
ON THE SATAKE ISOMORPHISM

G. LUSZTIG∗

Department of Mathematics
MIT

Cambridge, MA 02139, USA

Institute for Advanced Study
Princeton, NJ 08450, USA

gyuri@mit.edu

Dedicated to the memory of my dear friend, Jim Humphreys

c©The Authors (2022)Transformation Groups

Abstract. In a 1983 paper, the author has established a (decategorified) Satake equiva-
lence for affine Hecke algebras. In this paper, we give new proofs for some results of that
paper, one based on the theory of J-rings and one based on the known character formula
for rational representations of a reductive group in positive, large characteristic. We also
give an extension of that formula to disconnected groups.

Introduction

0.1. Let Hq be the affine Hecke algebra over C (with equal parameters q, a prime
power) associated to an affine Weyl group W (defined in terms of the dual G∗ of
an adjoint group G). Let H0,q be the Hecke algebra over C (with equal parameters
q) associated to the corresponding finite Weyl group W0 ⊂ W . Let Hsph

q be the
vector subspace of Hq consisting of elements which are eigenvectors for the left
and right multiplication by H0,q, with eigenvalue defined by the one dimensional
representation of H0,q corresponding to the unit representation of W0. Then Hsph

q is

an algebra for the product f ∗f ′ =
(∑

w∈W0
q|w|

)−1ff ′ where ff ′ is the product in
Hq and || is the standard length function on W0. Let Q be the group of translations
in W . The classical Satake isomorphism states that the algebra Hsph

q is isomorphic
to the algebra of W0-invariants in the group algebra C[Q]. In [L83] we gave a
refinement of this isomorphism in which the basis of C[Q] formed by the irreducible
representations of a semisimple group with Weyl group W0 and for which Q is the
lattice of roots corresponds to a basis β of Hsph

q formed by certain elements of the
basis [KL79] of Hq, suitably normalized. This shows in particular that
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(a)
the structure constants of the algebra Hsph

q with respect to β
are integers independent of q.

This is the starting point of “geometric Satake equivalence” (which we do not
discuss in this paper).

0.2. In this paper, we show (see 1.5) that the structure constants in 0.1(a) can be
interpreted as structure constants for a certain subring J∗ of the J-ring attached
to W with respect to the standard basis of J∗. (We actually prove a more general
statement involving a weight function on W .) This gives a new (and simpler) proof
of 0.1(a). We also give another approach to 0.1(a) based on the character formula
for simple rational modules of a semisimple group in characteristic p � 0. At
the time when [L83] was written, this character formula was only conjectured and
providing evidence for the conjecture was one of the motivations which led the
author to [L83]. We also state an extension of that character formula to certain
disconnected groups.

0.3. The results in this paper hold with similar proofs also for extended affine
Weyl groups; to simplify notation we do not treat this slightly more general case.

Contents

1. Weighted affine Weyl groups and the ring J∗.
2. Use of modular representations.

3. Folding.

4. A geometric interpretation of Py,w;L.

1. Weighted affine Weyl groups and the ring J∗

1.1. Let W be an irreducible affine Weyl group with a given set S of simple
reflections assumed to have at least two elements. Let Q be the set of all translations
in W : that is, the set of all t ∈ W such that the W -conjugacy class of t is
finite. It is known that Q is a normal free abelian subgroup of finite index of
W . We write the group operation in Q as +. We fix s0 ∈ S such that W is
generated by Q and by the finite subgroup W0 generated by S0 = S − {s0}.
(Such s0 is said to be “special”.) Let w 7→ |w| be the length function of W . Let
Q+ = {x ∈ Q; |sx| = |x| + 1 for any s ∈ S0}. We have W =

⊔
x∈Q+ W0xW0. For

any x ∈ Q+ we denote by Mx the unique element in W0xW0 such that |Mx| is
maximal, or equivalently, such that |sMx| = |Mx| − 1 = |Mxs| for all s ∈ S0.
In particular, M0 is the longest element in W0. Let L : W → N be a weight
function: that is, a function such that L(ww′) = L(w) + L(w′) whenever w,w′ in
W satisfy |ww′| = |w|+ |w′|. We assume that L(s) > 0 for any s ∈ S. Let v be an
indeterminate. Let H be the Q(v)-vector space with basis {Tw;w ∈ W}. We can
regard H as an associative algebra in which TwTw′ = Tww′ if w,w′ in W satisfy
|ww′| = |w|+ |w′| and (Ts+ v−L(s))(Ts− vL(s)) = 0 for s ∈ S. Let {cw;w ∈W} be
the basis of H defined in [L83a] and [L03, 5.2]. (See [KL79] for the case L = ||.)
We have cw =

∑
y∈W v−L(w)+L(y)Py,w;LTy where Py,w;L ∈ Z[v2] is zero for all but

finitely many y (see [L03, 5.4]). Let A = Z[v, v−1] and let HA be the A-submodule
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of H spanned by {Tw;w ∈ W} or equivalently by {cw;w ∈ W}. This is a subring
of H.

We set πL =
∑
e∈W0

v2L(e). For x ∈ Q+, we set cx = (vL(M0)/πL)cMx
∈ H.

1.2. From [L03, 8.6] we see that for w ∈W,x ∈ Q+, y ∈ Q+ we have

cwcMy ∈
∑
u∈W ;|us|=|u|−1 ∀s∈S0

Acu,

cMxcw ∈
∑
u∈W ;|su|=|u|−1 ∀s∈S0

Acu.

It follows that

cMxcMy ∈
∑
u∈W ;|su|=|u|−1=|us| ∀s∈S0

Acu

so that

(a) cMx
cMy

=
∑
z∈Q+ r̃x,y,z;LcMz

where r̃x,y,z;L ∈ A is zero for all but finitely many z, hence

(b) cxcy =
∑
z∈Q+ rx,y,z;Lcz

where rx,y,z;L = vL(M0)πL
−1r̃x,y,z;L.

1.3. Let w ∈W . We write cw =
∑
u∈W luTu with lu ∈ A. From [L03, 6.6a] we see

by induction on |w| that:

(a) If s ∈ S, |sw| = |w|−1, then cw ∈ (Ts+v
−L(s))HA; in other words, lsu = vL(s)lu

for any u ∈W such that |su| = |u|+ 1.

Assume now that |w| = |M0w|+ |M0|. We show

(b) For any u ∈ W such that |M0u| = |u| + |M0| and any e ∈ W0 we have
leu = vL(e)lu.

We argue by induction on |e|. If |e| = 0, there is nothing to prove. Assume now
that |e| > 0. We have e = se′ for some s ∈ S0, e

′ ∈ W0 with |e| = |e′| + 1. By the
induction hypothesis we have le′u = vL(e′)lu. We have |se′u| = |e′u|+1 (both sides
are equal to |se′|+ |u|). Using (a) we have lse′u = vL(s)le′u, hence

leu = lse′u = vL(s)vL(e′)lu = vL(s)+L(e′)lu = vL(se′)lu = vL(e)lu.

This proves (b).
In the setup of (b) we have

cw =
∑
u∈W ;|M0u|=|M0|+|u| lu

∑
e∈W0

vL(e)TeTu

=
∑
e∈W0

vL(e)Te
∑
u∈W ;|M0u|=|M0|+|u| luTu

= vL(M0)cM0

∑
u∈W ;|M0u|=|M0|+|u| luTu.

It follows that
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(c) If |w| = |M0w|+ |M0|, then cw ∈ cM0
HA.

Similarly, we have

(d) If w′ ∈W satisfies |w′| = |w′M0|+ |M0| then cw′ ∈ HAcM0
.

Taking w′ = Mx, w = My with x, y in Q+, we see from (c), (d) that

cMx
cMy
∈ HAcM0

cM0
HA ⊂ πLHA

(we use that cM0cM0 ∈ πLHA). Combining this with 1.2(a), we see that r̃x,y,z;L in
1.2 is in πLA.

If x ∈ Q+, then from (c), (d) we see that

cM0cMx = cMxcM0 = v−L(M0)πLcMx .

(We use that cM0
cM0

= v−L(M0)πLcM0
.)

1.4. From [L03, 13.4], for any w,w′ in W we have

TwTw′ ∈ vL(M0)∑
w′′∈W Z[v−1]Tw′′ .

(In the case where L = || this is proved in [L85, §7]; the proof for general L is
entirely similar.) As in [L03, 13.5], we deduce that for any w,w′ in W we have

(a) cwcw′ =
∑
w′′∈W hw,w′,w′′cw′′

(finite sum) where hw,w′,w′′=Nw,w′,w′′;Lv
L(M0) mod vL(M0)−1 with Nw,w′,w′′;L∈Z.

Let J be the free abelian group with basis {τw;w ∈ W}. We define a bilinear
multiplication J × J → J by

τwτw′ =
∑
w′′∈W Nw,w′,w′′;Lτw′′ ,

(this is a finite sum). It is known [L03, 18.3] that this multiplication is associative
if the conditions in [L03, 18.1] are satisfied.

Let J∗ be the subgroup of J with basis {τMx
;x ∈ Q+}. From 1.2(b) we see that

J∗ is closed under the multiplication in J ; thus for x, y in Q+ we have

τMx
τMy

=
∑
z∈Q+ NMx,My,Mz ;LτMz

(this is a finite sum).

1.5. Theorem.

(a) For x, y in Q+ we have

cxcy =
∑
z∈Q+ NMx,My,Mz ;Lcz.

(b) The subgroup R of H with Z-basis {cx;x ∈ Q+} is closed under multiplication
in H.
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(c) The isomorphism of abelian groups R
∼−→ J∗ given by cx 7→ τMx

is compatible
with the multiplication. In particular, the multiplication in J∗ is associative.

For x, y, z in Q+ we have

rx,y,z;LπLv
−L(M0) = r̃x,y,z;L = hMx,My,Mz

= vL(M0)X

=
(∑

e∈W0
v2L(e)

)
Y =

(∑
e∈W0

v−2L(e)
)
Y ′

where X ∈ Z[v−1], Y ∈ A, Y ′ = v2L(M0)Y ∈ A. It follows that(∑
e∈W0

v−2L(e)
)−1X ∈ Z[v, v−1].

Since X ∈ Z[v−1] and
∑
e∈W0

v−2L(e) ∈ 1 + v−1Z[v−1], we have(∑
e∈W0

v−2L(e)
)−1X ∈ Z[[v−1]];

but this is also in Z[v, v−1] hence it must be in Z[v−1]. Thus (
∑
e∈W0

v−2L(e))−1X ∈
Z[v−1]: that is,

(d) rx,y,z;L ∈ Z[v−1].

From the definition of cw, we have

h̄w,w′,w′′ = hw,w′,w′′

for any w,w′, w′′ in W , where¯: A → A is the ring involution which takes vn to
v−n for any n. Using this and the fact that πLv

−L(M0) is fixed by ,̄ we see that the
left-hand side of (d) is fixed by¯and hence is necessarily in Z.

Taking the coefficient of vL(M0) in the two sides of the equality

rx,y,z;LπLv
−L(M0) = hMx,My,Mz

in which rx,y,z;L ∈ Z, we see that rx,y,z;L = NMx,My,Mz . This completes the proof
of (a). Now (b), (c) are immediate consequences of (a). �

1.6. The ring R has unit element c0 and is known to be commutative; it follows
that the ring J∗ has unit element τM0 and is commutative. In the case where L = ||,
1.5(b) recovers a result in [L83]. For general L, 1.5(b) recovers a result in [K05].
But the present proof is simpler than that in these references.

1.7. In this subsection, we assume that L = ||. In this case, the ring J in [L03,
18.3] is associative. In [L97] we have categorified J to a monoidal tensor category
with simple objects indexed by W . In particular J∗ is categorified to a monoidal
tensor category J∗. It is known that (as a consequence of 1.5(b)) R can be also
categorified to a monoidal category S known as the “Satake category”. The ring
isomorphism R

∼−→ J∗ in 1.5(c) gives rise to an equivalence of monoidal categories
S
∼−→ J∗.
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2. Use of modular representations

2.1. In this section, we assume that L = || : W → N. Let k be an algebraically
closed field of characteristic p ≥ 0. Let G be an adjoint semisimple group over
k with a fixed pinning (involving a maximal torus T ). We assume that the Weyl
group of G is W0, the lattice of roots of G with respect to T is Q, and that
W = W0Q is the affine Weyl group associated in the usual way to the dual group
G∗. Then Q+ is the set of dominant weights of G. For x ∈ Q+, let Vx be a Weyl
module of G over k with highest weight x; let Lx be a simple rational G-module
with highest weight x.

Let ρ ∈ QR = R⊗Q be half the sum of all positive roots of G.
Let H be the set of hyperplanes Hα̌,m = {x ∈ QR; α̌(x + ρ) = mp} for various

coroots α̌ : QR → R and various m ∈ Z. (When p = 0, H consists of the
hyperplanes Hα̌,0.)

2.2. We now assume that p is a prime number, p � 0. Following Verma [Ve] we
identify W with the subgroup Wp of the group of affine transformations of QR

generated by the reflections in the hyperplanes in H which preserve the set H.
Let x ∈ Q+ be such that x /∈

⋃
α̌,mHα̌,m and α̌0(x) ≤ p(p − h + 2) where α̌0

is the highest coroot and h is the Coxeter number. It is known [AJS94], [KL94],
[KT95] that, as virtual T -modules, we have

(a) Lx =
∑
y∈Zx(−1)|wywx| dim(Vwy,wx)Vy,

where Zx is the set of all y ∈ Q+ in the same Wp-orbit as x; wx, wy are certain
well-defined explicit elements of Wp; Vwy,wx is a C-vector space of dimension
Pwy,wx;||(1) defined in terms of the stalks of the intersection cohomology complex
of an affine Schubert variety associated to G∗.

As shown in [L17, comments to [53]], from (a) with x of the form x = px′, x′ ∈
Q+, one can deduce that for y′ ∈ Q+ we have

(b) PMy′ ,Mx′ ;||(1) = dim(V y
′

x′ )

where V y
′

x′ is the y′-weight space of Vx′ . (Note that in our case we have automa-
tically x /∈

⋃
α̌,mHα̌,m.) This provides a new proof of one of the main results in

[L83].

2.3. In this subsection, we assume that p = 0. Let A be the subring of Q(v)
consisting of elements which have no pole for v = 1. Let HA be the A-submodule
of H spanned by {Tw;w ∈ W} or equivalently by {cw;w ∈ W}. This is a subring
of H. We define a group homomorphism ξ from HA to the group ring Q[W ] by∑
w fwTw 7→

∑
w fw(1)w; here fw ∈ A. This is a ring homomorphism. Recall that

for x ∈ Q+, Pw,Mx;||(1) depends only on the (W0,W0) double coset of w ∈ W .
Hence

ξ(cx) = ](W0)−1∑
w∈W Pw,Mx;||(1)w

= ](W0)−1
∑
x′∈Q+ PMx′ ,Mx;||(1)

∑
w∈W0x′W0

w

= ](W0)−1∑
x′∈Q+ dim(V x

′

x )
∑
w∈W0x′W0

w
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(we have used 2.2(b)). We have also

ξ(cx) = ](W0)−1
∑
e∈Q dim(V ex )

∑
a∈W0

ae

= ](W0)−1∑
e′∈Q dim(V e

′

x )
∑
a∈W0

e′a.
(a)

Indeed,∑
e∈Q

dim(V ex )
∑
a∈W0

ae =
∑

x′∈Q+,(a,b)∈W0×W0

dim(V x
′

x )

](b′ ∈W0; b′x′ = x′b′)
abx′b−1

=
∑

x′∈Q+,w∈W0x′W0

dim(V x
′

x )]((b, c) ∈W0 ×W0, w = cx′b−1)

](b′ ∈W0; b′x′ = x′b′)
w

=
∑

x′∈Q+,w∈W0x′W0

dim(V x
′

x )]((b, c) ∈W0 ×W0, cx
′b−1 = x′)

](b′ ∈W0; b′x′ = x′b′)
w

=
∑

x′∈Q+,w∈W0x′W0

dim(V x
′

x )w = ](W0)ξ(cx)

and the first equality in (a) is established. The second equality in (a) follows the
first by the substitution e′ = aea−1.

Now let x ∈ Q+, y ∈ Q+. For e′′ ∈ Q, let (Vx ⊗ Vy)e
′′

be the e′′-weight space of
Vx ⊗ Vy. We have

(b)

ξ(cxcy) = ξ(cx)ξ(cy)

= ](W0)−2
∑
e∈Q dim(V ex )

∑
a∈W0

ae
∑
e′∈Q dim(V e

′

y )
∑
b∈W0

e′b

= ](W0)−2
∑

(e,e′)∈Q×Q dim(V ex ) dim(V e
′

y )
∑

(a,b)∈W0×W0
aee′b

= ](W0)−2
∑
e′′∈Q dim(Vx ⊗ Vy)e

′′∑
(a,b)∈W0×W0

ae′′b

= ](W0)−2
∑
e′′∈Q,z∈Q+(Vz : Vx ⊗ Vy) dim(V e

′′

z )
∑

(a,b)∈W0×W0
ae′′b

= ](W0)−1
∑
e′′∈Q,z∈Q+(Vz : Vx ⊗ Vy) dim(V e

′′

z )
∑
a∈W0

ae′′.

Here (Vz : Vx⊗Vy) is the multiplicity of Vz in Vx⊗Vy. On the other hand, we have

ξ(cxcy) =
∑
z∈Q+ rx,y,z;||ξ(cz)

= ](W0)−1
∑
z∈Q+,e′′∈Q rx,y,z;|| dim(V e

′′

z )
∑
a∈W0

ae′′.

Comparing with (b), we deduce∑
z∈Q+(Vz : Vx ⊗ Vy) dim(V e

′′

z ) =
∑
z∈Q+ rx,y,z;|| dim(V e

′′

z )

for any e′′ ∈ Q. Hence∑
z∈Q+(Vz : Vx ⊗ Vy)Vz =

∑
z∈Q+ rx,y,z;||Vz

in the Grothendieck group of representations of G. Since (Vz)z∈Q+ is a basis of
this Grothendieck group, we see that

(c) (Vz : Vx ⊗ Vy) = rx,y,z;||

for any x, y, z in Q+. Thus, we recover one of the main results in [L83].
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3. Folding

3.1. In this section, we assume that W,S, s0,W0, Q,Q
+ in 1.1 are such that W is

irreducible of simply laced type. We assume given an automorphism σ of (W,S)
of order δ ∈ {2, 3} preserving s0.

Let ′W = {w ∈ W ;σ(w) = w}. For each σ-orbit O in S let sO be the longest
element in the subgroup of W generated by the elements in O. Let ′S be the subset
of ′W consisting of the elements sO for various O as above. Note that (′W, ′S) is
an affine Weyl group. Let L : ′W → N be the restriction to ′W of the usual length
function of W ; this is a weight function on ′W . (These statements can be deduced
from [L14, Appendix A8, A9]).

We preserve the setup of 2.1. We assume that G is simple of simply laced
type. We fix an automorphism of G preserving the pinning of G which induces
the automorphism σ of W considered above. This automorphism of G is denoted
again by σ. If x ∈ Q+ and σ(x) = x then σ : G→ G induces linear isomorphisms
Vx → Vx, Lx → Lx denoted again by σ (they act as identity on a highest weight
vector). We have

Vx =
⊕

θ∈k∗δ
Vx,θ, Lx =

⊕
θ∈k∗δ

Lx,θ

where k∗δ = {θ ∈ k∗; θδ = 1} and Vx,θ, Lx,θ are the θ-eigenspaces of σ.

3.2. We now assume that p� 0 and that x in 2.2(a) satisfies in addition σ(x) = x.
The proof of 2.2(a) is sufficiently functorial to imply that we have also

(a)
∑
θ∈k∗θ

θ̃Lx,θ =
∑
y∈Zx,σ(y)=y(−1)L(wywx)tr(σ,Vwy,wx)

∑
θ∈k∗θ

θ̃Vy,θ

(equality in the representation ring of T/{σ(t)t−1; t ∈ T} tensored with C; here
θ 7→ θ̃ is an imbedding of k∗δ into C∗). Note that σ(wx) = wx and that when
y ∈ Zx, σ(y) = y, we have σ(wy) = wy, so that σ acts naturally on Vwy,wx . We
now substitute

(b) tr(σ,Vwy,wx) = Pwy,wx;L(1)

where Pwy,wx;L is defined in terms of ′W and L : ′W → N as in 3.1. (See 4.5, 4.6.)
We obtain

(c)
∑
θ∈k∗δ

θ̃Lx,θ =
∑
y∈Zx,σ(y)=y(−1)L(wywx)Pwy,wx;L(1)

∑
θ∈k∗δ

θ̃Vy,θ.

This is an extension of the character formula 2.2(a) to certain disconnected groups.
Note that the coefficients Pwy,wx;L(1) are computable by an algorithm in [L03, §6]
(which is somewhat more involved than that for the unweighted case in [KL79]).

3.3. Note that σ acts naturally on G∗. Let ′G be the simply connected group over
k isogenous to the dual group of the identity component of the σ-fixed point set
on G∗. By a theorem of Jantzen [Ja73], the expression

∑
θ∈k∗δ

θ̃Vy,θ in (c) can be

expressed in terms of the character of a Weyl module of ′G. Using this one can
deduce as in §2 the analogues of 2.3(b), 2.3(c) with (W,S, ||) replaced by (′W, ′S,L).
(This recovers in our case a result in [K05].)
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3.4. Assume that (W,S) is of (affine) type A2 with σ of order 2. In this case,
(′W, ′S) is of (affine) type A1 and the values of L|′S are 1 and 3. In this case, the
ring J∗ associated to (′W, ′S,L) in 1.5 is isomorphic together with its basis to the
representation ring of SL2(C) with its standard basis; see [L03, 18.5]. This shows
that the group ′G in 3.3 cannot be replaced by the corresponding adjoint group
(even though G was adjoint).

3.5. In the setup of 3.1, 3.2 with k = C, we identify W0 with the group W0 of
affine transformations of QR generated by the reflections in the (finitely many)
hyperplanes in H and which preserve H. Let g be the Lie algebra of G. Let x ∈ Q
be such that x /∈

⋃
α̌Hα̌,0. Let z ∈ Q. Then the Verma g-module Vx, its irreducible

quotient Lx and their z-weight spaces Vz
x, Lzx are defined. It is known that the

following equality (conjectured in [KL79]) holds:

(a) dim Lzx =
∑
y∈Zx(−1)|ωyωx|Pωy,ωx;||(1) dim Vz

y

where Zx is the set of all y ∈ Q in the same W0-orbit as x; ωx, ωy are certain
well-defined explicit elements of W0.

Now assume that x, z are fixed by σ. Then σ : G→ G induces automorphisms
of Lzx and of Vz

x denoted again by σ. We have

(b) tr(σ,Lzx) =
∑
y∈Zx,σ(y)=y(−1)L(ωyωx)Pωy,ωx;L(1)tr(σ,Vz

y).

This follows from the proof of (a) in the same way as 3.2(c) follows from the proof
of 2.2(a) (using 4.5).

4. A geometric interpretation of Py,w;L

4.1. Let W0 be a (finite) Weyl group with a set S0 of simple reflections and let
σ : W0 → W0 be an automorphism preserving S0. For each σ-orbit O in S0

we denote by σO the longest element in the subgroup of W0 generated by the
reflections in O. Let ′W0 = {w ∈ W0;σ(w) = w} and let ′S0 be the subset of ′W0

consisting of the elements sO for various O as above. Then ′W0 is a Weyl group
with set of simple reflections ′S0. Let L : ′W0 → N be the restriction to ′W0 of the
standard length function of W0; it is known that L is a weight function on ′W0 so
that the Hecke algebra over A with its bases {Tw;w ∈ ′W0}, {cw;w ∈ ′W0} can
be defined as in 1.1 (in terms of ′W0,

′S0, L instead of W,S,L). (These statements
can be deduced from [L14, Appendix A8, A9].) This Hecke algebra specialized at
v =
√
q with q a prime power is a C-algebra denoted by H0,q;L.

For w ∈ ′W0, we write

cw =
∑
y∈′W0

v−L(w)+L(y)Py,w;LTy

where Py,w;L ∈ Z[v2].
For w ∈ ′W0, we have

(a) TwTw0 =
∑
y∈′W0

vL(y)−L(w)Ry,w;LTyw0
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where Ry,w;L ∈ Z[v2] is 0 unless y ≤ w and w0 is the longest element of W0 (or
′W0). Note the following inductive formulas for Ry,w;L; see [L03, 4.4]. (Here s ∈ S.)

Ry,w;L = Rsy,sw;L if |sy| < |y|, |sw| < |w|;
Ry,w;L = v2L(s)Rsy,w;L + (v2L(s) − 1)Rsy,sw if |sy| > |y|, |sw| < |w|.

(b)

We have Py,w;L = 0 unless y ≤ w and Pw,w;L = 1. For y, w in ′W0 we have

(c) v2L(w)−2L(y)P̄y,w;L =
∑
z∈′W0

Ry,z;LPz,w;L.

See [L03, 5.3].

4.2. Let k be an algebraic closure of the finite prime field Fp. Let G be a simply
connected semisimple group over k with Weyl group (W0, S0) and with a fixed
pinning involving a maximal torus T and a Borel subgroup B containing T . We
fix an Fp-rational structure on G (with Frobenius map F : G → G) compatible
with the pinning such that T is split over Fp, hence B is defined over Fp. We
consider an automorphism of G preserving the pinning and compatible with the
Fp-structure; it induces an automorphism of W0, which we assume to be σ. This
automorphism of G is denoted again by σ; we have σF = Fσ. Hence, if t ≥ 1, then
Ft := F tσ = σF t is the Frobenius map for a rational structure over the subfield
Fpt with pt elements of k. Let B be the variety of Borel subgroups of G. Note that
Ft acts naturally on B and defines a Frobenius map on B. We say that B1, B2 in
B are opposed if B1 ∩B2 is a maximal torus. We define B∗ ∈ B by the conditions
that B∩B∗ = T . For B1, B2 in B, let pos(B1, B2) ∈W0 be the relative position of
B1, B2. For w ∈W0, we set Bw = {B′ ∈ B; pos(B,B′) = w}. For y ∈W0, we define
yB ∈ B by the conditions T ⊂ yB, yB ∈ By; we define yB∗ ∈ B by the conditions
T ⊂ yB∗, pos(B∗, yB∗) = y. Let B̄w be the closure of Bw in B. For y ∈W0, we set
Ay = {B′ ∈ B;B′, yB∗ opposed}.

For any algebraic variety X of pure dimension, let IC(X) be the intersection
cohomology complex of X with coefficients in Q̄l (with l a prime 6= p). Let
Hi(X) (resp. Hi

c(X)) be the i-th cohomology (resp. i-th cohomology with compact
support) of X with coefficients in IC(X). For x ∈ X, let Hix(X) be the stalk at x
of the i-th cohomology sheaf of IC(X).

The following result gives a geometric interpretation of Py,w;L (stated without
proof in [L83a, (8.1)]) extending the already known case where σ = 1 considered
in [KL80]; see also [L03, §16].

4.3. Theorem. Let y ∈ ′W0, w ∈ ′W0 be such that y ≤ w. We have

Py,w;L =
∑
i even tr(σ,HiyB(B̄w))v2i.

(Note that σ acts naturally on HiyB(B̄w).) The proof will use the following result
(analogous to [KL79, A4(a)]).

4.4. Lemma. Let y ∈ ′W0, z ∈ ′W0 be such that y ≤ z. We have ]((Bz ∩ Ay)Ft)
= Ry,z;L(pt)ptL(y).

Let F be the vector space of functions BFt → C. Then F is an H0,pt;L-module,
in which for w ∈ ′W0 and f ∈ F , we have Twf = f ′ where for B′ ∈ BFt we have
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f ′(B′) = p−tL(w)/2
∑
B′′∈BFt ;pos(B′,B′′)=w f(B′′). Applying the equality 4.1(a) to

f ∈ F and evaluating at B we see that for z ∈ ′W0 we have

(a)

∑
y′∈′W0

pt(L(y′)−L(z))/2Ry′,z;L(pt)pt(L(y′)−L(w0))/2∑
C∈BFt;pos(B,C)=y′w0

f(C)

= p−tL(z)/2
∑
B′′∈BFt;pos(B,B′′)=z p

−tL(w0)/2
∑
C∈BFt;pos(B′′,C)=w0

f(C).

We now take f to be the function equal to 1 at C0 = yw0B and equal to 0 on
BFt − {C0}. We obtain

](B′′ ∈ BFt ; pos(B,B′′) = z, pos(B′′, C0) = w0)p−tL(z)/2

= pt(L(y)−L(z)+L(y))/2Ry,z;L(pt),
(b)

that is
](Bz ∩Ay)Ft = Ry,z;L(pt)ptL(y).

The lemma is proved. �

4.5. We now prove the theorem. When y = w the result is obvious. We can assume
that y < w and that

(a) the result is true when y, w is replaced by z, w with z ∈ ′W0 such that y <
z ≤ w.

Here the partial order refers to W ′0; it is the restriction of the partial order on W0.
Applying the Grothendieck-Lefschetz fixed point formula for Ft on the Ft-stable
open subvariety B̄w ∩Ay of B̄w we obtain

tr
(
Ft,
∑
i(−1)iHi

c(B̄w ∩Ay)
)

=
∑
z∈W0;y≤z≤w

∑
B′∈(Bz∩Ay)Ft tr(Ft,

∑
i(−1)iHiB′(B̄w)).

Now the fixed point set (Bz ∩Ay)Ft is empty unless σ(z) = z. For such z we apply
Lemma 4.4 and we obtain

tr
(
Ft,
∑
i(−1)iHi

c(B̄w ∩Ay)
)

=
∑
z∈′W0;y≤z≤w Ry,z;L(pt)ptL(y)tr(Ft,

∑
i(−1)iHizB(B̄w)).

By Poincaré duality on B̄w ∩Ay we have

tr
(
Ft,
∑
i(−1)iHi

c(B̄w ∩Ay)
)

= ptL(w)tr
(
Ft
−1,
∑
i(−1)iHi(B̄w ∩Ay)

)
.

Using [KL80, 4.5(a), 1.5] we have

tr
(
Ft
−1,
∑
i(−1)iHi(B̄w ∩Ay)

)
= tr

(
Ft
−1,
∑
i(−1)iHiyB(B̄w)

)
,

so that

ptL(w)tr
(
Ft
−1,
∑
i(−1)iHiyB(B̄w)

)
=
∑
z∈′W0;y≤z≤w Ry,z;L(pt)ptL(y)tr

(
Ft,
∑
i(−1)iHizB(B̄w)

)
.
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By [KL80, 4.2] we have HiyB(B̄w) = 0 if i is odd, while if i is even the eigenvalues
of F t on HiyB(B̄w) are equal to pit/2. It follows that

ptL(w)∑
i even p

−it/2tr
(
σ−1,HiyB(B̄w)

)
=
∑
z∈′W0;y≤z≤w Ry,z;L(pt)ptL(y)

∑
i even p

it/2tr
(
σ,HizB(B̄w)

)
.

Since this holds for t = 1, 2, we can replace pt by v2 where v is an indeterminate
and we get an equality in Q̄l[v, v

−1]:

v2L(w)∑
i even v

−itr(σ−1,HiyB(B̄w))

=
∑
z∈′W0;y≤z≤w Ry,z;Lv

2L(y)
∑
i even v

itr(σ,HizB(B̄w)).

Using the induction hypothesis (a) we obtain

v2L(w)∑
i even v

−itr(σ−1,HiyB(B̄w))− v2L(y)
∑
i even v

itr(σ,HiyB(B̄w))

=
∑
z∈′W0;y<z≤w Ry,z;Lv

2L(y)Pz,w;L.

Using 4.1(c), the right-hand side of this equality is

v2L(w)P̄y,w;L − v2L(y)Py,w;L.

Thus we have

vL(w)−L(y)
(∑

i even v
−itr

(
σ−1,HiyB(B̄w)

)
− P̄y,w;L

)
= vL(y)−L(w)

(∑
i even v

itr
(
σ,HiyB(B̄w)

)
− Py,w;L

)
.

(b)

By the known properties of Hi, in both sides of (b) we can assume that i <
dimBw − dimBy = L(w)−L(y). Moreover, we have vL(w)−L(y)P̄y,w;L ∈ vZ[v] and
vL(y)−L(w)Py,w;L ∈ v−1Z[v−1]. Thus the left-hand side of (b) is in vQ̄l[v] while the
right-hand side of (b) is in v−1Q̄l[v

−1]. We see that both sides of (b) are zero. The
theorem is proved. �

4.6. The proof in 4.5 is written in such a way that it remains valid in the affine
case so that it gives an analogous geometric interpretation for Py,w;L with y, w
in ′W where ′W,L are as in 3.1. In this case, B is an Iwahori subgroup and B∗

is an anti-Iwahori subgroup (opposed to B) as in [KL80, §5]. The definition of
Ay still makes sense; it is the set of Iwahori subgroups opposed to a certain fixed
anti-Iwahori subgroup. Now Ry,w;L as defined by 4.1(a) does not make sense in
the affine case; instead, one can use the inductive definition in 4.1(b). With this
definition, the analogue of 4.1(c) remains valid; Lemma 4.4 remains valid but it is
now proved by an (easy) induction on |z|.
4.7. Erratum to [L83].

On p. 212, line −3, the definition of K1 should be

K1 = {x ∈ (1/|W |)Z[W̃a];wx = x, xw = x ∀w ∈W}.
On p. 212, line −1, the definition of J1 should be

J1 = {x ∈ Z[W̃a];wx = (−1)l(w)x, xw = x ∀w ∈W}.
On p. 212, line −9, the definition of K should be

K = {x ∈ (1/P)H;Twx = ql(w)x, xTw = ql(w)x ∀w ∈W}.
On p. 212, line −7, the definition of J should be

J = {x ∈ H;Twx = (−1)l(w)x, xTw = ql(w)x ∀w ∈W}.
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of p, Astérisque 220 (1994), 1–321.

[Ja73] J. C. Jantzen, Darstellungen halbeinfacher algebraischer Gruppen, Bonn. Math.
Sch., no. 67 (1973).

[KT95] M. Kashiwara, T. Tanisaki, Kazhdan–Lusztig conjecture for affine Lie algebras
with negative level, Duke J. Math. 77 (1995), 21–62.

[KL79] D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras,
Inv. Math. 53 (1979), 165–184.

[KL80] D. Kazhdan, G. Lusztig, Schubert varieties and Poincaré duality, Proc. Symp.
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