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1. Introduction

The Wy (N = 2,3,...) algebras are “higher spin” extensions of the Virasoro
algebra [Zam85], [FZ87], [FL88], with W, being the Virasoro algebra itself and Wjs
in some sense the simplest one without a Lie algebra structure. For general N, the
Wh-algebra is generated by N —1 fields, the first one of which is the Virasoro field.
For some discrete values of the central charge ¢ < N — 1, they have been recently
realized as a certain coset, showing unitarity of their vacuum representations
(i.e., the irreducible representations with zero lowest weights) as well as many
other representations [ACL19]. In the Virasoro case (N = 2), this is the famous
construction of Goddard, Kent, and Olive [GKO86] and the corresponding central
charge values are

c= lfL7 m=3,4,5,...
m(m+1)
whereas for the Ws-algebra (N = 3), these values are [Miz89, Miz91]

12
c=2(1-—=2 ), m=456,...
m(m+ 1)

and in both cases, it is known that there are no unitary representations in the
¢ < N — 1 region other than the ones obtained in this manner. Though this coset
realization is recently generalized [ACL19] to an even wider class of W-algebras,
it is not expected to take us above the central charge value ¢ = N — 1, where
rationality cannot hold. Indeed, as far as we know, unitarity has never been shown
for any central charge value ¢ > N — 1 > 2. Note that unlike in the Virasoro (or
in the affine Kac-Moody) case, when N > 3— because of the lack of a Lie algebra
structure —one cannot simply produce representations of Wy by, for example,
taking tensor products of known ones. Because of the difficulty of finding explicitly
unitary constructions, some even expected the Wy-algebras to not to have unitary
vacuum representations for ¢ > N — 1 > 2 (see, e.g., [AJCH"18]). In this paper,
we prove in fact that the vacuum representation of the Wjs-algebra is unitary for
any value of the central charge ¢ > 2.

In the Virasoro case, unitarity for ¢ > 1 can be settled using Kac determinants
(see, e.g., [KR&T, Sect. 8.4]). At any “energy level” (i.e., eigenspace of the conformal
Hamiltonian), the Kac determinant is a polynomial of the central charge ¢ and
lowest weight h. Since all Kac determinants are strictly positive in the region
{(¢,h) : ¢ > 1,h > 0}, by a continuity argument, unitarity in a single case inside
that region (which can be easily obtained, e.g., by taking tensor products) implies
unitarity for the whole closure {(c,h) : ¢ > 1,h > 0}. In the case of the Ws-
algebra, the difficulty is twofold. First, one cannot obtain unitary representations
with ¢ > 2 by tensor product. Second, the Kac determinants — which are this time
rational functions of the central charge ¢ and lowest weights h, w and are explicitly
worked out in [Miz89] by Mizoguchi — show that when ¢ > 2, no irreducible lowest
weight representation can be unitary in a neighbourhood of h = w = 0 (apart
from the vacuum itself). Hence the physically most important representation, the
vacuum one, cannot be accessed in this manner from the (h,w) # (0,0) region.
With the usual indirect method ruled out, we are led to consider unitarity in a
more constructive approach.
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The explicit construction of unitary vacuum representations in the ¢ > N — 1
region is not trivial even in the Virasoro (N = 2) case. Buchholz and Schulz—-
Mirbach [BSM90] provided an interesting construction in this regard. They first
realized the Virasoro algebra with central charge ¢ > 1 with the help of the
U(1)-current (a field whose Fourier modes form a representation of the Heisenberg
algebra) in a— strictly speaking — non-unitary way. These representations (which
we simply call the BS-M construction) turn out to be “almost unitary”; the
only problem is a singularity at just one point (indeed, they only needed their
construction to be defined on the punctured circle). As observed in [Wei08], the
BS-M construction may be viewed as a non-unitary representation of the Virasoro
algebra admitting an invariant subspace containing the vacuum vector €2, on which
it s unitary. Inspired by the BS-M construction and the mentioned observation, we
start with a pair of commuting U(1)-currents in their unitary vacuum representa-
tion and modify them so that the Fateev—Zamolodchikov free field realization of the
Wis-algebra [FZ87] associated with this modified representation of the Heisenberg
algebra gives a stress-energy field corresponding to the BS-M one. Similarly to the
BS-M case, the obtained new stress-energy and W (z) fields will not give a unitary
representation of the Ws-algebra on the full space but they become so on a subspace
generated by 2. However, the proof of this relies on a rather involved argument
exploiting the degeneracy of the vacuum representation: the same construction
with nonzero lowest weights does mot have unitarity on the minimal invariant
subspace containing the lowest weight vector.

Whereas unitarity of the vacuum is difficult to treat, it turns out that some
non-vacuum representations can be shown to be unitary in a relatively simple,
constructive manner. Making another suitable use of the realization of Fateev and
Zamolodchikov, we obtain a manifestly unitary representation of the Wjs-algebra
on a full unitary representation space of two U(1)-currents. In this way, we produce
unitary representations with h > (¢ — 2)/24 > 0 and w limited in a certain interval
depending on ¢ and h. This is similar to the Virasoro case, where an oscillator
representation with a modified Sugawara construction gives manifestly unitary
representations for all h > (¢ —1)/12 > 0 (see, e.g., [KR87, Sect. 3.4]).

Having already found some unitary representations, one can use the known
form of the Kac determinant to arrive at even further values of ¢, h and w. In this
way, for 2 < ¢ < 98 we completely clear the question of unitarity. When ¢ > 98,
determining the sign of the Kac determinant becomes harder: our results there
remain partial.

This paper is organized as follows. In Section 2 we give a summary of formal
series with operator coefficients on Hermitian vector spaces and on the Ws-algebra,
the current algebras, and their representations. Apart from self-containment, we
use the occasion to fix notations and conventions. An important tool for unitarity,
the Kac determinant, is also introduced. Our main results are in Section 3, where
we prove the unitarity of various representations of the Wjs-algebra and completely
classify unitary lowest weight representations with central charge ¢ € [2,98]. We
also briefly explain in a remark how each unitary vacuum representation gives rise
to a simple unitary vertex operator algebra.

The non-constructive part of our work (where we exploit Kac determinants) is
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based on the existence of lowest weight representations with invariant forms. Yet, as
the Wjs-algebra is not a Lie algebra, the existence of lowest weight representations
with invariant forms for all values of lowest weights is not straightforward. Though
implicit in the literature, we could not find a reference suitable for our needs, so we
added an Appendix A to our work where we clarify this issue by a novel, analytic
method.
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2. Preliminaries

1. Formal series and fields

Let V be a vector space and A,, : V — V(n € Z) be a sequence of linear operators
acting on V. We say that the formal series A(z) =} ., Apz™" is a field on V if
for every v € V, there is n,, such that A,v = 0 whenever n > n,,. We shall refer to
the operators {4, }nez as the Fourier modes of A(z).

The (formal) derivative of A(z) =} ., Apz™" is given by

0,A(z) = Z(—n)Anzfnfl.

nez

Note that if A(z) is a field, so is JA(z). When A(z), B(¢) are two formal series,
the product A(z)B(() is a formal series in two variables z, ( and we shall use the
notations J¢, 0, in the obvious way. Moreover, we shall also use the notation

A(2) :=i20,A(z) = Z(—in)Anzf", (1)

neZ

which we call the “derivative along the circle”.

Although the product of two formal series of the same variables does not make
sense in general, there are some pairs of formal series that can be multiplied. For
example, the product of a formal series in variables z and ¢ of the form B(z/¢) with
any other formal series in either z or ¢ (but not in both!) makes sense. In particular,
the product 6(z—¢)A(C), where 6(2—() := 2~} Zn(%)" is the formal delta function,
is well-defined; see more at [Kac98, Sect. 2.1]. Also, if B(z) =Y. ., Bpz " is a
field, then an infinite sum of the form

Z Akann

n>N

neE”Z
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(where N,k € Z) becomes finite on every vector and hence gives rise to a well
defined linear map. In particular, every field can be multiplied with a formal series
of the form ) _y cpz™™ (where the coefficients ¢, may be scalars or themselves
linear maps). It then turns out that if F(z) = > ., Fnyz " and G(¢) are
fields, then by setting F (z) :== > o Fnyz2 " 1, F_(2) := 3,50 Finyz™ "1, the
normally ordered product

P F(2)G(Q) = Fi(2)G(Q) + G(OF-(2)

is well-defined even at z = ( (i.e., after replacing ¢ by z) and the obtained formal
series : F'(2)G(z): is again a field (see, e.g., [Kac98, Sect. 3.1]). If F(z) and G(¢)
commute, so do F(z) and G((), therefore : F(2)G(¢): = F(z)G(¢). Note that
in general the normal product of fields is neither commutative nor associative; in
particular, to have an unambiguous meaning, we need to specify what we mean by
the normal power : F'(z)"™: . Following the standard conventions, we define the n-
th power in a recursive manner by the formula : F(2)": =: F(2)(: F(2)" 1:):,
and more in general, : Fy(2)Fa(2) - Fp(2): =: Fi(2)(: Fa(2) - Fo(2):):.

n<0

2. Formal adjoints of formal series and fields

Let V be a C-linear space equipped with a Hermitian form (-, -) (i.e., a self-adjoint
sesquilinear form) and A, B : V — V linear operators. If

<B\I/1,\IJQ> = <\I’17A\112>7 for all ¥, ¥y €V, (2)

then we say that A and B are adjoints of each other and with some abuse of
notation we write B = Af. Note however, the following: 1) such an At might not
exist; 2) when (-,-) is degenerate, A" may not even be unique. Nevertheless, for
any two operators A, B the statement B = A' is unambiguous: it simply means
that they satisfy equation (2). We also say that A is symmetric? when A = AT.
We define the adjoint of the formal series A(z) = > _, A,z~™ to be the formal

neL
series
A(2)t = Z Al 2m
neL
i.e., we treat the variable z as if it were a complex number in S* := {z € C :

|z| = 1}. As a direct consequence of our definition, A(z) is symmetric— that is,
A(2)t = A(2) as formal series—if and only if AT = A_,, for all n € Z. Moreover,
if A(z) is symmetric, then so is its circle derivative A’(z) of (1): this is exactly
why we shall prefer it to 9, A(z). Note that this is also the convention found in the
paper [BSM90] of Buchholz and Schulz—Mirbach.

If f(z) is a trigonometric polynomial f(z) =}, n cnz™" (the sum is finite),
and A(z) is a symmetric field, then one finds that

(f(2)A()) = F(2)A(2) where f(2):= )  eopz "

In|<N

2We use “symmetric” instead of “self-adjoint” in order to avoid confusions with the

notion of self-adjoint operator on a Hilbert space in view of a possible Hilbert space
completion of the vector space V. This “symmetry” has nothing to do with symmetric
operators with respect to a bilinear (instead of sesquilinear) form.
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In particular, if ¢, = c_, for all n—or equivalently, if f takes only real values
on S'—then f(z)A(z) is symmetric. This is not surprising at all. In fact, more
generally, one has that if A(z) and B(z) are commuting symmetric fields, then
their product A(z)B(z) is also a symmetric field. However, in this paper we
shall often consider expressions of the type p(z)A(2),p'(2)A(z) where p(z) =
—i(2 —1)/(z +1). In order to give an unambiguous meaning® to the expression
p(2)A(z), we take the expansion around z = 0, where it holds that

p(z)=—i i: i(zl)Z(l)”z”i(l+QZ( z”> ::Zn:pnz*”. (3)

n>0 n>1

Accordingly, we regard p(z) as a field (note that p, = 0 for n > 0), and since it is
scalar valued, it commutes with anything and its product with another field A(z)
is meaningful without need of normal ordering: p(z)A(z) = Zn,k(PkAn—k)Z_”-
Similarly, the product p’(2)A(z), with p’(2) given by (1), is defined as a field.

Although p(z) is not defined at z = —1 as a function (it has a singularity
there), it takes only real values on the punctured circle S* \ {—1} and hence
so does its circle derivative p/(z). So one might wonder whether p(z)A(z) and
p'(2)A(z) are still symmetric if A(z) is a symmetric field. A quick check reveals
that the answer in general is negative; the problem is caused by the nonsymmetric
expansion (3). But if r(z) is a trigonometric polynomial and r(—1) = 0, then
the singularity of r(z)p(z) at z = —1 is removable. Actually, it is clear that in
this case r(z) = (z + 1)t(z), where t is another trigonometric polynomial and
hence s(z) = r(2)p(z) = —i((z — 1)/(z + 1)) (z + 1)t(z) = —i(z — 1)t(2) is also a
trigonometric polynomial for which 3(z) = 7(2)p(z). Hence in this case,

7(z

(r(2)p(2)A(2)" = T(2)p(2) A(2),

as if p(z)A(z) were symmetric. If further 7/(—1) =0, then also the singularity of
7(2)p'(z) will be removable, resulting in (7(2)p’(2)A(2))=7(2)p’ (2) A(z). These ob-
servation will become important in the proof of unitarity of vacuum representations.

3. The Ws-algebra

For our purposes, the Ws-algebra (see [BS93, Art16] for reviews) at central charge
c € C, ¢ # —22/5 consists of two fields L(z) = >, oy Lz "% and W(z) =
> ez Wanz™"7? acting on a C-linear space V' such that

[L(2), L(O)] = 8(= = Q)OcL(C) +20c8( = OL(C) +
461, WO = 3260(: = W Q)+ 0 = )% Wi,
(), W(Q)] = 525020z — ) + 3085(= — OL(C

)+
+ 0¢d(z — g)(loag (¢) + 2b%A( )

ag (2 = Q)OL(C) (4)

#0(: = 0 0L + 120:A(0))

3From the point of view of quantum field theory (cf. [BSM90]), p should be regarded
as a function on S* \ {—1} rather than a formal series; depending on the choice of region,
it has different expansions.
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where b? = 16/(22 + 5¢) and A(z) = : L(2)? : —502L(z). Equivalently, in terms
of Fourier modes the requirements read

c
[Lin, Lp) = (m —n)Lppyn + Em(m2 — 1)0m+n,0,
[Lins W] = (2m — n) Wi,
c
[Wons W] = 51 (m® = 4)(m® = Dm0 (5)

1
+02(m—n)Apgn+ %(mfn)(szfanran —8)) | Lim+n,

where again b*> = 16/(22 + 5¢) and A, = Yoks—oLn—kLi + > o LxLn_j —
% (n+2)(n+3)Ly. The first of these commutation relations says that the operators
{Ln}nez form a representation of the Virasoro algebra and consequently, we shall
say that L(z) is a Virasoro (or alternatively: a stress-energy) field.

Note that one cannot consider (5) (together with the definitions of b and A,,)
as the defining relations of an associative algebra (as it is sometimes loosely stated
in the literature), since the infinite sum appearing in A,, does not have an a priori
meaning; it makes sense if {L,,} form a field on V. Under the term “Ws-algebra”,
one studies general properties that hold for operators {L,, W, },cz satisfying the
above relations. On the other hand, a concrete realization on a linear space is
referred to as a representation, although we do not define here an associative
algebra called the Ws-algebra. A universal object with these relations can be
defined in the context of vertex operator algebras [DSKO05], [DSKO06]; however,
here we do not wish to follow that way.

We shall say that a Hermitian form (-, -) is énvariant for a representation of the
Ws-algebra, if it makes the fields

T(2) :=2°L(z) = Zanfn, M(z) = 2*W(z) = Z Wypz™"

symmetric. Equivalently, in terms of Fourier modes, the requirement of invariance
is that L = L_,, and W, = W_,, for all n € Z. A representation together with an
inner product —or as it is also called a scalar product— (i.e., a positive definite
Hermitian form) is said to be unitary.

Note that while in papers concerned with vertex operator algebras, the Virasoro
field is typically denoted by L(z) (as in our work), physicists often use T'(z) for the
same object. Here we chose to reserve this symbol for the “shifted” field T'(z) =
22L(z), in part to follow the notations of [BSM90] used by Buchholz and Schulz—
Mirbach, and in part simply because being interested by unitarity, we will actually
use more the combination z2L(z) than L(z) on its own.

4. The U(1)-current (or Heisenberg) algebra

The U(1)-current (or Heisenberg) algebra is an infinite-dimensional Lie algebra
spanned freely by the elements {a,, }ncz and a central element Z with commutation
relations

[afm7 an] = m57n+n,0Z- (6)
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We shall be only interested in representations of this algebra where Z acts as
the identity and the formal series

a(z) = Z apz "t

neZ

(where, by the usual abuse of notations, we denote the representing operators with
the same symbol as the abstract Lie algebra elements) is a field. Note that in many
relevant works regarding the Ws-algebra and published in physics journals, this
field appears as “the derivative of the massless free field” and is denoted by 9,¢(2)
(e.g., in [FZ87] and in [Miz89]), although in our sense in general? there is no field
©(z) whose derivative is a(z). Note also that the commutation relation (6) with
7 :=1 is equivalent to

[a(2), a(Q)] = 0cd(2 = €). (7)

Suppose now that we are also given a Hermitian form (-, -) on our representation
space. We say that it is ‘nvariant for our representation if it makes

J(z) == za(z) = Z anz” "

neE”Z

symmetric; this is equivalent to the condition al = a_,, for all n € Z. A representa-
tion together with an invariant inner product: i.e., an invariant positive definite
Hermitian form is said to be unitary.

Similarly to what we did for J(z) and a(z), we also introduce in general the
“shifted” normal powers : J” : (z) = 2" : a(z)™ :. Again, the reason for working
with them (rather than with the usual powers®) is symmetry; given an invariant
Hermitian form, it is this combination which becomes symmetric. For example, for
n = 2 we have

D J?(2) = 22 s a(2)? o= zay(2) - zal2) + za(z) - za_(2).

n

Now zai(z) = 3, .0anz~" and hence (za4(z))! = za_(2) — ag. Moreover, as

a(T) = ap commutes with all a,,, putting all together we have that
2 I () = za(2) - (za_(2) — ao) + (za_(2) + ag) - za(z) =: J? :(2).

For higher powers, symmetry of : J™ :(z) is justified in a similar manner.
If a(z) = Y, cz anz" """ is a field satisfying the commutation relation (7), then
its associated (or canonical) stress-energy field is

L(z) = ZLn27"72 = % ca(z)? -

neEZ

4Unless we are in a representation where ag = 0.
®Note that : J™ : (z) = 2" : a(2)" : is different from the n-th normal power : J(z)" :=:

(za(2))" -



UNITARY REPRESENTATIONS OF THE W3-ALGEBRA WITH ¢ >2 569

Its Fourier modes L,, = %(Zk>_1 Up—k0f + Zkg—l aran—) form a representation
of the Virasoro algebra with central charge ¢ = 1. By elementary computations,
[Ly, am] = —map4m and it then follows that for any 7, x € C, the operators

2+772

L, —ikna, +na, (n#0), Lo+ nag+

also form a representation of the Virasoro algebra with central charge ¢(n, k) =
1+ 12x%: see, e.g., [KR87, Sect. 3.4]. Using circle derivatives, the corresponding
“shifted” stress-energy field can be written as

H2+n2
B .

1

5 CJ? () + kI (2) +nJ(2) + (8)
For the formal series J(z) = za(z) = ), oz anz™" where a(z) satisfies (7), a

nonzero vector {24 is said to be a lowest weight vector with lowest weight ¢ € C if

forallm > 0: anpfly =0, apQq = .

If Qg is also cyclic, then the whole representation is said to be a lowest weight
representation. It turns out that for every ¢ € C, such a representation exists (up
to equivalence) uniquely; this is the Verma module Kg(l). In this representation,
one has that vectors of the form

A_ny " Ay qu

where 1 < nj <--- < ny, form a basis, the formal series a(z) is a field and further
that ag is the (multiplication by the) scalar g. Moreover, when ¢ € R, there exists
a unique Hermitian form (-,-) on Kg(l) with normalization (€Qg,€,;) = 1, which
is invariant for the representation (the “canonical Hermitian form”). This form is
automatically positive definite, making the representation unitary. For proofs of
these statements see, e.g., [KR87].

5. Lowest weight representations of the Wjs-algebra

Given a representation of the Ws-algebra {L,,, W, }necz with central charge ¢, a
nonzero vector . p ., =: §2 is said to be a lowest weight vector with lowest weight
(h,w) € C?, if

foralln >0:L,Q=W,Q =0, and LyQ = hQ2, Wy = wQ. (9)

In case h = w = 0,  is said to be a vacuum vector. In a case where the lowest
weight vector is cyclic, the whole representation is said to be a lowest weight
representation.

Using the Ws-algebra relations, it is rather easy (however, the induction should
go with respect to g in Appendix A instead of the number of operators; see, e.g.,
[BMP96]) to show that for any lowest weight representation, the vectors of the
form

L—m1 e L—mz W—n1 e W—nkQ7 (10)
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where 1 < m; < --- < my,1 < n; <--- < ng, span the whole representation
space. However, in general linear independence does not follow. Nevertheless, for
each central charge ¢ # —22/5 and lowest weight (h,w) € C? there is indeed a
representation, the Verma module VC o where these vectors form a basis. It is
rather clear that such a representation is essentially unique; what is less evident,
is its existence. For a Lie algebra, Verma modules are constructed as a quotient
of the universal covering algebra: see, e.g., [Jac79]. As the Ws-algebra is not a
Lie algebra and the commutator [W,,, W, ] contains an infinite sum in L’s, it is
actually nontrivial that Verma modules exist. We show this in a novel, analytic
manner in Appendix A.

Using the Ws-algebra relations, it is not difficult to see that the Verma module
can admit at most one invariant Hermitian form (-,-) with the normalization
(s Qe,hw) = 1. We will call this the “canonical” form. It is also rather trivial
that if ¢, h,w are not all real, then such a Hermitian form cannot exist. Again,
what is less evident is the existence for ¢, h,w € R. We give a proof of this fact in
Appendix A. Since the goal of this paper is to deal with unitarity, we will focus
on the case when ¢, h,w € R.

Let us now take ¢, h,w € R, ¢ # —22/5. Any nontrivial subrepresentation in
the Verma module is included in the kernel

ker(-, - >—{\I'6Vchw.<\I',<I>>—Oforall<I>EVChw}'

see the arguments of [KR87, Prop. 3.4(c)]. It then turns out that with the given
values of ¢, h, w, there is (an up-to-isomorphism) unique irreducible lowest weight
representation Vcwhsw namely, the one obtained by taking the quotient of the Verma
module with respect to ker(-, -). The canonical form on a Verma module is positive
semidefinite if and only if the corresponding irreducible representation admits a
invariant inner product, making it unitary.

Actually, standard arguments show that (for given (¢, h,w)) any lowest weight
representation with a nondegenerate, invariant Hermitian form (-, -) is isomorphic
to the unique irreducible representation. This is due to the fact that the value
of (¥, ¥"), where U, ¥’ are vectors of the form (10), is “universal”; it depends
on ¢, h,w but not on the actual representation: see Proposition 11. In particular,
for each triplet (c, h,w), there is (up to isomorphism) at most one lowest weight

representation with an invariant inner product; namely, chxa’w.

6. The Kac determinant

The question of when the canonical form (-,-) on the Verma module Vc o 18
degenerate or positive semidefinite can be studied through the Kac determinant.
See [KR87, Chap. 8] for an overview of the methods used here, which are written
for infinite-dimensional Lie algebras, but apply to the Ws-algebra as well.

The Hermitian form (-,-) vanishes on pairs of vectors of the form (10) when
the eigenvalue N =Y 5 my+ > ;nj of Lo are different, hence the question can be

studied for each N > 0 separately. There are finite many vectors \I'(N) \Ilgp

among (10) for any given N that span a finite dimensional subspace in VC 1w and
one can consider the Gram matrix My ¢ Whose entries are the product Values
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<\1/§.N),\I/§€N>>. Note that these values are real polynomials of ¢, 1/(22 + 5¢), h, w
(see Appendix A). Evidently, we have the following:

. VWS is irreducible if and only if all of these matrices are nondegenerate.

. The canomcal form on Vl/v,f » 18 positive (semi)definite if and only if these

matrices are all positive (seml)deﬁnite.
However, it is difficult to determine the rank and positive (semi)definiteness of all
these matrices at once. Nevertheless, a rather compact formula can be given for
the determinant det(Mpy ¢ p.w) at level N — called the Kac determinant— of these
matrices. We can use it in the following ways:

o If sz,f,w is reducible, then det(My ¢ n,w) = 0 for some N.
e If the canonical form on sz}fw is positive-definite, then det(Mp ¢ pn.w) > 0
for all N.
At each level N, det(Mp ¢ nw) is a polynomial of ¢,1/(22 + 5¢), h, w. Therefore, if

one finds a vector in ker(-,-) in a Verma module Vl/vif s One can extract a factor
from det(Mpy ¢ p ) for some N. With sufficiently many such vectors in ker (-, -}, one
can determine det(My ¢ nw) Up to a multiplicative positive constant. According

to [Miz89], [AJCH™ 18], the Kac determinant at level N is

det MN('hw H H fmn h C 2)P2(N7k)a
k=1mn=k

where “~” means equality up to a positive multiplicative constant that can depend
on N (but not on ¢, h,w) and

S ) 1
;PQ(n)tn = H (1 7 tn)2

and
64 o\ 9 o 9 mn
fmn(h,c)zm[m(z;—n)a++(4—m)a,—2+7} -
x [h—4((n* = 1)a2 + (m? — 1)a%) — 2(1 — mn)]?
with

o2 = 50 —c+ (2—0)(98—0).
+ 192

We shall exploit the knowledge of the signs of the Kac determinant (given by these
explicit formulas) in two ways:

e Let H C R3 be a connected set where for any (c,h,w) € H and any N € N
it holds that det(Mp chw) > 0. In this situation, if V),/V,j, w = KZ,V'“’;L, w 1S
unitary for at least one triple (¢/,h',w’) € H, then it is so for all triples in
the closure H.

o If det(Mn ¢.hw) < 0 for some N € N, then V™3 is not unitary.

——c,h,w
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By the observation of [AJCHT18, (A.10)], if 2 < ¢ < 98, the contributions from
fmn With m # n are nonzero positive because a1 in (11) have nonzero imaginary
parts, and since

((c = 2)m? — ¢+ 24h + 2)%(96h + (c — 2)(m? — 4))
7776(5¢ + 22)

fmm(ca h) =

is increasing with respect to m, hence all Kac determinants are positive if

h2(96h — 3(c — 2))
27(5¢ + 22)

fui(h,e) —w® = —w? > 0. (12)

Note that regardless of the value of the central charge, fi1(h,c) —w? > 0 is a
necessary condition for unitarity since fi1(h,c) — w? is the first Kac determinant
up to a positive constant.

The case h = 0 is of particular importance, as this is when the lowest weight
vector is a “vacuum vector” for the Virasoro subalgebra. From the observation
above, unitarity together with A = 0 implies w = 0.

3. Unitarity of lowest weight representations

1. The free field realization of Fateev and Zamolodchikov

Given a pair of commuting fields ap(2) = >,z J[k],nz*"’l (k = 1,2), both
satisfying the U(1)-current relation (7), one can construct a family of representa-
tions of the Ws-algebra depending on a complex parameter og. Following Fateev
and Zamolodchikov [FZ87], we set

L(z00) = Liy(z) + \@O‘Oaa[l} (2) + L (2)
1 1
= 5 : a[l](z)Q : +§ : G/[Q] (2)2 : +\/§a06a[1](2),
~ b .. . .
W(z;a0) = 1o [22\@ : a[g](Z)B D —i6V/2 : a[l](z)2 s ag)(2) — i6agdap(2)az (2)
— i18apap)(2)dap(2) — i6\@0¢382a[g] (2)].

Theorem 1 ([FZ87]). Let ay € C be such that c(ag) = 2 — 2403 # —22/5 and
b € C such that b* = 16/(22 + 5¢(w)). Then the above defined L(z; ), W (2; o)
fields satisfy the Ws-algebra relations (4) with central charge c(a).

Remark 1. This theorem can be proved in terms of operator product expansions
(OPEs) instead of commutation relations (see [Kac98, Thm. 2.3]). Although a
verification of the OPE in [FZ87] could be lengthy, these computations are fortuna-
tely very established procedures and can be carried out by computers, too. The
most widely used software for this the Mathematica package® OPEdefs [Thi91] by
Thielemans (although there are also other packages: e.g., [Eks11]). As is indicated

5Mathematica scripts can be also executed on the freely download-able Wolfram
Script; see more at https: /www.wolfram.com/wolframscript/.
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in the text, the authors of [RSW18] also used this package to make computations
with OPEs related to the free-field realizations of the W-algebras, and this is what
we also used” in part to have an independent verification and in part to check
that our constants (which, due to differing conventions, slightly differ from the one
appearing in [FZ87]) are indeed rightly set.

Since we are interested by unitarity, it is worth rewriting our fields using the
circle derivative F’(z) = iz0,F(z) and performing computations with the “shifted
fields” we introduced above. Also, we prefer to make some different choices of
variables — e.g., instead of o as in the previous theorem, we will use s := —iv/20
—so that in the unitary case we will need to deal with real constants only. We
thought it useful for the reader to summarize our conventions in Table 1 (which
are actually mainly the ones used by Buchholz and Schulz—Mirbach in [BSM90]
and hence will be referred to as the “B-SM conventions”) and put it in contrast
with the one used by the physicist and the one used by the VOA community.

Physicist VOA B-SM / ours
©(z) (the massless free field) | undefined undefined
i0.0(2) Va(2) V3J(2)/2
T(z) L(z) T(z)/2*
W(z) W(z) M(z)/z°
i02p(2) v20.a(2) —V2(J(2) +1J'(2)) /2
i020(2) V20%a(z) (2v/2J(2) +i3v2J(2)

—V2J"(2))/7°

—1 1 (0:9(2))? 3 a(2)?: L J? 1 (2)/(227)
1 0:0(2)" (=ivV2)" ra(2)"+ | (=iv2/2)" 1 T 1 (2)
V2a0 V2a0 i

TABLE 1. Correspondence between fields and constants in various conventions.

With : Jjy 1 (2) = 2" s agz(2)"

can be written in the following way:

~ 1
T(z;k) = §:J[21] H(z) —

3V2
3b/<;
fo
bk 2

M(z; k) = L:Jé] :(z)fﬁ

(Jm( )J[2](Z) -

b 2

+ 2= (2 (2) + i3y (2) -

2V2

(: Jm :(2)

iH(J[l](Z) + iJ[/l](Z)) +

Iy (2)Jfy(2))

1z (2))-

: (j = 1,2), we find that in the Fateev—Zamolod-
chikov construction, the fields T'(z; k) := 22L(z; o) and M(z;n) = Z3W(z;a0)

1
5 : J[22] :(Z),

— i26(Jpy(2) + 173y (2))) 2y (2)

Assume that Jpjj(z), Jj2(2) have a common lowest weight vector g, 4, with
lowest weights g1, 2. It is straightforward to check that €4, 4, is annihilated by

"We thank Simon Wood for providing us his own code he used for the computations
in [RSW18].
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all positive Fourier modes of fields like : J[?é] :(2) or J[’l](z)J[g](z) and hence also

by those of f(z;ff) =3 Emz—" and M(z;k) = >,z Wmnz_". One also
computes that

neE”Z

~ 1 1 )
LK,OQQhCIQ = <2a[21},0 + 50’[22],0 - ZHa[l],O) Q11171127

—~ b 1 .
W08, .00 = 2 (3@?2]70 - (a[zll,o — 2ikap)0)ap,o + 52%],0) Q41,02

Hence we have the following.

Proposition 2. If Q,, 4, is a lowest weight vector for the two commuting U(1)-
currents Jj1y(2), Jig)(2) with corresponding lowest weights q1 and qa, respectively,
then it is also a lowest weight vector for the representation of the Ws-algebra given
by the fields (13) and (14) with central charge ¢ = 2 — 240 = 2 + 12k and lowest
weight (h,w) where

1 1., b /1 ,
h= 5(15 + §q§ ~iRq, w= (ng’ — (¢} = 2ikq)q2 + m2q2> :

Now suppose we have an inner product on our representation space making
the currents Jy;1(z) = zay)(z) (j = 1,2) symmetric. Then the fields : J[Ql] :
(2), Iy (2), J[’l] (2),: J[%} :(z) are all symmetric, but the linear combination giving

T(z; k) is only symmetric for k = 0: i.e., for the central charge ¢ = 2 case (and we
have the same situation regarding M(z)).

One possible remedy would be a modification of our inner product; instead of
the invariant form for our currents, we should try to use a “strange” one that does
not make J1j(2), Jigj(2) symmetric. Here we will follow a—in some sense — dual
approach. Namely, we retain our original inner product, but instead modify our
currents by applying an automorphism of the algebra (7).

2. New representations by automorphisms of the U(1)-current
Suppose the field J(z) = 3 ., a,27™ is a U(1)-current and f(2) = >, oy caz™"
is a scalar valued field (i.e., ¢, = 0 for n large enough). Then, because scalars
commute with everything, the sum J(z) 4+ f(z) satisfies the same commutation
relation of the U(1)-current field. In terms of Fourier modes, the transformation is
Qp — Qp + ¢y If further ¢, = 0 for all n > 0 and ¥ is a lowest weight vector for
J(z) with weight ¢ (i.e., we have a, ¥ = 0 for all n > 0 and ag¥ = q¥), then ¥ is
a lowest weight vector for J(z) + f(z) with lowest weight ¢ + co. Representations
of this kind play a central role in [BMT8&8].

Evidently, the map a, — a, + ¢, can be interpreted as a composition of
a representation with an automorphism of our Lie algebra. Thus, if we further
used our current to construct something—say a stress-energy field—then by
composition with such an automorphism we get a “transformed” stress-energy
field. As an expression involving only normal powers and derivatives of J(z)+ f(z),
it still satisfies the same commutation relations with the same central charge,
because the latter relations are determined by the U(1) commutation relation.
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Following the ideas of Buchholz and Schulz—Mirbach [BSM90, (4.6)], we consider
the above transformation with f(z) = kp(z) + 7, where s, are scalar constants
and p(z) = —i(z2—1)/(#+1). As was explained in Section 1, here we interpret
p(z) as the formal series (3), rather than as a function. Accordingly, p, = 0 for all
n > 0 and in terms of Fourier modes, our transformation is

QAp, > Sﬁn,n(an) =an + Z'K((Sn,() + 2(—1)”){(_0070)(77,)) + 775n,0a
where X (_oo,0) is the characteristic function of the open interval (—oo,0).
The reader might wonder what the reason is behind the choice of the function

p. As we shall see in the next subsection, what makes p(z) important is that it is
a solution of the differential equation

+ 1 p'(z) =0, (15)

where p’(z) denotes the derivative along the circle (1).

The transformed U(1)-current field gives rise to a new associated stress-energy
field. By an abuse of notation, we denote (the shifted version of) this by ¢, ,(T(2)),
even though ¢, , does not formally act on T'(z). After a straightforward computa-
tion, we find that

(5p(2) +0)*

Prn(T(2)) 1= 3t () 1 (2) = T(=) + (kplz) + 1) () + 2 ’

2

where T'(z) = 3 : J? :(2) is the canonical stress-energy field of the original repre-
sentation.

“Almost” symmetric stress-energy tensor with ¢ > 1

Following the work of Buchholz and Schulz-Mirbach, given a U(1)-current field
J(z), apart from the canonical (shifted) stress-energy field T'(z) = 1 : J(2)? :, we
shall also consider Ty (2) = >, oy Lxnz™" where

Ti(2) = T(2) + £ (J'(2) = p(2)J () (16)

and of course the product p(z)J(z) is understood in the sense of fields: i.e., its
coefficient of 27" is Y ik (0m,0 + 2(—1)"X(=00,0)(1)) Jn—m. Note that Tp(z) =
T(z): i.e., for k = 0 the construction reduces to the canonical one. One can show
that the operators { Ly n }{nez} form a representation of the Virasoro algebra with
central charge ¢ = 1 + 12x2 by a straightforward computation. However, we will
not need that since we see this below in another way.

The representation (16) is different from (8): the construction (8) does not yield
a manifestly unitary vacuum representation with central charge ¢ > 1. On the
other hand, if 0 # x € R then ¢ > 1 and if J(z) is symmetric and Q is a lowest
weight vector for J(z) with zero lowest weight ¢ = 0 (ie., if Q@ was a vacuum
vector for J(z)), then—as is easily checked —2 is still a vacuum vector for the
representation {Li n}{nezy (€2 is not necessarily cyclic for {Lxn}{nez, even if
it was so for J(z)). Moreover, even if it is not properly symmetric, T,(z) has a
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certain weakened symmetry property. Since the fields T'(z), J(z), J'(z) appearing
in our formula are symmetric, k € R and p is also real on the unit circle—as was
explained at the end of Section 2—we have that

(P(2)T(2))" = B(2)Toe(2)

for any (scalar valued) trigonometric polynomial p(z) = Zlnl <N CnZ
the additional property p(—1) = 0.

Although different, this construction is closely related to (8). Indeed, if we apply
the construction (16) to the current ¢, ,(J(z)) instead of J(z) (i.e., we apply the
transformation ¢, , with the same ) then we obtain the stress-energy field of (8):

Pr.n(Ta(2))

= Ti(2)+(kp(2)+m)J (2)+

—n

satisfying

W—H@ (kp'(z)—rp(2)>—np(2))

2 42 17
= Tu(2)+ (spl(2)+m) T (2) + "

Ii2 +n2
) ’

= To(2)+wJ'(2)+nJ(2)+

where we used the fact that p(z) satisfies the differential equation (15). This also
shows that the operators { Ly n}{nezy indeed satisfy the Virasoro relations with
central charge ¢ = 1 + 12x2, since the last expression coincides with (8).

Restoring unitarity to the Fateev—Zamolodchikov realization

The transformation ¢_, ;. will be of special interest. Since py = i, it changes
the lowest weight value for J(z) by —ik + ik = 0; i.e., it preserves the lowest
weight. Moreover, by substituting 7 = ix in (17) and taking account of the fact

that ¢y ix = 30,;1,1-,,6, we see that

p—rin(J(2)) = J(2) = rp(2) + ik,
prin(J'(2)) = J'(2) = kp'(2),

orin(T(2)) = 3+ o ninlJ(2))’ (18)

= T(2) + (—rp(2) +ik)J(2) + M7
O rin(T(2) —ir(J(2) +iJ'(2))) = Tu(2),

suggesting that by applying ¢_ i\ to the first of our commuting currents appearing
in the Fateev—Zamolodchikov construction, we could turn our “very much nonsym-
metric” fields into ones that have a discussed weak form of symmetry without
changing lowest weight values.

So let us take again two commuting U(1)-current fields .Jjj(z), Jig(2) and con-
sider them as a representation of the direct sum of the Heisenberg algebra with
itself. Then let ¢_ ;. act on the first one while not doing anything with the second
one: i.e., the transformation ¢_, ;. defined by

Orin(J1)(2)) = 0—rin(J1)(2),  Prin(Jj2)(2)) = Jjg(2)
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can be viewed as a composition of our representation with an automorphism.
Accordingly, we can apply the Fateev—Zamolodchikov realization (13)(14) to these
representations @ ix(J11)(2)), @—x,ix(Jj21(2)) and obtain a shifted pair of fields,

which we denote by T'(z; k) and M(z, k). Setting

Tij)n(2) = % HIGy (2) + R (T (2) = p(2)T)51(2))

as in (16) for j = 1,2, by a straightforward computation we find that

G—K,m(T(ZQ K)) = T[l],n(z) + T[Q],O(Z)’

G in (M (25 ) = % Ty 1 (2) = V2T () (2)

+ 5’1’7’; ((Fy(2) = w0 (2)) Ty (2)) (19)

= (Juy(2) = kp(2)) Ty (2))

br* "
+ Tﬁ(2J[2] (2) = Ji5(2)).

Since we obtained them by a transformation, which is in fact a composition with an
automorphism of a pair of U(1)-currents, the pair of the fields 22@_, ;x(T(2; k))
and z3@_m,§(]\/\/[/(z; k)) must still result in a representation of the Ws-algebra.
Moreover, since ﬁ,mﬁ transforms our currents in a manner that leaves every
lowest weight vector a lowest weight vector with the same weight, by Proposition
2, we have that if Q,, 4, was a common lowest weight vector for Jjj(z) and Jy(2)
with lowest weights ¢; and ¢ respectively, then it will be also a lowest weight
vector for the representation of the Wjs-algebra given by (19) with lowest weight
value (h,w) given by Proposition 2.

Corollary 3. Let £,q1,q2,b € R be such that b*> = 16/(22 + 5¢) where ¢ = 2 +
12x2. Then there exists a lowest weight representation {(Ly,, Wy)}nez of the Ws-
algebra with central charge ¢ = 2 4+ 12k2 and lowest weight

1 1 . b /1 .
(h,w) = <QCI% + 5‘13 — 1k(q1, ﬁ (3613 - (fﬁ — 2ikq1)q2 + ,12(]2))

on an inner product space such that the fields T(z) = 3, .y Lnz™" and M(z) =
Y nez Wnz™" satisfy the weak symmetry condition

()T =D(2)T(2), (r(2)W (=)' =7(z)W(2)
for all trigonometric polynomials p,r with p(—1) = r(—1) =r'(—-1) = 0.

Proof. By taking a tensor product of two lowest weight representations, it is clear
that we can construct two commuting symmetric U(1)-current fields Jj11(2), Jig(2)
on an inner product space having a common lowest weight vector €, ., of lowest
weight ¢; and ¢, respectively. (Note: this is the point where we use that ¢, ¢
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are real: with a nonzero imaginary part, we could not have an invariant inner
product for our currents). Now consider the representation z27'(z), 22 M (z) of the
Ws-algebra constructed through (19) with the help of the fields Jpj(2) and Jig(2).
Taking account of the symmetry of our currents, the fact that x,b € R, and the
comments at the end of Section 2, we see that T'(z) and M(z) indeed satisfy
the required symmetry condition. Moreover, by Proposition 2 and the observation
above the current corollary, Qg, 4, is a lowest weight vector for this representation
with the claimed lowest weight value. Thus, restricting our representation of the
Ws-algebra to the cyclic subspace of g, 4, gives a lowest weight representation
with all the desired properties. [

Remark 2. One might wonder whether our “weak” symmetry condition in the
above corollary actually implies “true” symmetry. It turns out that in the vacuum
case this is exactly what happens— we shall see this in the next section. However,
note that in general, the answer is “no”. In fact, if ¢ # 0, then h is not real,
so we cannot even have an invariant Hermitian form (let alone an inner product).
Actually, by (12), even if we set g; = 0 (and hence have real h and w), in general we
cannot have unitarity (see Theorem 6 for some values of h,w for which unitarity
fails). Indeed, our argument in the next section will use in a crucial way that
h = w = 0. In contrast, in the Virasoro case, the “weak” symmetry can indeed be
turned into “true” one; see Proposition 8.

3. Proof of unitarity for h =w =0

Here we will work in an abstract setting: we suppose that {(Ly, Wy)}{nez) forms
a representation of the Ws-algebra with central charge ¢ > 2 and that we are also
given a nonzero vector () as well as an inner product (-,-) satisfying the following
requirements:
(i) Q is a cyclic lowest weight vector for our representation and LoQ = WpQ =
0,
(ii) the fields T(z) = >,z Lnz™" and M(z) = > ., Wpz™" satisfy the
condition

(p()T(2)" =B()T(2), (r(2)M ()" =7(2)M (=)

for all trigonometric polynomials p,r with p(—1) = r(—-1) = 7'(-1) =0

(where the adjoint is considered w.r.t. the given inner product (-,-)).
Such a representation and inner product indeed exists; this is clear by considering
Corollary 3 with ¢1 = ¢2 = 0 and kK = /(¢ — 2)/12. From now on we shall not
be interested how these objects were explicitly constructed; we will only use to
the above listed properties. Our aim will be to conclude that (-,-) is in fact an
invariant inner product for our representation, making it unitary. Since we work
with Fourier modes rather than fields, we begin with reformulating property (ii).

Lemma 4. Let p(z) = 32, cncnz " and 17(2) = 30,y dnz™" be a trigono-
metric polynomials satisfying p(—1) = r(=1) =+/(=1) = 0. Then

( > c_nLn>T = > @l ., and < > d_an>T = > dW_,.

[n|<N n|<N [n|<N
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Proof. This is evident by considering the zero mode of the products appearing in
the equalities of property (ii). O

This implies in particular that (L,, —(—1)" "L, )t = L_,, —(=1)"""2L_,,
and that for any ni,ns,n3 € Z with ny # ny # ns # ny, with a unique pair of real
numbers u, d € R satisfying (—1)" +(—=1)"2u+(—1)"3d = (—=1)"'ny+(—1)"2nou+
(=1)"ngd = 0 (such a pair exists) we have

(Wi, + uWyy +dW, ) =W +uW_p, +dW_,,. (20)

The next Lemma follows from Assumption (ii), and the form (-, -) is not necessarily
the canonical one for (¢, h, w).

Lemma 5. L_1Q =W_1Q=W_5Q=0.
Proof. By now we know that (L_; + Lo)" = (L; + Lg) =: A; hence

1L = (L1 + Lo)Q||* = (@, A(L—1 + Lo)Q).
However, A = (L1 + L) annihilates Q so
AL+ Lo)Q=[A,(L_1 4+ Lo)]Q= (L1 +2Lo + L_1)Q = (A+ AHQ = ATQ,

and ||[L_1Q]? = (Q,ATQ) = (49Q,Q) = 0 showing that L_;©Q = 0. Then to
conclude the proof it is enough to note that W_; = —%[L_1,Wo] and W_p =
L., W_y. O

Theorem 6. Let {(L,, W,)}nezy be a representation of the Ws-algebra with a
scalar product (-,-) satisfying Assumptions (i),(ii). Then L = L_, and W, =
W_,, for all n € Z. Consequently, the representation is unitary.

Proof. We first show that L(Jg = Lg. Each vector of the form (10) is an eigenvector
of Ly with a real eigenvalue and since we are in a lowest weight representation,
these vectors—and hence also the eigenspaces of Lyj—span the full space. So to
prove that L(T) = Ly, it is enough to check that these vectors are orthogonal to each
other whenever the associated eigenvalues of Lj are not equal. We will do this by
performing an induction.

Induction on gr := 2X (number of L’s) 4+ 3 X (number of W’s)
Assume that for some j € {0,1,...} it holds that whenever ¢, ¢ k, k' are
nonnegative integers of “total grade value” (see [BMP96] for a similar grading)

gr:=2(0+0)+3(k+k)<j,

then for any positive integers my,...myg,ny...n, and mfy,...mjp,n}...ny,, the
vectors

U= L—m1 to L—mgW—nl to W—nkﬂa 21
\I’/:L—m’l"'L—mZ,W—n’l"'W—n;/Q ( )
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are orthogonal unless A = X where A = my +---my +ng + -+ -ny, and N =
my +---mj +nj +---nj, (i.e., unless they correspond to the same eigenvalue of
Ly). Note that for gr = 0, our assumption is trivially true as in that case we have
a single possible pair of vectors only: ¥ = ¥’/ = . We have to show that this
remains true for gr = j + 1. We will do this by considering all possible pairs of
vectors U, U’ of the form (21) with gr = 2({ + ¢') + 3(k + k') < j + 1 and show
that if A # X', then (¥, ¥’) = 0.

Case1: £+ ¢ >0

If A\ = ), there is nothing to prove, so assume A # X'. Since now we treat the
case when the sum of ¢ and ¢ is positive, at least one of them must be nonzero;
so say £ > 1, meaning that ¥ must contain at least one L operator in its defining
expression. Then let £ be the vector obtained by removing the first L operator
from the expression of ¥, namely, ¥ = L_,,,&. The vector £ is still given by an
expression of the same form than ¥ or ¥’, but the corresponding eigenvalue of L
is A—mq) and hence ¥ = L_,,, &£ = (L_p,, — (=1)™ Lp)E + (—1)™* (A —my)E. By
Assumption (ii), we know that (L_,,, —(—=1)™ Lo)T = (Ly,, — (=1)"™ Ly). Putting
all this together, we have

(O, 0) =(Lm, & V') = (Lo, = (=1)™ Lo)§ + (=1)™ (A = m1)§, ¥)
= (& (Lm, = (=1)™ Lo)¥') + (=1)™ (A = mq )(§, ¥')
= (&L, ¥) + (=)™ (A = X = ma).(€, )

We will argue that both terms in the above sum are separately zero and we begin
with the second term. The total number of L’s in the expression giving £ and ¥’ is
(—1)+¢" and the total number of W’s is k+k’. Thus, by the inductive hypothesis,
their inner product is zero unless they correspond to the same eigenvalue of Lg, in
which case we must have A—my = )\'. In either case, the product (A—X —mq)(£, ¥’)
is zero. Let us treat now the term (£, L,,, ¥’). Since L,,, annihilates Q,

Lo,V =Ly L LW---WQ=[Lyp,,L--- LW ---W]Q,

where we just symbolically wrote “L--- LW ... W” without detailing the indices.
Using the Ws-algebra commutation relations, the above vector can be rewritten as
a linear combination of vectors of the form (21) with the same associated eigenvalue
of Ly—i.e., with eigenvalue A — mj—but with strictly smaller values of the
quantity “2 x the number of L’s + 3 x the number of W’s 7. (E.g., note that
when exchanging the two W operators, then, due to the commutation relations, two
“new” L operators can appear — but only on the “cost” of having two W operators
less. This is why we gave more weight to a W operator than an L operator.)
Therefore, again by the inductive hypothesis and A # X, we have(¢, L,,, ¥') = 0
and thus (¥, ¥’) = 0.

Case 2: £ =4 =0

In this second case, we have no L operators at all in the defining expressions of
our two vectors: U =W_,,, - - W_,, Qand ¥ ' =W_,, - W S2. Again we may
assume that A # ), and so in particular we must have at least one W operator



UNITARY REPRESENTATIONS OF THE Ws3-ALGEBRA WITH ¢ >2 581

in our expressions (otherwise ¥ = U’ = ). So say k > 1 and let £ be the vector
obtained by removing the last W from the expression of ¥. Then W_,,,& = ¥ and
Lo& = (A —n1)¢.

By Lemma 5, W2 = W_,Q = 0 for s € {0,1,2}. Since the index set {0, 1,2}
has three elements, there must exist at least two different r, s € {0,1, 2} such that
neither W_,.€ nor W_,£ corresponds to the same eigenvalue of Ly as ¥': i.e., that
N # (A=n1+s),(A—n1+7). Then by (20), we have some real numbers u, d such
that we have the adjoint relation (W_,,, +uW_,+dW_,)t = W,,, +uW,+dW, =: A
holds, hence

(U, 0) = (Wop, €. 0) = (AT — (W, + dW_))E, W)
= <§,A\II’) — ((uUW_, +dW_)¢E, \Il’>.

Since both A = W,,, +uW,. +dW and B = (uW_, +dW_,) annihilate Q, one can
rewrite the above expressions using commutators as a linear combination of terms
with strictly smaller total value of the quantity “2 x the number of L’s + 3 X the
number of W’s” than the original value gr. Moreover, by our choice of s and r, the
corresponding eigenvalues of Ly of the terms on the two sides of the inner product
never coincide. So again, by the inductive hypothesis, each of those inner product
values are zero and hence ¥ and ¥’ are orthogonal.

Now we know that L{, = Lo. By Assumption (i) we have (L, — (=1)"Lg)t =
L_n — (—1)nL0 and that (W_l —|—W1 —QWO)T = (W—l +W1 — QWO) =: A. By taking
real-linear combinations, we conclude then that L], = L_,, for all n € Z. Then also
B :=i[Lg, A] = i(W_y; — W1) is symmetric, and so are C' = i[Lg, B] = W_; + W}
and 1(C — A) = W,. We then have

1

“2n

1
(L, WoT = ———[L}, W] =

1
Wi =_—
2n

L, Wyl =W_,. 0O

Corollary 7. The irreducible lowest weight representation of the Ws-algebra with
central charge ¢ > 2 and lowest weights h = w = 0 is unitary.

Remark 3. By the existence theorem [Kac98, Thm. 4.5], any lowest weight repre-
sentation where the lowest weight vector {2 satisfies the extra condition L_1€) =0
generates a vertex algebra with translation operator T' = L_;. (This condition
implies that the lowest weight must be (h,w) = (0,0) but not the other way
around. Note however that in the unitary case, h = 0 alone implies L_1Q = 0.) This
vertex algebra evidently has a Virasoro element v = L_5{) whose corresponding
field has T" as a component, and since the representation space is the direct sum
of eigenspaces of Ly with non-negative integral eigenvalues and each eigenspace
is finite dimensional as it is spanned by finite many vectors of the form (10), the
resulting structure is actually a vertex operator algebra (VOA). Moreover, if the
representation we started with was unitary, then the obtained VOA is also unitary
in the sense of [CKLW18, Def. 5.2]; see, e.g., [CKLW18, Prop. 5.17], which says
that unitarity follows if the VOA is generated by a family of Hermitian® quasi-
primary fields. The unitary VOAs constructed in this way must coincide with the

8Note that hermitianity of the fields L(z) and W (z) in the sense of [CKLW18] is
precisely equivalent to the symmetry of T'(z) = 22 L(z) and M(z) = z23W (z).
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simple quotients of the freely generated VOAs defined from the Verma modules
for the Ws-algebra in [Lin09, Sect. 5]. The latter can be identified as special cases
of the universal VOAs in [DSKO05], [DSKO06], as a consequence of [DSK06, Thm.
3.14], cf. also [DSKO05, Prop. 3.11, Example 3.14].

We show in [CTW22] that all these unitary VOAs are strongly local VOA in
the sense of [CKLW18] and hence give rise to conformal nets.

It is worth noting that with the same induction technique we used in this section,
we can show that if a lowest weight representation of the Virasoro algebra {Ly, }nez
on an inner product space satisfies (ii) in the sense that Ly — (=1)"L, = (Lo —
(—=1)"L_,)" for all n € Z, then in fact our inner product is an invariant form for
the representation; in this case we do not need to assume that h = 0.

Proposition 8. Let {L, }{nez} be a lowest weight representation of the Virasoro
algebra with lowest weight h € R and lowest weight vector ), and suppose that
(Lo—(=1)"L_,)" = Lo — (=1)"L,, for all n € Z with respect to a given Hermitian
form (-,-) (not necessarily the canonical one). Then L, = L' for all n € Z.

Proof. As in Theorem 6, it is enough to prove that Lg = Lg. Let Vj4, be the
eigenspaces of Lg. Assume that Vj, ..., V,1, are pairwise orthogonal. (For n = 0
this is trivial.) This implies that Lg is symmetric when restricted to V, @ - -@®Vy1p.
Let £ € Vignt1,m € Vign, k < n. We have to show that (¢,7) = 0. We may assume
that ¢ = L_;(, where ¢ € Vihyn_j4+1, as the general case is a linear combination.
We have (L_; — (—1)7Lo)' = L; — (=1)7Ly = A and L_; = A" + (-1)/Ly,
L;j=A+ (-1)Lg so

(&m) =(L_;¢,m) = (AT + (=1)7Lo)¢,m) = (¢, (A + (1) Lo)n) = (¢, Ljm) = 0,

where the 3rd equality holds since Lg is symmetric on Vo @ - - - @ Vj 4, and the last
equality follows from L;n € Vi ® --- ® Vj4n—; and the hypothesis of induction.
O

4. More unitary representations

It is also possible to construct unitary representations on the full space of the two
commuting currents we used. Suppose again that we have two commuting U(1)-
current fields Jy;)(2) = >, oz Jnz™" = za;1(2) (j = 1,2) having a common lowest
weight vector €2, o, with lowest weights ¢; and ¢, respectively, and that we have a
fixed inner product on our representation space making our currents Jj;1(2), Jig)(2)
symmetric. Such currents on an inner product space indeed exist if g1, g2 € R (e.g.,
consider the tensor product of two lowest weight representations). We now perform
transformation @g;: i.e., while remaining on the same inner product space, we
consider the currents Qo i« (J11(2)) = Jpj(2) + ik, Qo,ix(Jj2)(2)) = Jj21(2) instead of
the original ones Jj1j(2), Jizj(2). The vector Qg, 4, is still a common lowest weight
vector for these currents, but this time with lowest weights ¢ = ¢; + ix and
g2 = q2. Recall that the transformation ¢y ;; can be viewed as a composition of a
representation with a Lie algebra automorphism, and can be further composed with
the Fateev—Zamolodchikov realization of the VWjs-algebra. By the usual abuse of no-
tation, we shall denote the fields constructed from Qo i« (Jj1)(2)) and o, ix(Jj2)(2))
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using the formulas (13) and (14) by @O,iﬁ(f(z; k)) and @0715(M(z; k)). Note that
k appears twice in these expressions: its value effects both the transformation
we perform on the currents and the Fateev—Zamolodchikov construction. In other
words, we use the same k value in both cases; this has the effect that p(z) vanishes
from the formula. By a straightforward computation, one has that

@0,ix (T (2 K)) = Ty (2) + &y (2) + > T Ty (2),

2
©0,in(M(z; k) = b Jé] ((z) — V2b (T[I] (z) + KJ[;L]'(z) + 2) J9(2)

3bk 3bk
Iy (2) T2 (2) —
br? br?

+ EJ@](Z) - Tﬁc}fé](z)

where, of course, T;)(z) = 5 : J[zj] (2) (j=1,2).

Note that @g_ix (f(z; )) is the sum of the following two stress-energy fields: the
canonical one of the second current, and the modified one (8) — with the constant
n = 0— of the first current. Note also that both @g . (T'(2; k)) and @ ik (M (z; k))
are manifestly symmetric if x is real: so for any x € R, they give a unitary
representation of the W;-algebra with central charge ¢ = 2 + 12x2. Moreover,
by Proposition 2, €4, 4, is a lowest weight vector for this representation, and the

corresponding lowest weight (h,w) can be obtained by replacing ¢; by g1 + ix in
the formula of Proposition 2. After some simplifications, this gives

2 2 2
h:q1+q2+/<; ’ b( 3‘]1‘12)' (22)
2 3v2

Theorem 9. Let ¢ > 2. By the above construction, the irreducible lowest weight
representation of the Ws-algebra V o U8 unitary for

3/2
c—2 8 c—2
h> 2 <y —2 (on— 2 h,w € R).
z g lvls 198+45c< 12> (h,w € R)

Proof. For each value of (q1,q2,x) € R?, we have a unitary representaition with
central charge ¢ = 2 + 12x2 and (h,w) given by (22). What we need to find out
now is the set of (¢, h, w) values that can be realized in this manner.

J[l]( )J[ 1(2)

It is clear that the posmble values of (¢, h) are ¢ > 2 and h > & pX We consider
them (hence ,b and ¢7 + ¢3) as given. By varying qi, g2 under ¢? + g5 = 2h —
(c—2)/12 =: C? with C > 0, the function

@ —3qiq = 445 — 3C%qs

takes a local maximum at go = —C'/2, hence the maximum under the condition
lg2|] < C is C? (in both cases go = C,—C/2) and every value between them is
possible. Similarly, the minimum is —C?. This means that

3/2
8 c—2
<> (on- . O
ol < 198+45c( 12)
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This result allows us to completely characterize unitarity in the region 2 < ¢ <
98.

Corollary 10. Let 2 < ¢ < 98. Then the irreducible lowest weight representation
of the Ws-algebra VJX:"“) is unitary if and only if
h2(96h — -2

(96h—3(c=2) o,

fua(h,c) —w® = 27Ge +22) |~

Proof. As we already mentioned at (12), the condition fii(h,c) — w? > 0 is
necessary for unitarity, so we only need to show the “if” part. Consider the open
region H and the closed region R defined by

H={(c,h,w) € R® |2 < ¢ <98, fi1(h,c) —w? > 0},
R ={(c,h,w) € R? |2 <c¢<98, fll(h,c)fw2 > 0}.

Our aim is to prove unitarity in the region R. Now we have that R = HU{(c,0,0) |
2 < ¢ < 98} and Corollary 7 tells us that we indeed have unitarity on the line
{(¢,0,0) | 2 < ¢ <98}, so let us turn our attention to the region H.

It is clear that fi1(h,c) is monotonically increasing with respect to h and hence
that (¢, h,w) € H if and only if 2 < ¢ < 98,h > (¢ —2)/32, |w| < y/f11(¢e,h). In
particular, H is connected. As we already mentioned at (12), in this region all Kac
determinants are positive and hence, as was explained in Section 6, unitarity at a
single point of H implies unitarity for the entire closure H. Since, e.g., (3,1/24,0) €
H, and at ¢ = 3,h = 1/24,w = 0 unitarity holds by the previous theorem, we
therefore have unitarity on H. [0

It remains to investigate which representations with h # 0 # w correspond to
representations of the conformal nets constructed in [CTW22], cf. [Car04], [Weil7]
for the analogous question regarding the Virasoro algebra.

A. Lowest weight representations and Verma modules

Since the Wjs-algebra is not a Lie algebra, the notion and existence of Verma
modules with invariant forms are not evident. In physics literature, they are either
assumed without any further explanation [BS93], [Art16] or claimed that they can
be obtained —in a similar manner to the Lie algebra case — through the quotient of
the “universal covering algebra” [BMP96], which cannot be constructed in the same
way as in a Lie algebra because the commutation relation contains an infinite sum
in terms of the basic fields. The more careful treatment of infinite sums in [Lin09,
Sect. 5] might lead to a sensible construction, but the argument as it is written
there has the problem® that the ideal contains only finite sums, hence infinite
sums cannot be reordered. In [DSKO05], a Poincaré-Birkhoff-Witt-type theorem is
shown for W-algebras in general; however, it is in an abstract setting and it is
not evident for us whether it validates the particular form of Verma modules and

9We contacted the author who indicated some possible remedies that might work; in
any case, we shall not make use of such a universal algebra.
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invariant forms appearing both in the physicist literature and also in our work.
For these reasons, we decided to provide our own proof of these facts.

Even if these results might be well known to experts, the argument we give
could be interesting on its own: instead of being algebraic, in some sense it is
analytic. We start with concrete constructions covering only some values of the
central charge and lowest weights and then show that all these objects—e.g., the
invariant form — can be continued analytically to all values of the parameters.

A bilinear form (-,-) is twisted-invariant for a representation {L,, Wy }inezy
of the Ws-algebra, if (L,x,y) = (z,L_,y) and (Wy,x,y) = (x, W_,y) for all z,y
vectors from the representation space and n € Z. The form is said to be symmetric,
if (z,y) = (y, ) for all z,y, and a symmetric form is nondegenerate, if “(z,y) =0
for all 3” implies that x = 0. Note that whereas in the main part of article we
considered invariant Hermitian forms, to be more general here we consider twisted-
invariant bilinear forms. (It is not difficult to see that the existence of a nonzero
invariant Hermitian form for a lowest weight representation rules out nonreal lowest
weights.)

To simplify notations, we set K(x ) = L, for X = L and K(x ) = W, for
X = W and often write just K,, with a shorthand notation v = (X, n). We also
set —(X,n) := (X, —n) and further introduce a level A and another quantity g
by setting, for every r € {0,1,...} and and 11 = (X1,n1),...,vp = (X;,n,) €
{L,W} X Z,

Avi,.o o vp)i=ng + - 40,
g,y vp) =d(X) + -+ d(X)

where d(L) = 2 and d(W) = 3 (see [BMP96] for a similar grading). Note that both
g and X\ are completely symmetric in their arguments.

Let {L,, W, }nez form a lowest weight representation of the Ws-algebra with
central charge ¢ # —22/5, lowest weight (h,w) € C? and lowest weight vector V.
Then, using the Ws-algebra relations (5) and that ¥ is a lowest weight vector, it
is straightforward to show that for any permutation o, the difference
‘K

K, - K,V —K, v

O IO
can be written as a linear combination of terms of the form K,; --- K,, ¥ with
g(vy,..., V) strictly smaller’® than g(vy,...,vs) and coefficients that are real
polynomials of ¢,1/(22 + 5¢),h and w. In particular, it follows that the cyclic
space obtained from W is spanned by vectors of the form K, --- K, ¥ where
r € {0,1,...}, Mv;) <0 for each j =1,...7 and (v1,...,v,) is lexicographically
ordered (namely, pp = (X,,m) <v = (X,,n)if X, =W, X, =L, or X, =Y, and
m < n). However, this is not the only important conclusion one can draw.

10T his is exactly why we gave more “weight” to the W operators by setting d(W) =
3 > 2 = d(L) in the definition of g. We needed this because, roughly speaking, the
commutator between two W operators can give rise to two L operators. The degree d(-)
is defined so that it can be reduced using the commutation relations.
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Proposition 11. For any r,s € {0,1,...} and vq,...ve,p1,...pr € {L, W} X Z,
there exists a real polynomial p such that whenever {L,,,W,} is a representation
of the Ws-algebra with central charge ¢ # —22/5 on a space V with a twisted-
invariant bilinear form (-,-) and lowest weight vector ¥ € V' with lowest weights
(h,w) and (¥, W) =1, then

(Ky, - Ky, ¥, K,y -+ K, V) = p(c,1/(22 4 5¢), h,w).

Proof. We shall inductively construct such polynomials without any particular
knowledge about the actual representation. It is enough to deal with the case
s = 0, since by the invariance of the form, we can put everything on one side:

(KU1 tU KVT\II7 KI"l e KILS\IJ) = (K—/Ls T K—lthlﬁ T KVT\I/v \IJ)

If further » = 0, then the claim is trivially true, while for » = 1, we have the
expression (K,, ¥, V) = (¥, K_,, V) showing that it is zero unless A(r1) = 0, in
which case it is A when 1 = (L,0) and w when v; = (W,0). Thus the claim
is true for g(v1,...,v) < 3. Now assume the claim is true for g(v1,...,v,) < n
and consider the case g(v1,...,v,) = n > 3. If A(11) < 0, then by moving K,
to the other side, we see that (K, --- K, ¥, ¥) = 0. If A\(v;) = 0, then by the
same argument, the value of the form is h(K,, - - K, ¥, ¥) or w(K,, --- K, ¥, V),
depending on whether vy = (L,0) or (W,0). In both cases we have done, as
by the inductive hypothesis, we already have a polynomial giving the value of
(K, - K, ¥, ). If finally A(r1) > 0, then K, annihilates U and

K, K,, - K, V=K, K, K, —K, K,K,)Y,

which, as was mentioned, can be rewritten as a linear combination of terms of
the form K, - -- K., ¥ with g(v1, ..., v;) strictly smaller than g(v1, yi1,. .., ) and

coefficients that are real polynomials of ¢,1/(22 + 5¢), h and w. This concludes the
induction. O

Corollary 12. The Ws-algebra admits a lowest weight representation with a sym-
metric, nondegenerate twisted-invariant bilinear form for every value of the central
charge ¢ # —22/5 and lowest weight (h,w) € C2. If further c¢,h,w € R, then the
same remains true even if we replace the words “symmetric bilinear” by “Her-
matian”.

Proof. Consider a lowest weight representation with either a nondegenerate, sym-
metric twisted-invariant bilinear form (-, -) or a nondegenerate Hermitian invariant
sesquilinear form (-, -). If ¢, h, w € R, then the arguments used in our previous proof
remain valid regardless whether we apply them for (-,-) or (-,-) and show that
the product of elements from the real subspace M spanned by vectors of the form
K,, --- K, ¥ isreal and hence — because of the non-degeneracy of the form — that
M niM = {0}. Tt then follows that starting from either (-,-) or from (-,-), the
equation

(a +ib,c+id) = (a —ib,c+id) (a,b,c,d € M)

defines unambiguously the other object with all the desired properties.
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By the construction in Section 4, there exists a region H C R? with nonempty
interior such that for all (¢, h, w) € H, there is a lowest weight representation of the
Wjs-algebra with central charge ¢ and lowest weight (h, w) having an invariant inner
product (see Theorem 9 for an actual description of the region H). In particular, for
these values of ¢, h and w we also have the existence of a nondegenerate, symmetric
twisted-invariant bilinear form. Now suppose the value of ¢ # —22/5, h and w are
arbitrary. Let V be the linear space freely spanned by (at the moment formal)
expressions of the form K, --- K, ¥ where r € {0, 1,...}. We introduce a bilinear
form on V by setting

(Ku1 e Kllr\:[lv K/tl T KHS\IJ) = p(C, 1/(22 + 56), h,w)

where for each choice of v1,...,v, and py, ..., us, p is a (possibly different) poly-
nomial as in Proposition 11. Note in particular, that the above value given to the
form is a rational function of ¢, h, w, and thus it is completely determined by its
values in H.

To check that the introduced form is symmetric, we need to verify that

(KVI Ky, Y, Km "'KMS‘IJ) = (Km "'K#S\I’7 Ky, "'KVT\I’)

for each choice of vq,...,v. and uq,...,us. However —though not indicated in
notations — each side of the above expression is a rational function of ¢, h,w, and
when (¢, h,w) € H we indeed have an equality. But if an equality of rational
functions holds in H, then so does it for all of their domain.

Let V' be the space obtained by factorizing V' with the set of “null vectors”: i.e.,
by the subspace N :={z € V : for all y € V : (z,y) = 0}. On this space, our form
is still well-defined, symmetric, bilinear and by its construction, nondegenerate. We
have to show that the natural action of the K operators on V is well-defined and
gives a lowest weight representation of the Ws-algebra on the factorized space V.

To show that it is well-defined, we need to check that if x € N, then K,z € N:
that is, (K,z,Y V) = 0 for all (noncommutative) polynomial Y in {L,, W,}. We
know that the left-hand side is a rational function of (¢, h,w) and that its value is
indeed zero in H — and hence that it is zero on all of its domain. This proves that
it is well-defined. Lastly, to verify that V gives a lowest weight representations, we
only have to repeat the argument: both of the W5 relations and the lowest weight
property are written as equalities between rational functions in ¢, h, w with only
singularity at ¢ = —22/5, therefore their validity in H implies their validity for all
(¢, h,w),ec# —22/5. O

Although we do not need Verma modules for our main results, we think it
worth explaining how their existence can be verified using reasoning similar to
what we have just employed. In addition, although we will need Kac determinants
and in particular the results of Mizoguchi in [Miz89], we note that for the notion
of Kac determinant to be well-defined, there is no need to have a Verma module.
Indeed, as was explained, the value of (K, --- K,, ¥, K, --- K, ,¥) is universal:
it depends only on the central charge ¢ and lowest weights h,w, but not the
particular representation. Indeed, to obtain his result, Mizoguchi never considers
Verma modules; he works with some concrete representation to find null vectors.
Therefore, our use in Corollary 10 and Proposition 13 of the Kac determinant
computed in [Miz89] does not involve circular arguments and is justified.
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Proposition 13. For every value of the central charge ¢ # —22/5 and lowest
weights (h,w) € C2, there exists (an up to isomorphism) unique lowest weight
representation of the Ws-algebra with lowest weight vector ¥ in which vectors of
the form

Ly, -

Lo L Why - Wy U (23)
where ny < -+ <ng <0 and m; < --- < m, <0 form a basis: i.e., a Verma
representation.

This representation admits a unique twisted-invariant bilinear form (-,-) with
normalization (U, ) =1, and this form is automatically symmetric. Moreover, if
in addition ¢, h,w € R, then everything remains true even if we replace the words
“bilinear” by “sesquilinear” and “symmetric” by “Hermitian”.

Proof. By now we know that for every ¢ # —22/5 and (h,w) € C? there is an
irreducible lowest weight representation. However, in this representation, when
(¢,h,w) € H, where H is the set introduced in the proof of Corollary 10, the
vectors (23) are independent (since in H all Kac determinants are strictly positive)
and thus this representation is the Verma one.

For the rest of values, we consider the abstract space V spanned freely by
vectors of the form (23). By doing so, seemingly we have linear independence for
free. However, we have to check that it carries a corresponding representation! At
this point, we use quotation marks and write symbols such as “K,, --- K, U”, as
this is indeed a vector of V' by construction, but it is not (yet) the vector ¥ acted
on by K. Given a ¢ # —22/5 and (h,w) € C?, our task is then to define, for each
v, an operator K, acting on V so that they satisfy the following requirements:

(i) K, ¥ =0 whenever \(v) > 0, Ly¥ = h¥, WU = w¥
(ii) if v,vq -+ , v, are lexicographically ordered and £(v),£(v1),...L(vr) < O,
then the action of K, on the (abstract) vector “K,, - - - K, ¥” should result
in the (abstract) vector “K, K, --- K, U”.
(iii) {K,}ve{r,wyxz is a representation of the WWs-algebra with central charge c.

Let us enumerate our basis vectors of the form (23) and denote them by ¥ =
W, Wy, Wy, ... An action of K, can be defined by fixing its matrix-components: i.e.,
by choosing scalars M, ; i (c, h,w) € C and setting K, V; := >, M, j (¢, h, w)¥y.
When (¢, h,w) € H, we know that this can be done in a way so that requirements
(i), (ii) and (iii) are met, because for those values we do have Verma representa-
tions. However, it is not difficult to see that again, the coefficients M, ; i.(c, h, w)
given by those Verma representations that are already known to exist, are rational
expressions of the central charge ¢ and lowest weights (h,w) with real coefficients
and possible singularity only at ¢ = —22/5. Thus, we can naturally continue them
also outside of H.

We use these analytically continued matrix coefficients to define the operators
K,. Again, since inside H these coefficients satisfy the properties (i), (ii) and
(ili) that are expressed in terms of rational functions of ¢, h, w with only possible
singularity at ¢ = —22/5. the same remains true outside. This proves that we
obtain a lowest weight representation on V. [
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