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Abstract
The hard Lefschetz property (HLP) is an important property which has been studied
in several categories of the symplectic world. For Sasakian manifolds, this duality is
satisfied by the basic cohomology (so, it is a transverse property), but a new version
of the HLP has been recently given in terms of duality of the cohomology of the
manifold itself in [1]. Both properties were proved to be equivalent (see [2]) in the
case of K-contact flows. In this paper, we extend both versions of the HLP (transverse
and not) to the more general category of isometric flows, and show that they are
equivalent. We also give some explicit examples which illustrate the categories where
the HLP could be considered.

Keywords Lefschetz hard property · Contact manifolds · Isometric flow

Mathematics Subject Classification (2010) 53C12 · 53D10 · 53C25

Introduction

The origins of the hard Lefschetz property (HLP in the sequel) go back to Lefschetz’s
study of topological properties of algebraic real projective varieties [3], where he
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proved that the repeated cup product by the cohomology class of a hyperplane gives
an isomorphism in the cohomology of the variety. Later, a version of that theorem
was proved by Hodge (see [4]) for general compact Kähler manifolds, stating iso-
morphisms between de Rham cohomology groups of complementary degrees given
by multiplication by a power of the symplectic form. This property was considered
to be one of the most important of this class of manifolds. Compact Kähler manifolds
have very strong and particular cohomological properties. A lot of effort was put into
distinguishing such properties which could characterize Kähler manifolds within the
category of compact symplectic manifolds. Now we know among other things that

• There are compact symplectic manifolds which are not Kähler, cf. [5] for the first
such an example;

• The torus is the only nilmanifold which is Kähler, cf. [6];
• There are compact symplectic manifolds whose cohomology ring is formal

which are not Kähler, cf. [7];
• There are compact Hermitian manifolds with collapsing Frölicher spectral

sequence which are not Kähler, cf. [8];
• There are compact symplectic manifolds satisfying the HLP which are not

Kähler, cf. [9]. However, a nilmanifold having the HLP is diffeomorphic to a
torus, cf. [6], thus a Kähler manifold.

Over the years, many examples have been discussed and published. Among other
publications, let us mention the papers [10–15] and the book [16].

Within the realm of foliations, the foundations of the theory of transversely Kähler
foliations were presented by El Kacimi in [17]. Cordero and Wolak in two papers
presented a series of examples showing that the corresponding transverse properties
of the basic cohomology do not characterize transversely Kähler foliations, cf. [18,
19].

These results proved to be of particular importance in the study of the odd-
dimensional counterpart of Kähler manifolds, i.e., Sasakian manifolds. In particular,
by [17, par. 3.4.7], the basic cohomology of a compact Sasakian manifold satisfies
the HLP. In recent years, a lot of research has been done to distinguish Sasakian
manifolds within the class of contact metric manifolds and K-contact manifolds in
particular, e.g., cf. [1, 20, 21].

One of the properties used in these considerations was a new version of the HLP
for Sasakian manifolds demonstrated in [22] which stated Lefschetz-type isomor-
phisms not for the basic cohomology groups, but for the de Rham groups of the
manifold itself. The authors of that paper extended the scope of the property by giv-
ing a definition of Lefschetz contact manifold in the same global terms. Examples
of non-Sasakian Lefschetz contact manifolds have been given in [22] and [23], all
of them within the category of isometric flows (i.e., the Reeb field associated to the
contact structure is a Killing vector field).

So, a priori there are two different properties (global and basic) that a contact man-
ifold may or may not satisfy, both of them generalizing the HLP satisfied by Sasakian
manifolds. In [2], the author proves that both properties are equivalent for compact
K-contact manifolds. To define the Lefschetz map, the author uses the symplectic
Hodge theory. We do not know whether that equivalence is held for all contact flows.
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Lefschetz-type isomorphisms also exist in the realm of isometric flows, where the
role of the class of the symplectic form is played by the Euler class. In this work, we
define two duality properties for isometric flows which resemble the HLP: a transver-
sal one T HL and a global one HL. Although our definition is essentially topological
and no symplectic structure is needed, in the case of K-contact flows, our new def-
initions agree with the previous versions of the HLP introduced above. In Section
1, we prove that both properties are equivalent for isometric flows. So, we can call
Lefschetz isometric flows the isometric flows satisfying T HL or HL.

In Fig. 1, we show the categories where the HLP has been defined. The HLP is sat-
isfied in the rectangular region. We do not know whether the shaded area is nonempty
(that is, whether there exist Lefschetz contact flows which are not K-contact), but all
other regions are, as we illustrate with some examples in Section 2. In Example 2.2,
we provide a Lefschetz isometric flow which does not admit a contact structure. In
order to find an example of a flow which is contact, Lefschetz but not isometric, we
have to look for a flow which is not Riemannian as the Lefschetz condition ensures
tautness in the Riemannian realm; thus, our flow would be isometric. In the case
of transversely symplectic but not Riemannian foliations, we can encounter infinite
dimensional basic cohomology which makes the Lefschetz condition problematic, as
happens in Example 2.9. We do not know whether the transversal and the global def-
initions of the HLP are equivalent if the contact flow is not isometric. In the referred
example, neither of them is satisfied, but the problems appear at non-corresponding
degrees, differently as in the isometric case.

1 Lefschetz Duality and Transverse Duality for Isometric Flows

1.1 Preliminaries

Throughout this section, (M, g) denotes a closed Riemannian manifold endowed
with an isometric flow F , that is, a 1-dimensional foliation defined by the orbits
of a locally free R-action by isometries. Let X be the unit vector field defining the

Fig. 1 Some categories where the HLP has been considered
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flow. H ∗
M and H ∗

B stand for the de Rham cohomology of M and the basic cohomol-
ogy of the flow, respectively. The latter is the cohomology of the complex of basic
forms {ω ∈ �(M)|iXω = iXdω = 0}. The closure of R in the group of isome-
tries Iso(M, g) is an abelian compact and connected group, and hence, a torus G.
We have an isomorphism �∗ : H ∗

M → H ∗(�(M)G) between the de Rham and the
G-invariant cohomology groups (see [24, Th. 1 in p. 151]).

We have the Gysin exact sequence (see [25, Th. 6.13]):

(1.1)

where ιk is induced by the natural inclusion of the basic complex into the de Rham
complex, εk is the multiplication by the Euler Class [e] = [dχ] ∈ H 2

B of F , being
χ = iXg the characteristic form of F , and ρk = iX ◦ �∗, being iX the contraction
operator (notice that ρk([ω]) = [iXω] when ω is X-invariant). In the literature, the
multiplication by the Euler class is also known as the Lefschetz operator, and is
denoted by

1.2 Hard Lefschetz Duality Properties

Definition 1.1 Let F be an isometric flow on the closed manifold M , where
dim M = 2n + 1, and let [e] ∈ H 2

B denote its Euler class. We will say that F satis-
fies the transversal hard Lefschetz property at degree k ∈ Z if the following property
holds:

where Ln−k([β]) = [β ∧ en−k]. We also define the following properties:

(T HL)≤k : (T HL)j holds for every j ≤ k

(T HL) : (T HL)j holds for every j ∈ Z.

In this last case, we will say that F satisfies the transversal hard Lefschetz property.

Remark 1.2 (T HL)k holds trivially if k < 0 or k > 2n. For k = 0, on one hand,
if F is transversally symplectic, then (T HL)0 is satisfied. On the other hand, one
can easily construct an S

1-principal bundle over B = T
4 = R

4/Z4 with a nontrivial
Euler class (say, [e] = [dx1 ∧ dx2] ∈ H 2

B ). We have that [e] �= 0, but [e2] = 0, and
thus (T HL)0 does not hold.

Definition 1.3 We define the k-th basic primitive cohomology group as the kernel

of the map , that is, PHk
B =

{
[β] ∈ Hk

B |[β ∧ en−k+1] = 0

in H 2n−k+2
B

}
.

Definition 1.4 We will say that F satisfies the k-th primitive condition (and denote
it by Pk) if the inclusion of forms induces the following two isomorphisms:
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(P1)k:

(P2)k: Hk
B = PHk

B ⊕ L
(
Hk−2

B

)
.

Remark 1.5 Notice that as PH 0
B = H 0

B = H 0
M , then P0 is always true. (P1)1 is

not always true, but for every β ∈ �1
B we have β ∧ en ∈ �2n+1

B = 0, so we have
PH 1

B = H 1
B , and then (P2)1 always holds.

Lemma 1.6 For every k ≤ n,

Proof By Remark 1.5, the result holds trivially for k = 0. If k ≥ 1, by (T HL)k−1,
Ln−k+1 = L◦L◦ · · ·◦L is an isomorphism, and thus, a monomorphism. So, the first
map in that composition L = εk : Hk−1

B −→ Hk+1
B must be a monomorphism, too.

The exactness of the Gysin sequence (1.1) implies that ιk is an epimorphism.

Remark 1.7 By degree reasons ι1 : H 1
B → H 1

M is always a monomorphism (this
holds for any foliation). So, by Remark 1.5 and Lemma 1.6, we have that (T HL)0
implies P1.

Proposition 1.8 For every k ≤ n,

Proof By Remarks 1.5 and 1.7, we have P0 and P1. Consider k ≥ 2. On one hand,
the Gysin sequence (1.1) gives

Hk
B

∼= [imιk ⊕ ker ιk ∼= Hk
M ⊕ [imεk−1 ∼= Hk

M ⊕ L
(
Hk−2

B

)
, (1.2)

where we have used that ιk is an epimorphism, which holds by (T HL)k−1 and

Lemma 1.6. On the other hand, we consider the sum PHk
B + L

(
Hk−2

B

)
≤ Hk

B . We

now show that the sum is a direct one: take [β] ∈ PHk
B ∩ L

(
Hk−2

B

)
. Then, there

exists [γ ] ∈ Hk−2
B such that [β] = [γ ∧ e] ∈ PHk

B , which implies

0 =
[
β ∧ en−k+1

]
=

[
γ ∧ en−k+2

]
= Ln−k+2([γ ]),

and by (T HL)k−2 we have [γ ] = 0. Thus, [β] = 0, and the sum is direct. From
Eq. 1.2, we get

PHk
B ⊕ L

(
Hk−2

B

)
≤ Hk

B = Hk
M ⊕ L

(
Hk−2

B

)
, (1.3)

413



J.I. Royo Prieto et al.

which implies that dim PHk
B ≤ dim Hk

M . Hence, if we prove that ik :
is an epimorphism, it would be an isomorphism, yielding (P1)k and, by Eq. 1.3,
(P2)k .

We complete the proof by showing that ik is an epimorphism. Let [α] ∈ Hk
M . By

(T HL)k−1 and Lemma 1.6, there exists [β] ∈ Hk
B such that ιk([β]) = [α]. From

(T HL)k−2, there exists [γ ] ∈ Hk−2
B such that

[
β ∧ en−k+1

]
= Ln−k+2([γ ]) =

[
γ ∧ en−k+2

]
∈ H 2n−k+2

B ,

which leads to [(β − γ ∧ e)∧ en−k+1] = 0 ∈ H 2n−k+2
B and thus, [β − γ ∧ e] ∈ PHk

B .
Finally, we have

ik([β − γ ∧ e]) = [β − d(χ ∧ γ )] = [β] ∈ Hk
M .

Definition 1.9 Let F be an isometric flow on the closed manifold M , where
dim(M) = 2n + 1, and let [e] ∈ H 2

B denote its Euler class. We say that F sat-
isfies the hard Lefschetz property at degree k (and denote it by (HL)k) if there
exists an isomorphism L n−k : Hk

M −→ H 2n−k+1
M making the following diagram

commutative:

(1.4)
We shall also use the following notations:

(HL)≤k : (HL)j holds for every j ≤ k

(HL) : (HL)j holds for every j ∈ Z.

In this last case, we will say that F satisfies the hard Lefschetz property.

Theorem 1.10 Let F be an isometric flow on a closed oriented manifold M of
dimension 2n + 1. Then, for every k ≤ n, we have (T HL)≤k ⇐⇒ (HL)≤k .

Proof Assume (T HL)≤k . By Proposition 1.8, Pk is true, and so ik is an isomor-
phism. To define L n−k , we fix a basis {[βi]}i of PHk

B . As [βi ∧ en−k+1] = 0 ∈
H 2n−k+2

B , there exists a basic form γi ∈ �2n−k+1
B such that βi ∧ en−k+1 = dγi , and

so, χ ∧ βi ∧ en−k − γi ∈ �2n−k+1
M is a closed form. Thus, we can define

L n−k([βi]) = [χ ∧ βi ∧ en−k − γi] (1.5)

and extend it by linearity. As γi is basic and χ ∧βi ∧en−k −γi is X-invariant, we have

ρ2n−k+1([χ ∧ βi ∧ en−k − γi]) = [iX(χ ∧ βi ∧ en−k − γi)] = [βi ∧ en−k],
and the diagram (1.4) is commutative. Finally, from Eq. 1.4, we have

ker L n−k ≤ ker(ρ ◦ L n−k) ≤ ker(Ln−k|PHk
B

◦ (ik)
−1) = {0},
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because ik and Ln−k are isomorphisms. So, L n−k is a monomorphism between
Hk

M and H 2n−k+1
M , who have the same dimension by Poincaré duality. Hence, an

isomorphism.

First notice that F is transversally orientable, and by [26, Th. A] and
[27, Th. 4.10], H ∗

B satisfies the Poincaré duality. In particular, Hk
B and H 2n−k

B have
the same dimension. So, in order to prove that Ln−k is an isomorphism, it suffices to
show that Ln−k is an epimorphism.

As the statement is trivial for k < 0, we shall proceed by induction on k starting
at k = −2. Assume that (HL)≤k holds and assume (HL)≤k−1 ⇒ (T HL)≤k−1. By
Proposition 1.8, Pk holds, giving that ik is an isomorphism. To show that Ln−k is
onto, we now take [ϕ] ∈ H 2n−k

B . By (T HL)k−2, Ln−k+2 is an isomorphism, and so,
there exists [γ ] ∈ Hk−2

B such that

[ϕ ∧ e] = Ln−k+2[γ ] =
[
γ ∧ en−k+2

]
∈ H 2n−k+2

B .

We have the following commutative diagram,

(1.6)

whose right column is part of the Gysin sequence (1.1). We have

[ϕ − γ ∧ en−k+1] ∈ ker ε2n−k+1 = imρ2n−k+1,

and so, by Eq. 1.6, there exists [β] ∈ Hk
B such that

[β ∧ en−k] = Ln−k[β] = [ϕ − γ ∧ en−k+1],
which implies

[ϕ] = [β ∧ en−k + γ ∧ en−k+1] = [(β + γ ∧ e) ∧ en−k] = Ln−k([β + γ ∧ e]),
which concludes the proof.

Now, the following definition makes sense.

Definition 1.11 We say that an isometric flow F on a closed manifold M is an
isometric Lefschetz flow if it satisfies (T HL) or (HL).

Remark 1.12 Given an isometric flow F on a compact manifold, in [28, Section 3.2],
it is proved that the Euler classes associated to two invariant metrics are the same
up to a multiplicative nonzero constant. As a result, whether an isometric flow is
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Lefschetz or not is a topological property in the sense that it does not depend on the
chosen invariant metric, but only on the foliation F itself.

In [1], the authors define a (2n + 1)-dimensional contact manifold (M, η) with
Reeb vector field ξ to be a Lefschetz contact manifold if for every k ≤ n, the relation
between Hk

M and H 2n+1−k
M defined by

Rk =
{(

[β],
[
η ∧ (dη)n−kβ

])
|β ∈ �k

M, dβ = 0, iξ β = 0, (dη)n−k+1 ∧ β = 0
}

(1.7)
is the graph of an isomorphism Hk

M
∼= H 2n−k+1

M .

Remark 1.13 Notice that R0 is always the graph of the isomorphism H 0
M

∼= H 2n+1
M

because (dη)n+1 = 0.

We now see that if ξ is Killing (i.e., we have a K-contact flow), then this notion is
equivalent to (HL).

Proposition 1.14 Let (M, η) be a (2n + 1)-dimensional K-contact manifold. Then,
the isometric flow defined by its Reeb vector field is an isometric Lefschetz flow if
and only if (M, η) is a Lefschetz contact manifold.

Proof We have that X = ξ is a Killing vector field, χ = η and e = dη. If (M, η) is
a Lefschetz contact manifold, then for every k ≤ n, the isomorphism L n−k whose
graph is the relation (1.7) clearly makes the diagram (1.4) commutative and so, X

defines an isometric Lefschetz flow. Conversely, if X is a Lefschetz isometric flow,
it satisfies (T HL) and we can construct an isomorphism L n−k : Hk

M → H 2n−k+1
M

as in the ⇒ part of Theorem 1.10. As (M, η) is contact, by [29, Th. 11(1)], each
basic cohomology class has a harmonic representative, and thus, each primitive basic
cohomology class admits a primitive basic representative1. So, as Hk

M
∼= PHk

B , we
can find a basis {[βi]}i of Hk

M , where βi are primitive closed basic forms. In the proof
of Theorem 1.10, we have to add the forms γi to get closed forms, but as the βi are
primitive, we can choose γi = 0 and so L n−k([β]) = [

χ ∧ β ∧ en−k
]

defines an
isomorphism whose graph is the relation (1.7). Thus, (M, η) is a Lefschetz contact
manifold.

In [1], the authors prove that the small odd Betti numbers (up to the middle dimen-
sion) of a Lefschetz Contact flow are even. As we show now, the same algebraic
proof works to prove the corresponding result for isometric Lefschetz flows.

Theorem 1.15 Let F be an isometric Lefschetz flow on the compact manifold M ,
being dim(M) = 2n + 1. Then, the Betti number bk(M) is even for every odd k ≤ n.

1This is [2, Lemma 2.11], which can also be proved by the last paragraph of the proof of Theorem 0.1 of
[30], which applies verbatim to the complex of basic forms of the contact manifold.
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Proof Consider a basis of primitive basic classes {[βi]}i of Hk
M , and construct an

isomorphism L n−k : Hk
M → H 2n−k+1

M as in the proof of Theorem 1.10. Consider
the non-degenerate bilinear form B on Hk

M defined as the composition

being P([ω1], [ω2]) = ∫
M

ω1 ∧ ω2 the usual non-degenerate pairing. Now, we have

B([βi], [βj ]) = P([βi], L n−k[βj ])
=

∫

M

(βi ∧ χ ∧ βj ∧ en−k − βi ∧ γi)

=
∫

M

βi ∧ χ ∧ βj ∧ en−k

where we have used that βi ∧ γi = 0 because it is a basic form of degree 2n + 1. As
βiχβj = (−1)kβjχβi , it follows that B([βi], [βj ]) = (−1)kB([βj ], [βi]). So, B is a
non-degenerate skew-symmetrical bilinear form, and the dimension of Hk

M must be
even.

2 Examples

Example 2.1 (Sasakian manifolds) Consider a Sasakian manifold M of dimension
2n + 1 (for the essentials of Sasakian geometry, we refer the reader to [31]). Recall
that its associated Reeb vector field X defines an isometric flow with respect to the
metric g of the Sasakian structure, being the associated contact form χ = iXg the
characteristic form of the isometric flow. As any Sasakian manifold is transversally
Kähler, it satisfies (T HL) (cf.[17, 3.4.7]), and by Theorem 1.10, it satisfies (HL),
which has been proved in [1, Section 4].

In [32], Boothby and Wang use the construction described by Kobayashi in
[33, Th. 2]) to get examples of contact manifolds out of integral symplectic forms.
The same construction can also be applied to get isometric flows with a prescribed
integral Euler form as follows: given an integral closed form ω ∈ �2(B), Kobayashi’s
construction gives an S

1-principal bundle π : M → B whose connection form
χ ∈ �1(M)S

1
satisfies dχ = π∗ω. Let F be the foliation on M defined by the

orbits of the principal S1-action and consider on T M = T F ⊕ ker χ the Rieman-
nian metric g = χ ⊗ χ + π∗

b gB , being gB any metric on B and πb the restriction of
π∗ : T M → T B to ker χ , which is an isomorphism by degree reasons. Then, F is an
isometric flow on M whose Euler form is dχ = π∗ω. We shall use this construction
in the following examples. First, we show that Theorem 1.10 applies to new cases
outside the contact category:
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Example 2.2 Let B = CP
2�CP2. Recall that its cohomology is given by:

H 0
B = R H 2

B =< [a], [b] >= R ⊕ R

H 1
B = H 3

B = 0 H 4
B =< [a]2 >=< [b]2 >= R,

where a and b can be assumed to be integral. Choose e = a (we could also take e =
b). Using Kobayashi’s construction, we construct a 5-manifold M with an isometric
flow F whose orbit space is B and with Euler class [e] = [a] ∈ H 2

B . As B does not
admit almost-complex structures [34, Prop. 1.3.1], then it does not admit a symplectic
structure, and M cannot be a contact flow. On the other hand, as the Lefschetz maps:

are isomorphisms, the flow satisfies (T HL) and thus (HL). So, F is a Lefschetz
isometric flow that cannot be generated by the Reeb vector field of any contact
structure.

Remark 2.3 The manifold CP
2�CP2 is an example of a compact c-symplectic man-

ifold (cohomologically symplectic manifold) which is not symplectic, as defined by
Lupton and Oprea in [35]. The authors also suggest a method of construction of
other compact c-symplectic manifolds in [36]. Therefore using such examples, we
can construct more Lefschetz flows which are not transversely symplectic, and thus
not contact.

Example 2.4 It is very easy to construct isometric flows that are not Lefschetz
flows. For example, let the circle S

1 act by multiplication on the first factor of
M = S

1 × B for any B and call F the flow associated to that free action. Let π1 and
π2 stand for the projections of M onto S

1 and B, respectively. Consider the metric
g = π∗

1 gS1 +π∗
2 gB induced by any invariant metric in S

1 and any metric in B. Recall
the characteristic form χ = iXg, being X the unit vector field. It is straightforward
to check locally that dχ = 0, i.e., the Euler form (hence, the Euler class) vanishes.
So, F is not a Lefschetz flow.

The following two lemmata will be useful to find integral closed forms within a
family.

Lemma 2.5 Let n ∈ N. The only polynomial with real coefficients in n variables
that vanishes in a lattice of Rn is the zero polynomial.

Proof Let q be a real polynomial vanishing in a lattice � of Rn. For any nonzero
z ∈ �, the restriction of q to the line joining the origin and z is a polynomial in one
variable with an infinite amount of zeroes, hence zero. In particular, q vanishes in any
point of Rn with rational coefficients with respect to any basis of �, and by density,
in all Rn.
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Lemma 2.6 Let H 2
M =< [ω1], . . . , [ωn] > and let p be a nontrivial polynomial

with real coefficients in n variables. Then, the following subset contains an integral
closed form:

Wp = {c1ω1 + · · · + cnωn|ci ∈ R and p(c1, . . . , cn) �= 0} ⊂ �2(M).

Proof Denote by H 2
b (M,Z) the Betti part of H 2(M,R), i.e., the natural inclu-

sion of H 2(M,Z) in H 2(M,R). Notice that H 2
b (M,Z) ∼= H 2

M . Consider β =
{[α1], . . . , [αn]} the image of a basis of H 2

b (M,Z) via the de Rham isomorphism. So,
α1, . . . , αn are integral cycles. As β is a basis of H 2

M , there exist aij ∈ R and forms
γi ∈ �1(M) such that

n∑
j=1

aijωj = αi + dγi, for all i ∈ {1, . . . , n}. (2.1)

Consider the polynomial in n variables

q(x1, . . . , xn) = p

(
n∑

i=1

ai1xi, . . . ,

n∑
i=1

ainxi

)
. (2.2)

By Lemma 2.5, there exist integers z1, . . . , zn such that q(z1, . . . , zn) �= 0. Now we
define

ω =
n∑

i=1

zi

n∑
j=1

aijωj =
n∑

j=1

n∑
i=1

ziaijωj =
n∑

j=1

cjωj

where cj = ∑n
i=1 aij zi for j ∈ {1, . . . , n}. On one hand, by Eq. 2.2, we have

p(c1, . . . , cn) = q(z1, . . . , zn) �= 0. Thus, ω ∈ Wp. On the other hand, by Eq. 2.1,
we have

ω =
n∑

i=1

zi

n∑
j=1

aijωj =
n∑

i=1

ziαi + d

(
n∑

i=1

ziγi

)

and therefore, ω is an integral cycle.

Example 2.7 In [22], the authors construct K-contact flows which are not Lefschetz,
and thus, not Sasakian. We can construct another example of the same kind (K-
contact and not Lefschetz) as follows: consider B the 6-dimensional solvmanifold
defined in [37]. The authors construct a family of closed forms:

ω = aω1 + bω2 + cω3,

being [ωi] certain generators of H 2
B . They show that if ac �= 0, then ω is a symplectic

form, but B fails to satisfy the hard Lefschetz property. By applying Lemma 2.6 to
the polynomial p(x, y) = xy, we can suppose ω to be a closed integral form. So, the
Kobayashi construction yields a K-contact manifold which is not Lefschetz.
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Example 2.8 Let B be one of the manifolds constructed in [38], which satisfy the
following properties:

(i) B is a compact 6-solvmanifold of completely solvable type;
(ii) B admits a nondefinite Kähler metric, and thus a symplectic structure;

(iii) B satisfies the strong Lefschetz property;
(iv) The Poincaré polynomial of B is PB(t) = 1 + 2t + 5t2 + 8t3 + 5t4 + 2t5 + t6.

By (ii), B is a symplectic manifold. More precisely, in [38, p. 63], it is shown
that any linear combination ω of certain closed forms generating H 2

B with parameters
r, s, t, u, v is a valid symplectic form if the condition r(sv + tu) �= 0 is satisfied. By
Lemma 2.6, we can choose ω to be integral and consider M its associated Kobayashi
construction. So, M is a K-contact flow, and by (iii) it is a Lefschetz flow.

In [39, Th. 3.3], it is proved that B does not admit a Kähler structure. We show
here a shorter proof of this fact using a later result: by the Benson-Gordon’s Theorem,
proved by Hasegawa in [40], a manifold satisfying (i) admits a Kähler structure if
and only if it is a complex torus. So, by (iv), B does not admit a Kähler structure. In
particular, M does not admit a Sasakian structure.

So, we have a K-contact Lefschetz flow which does not admit a Sasakian structure.
Other examples of isometric flows which are Lefschetz but not transversely Kähler
can be constructed using examples of manifolds from [41] which are symplectic and
Lefschetz but not Kähler. For another example in dimension 5, see [23].

We finish this paper by showing that the leftmost region of Fig. 1 is not empty.

Example 2.9 As described in [42, Remarque 3], the geodesic flow of the flat torus
T

2 induces a contact flow on its unit tangent bundle whose basic cohomology has
infinite dimension (and so, it cannot be isometric because the basic cohomology of
a Riemannian foliation is finite-dimensional). More explicitly, it can be described
as the usual contact flow on T

3 = R
3/Z3 with contact form η = cos 2πt dx +

sin 2πt dy. We have a fibration π : M → R/Z = S
1 such that π−1([t]) is foliated

diffeomorphic to T
2 with a linear flow of slope t , and is, thus, foliated by circles if

t ∈ Q or by dense non-compact orbits otherwise. It is easily checked that all basic
1-forms are written locally as f (t) dt . So, H 1

B
∼= H 1(S1) = R and every basic

1-form is closed, which yields H 2
B = �2

B by degree reasons. It is straightforward
to show that �2

B
∼= C∞([0, 1], {0, 1

2 , 1}) and hence, it has infinite dimension and
the Lefschetz map between extremal degrees L : H 0

B → H 2
B is not an isomorphism,

while by Remark 1.13, R0 is the graph of the isomorphism H 0
M

∼= H 3
M . In contrast,

the remaining Lefschetz map L0 : H 1
B → H 1

B is the identity isomorphism, but the
relation R1 is not the graph of H 1

M
∼= H 2

M , because in this example every closed basic
1-form is a primitive form by degree reasons and PH 1

B = H 1
B is not isomorphic to

H 1
M . So, we have a contact flow which is not K-contact and fails to satisfy any of the

Lefschetz properties, these failures happening at non-corresponding degrees. Notice
that for isometric flows, the properties (T HL) and (HL) are intimately related at
corresponding degrees.
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