regular semisimple elements which appears
in (πg)!Cg̃rss (see Section 4.3.2). This proves the proposition.

6.4 Proof of Theorem 1.3

For the convenience of the reader, we recall Theorem 1.3.

Theorem 6.10 The simple objects of the category Perv(Cohα(X), Nα) of perverse
sheaves having a nilpotent singular support are precisely the simple twisted spherical
Eisenstein perverse sheaves.

Proof We first show that simple twisted spherical Eisenstein perverse sheaves have
nilpotent singular support. This follows from the definition of these perverse sheaves
as direct summands of induction of perverse sheaves of the form IC(L ) where L
is a shifted local system on Coh(α)(X), gcd(α) = 1 by the same argument as in the
proof of Proposition 4.3 and the fact that IC(L ) is by Proposition 6.5 a (shifted)
local system on Cohα(X), so its singular support is the zero section of T ∗Cohα(X).

Conversely, we need to show that a simple perverse sheaf on Cohα(X) having
nilpotent singular support belongs to Pα

tw. Let F be such a perverse sheaf. Let
Cohα,λ(X) be the stratum of Cohα(X) such that supp F = Cohα,λ(X) (which exists
since supp F = πα(SS(F ))). We consider the iterated induction diagram restricted
to the HN-stratum of type α = (αs, . . . , α1):

The map p is an isomorphism and q a vector bundle stack. Let H =
p∗FCohα(X). Write λ = (λ1, . . . , λs). The singular support of the restric-
tion of H to q−1

(∏s
i=1 Coh(αi ),λi

) = p−1(Cohα,λ(X)) is the conormal bun-
dle to p−1(Cohα,λ(X)). Therefore, H = IC(L ) for a local system L on
p−1(Cohα,λ(X)). Hence, there exists a local system L ′ on

∏s
i=1 Coh(αi ),λi

(X) such
that L = q∗L ′. We can write L ′ = L1 � . . . � Ls for local systems Li on
Coh(α),λi

, 1 ≤ i ≤ s. Then, H = q∗(G1 � . . . � Gs)[dim q] and F is a simple con-
stituent (up to some shift) of the induction Indα1,...,αs (G1�. . .�Gs) for Gi = IC(Li ).
Since the singular support of a product is the product of the singular supports and
q is compatible with the stratifications (by definition), for any 1 ≤ i ≤ s, Gi is
a perverse sheaf on Coh(αi )

(X) with nilpotent singular support. By Proposition 6.9,
for 1 ≤ i ≤ s, Gi is a twisted spherical Eisenstein perverse sheaf, so the same is
true for F .
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6.5 The Simple Twisted Spherical Eisenstein Perverse Sheaves

In this section, we describe explicitly the simple objects of the categories Pα
tw and

Pα
tw,f in the spirit of [29, Proposition 3.4]. We let μ ⊂ C∗ be the subgroup of roots

of unity.

Proposition 6.11 The simple objects of P(α)
tw (resp. P(α)

tw,f ) are the intermediate

extensions IC(Lz,λ) of the local systems described above for z ∈ ((C∗)2)δ (resp.
z ∈ (μ2)δ). Moreover, the local systems Lz,λ and Lz′,λ′ on Cohα(X), for some
z, z′ ∈ ((C∗)2))δ are not isomorphic if z and z′ cannot be deduced from each other
by a permutation.

Furthermore, for each α ∈ Z+, there is a canonical bijection

θα : Pα,simp
� →

⊔

α=(α1,...,αs )∈HN(α)

s∏

i=1

P(αi ),simp
�

(� = tw or � = tw, f ), where the exponent simp indicates the set of iso-
morphism classes of simple objects, such that if θ(F ) = (F1, . . . , Fs), then
Indα(Fs � . . . � F1) = F ⊕ G where supp G � supp F (so that in particular
dim supp G < dim supp F by simplicity of F ). Last, D(IC(Lz,λ)) = IC(Lz−1,λ)

where D denotes the Verdier duality.

Proof The statement involving the Verdier duality follows from the fact that the dual
of a local system on an elliptic curve is the local system with the inverse monodromy
(equivalently, the dual of a representation ρ : Z2 → C∗ is the representation ρ−1 :
Z2 → C∗, z �→ ρ(z)−1). The existence of the bijection θα is analogous to that
of the similar map of [29, Proposition 3.4] and follows from the fact that the map
p in the iterated induction diagram restricted to sheaves of HN-type α (4.3) is an
isomorphism.

For the first statement, the intermediate extensions IC(Lz,λ) for z, λ as in the the-
orem are simple objects of P(α)

tw or P(α)
tw,f . Indeed, if α = δα′ with α′ coprime and

z = (z1, . . . , zδ), this intersection cohomology sheaf appears as a simple constituent
of the induction Indα′,...,α′(IC(Lz1 � . . .�Lzδ )). To conclude, we need to show that
when performing inductions, no more simple perverse sheaves on Cohα(X) whose
support intersects the semistable stratum appear. This is a consequence of Theorem
6.10 above and of its proof since all sheaves appearing in the inductions have nilpo-
tent singular support and are therefore twisted spherical Eisenstein sheaves, which is
also proved in the proof of Theorem 6.10.
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